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Abstract. We address the problem of merging qualitative constraint
networks (QCNs) representing agents local preferences or beliefs on the
relative position of spatial or temporal entities. Two classes of merging
operators which, given a set of input QCNs defined on the same qualita-
tive formalism, return a set of qualitative configurations representing a
global view of these QCNs, are pointed out. These operators are based on
local distances and aggregation functions. In contrast to QCN merging
operators recently proposed in the literature, they take account for each
constraint from the input QCNs within the merging process. Doing so,
inconsistent QCNs do not need to be discarded at start, hence agents re-
porting locally consistent, yet globally inconsistent pieces of information
(due to limited rationality) can be taken into consideration.

1 Introduction

Qualitative representation of time and space arises in many domains of Artificial
Intelligence such as language processing, computer vision, planning. One needs to
take advantage of a qualitative formalism when the available information about
a set of spatial or temporal entities is expressed in terms of non-numerical re-
lationships between these entities (e.g., when information comes primarily from
natural language sentence). Starting from Allen’s formalism [1] basically used
to represent relative positions of temporal intervals, many other qualitative for-
malisms have been put forward in the literature these last three decades [24, 19,
15, 2, 8, 20]. Besides temporal and spatial aspects, these formalisms also consti-
tute powerful representation settings for a number of applications of Artificial
Intelligence, such as reasoning about preferences [9] or multiple taxonomies [23].

When we are asked to express a set of preferred or believed relationships
between entities, we are generally more willing to provide local relations about
a small number of entities from which the underlying set of preferred or pos-
sible configurations about the whole set of entities can be deduced. Consider
for example a student, William, who expresses his preferences on the schedule
of four courses (Operating Systems, Algebra, Analysis, Programming). William
prefers to learn Analysis after Algebra. Assume William would also like to learn



Programming after Analysis and wants to start learning Programming before Al-
gebra finishes. Then no schedule can satisfy all his preferences, since satisfying
two of his wishes implies the third one to be discarded. Obviously, conflicts can
also arise in the case when several students are asked to express their preferences
on a common schedule.

In this paper we address the problem where several agents express their
preferences / beliefs on relative positions of (spatial or temporal) entities. This
information is represented, for each agent, by means of a qualitative constraint
network (QCN). A procedure for merging QCN has been proposed in [6], directly
adapted from a “model-based” method for merging propositional knowledge
bases [13, 14]. This procedure is generic in the sense that it does not depend
on a specific qualitative formalism. It consists in defining a merging operator
which associates with a finite set of QCNs a set of consistent (spatial or tempo-
ral) information representing a global view of the input QCNs. While this method
represents a starting point in the problem of merging QCNs, it has however some
limitations. First, a QCN to be merged is reduced to its global possible configu-
rations; therefore inconsistent QCNs are discarded. As we will show in the paper,
even if a QCN is inconsistent, it may however contain relevant information which
deserves to be considered in the merging process. Secondly, this approach is ex-
pensive from a computational point of view as it requires the computation of all
possible configurations about the whole set of entities. This paper aims at over-
coming the above limitations. We propose a syntactical approach for merging
QCNs in which each constraint from the input QCNs participates in the merging
process. We define two classes of QCN merging operators, where each operator
associates with a finite set of QCNs defined on the same qualitative formalism
and the same set of entities a set of consistent qualitative configurations rep-
resenting a global view of the input set of QCNs. Each operator is based on
distances between relations of the underlying qualitative formalism and on two
aggregation functions.

The rest of the paper is organized as follows. The next section recalls neces-
sary preliminaries on qualitative constraint networks, distances between relations
of a qualitative formalim and aggregation functions. In Section 3, we address the
problem of dealing with conflicting QCNs. We introduce a running example and
give some postulates that QCN merging operators are expected to satisfy. In
Section 4, we define the two proposed classes of QCN merging operators and
discuss their logical properties. We give some hints to choose a QCN merging
operator in Section 5, and also give some comparisons with related works. We
conclude in the last section and present some perspectives for further research.
The proofs are in the Appendix.

