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Abstract

A novel wavelet-based Poisson-intensity estimator of images is presented. This method is based on the asymp-
totic normality of a certain function of the Haar wavelet and scaling coefficients called the Fisz transformation.
Some asymptotic results such as normality and decorrelation of the transformed image samples are extended to
the 2D case. This Fisz-transformed image is then treated as if it was independent and Gaussian variables and
we apply a novel Bayesian denoiser that we have recently developed. In the latter, a prior model is imposed on
the wavelet coefficients designed to capture the sparseness of the wavelet expansion. Seeking probability models
for the marginal densities of the wavelet coefficients, the new family of Bessel K forms densities are shown to
fit very well to the observed histograms. Exploiting this prior, we designed a Bayesian nonlinear denoiser and
a closed-form for its expression was derived. Qur Fisz-transformation based Bayesian denoiser compares very
favorably to variance stabilizing transformation methods in both smooth and piece-wise constant intensities. It
clearly outperforms the other denoising methods especially in the low-count setting.

Keywords: Wavelets, Poisson process, Fisz transformation, Bayesian denoiser, Bessel K forms.

1. Introduction

Nonparametric wavelet-based regression has been a fundamental tool in data analysis over the past two
decades and is still an expanding area of ongoing research. The goal is to recover an unknown image, say
g, based on sampled data that are contaminated with noise which is supposed Gaussian in most situations.
Only very general assumptions about g are made such as that it belongs to a certain class of functions (e.g.
Besov space). Nonparametric regression (or denoising) techniques provide a very effective and simple way of
finding structure in data sets without the imposition of a parametric regression model. During the 1990s,
the nonparametric regression literature was arguably dominated by nonlinear wavelet shrinkage and wavelet
thresholding estimators [1-3]. These estimators are a new subset of an old class of nonparametric regression
estimators, namely orthogonal series methods. Moreover, these estimators are easily implemented through fast
algorithms so they are very appealing in practical situations [4].

Since the seminal papers by Donoho & Johnstone [1], the image processing literature have been inundated by
hundreds of papers applying or proposing modifications of the original algorithm in image processing problems.
Various data adaptive wavelet thresholding estimators have been developed, see for example the extensive reviews
in [5,6] and references therein. Various Bayesian approaches for nonlinear wavelet thresholding and nonlinear
wavelet shrinkage estimators have also recently been proposed. These estimators have been shown to be effective
and it is argued that they are less ad-hoc than the classical proposals discussed above. In the Bayesian approach
a prior distribution is imposed on the wavelet coefficients. The prior model is designed to capture the sparseness
of wavelet expansions. Then the image is estimated by applying a suitable Bayesian rule to the resulting posterior
distribution of the wavelet coefficients. A detailed study involving recent classical and Bayesian wavelet methods
was carried out in [7] in the development towards high-performance wavelet estimators and their finite sample
properties.

Some authors have already considered the problem of estimating the intensity of a Poisson process using a
wavelet-based technique. The classical approach consists in first preprocessing the data using variance stabilizing



transformations such as the Anscombe’s square-root transformation (see overview in [8]), so that the noise
becomes approximately Gaussian. Then the analysis proceeds as if the noise was indeed Gaussian, yielding
after applying the inverse transformation an estimate of the intensity of the process. Kolaczyk [9] has also
proposed a method based on the shrinkage of Haar wavelet coefficients of the original vector taking into account
the particular nature of the Poisson noise and adjusts the thresholding scheme. His algorithm outperforms the
standard method for a certain class of Poisson processes. However, only the Haar basis can be used in its algorithm
which is restrictive when the intensity image is known to be smooth. More recently, Fryzlewicz and Nason [10]
proposed an alternative wavelet-based algorithm for estimating the deterministic discretized intensity function
of an inhomogeneous one-dimensional Poisson process. Their method is based on the asymptotic normality of
a certain function of the Haar wavelet and scaling coefficients called the Fisz transformation. Their numerical
experiments show that the Fisz transformation method tends to perform better than both the Anscombe and
Kolaczyk’s methods.

In this paper, we propose to extend this idea to the 2D case (images) and prove some asymptotic results of
the transformed image (normality), which follow in a similar way as in [10]. The idea behind the algorithm is
the following: we first preprocess the observed image y using the nonlinear wavelet-based Fisz transformation,
and the preprocessed image is then treated as if it was Gaussian. The BKF Bayesian denoiser described above
is then applied on this transformed image.

This paper is organized as follows: In Section 2 we define the nonparametric regression problem and introduce
some notational aspects. The Fisz Gaussianizing transformation algorithm is then presented in Section 4. The
wavelet Bayesian denoiser, using the Bessel K forms (BKF) prior, is briefly presented in Section 3. We only
give the main results and the interested reader can refer to [23] for a detailed mathematical description. Section
5 compares the performance of the designed algorithm with classical denoisers on simulated and real medical
images. Finally, conclusions and directions of future work are drawn.

2. Nonparametric wavelet-based regression

Let’s first consider the Gaussian case. For the Poisson noise, a suitable transformation will be applied to
match our Gaussian noise model below. Let g, m,n = 1,..., N equally-spaced samples of a real-valued image.
N is considered as a power of 2. Consider the standard nonparametric regression setting :

Ymn = mn T €mn (1)

where €,,, are iid central normal random variables with variance 02 independent of g,,,,. The goal is to recover the
underlying function g from the observed noisy data ¥,,,, without assuming any particular parametric structure
for g. Let y, g and € denote the matrix representation of the corresponding samples. Let D = Wy, S = Wg
and V = We, where W is the two dimensional dyadic orthonormal wavelet transform (DWT) operator [11]. In
a two dimensional setting, the subbands HH;, HL; and LH;, j = 1,...,J correspond to the detail coeflicients
in diagonal, horizontal and vertical orientations, and the subband LLj; is the approximation or the smooth
component. J is the coarsest scale of the decomposition. Let s%7, be the detail coefficient of the true image g
at location (m,n), scale j and orientation o, and similarly for d%  and v% . Due to the orthogonality of the

mn

basis, v%Z,, the DWT of white noise are also independent normal variables with the same variance. It follows

from Eq.1 that : ' ‘ . '
. =s2 +vd i=1...,Jmn=0,...,27 -1 (2)

The sparseness of the wavelet expansion makes it reasonable to assume that essentially only a few large detail
coefficients in D contain information about the underlying image g, while small values can be attributed to
the noise which uniformly contaminates all wavelet coefficients. It is also advisable to keep the approximation
coefficients intact because they represent low-frequency terms that usually contain important features about the
image g. By thresholding or shrinking the detail coefficients and inverting the DWT, one can obtain an estimate
of the underlying image g. There are a variety of methods in the literature to choose the threshold level and the
thresholding rule, see [7] for a review and small sample performance of these methods.



3. Bayesian denoising using the BKF prior

In the Bayesian approach a prior distribution is imposed on the wavelet coefficients in order to capture the
sparseness of the wavelet expansion. The following section is intended to provide an introduction to Bessel K
forms distributions family suitable to characterize the wavelet subband coefficients densities which have been
already observed to be sharply peaked and heavily tailed. Many choices for this prior have been proposed in the
literature: scale mixture of two normal distributions [12] or one normal distribution and a point mass at zero
[13,14], double exponential prior with a point mass at zero [15], the Generalized Gaussian Distribution (GGD)
[16-18]. However, most of these priors suffer from a lack of capturing the heavy tail behavior of the observed
wavelet coefficients densities. Based upon this observation, authors in [19] used a-stable distributions [20], a
family of heavy tailed densities, as a prior to capture the sparseness of the wavelet coefficients at each scale.
These authors showed the superiority of the a-stable distributions in fitting the mode and the tail behavior of
the wavelet coefficients distributions. However, their hyperparameters estimator is very poor in the presence of
contaminating noise and remains an important issue. Furthermore, in both the GGD and the a-stable priors, the
derived Bayesian estimator has no closed analytical form in general situation and involves intensive numerical
integration.

Using a physical model for image formation (the so called transported generator model), a family of two-
parameter probability densities, called Bessel K forms (BKF), have been proposed in [21,22] to model the
distribution of arbitrary images that have been filtered by a variety of band-pass filters (e.g. derivative, Gabor,
interpolation, steerable filters, etc). It is evident that wavelet decompositions of an image are members of such
class of filters. Therefore, the BKF is a suitable model provided that the resulting wavelet coefficients marginals
are: unimodal, symmetric around the mode and leptokurtic. The first two conditions are widely adopted in the
literature and are common to other priors such as the a-stable or the GGD models. The last condition simply
mean that the prior is a sharply peaked distribution with tails that are heavier as compared to normal density of
the same variance. The BKF is then adapted to capture the heavy tail behavior of wavelet coefficients densities.
Exploiting this prior in a Bayesian framework, we designed a posterior conditional mean (PCM) estimator [23].
We also derived a closed-form for its expression as a main result of our paper.