2 Preliminaries

2.1 Qualitative formalisms and qualitative constraint networks

A qualitative formalism considers a finite set B of basic binary relations defined
on a domain D. The elements of D represent the considered (spatial or tempo-



ral) entities. Each basic relation b ∈ B represents a particular relative position
between two elements of D. The set B is required to be a partition scheme [16],
i.e., it satisfies the following properties: (i) B forms a partition of D×D, namely
any pair of D×D satisfies one and only one basic relation of B; (ii) the identity
relation on D, denoted by eq, belongs to B; lastly, (iii) if b is a basic relation of
B, then its converse, denoted by b−1, also belongs to B.

For illustration we consider a well-known qualitative formalism introduced
by Allen, called Interval Algebra [1]. This formalism considers a set Bint of
thirteen basic relations defined on the domain of non-punctual (durative) in-
tervals over the rational numbers: Dint = {(x−, x+) ∈ Q×Q : x− < x+}.
An interval typically represents a temporal entity. The basic relations of Bint =
{eq, p, pi, m, mi, o, oi, s, si, d, di, f, fi} are depicted in Figure 1. Each one of them
represents a particular situation between two intervals. For example, the relation
m = {((x−, x+), (y−, y+)) ∈ Dint×Dint : x+ = y−} represents the case where the
upper bound of the first interval and the lower bound of the second one coincide.

Illustration

precedes

meets

overlaps

starts

during

finishes

equals

m

o

s

d

f

eq

mi

oi

si

di

fi

eq

X

X
Y

X

X

X

X

Y

Y

Y

Y

Y

X

Y

p pi

SymbolRelation Inverse

Fig. 1. The basic relations of Interval Algebra.

Given a set B of basic relations, a complex relation is the union of basic
relations and is represented by the set of the basic relations it contains. In the
following we omit the qualifier “complex”. For instance, considering Interval
Algebra, the set {m, d} represents the union of the basic relations m and d. The
set of all relations is denoted by 2B.

Pieces of information about the relative positions of a set of (spatial or tem-
poral) entities can be represented by means of qualitative constraint networks
(QCNs for short). Formally, a QCN (on B) is defined as follows:

Definition 1 (Qualitative constraint network). A QCN N is a pair (V, C)
where:

– V = {v1, . . . , vn} is a finite set of variables representing the entities,



– C is a mapping which associates with each pair of variables (vi, vj) a relation
N [i, j] of 2B. C is such that N [i, i] = {eq} and N [i, j] = N [j, i]−1 for every
pair of variables vi, vj ∈ V .

Given a QCN N = (V,C), a consistent instantiation of N over V ′ ⊆ V
is a mapping α from V ′ to D such that for every pair (vi, vj) ∈ V ′ × V ′,
(α(vi), α(vj)) satisfies N [i, j], i.e., there exists a basic relation b ∈ N [i, j] such
that (α(vi), α(vj)) ∈ b for every vi, vj ∈ V ′. A solution of N is a consistent
instantiation of N over V . N is consistent iff it admits a solution. A sub-network
N ′ of N is a QCN (V,C ′) such that N ′[i, j] ⊆ N [i, j], for every pair of variables
vi, vj . A scenario σ is a QCN such that each constraint is defined by a singleton
relation of 2B, i.e., a relation containing exactly one basic relation. Let σ be a
scenario, the basic relation specifying the constraint between two variables vi

and vj is denoted by σij . A scenario σ of N is a sub-network of N . In the rest of
this paper, 〈N〉 denotes the set of scenarios of N and [N ] the set of its consistent
scenarios. Two QCNs N and N ′ are said to be equivalent, denoted by N ≡ N ′,
iff [N ] = [N ′]. NV

All denotes the QCN on V such that for each pair of variables
(vi, vj), NV

All[i, j] = {eq} if vi = vj , NV
All[i, j] = B otherwise. NV

All represents the
complete lack of information about the relative positions of the variables.

Figures 2(a), 2(b) and 2(c) represent respectively a QCN N of Interval Al-
gebra defined on the set V = {v1, v2, v3, v4}, an inconsistent scenario σ of N
and a consistent scenario σ′ of N . A solution α of σ′ is represented on Figure
2(d). In order to alleviate the figures, for each pair of variables (vi, vj), we do
not represent the constraint N [i, j] when N [i, j] = B, when N [j, i] is represented
or when i = j.
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Fig. 2. A QCN N , an inconsistent scenario σ of N , a consistent scenario σ′ of N and
a solution of σ′.