The BKF prior of [21] is given by:
TP~ 2
0 ()

1 c\—5-1%
f(z5¢,p) = m (5)
for p > 0,¢ > 0, where K, () is the modified Bessel function [24,25]. p and c are respectively the shape and
scale parameters. Using this prior, we have shown that the marginal pdf of of the observed wavelet coefficients
d given o2, p and c is [23]:

~ o2\ 2
fudpeo) = (5.) od.0.0) T+ 1) ()
dig/2\?
(:l: Ak V2 )
where I = e D_, (:I:g + 0\/2). D, (z) stands for the Parabolic Cylinder function of fractional
order v [24,25]. fq is an even function whose mode is at zero.

It is well known that Ls-based Bayes rules correspond to posterior conditional means (PCM) estimates of
wavelet coefficients s (conditionally on the hyperparameters o2, p and ¢). In [23], a closed-form expression for
this Bayesian denoiser has been established:




for 0 < p <1 and c¢ strictly positive. To implement the formula in Eq.5 in practice, we also proposed a cumulant-

based estimator of the hyperparameters involved in this nonparametric regression problem, namely p, ¢ and o2
[23].

4. Denoising with a Poisson noise

Some authors have already considered the problem of estimating the intensity of a Poisson process using a
wavelet-based technique. The usual (regression) setting is as follows: the possibly inhomogeneous independent
Poisson process is observed and discretized into an image y. Each y,,, can be thought of as coming from
a Poisson distribution with an unknown intensity A,,,, which needs to be estimated. The classical approach
consists in first preprocessing the data using variance stabilizing transformations such as the Anscombe’s square-
root transformation (see overview in [8]), so that the noise becomes approximately Gaussian. Then the analysis
proceeds as if the noise was indeed Gaussian, yielding after applying the inverse transformation an estimate
of the intensity of the process. Kolaczyk [9] has also proposed a method based on the shrinkage of Haar
wavelet coefficients of the original vector taking into account the particular nature of the Poisson noise and
adjusts the thresholding scheme. His algorithm outperforms the standard method for a certain class of Poisson
processes. However, only the Haar basis can be used in its algorithm which is restrictive when the intensity
image is known to be smooth. More recently, Fryzlewicz and Nason [10] proposed an alternative wavelet-based
algorithm for estimating the deterministic discretized intensity function of an inhomogeneous one-dimensional
Poisson process. Their method is based on the asymptotic normality of a certain function of the Haar wavelet and
scaling coeflicients called the Fisz transformation. Their numerical experiments show that the Fisz transformation
method tends to perform better than both the Anscombe and Kolaczyk’s methods.

In this paper, we propose to extend this idea to the 2D case (images) and prove some asymptotic results of
the transformed image (normality), which follow in a similar way as in [10]. The idea behind the algorithm is
the following: we first preprocess the observed image y using the nonlinear wavelet-based Fisz transformation,
and the preprocessed image is then treated as if it was Gaussian. The BKF Bayesian denoiser described above
is then applied on this transformed image.

4.1. The 2D Fisz transformation

Given the image of counts y,,,, which is the realization of independent random Poisson variables Y, ~
P(Amn), the 2D Fisz transformation algorithm is as follows:

1. We apply a one step wavelet transform using the Haar wavelet. However, we use the non-normalized filters
{1/2,—-1/2} and {1/2,1/2} instead of the usual Haar filters. The detail coefficients d?,,, at each orientation
o and location (m,n) and the approximation coefficient aZL are given by:

aLL — (y2m41.2n+1+Y2m,2n41)+(Y2m 41,20+ Y2m 2n)
mn 4

dHH _ (y2m+1.2n4+1FY2m,2n) — (Y2m+1,2nFY2m,2n+1)
mn

4
dHL — (y2m+1.2nt1+Y2m 2n41) —(¥Y2m+1.2n +Y2m,2n) (6)
mn

4
dLH — (Y2m+1.2n+1FHY2m+1,20) —(Y2m, 2n+1F+Y2m,2n)
mn — 4

2. We now replace the detail coefficients in each orientation as follows:

0 if gLl =0
2o =4 o therwi (7)
m otherwise.