2.2 Basic distances and aggregation functions.

In the following, we consider two classes of QCN merging operators parameter-
ized by a distance between basic relations of B called basic distance, and by
aggregation functions.

Basic distances. A basic distance associates with a pair of basic relations of B a
positive number representing their degree of closeness [6].

Definition 2 (Basic distance). A basic distance dB is a pseudo-distance, i.e.,
a mapping from B× B to R+

0 such that ∀b, b′ ∈ B, we have:




dB(b, b′) = dB(b′, b) (symmetry)
dB(b, b′) = 0 iff b = b′ (identity of indiscernibles)
dB(b, b′) = dB(b−1, (b′)−1)

For instance, the drastic distance dD is equal to 1 for every pair of distinct
basic relations, 0 otherwise.

In the context of qualitative algebras, two distinct basic relations can be more
or less close from each other. This intuition takes its source in works of Freksa [7]
who defined different notions of conceptual neighborhood between basic relations
of Interval Algebra. By generalizing his definition, it is natural to state that two
basic relations b, b′ ∈ B are conceptually neighbors if a continuous transformation
on the elements of the domain leads to two entities which satisfy the basic relation
b and also directly satisfy the basic relation b′ without satisfying any other basic
relation. A conceptual neighborhood defines a binary relation on elements of B.
This relation can be represented by an undirected connected graph in which every
vertice is an element of B. In such a graph, called conceptual neighborhood graph,
two vertices connected by an edge are conceptual neighbors. For example, in a
context where a continuous transformation between two intervals corresponds to
moving only one of the four possible bounds, we get the conceptual neighborhood
graph GBint depicted in Figure 3.
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Fig. 3. The conceptual neighborhood graph GBint of Interval Algebra.

Using conceptual neighborhood graphs a specific basic distance has been
defined in the context of QCNs in [6]. The so-called conceptual neighborhood
distance is formally defined as follows:



Definition 3 (Conceptual neighborhood distance). Let GB be a conceptual
neighborhood graph on B. The conceptual neighborhood distance dGB(a, b) between
two basic relations a, b ∈ B is the length of the shortest chain leading from a to
b in GB.

In the following examples, we will use the conceptual neighborhood distance
dGBint defined from the graph GBint. For instance, dGBint(m, di) = 4. Notice that
dGBint is a basic distance in the sense of Definition 2.

Aggregation functions. An aggregation function [18, 11, 12] typically combines in
a given manner several numerical values into a single one.

Definition 4 (Aggregation function). An aggregation function f associates
with a vector of non-negative real numbers a non-negative real number verifying
the following properties:
{

if x1 ≤ x′1, . . . , xp ≤ x′p, then f(x1, . . . , xp) ≤ f(x′1, . . . , x
′
p) (non-decreasingness)

x1 = · · · = xp = 0 iff f(x1, . . . , xp) = 0 (minimality)

Many aggregation functions have been considered so far in various contexts.
For instance,

∑
(sum), Max (maximum), Leximax1 are often considered in the

belief merging setting [17, 21, 13, 11, 14]. We give some additional properties on
aggregation functions.
Definition 5 (Properties on aggregation functions). Let f and g be two
aggregation functions.
– f is symmetric iff for every permutation τ from Rp

0 to Rp
0, p being a strictly

positive integer, f(x1, . . . , xp) = f(τ(x1), . . . , τ(xp)).
– f is associative iff f(f(x1, . . . , xp), f(y1, . . . , yp′)) = f(x1, . . . , xp, y1, . . . , yp′).
– f is strictly non-decreasing iff if x1 ≤ x′1, . . . , xp ≤ x′p and ∃i ∈ {1, . . . , p}, xi <

x′i, then f(x1, . . . , xp) < f(x′1, . . . , x
′
p).

– f commutes with g (or f and g are commuting aggregation functions) iff
f(g(x1,1, . . . , x1,q), . . . , g(xp,1, . . . , xp,q)) = g(f(x1,1, . . . , xp,1), . . . ,

f(x1,q, . . . , xp,q)).