The new detail coefficients are realizations of random variables Z°

o n Whose distribution is given by the
following lemma:

Lemma 4.1 If Y,,,,, are independent Poisson variables, then it follows that:

Z2,  ~5 N(0,1/2) ®)



as
. . 2
for (i,7) € {0,1}*  A2mi2ntj — 00,
A2m+1,2n Aom41,2n41 A2m 2n41
A2m ,2n - 1’ A2m,2n+1 - 1’ A2m,2n — 1

where —% means converge in distribution. The proof of this lemma follows from Fisz theorem [26] for
1D Poisson processes. The conditions stated above has been adjusted to the 2D case. This lemma means
that we can expect the modified detail coefficients to come from a normal distribution with variance 1/2
provided that the underlying Poisson intensities are large and close enough in any 2 x 2 neighborhood.
Significant deviation from these assumptions will result in departure from normality.

3. We repeat steps 1-2 at each scale keeping the approximation coefficients intact. The modified detail
coeflicients at each scale can be considered as a Gaussianized version of the original detail coefficients.

4. We then reconstruct the new image u using the inverse Haar wavelet transform (with the non-normalized
filters). We can write:
u="7Fy (9)

where F is the Fisz transformation operator.

Following the same procedure as in [10], we can establish a general explicit formula for the operator F. One can
also easily show that Em,n Ump = Em’n Ymn and if y is a constant image, then Fy = y. More interestingly, two
properties, which are extensions of Fryzlewicz’s results [10] to the 2D case, can be proved. Suppose that the Y,
are iid Poisson variables with mean A, then the coeflicients of the Fisz transformed Poisson distributed image
u are asymptotically uncorrelated and normal with unit variance and mean A. This properties are verified
provided that the sample size N and the minimum of the underlying intensity image are large enough, and that
the mean of the underlying intensity image A is small. See [10] for a complete sketch of the proof in the 1D
case. In practical situations, these assumptions hold and the Fisz transformation works well even in the case of
non-constant intensities.

As an example, let’s consider a 256 x 256 8 bit-grayscale Hoffman phantom as the intensity image A (with a
maximum of 255), which is widely used in positron emission tomography (Poisson noise contaminated images).
Fig.1 compares the Q-Q plots and the auto-correlation functions (ACF) of Fy—FA and Ay — AA, where A is the
Anscombe transformation operator. The horizontal planes are the 5% critical levels. The Fisz transformation
does a better job than the basic Anscombe transformation in Gaussianizing the transformed image y. The
ACFs are very close and the Fisz operator does not introduce additional correlation. This normality and lack
of correlation naturally yields the BKF Bayesian denoising setting described above. To estimate the original
intensity A of a Poisson noise contaminated image, our Bayesian denoising algorithm will consist of the following
steps:

1. Calculate the Fisz-transformed image u which is a Gaussianized version of the Poisson image.
2. Apply the nonlinear BKF Bayesian denoising algorithm described above on u.
3. Perform the inverse Fisz transformation on the denoised image 1 to obtain the true intensity estimate A.

Fisz transformation F. u Wavelet-based Denoising\ i Inverse Fisz transformation ]—‘_1\ A
7 7 7

5. Experimental results

In this section, we compare the performance of our Bayesian denoising algorithm in the context of Poisson
noise to other algorithms, when the data is preprocessed using the Fisz transform. These algorithms were the
PCM estimator with a-stable prior for which we have recently proposed a fast algorithm in [27], hard and soft
universal thresholding[1], visu thresholding, minimax thresholding and SURE method. The coarsest level of
decomposition was chosen to be log,log N2 + 1 from asymptotic considerations [7]. We used the Daubechies
wavelet with regularity 4.
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Figure 1. Comparison between Fisz and Anscombe transformations on Hoffman phantom intensity image. The top row
shows the Q-Q plots and the bottom row shows the auto-correlation functions.

5.1. Simulated data

We first give some simulations, using the Hoffman phantom image as the true intensity image, to assess
the performance of the different algorithms. An example of the visual quality of some denoised images using
the Bayesian BKF and the classical universal thresholding methods is shown in Fig.2 for the Hoffman intensity
image, scaled with a factor of 0.01 (low counts). The details of the brain are not easily visible in the noisy
image. The Fisz (first column) and the Anscombe (second column) transformations are compared for each
denoising method. It can be clearly seen that the visual quality as well as the output SMR are higher for the
Fisz transformation. The Bayesian BKF is clearly the best denoising method among the one tested. The result
of this experiment are confirmed by the Monte Carlo simulation results shown in Fig.3. This figure shows the
output mean signal-to-mean square error ratio (SMR) in dB in estimating the Hoffman phantom intensity image
as a function of the logarithm of a scaling factor, by which the intensity image was multiplied in order to assess
the performance of the methods in both the low- and high-count setting. The output SMR was averaged for
each scaling factor on 100 simulated trials. The first 7 panels compare the Fisz transformation (solid line) to the
Anscombe transformation (dashed line) for each denoising method. The last two panels respectively compare
the various denoising techniques for each transformation. Our Bayesian denoiser clearly outperforms the other
methods especially in the low-count setting. Only the a-stable Bayesian denoiser competes with it in the high-
count, configuration. In the first 7 panel, one clearly see that the Fisz transformation does a better job than
the Anscombe transformation for all the denoising procedures used. The difference in performances between
the two transformations becomes higher (in favor of the Fisz transformation) as the scaling factor decreases, i.e.
low-count setting. As pointed out in [10] in the 1D case, the Fisz transform appears to perform better with hard
than with soft thresholding.
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BKF Fisz 12 BdE  BKF Anscombe 10.4dB