For example, the aggregation function
∑

is symmetric and associative, hence
it commutes with itself, as well as the aggregation function Max. Symmetry
means that the order of the aggregated values does not affect the result, as-
sociativity means that the aggregation of values can be factorized into partial
aggregations. In the rest of this paper, aggregation functions will be supposed
to be symmetric, i.e., they aggregate multi-sets of numbers instead of vectors of
numbers. In [22], the authors focus on commuting aggregation functions since
such functions play a significant role in any two-step merging process for which
the result should not depend on the order of the aggregation processes. In the
end of Section 4.2 we stress the influence of commuting aggregation functions in
our merging procedures.
1 the Leximax function induces an ordering on vectors of real numbers sorted de-

creasingly using the standard lexicographic ordering on those vectors, but it can be
seen as an aggregation function in the sense of Definition 4 (see [11], Definition 5.1)



3 The Merging Issue

3.1 Problem and example

Let V = {v1, . . . , vn} be a set of variables and N = {N1, . . . , Nm} be a multiset
of QCNs defined over V . N is called a profile. Every input QCN Nk ∈ N stems
from a particular agent k providing her own preferences or beliefs about the
relative configurations over V . Every constraint Nk[i, j] corresponds to the set
of basic relations that agent k considers as possibly satisfied by (vi, vj). In such
a setting, two kinds of inconsistency are likely to appear. On the one hand, a
QCN Nk may be inconsistent since the agent expresses local preferences over
pairs of variables. Therefore an inconsistency may arise without the agent being
necessarily aware of that. On the other hand, the multiplicity of sources makes
that the underlying QCNs are generally conflicting when combined. For example,
in case of preferences representation, a single conflict of interest between two
agents about the same pair of variables is sufficient to introduce inconsistency.

Consider a group of three students expressing their preferences about the
schedule of fours common courses: Operating Systems (OS), Algebra, Analysis
and Programming. Every student of the group provides a set of binary relations
between these courses. The variables we consider here are four temporal entities
v1, v2, v3, v4 that respectively correspond to OS, Algebra, Analysis, Programming
and that form the set V . We consider Interval Algebra to model qualitative
relations between these courses. For exemple, the first student prefers to start
learning OS before the beginning of Algebra and to finish studying OS before
the end of Algebra. This can be expressed by the relation v1 {p,m, o} v2. The
three students provide the QCNs N1, N2, N3 depicted in Figure 4 and forming
the profile N . Notice that the conflict occurring in the example sketched in the
introduction is represented in the QCN N3, indeed there does not exist any
consistent instantiation of N3 over {v2, v3, v4}.
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Fig. 4. Three QCN N1, N2 and N3 to be merged.

3.2 Rationality postulates for QCN merging operators

Given a profile N = {N1, . . . , Nm} defined on V representing local preferences
or beliefs of a set of agents, we want to get as result of the merging opera-
tion a non-empty set of consistent information representing N in a global way.



Formally, this calls for a notion of merging operator. In [5] a set of rationality
postulates has been proposed for QCN merging operators. These postulates are
the direct counterparts in the QCN setting of the postulates from [13] charac-
terizing merging operators for propositional logic. We separate these postulates
into two classes: the first one defines the QCN merging operators, the second
one provides additional properties that QCN merging operators should satisfy
to exhibit a rational behaviour.

Definition 6 (QCN merging operator). An operator ∆ is a mapping which
associates with a profile N a set ∆(N ) of consistent scenarios. Let N be a pro-
file. ∆ is a QCN merging operator iff it satisfies the following postulates:

(N1) ∆(N ) 6= ∅.
(N2) If

⋂{[Nk] | Nk ∈ N} 6= ∅, then ∆(N ) =
⋂{[Nk] | Nk ∈ N}.

(N1) ensures that the result of the merging is non-trivial; (N2) requires ∆(N )
to be the set of consistent scenarios shared by all Nk ∈ N , when this set is non-
empty.

Before giving the additional postulates, we need to define the notion of equiv-
alence between profiles. Two profiles N and N ′ are said to be equivalent, denoted
by N ≡ N ′, iff there exists a one-to-one correspondence f between N and N ′

such that ∀Nk ∈ N , f(Nk) ≡ Nk. We use t to denote the union operator for
multisets.

Definition 7 (postulates (N3) - (N6)). Let N ,N1 and N2 be three profiles,
and let N , N ′ be two consistent QCNs.

(N3) If N1 ≡ N2, then ∆(N1) = ∆(N2).
(N4) If ∆({N, N ′}) ∩ [N ] 6= ∅, then ∆({N, N ′}) ∩ [N ′] 6= ∅.
(N5) ∆(N1) ∩∆(N2) ⊆ ∆(N1 tN2).
(N6) If ∆(N1) ∩∆(N2) 6= ∅, then ∆(N1 tN2) ⊆ ∆(N1) ∩∆(N2).

(N3) is the syntax-irrelevance principle for QCNs. It states that if two profiles
are equivalent, then merging independently each profile should lead to the same
result. (N4) is an equity postulate, it requires the QCN merging operator not to
exploit any hidden preference between two QCNs to be merged. (N5) and (N6)
together ensure that when merging independently two profiles leads both results
to share a non-empty set of consistent scenarios, let us say E, then merging the
joint profiles should return E as result.

4 Two classes of QCN merging operators

In this section, we define two classes of QCN merging operators. Operators from
the first and second class are respectively denoted by ∆1 and ∆2. These operators
associate with a profile N a set of consistent scenarios that are the “closest” ones
to N in terms of “distance”. The difference between ∆1 and ∆2 is inherent to
the definition of such a distance.



For i ∈ {1, 2}, a QCN merging operator ∆i is characterized by a triple
(dB, fi, gi) where dB is a basic distance on B and fi and gi are two associa-
tive and symmetric aggregation functions. ∆i is then denoted by ∆dB,fi,gi

i . The
set of consistent scenarios ∆dB,fi,gi

i (N ) is the result of a two-step process.

4.1 ∆1 operators

The first step consists in computing a local distance df1 between every consistent
scenario on V , i.e., every element of [NV

All] and each QCN of the profile N . For
this purpose, the basic distance dB and the aggregation function f1 are used to
define the distance df1 between two scenarios σ and σ′ of NV

All, as follows:

df1(σ, σ′) = f1{dB(σij , σ
′
ij) | vi, vj ∈ V, i < j}.

Therefore the distance between two scenarios results from the aggregation of
distances at the constraints level. The definition of df1 is extended in order to
compute a distance between a consistent scenario σ of NV

All and a QCN Nk of
N as follows:

df1(σ,Nk) = min{df1(σ, σ′) | σ′ ∈ 〈Nk〉}.
Therefore the distance between a scenario σ and a QCN Nk is the minimal

distance (w.r.t. df1) between σ and a scenario of Nk.
The choice of the aggregation function f1 depends on the context. For exam-

ple, f1 = Max is appropriate when only the greatest distance over all constraints
between a scenario and a QCN is important, whatever their number. However,
by instantiating f1 =

∑
, the distances dB over all constraints are summed up,

thus all of them are taken into account.

Example (continued). For the sake of conciseness, we represent a scenario as the
list of its constraints following the lexicographical order over (vi, vj), i < j. For
instance, the consistent scenario σ1 depicted in Figure 5(a) is specified by the
list ({fi}, {m}, {p}, {m}, {p}, {m}). Let σ′′ be the (inconsistent) scenario of N1

(see Figure 4(a)) defined by ({o}, {m}, {p}, {p}, {d}, {m}). We use here the basic
distance dGBint and will do so for the next examples. We consider f1 =

∑
. Then

we have:

d∑(σ1, N
1) = min{d∑(σ1, σ

′) | σ′ ∈ 〈N1〉} = d∑(σ1, σ
′′)

=
∑{dGBint(fi, o), dGBint(m, m), dGBint(p, p),

dGBint(m, p), dGBint(p, d), dGBint(m,m)}
= 1 + 0 + 0 + 1 + 4 + 0 = 6.

Similarly we get d∑(σ1, N
2) = 1 and d∑(σ1, N

3) = 4.

The second step of the merging process consists in taking advantage of the
aggregation function g1 to aggregate the local distances df1(σ,Nk) for every QCN
Nk ∈ N ; the resulting value can be viewed as a global distance dg1 between σ
and the profile N . This distance is defined as follows:

dg1(σ,N ) = g1{df1(σ,Nk) | Nk ∈ N}.
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Fig. 5. Two consistent scenarios σ1 and σ2 of NV
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α1 and α2 of σ1 and σ2.

For the arbitration function g1 = Max, the global distance represents a con-
sensual value w.r.t. all sources [21]; with g1 =

∑
, it reflects the majority point

of view of the sources [17].