Hard Fisz 11.2d8 Hard Anscombe 8. /dB

Soft Fisz 10.234dBE Soft Anscombe 7. 7dBE

Figure 2. Example of applying the Fisz (first column) and the Anscombe variance-stabilizing (second column) transfor-
mations with various denoising methods for the Hoffman phantom image corrupted by Poisson noise with a scaling factor
of 0.01 (low counts). The first panel depicts the original (scaled) intensity image and its noisy version (second panel).
Results of the Bayesian BKF denoiser are in the second row, universal hard and soft thresholding are respectively in the
third and fourth rows.
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Figure 3. The average SMR in dB over 100 trial simulation in estimating the Hoffman phantom intensity image as a
function of the logarithm of a scaling factor, by which the intensity image was multiplied in order to assess the performance
of the methods in both the low- and high-count setting. The first 7 panels compare the Fisz transformation (solid line)
to the Anscombe transformation (dashed line) for each denoising method. The last two panels respectively compare the
various denoising techniques for each transformation.



5.2. X-ray medical angiography

In this section, the proposed method is applied to X-ray medical angiography images. The value of each pixel
represents the number of X photons counted at the pixel location on the sensor. It is well known that such a
counting process typically has a Poisson distribution. the goal is then to estimate the unknown intensity image
A using the proposed wavelet-based method.

Fig.4 compares the Fisz and Anscombe transformations with various denoising algorithms on an X-ray medical
angiography of the breast. Only a zoom on a specific region of interest is shown. The first image is the
original zoomed region of interest. The first column (a,c,e,g images) shows the result of denoising using the Fisz
transformation and the second column (b,d,f;h images) corresponds to the Anscombe transformation with the
same denoising algorithms. One can clearly see that the denoised image obtained by the BKF Bayesian method
is visually better than the other methods (better than the a — stable Bayesian denoise). The contrast in the
denoised image is higher yielding a better visibility of anatomical structures such as bones. As expected, the soft
thresholding gives an oversmooth estimate while the hard thresholding approach results in a high ringing effect
which can be observed at many locations of the estimated image. There is only a slight improvement using the
Fisz transformation instead of the Anscombe transformation. The differences are not clearly visible.

We have also plotted the quantiles of the difference between the noisy transformed image and its denoised
version (before inverting the transform) for each denoising algorithms. In the perfect case, as predicted by
theoretical results (Section 4.1), this residual image should be Gaussian for the Fisz transformation and tends to
Gaussian for the Anscombe transformation. The results are depicted in Fig.5. The first Q-Q plot is the one for
which the BKF denoising algorithm was applied without any Gaussianizing transformation applied on the noisy
image. As expected, the residuals clearly depart from normality even at low scores. When combining the Fisz
transformation and the BKF denoising algorithm, the best performance is reached as the Q-Q plot follows the
identity line. The slight departure from normality is due to low denoising errors. The same behavior is observed
with the Anscombe transformation and only slight differences are observed between the two transformations for
any denoising algorithm. This can be explained by the fact that the treated image has high counts pixels. This
observation confirms the previous simulations results where the saliency of the Fisz transformation is higher
in the low-count setting. When compared to the other denoising methods, the BKF is clearly better. Serious
departure from Gaussianity are observed for example for the soft universal thresholding which comes from the
higher estimation bias of this method. Its residual image contains not only noise but also many missed true
signal pixels.

6. Conclusion

In this paper, we have introduced a new wavelet-based Gaussianizing transformation for Poisson intensity
image estimation. Its statistical as well as empirical properties are investigated using simulated and real medical
data sets. Combining this transformation with a previously developed Bayesian denoising algorithm has proven
very powerful in estimating the true Poisson intensity image.
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