Example (continued). Consider here g1 = Max. We have :

dMax(σ1,N ) = max{d∑(σ1, N
k) | Nk ∈ N} = max{6, 1, 4} = 6.

The set ∆dB,f1,g1
1 (N ) is the set of the consistent scenarios of NV

All having a
minimal global distance dg1 . Formally,

∆dB,f1,g1
1 (N ) = {σ ∈ [NV

All] | @σ′ ∈ [NV
All], dg1(σ

′,N ) < dg1(σ,N )}.
Example (continued). Consider the consistent scenario σ2 depicted in Figure
5(c). We can compute its global distance similarly as for σ1. We then have
dMax(σ2,N ) = 5. Since dMax(σ2,N ) < dMax(σ1,N ), we can conclude that the
consistent scenario σ1 does not belong to the set ∆

dGBint
,
∑

,Max

1 (N ).

Proposition 1. ∆dB,f1,g1
1 is a QCN merging operator in the sense of Definition

6, i.e., it satisfies postulates (N1) and (N2). Moreover, if g1 is an associative
aggregation function, then ∆dB,f1,g1

1 satisfies (N5), and if g1 is an associative
and strictly non-decreasing aggregation function, then ∆dB,f1,g1

1 satisfies (N6). It
does not satisfy (N3) and (N4).

4.2 ∆2 operators

An operator from the ∆2 family is defined in two steps as follows. The first step
consists in computing a local distance df2 between every basic relation of B and



the multiset N [i, j] = {Nk[i, j] | Nk ∈ N}, for every pair (vi, vj), i < j. The
definition of the basic distance dB between two basic relations of B is extended to
the basic distance between a basic relation b ∈ B and a relation R ∈ 2B, R 6= ∅.
It corresponds to the minimal basic distance between b and every basic relation
of R. Formally we write:

dB(b,R) = min{dB(b, b′) | b′ ∈ R}.
The aggregation function f2 is used to compute the local distance between

every basic relation of B and the multiset of constraintsN [i, j] = {Nk[i, j] |Nk ∈
N} as follows:

df2(b,N [i, j]) = f2{dB(b,Nk[i, j]) | Nk[i, j] ∈ N [i, j]}.
The choice of f2 is motivated in the same way as that of g1 for ∆1 operators.
Depending on the context, we opt for a majority function

∑
[17], or for an ar-

bitration function Max [21]. Here the aggregation step relates the constraints
Nk[i, j] of the QCNs Nk ∈ N , for a given pair of variables (vi, vj), i < j.

Example (continued). Consider the multiset N [1, 2] = {{p,m, o}, {eq, si}, {di}}
(see Figure 4). We consider dGBint as the basic distance and f2 = Max. The
distance between the basic relation fi and the multiset N [1, 2] is defined as
follows:

dMax(fi,N [1, 2]) = max{dGBint(fi, {p,m, o}),
dGBint(fi, {eq, si}), dGBint(fi, {di})}

= max{dGBint(fi, o), dGBint(fi, eq), dGBint(fi, di)}
= max{1, 1, 1} = 1.

The second step consists in aggregating the local distances computed in the
previous step for all pairs (vi, vj), i < j, in order to compute a global distance
dg2 between a scenario σ of NV

All and the profile N . This distance is computed
using the aggregation function g2 as follows:

dg2(σ,N ) = g2{df2(σij ,N [i, j]) | vi, vj ∈ V, i < j}.
The choice of g2 is motivated in the same way as the aggregation function f1 for
∆1 operators.

Example (continued). Consider again the consistent scenario σ1 (see Figure 5(a))
and choose g2 =

∑
. We get:

d∑(σ1,N ) =
∑{dMax(σ1(1, 2),N [1, 2]), . . . , dMax(σ1(3, 4),N [3, 4])}

= 1 + 2 + 0 + 1 + 4 + 0 = 8.

Similarly to ∆1 operators, the result of the merging process over the profile
N using ∆dB,f2,g2

2 corresponds to the set of consistent scenarios of NV
All that

minimize the global distance dg2 . Formally,

∆dB,f2,g2
2 (N ) = {σ ∈ [NV

All] | @σ′ ∈ [NV
All], dg2(σ

′,N ) < dg2(σ,N )}.



Example (continued). Consider again the consistent scenario σ2 depicted in Fig-
ure 5(c). Its global distance to N , computed similarly to the one of σ1, is
d∑(σ2,N ) = 8. Notice that the consistent scenarios σ1 and σ2 have the same

global distance to N . We can then conclude that σ1 ∈ ∆
dGBint

,Max,
∑

2 (N ) iff
σ2 ∈ ∆

dGBint
,Max,

∑
2 (N ).

One can prove that ∆2 operators typically satisfies less expected postulates
than the ∆1 ones:

Proposition 2. ∆dB,f2,g2
2 is a QCN merging operator in the sense of Definition

6, i.e., it satisfies the postulates (N1) and (N2). The postulates (N3) - (N6) are
not satisfied.

That ∆1 and ∆2 are syntactical operators is reflected by the fact that they do
not satisfy the syntax-independence postulate (N3) (see Propositions 1 and 2).
Similarly in [10] several syntax-sensitive propositional merging operators have
been investigated, none of them satisfying the counterpart of (N3) in the propo-
sitional setting. We give some conditions under which ∆1 and ∆2 operators are
equivalent.

Proposition 3. If f1 = g2, f2 = g1 and f1 and f2 are commuting aggregation
functions, then ∆dB,f1,g1

1 (N ) = ∆dB,f2,g2
2 (N ).

Consequently, when f1 = g2, f2 = g1 and for instance when (f1, f2) ∈
{(∑,

∑
), (Max, Max)}, then choosing a ∆1 operator rather than a ∆2 one

(or conversely) has no impact on the result. However,
∑

and Max are not com-
muting aggregation functions, so for such choices using ∆1 or ∆2 can lead to
different results.

4.3 Computational complexity

Beyond logical postulates, complexity considerations can be used as choice cri-
teria for a QCN merging operator. Clearly enough, the merging result may be of
exponential size in the worst case, just like representation of the merging result
in the propositional case [3, 11, 12]. As it has been already discussed in [6], a
set of consistent scenarios can not always be represented in a compact way by a
QCN. In [6] a basic construction of a QCN NS is given from a set S of consistent
scenarios leading to S = [NS ] when it is possible, S ⊂ [NS ] otherwise. Never-
theless, computing explicitly the merging result (as a set of consistent scenarios
in our setting, as a propositional formula in the propositional framework) is not
mandatory to reason with [3, 11, 12]; often it is enough to be able to determine
whether a given scenario belongs to it. This is why we focus on the following
MEMBERSHIP problem (MS for short): given i ∈ {1, 2}, dB a basic distance,
fi, gi two aggregation functions, N a profile and σ∗ a scenario, does σ∗ belong to
∆dB,fi,gi

i (N ) ? The following proposition provides an upper bound of complexity
for the MS problem.



Proposition 4. If fi, gi are computed in polynomial time, then MS ∈ coNP.

Interestingly, usual aggregation functions like
∑

or Max can be computed
in polynomial time. For the merging procedure proposed in [6], MS is likely
harder, i.e., falls to a complexity class above coNP in the polynomial hierarchy.
Indeed for both ∆1 and ∆2 operators, the global distance between a scenario
and a profile is computed in polynomial time (see the proof of Proposition 4).
In comparison, for the merging operator proposed in [6], computing the global
distance between a scenario and a profile requires the computation of all consis-
tent scenarios of every QCN of the profile, which are exponentially many in the
worst case.

5 Comparison between ∆1, ∆2 and related works

5.1 When to choose a ∆1 operator

Given a profile N , opting for an operator ∆1 is appropriate when the sources
are independent of one another, i.e., when information provided by each QCN
of the profile should be treated independently. Indeed the first aggregation step
is “local” to a particular QCN, while the second one is an “inter-source” ag-
gregation. In this respect, ∆1 operators are close to QCN merging operators Θ
proposed in [6] and propositional merging operators DA2 studied in [11, 12]. In
[6] the QCN merging operators Θ consider like ∆1 operators a profile N as input
and return a set of consistent scenarios following a similar two-step process, with
only f1 =

∑
. However, while ∆1 operators consider the sets of scenarios of the

QCNs of N in the computation of the local distance df1 , Θ operators consider
the sets of their consistent scenarios. Doing so, neither inconsistent QCNs of N
are taken into account by Θ operators, nor the basic relations of the constraints
of the QCNs which do not participate in any consistent scenario of this QCN. In
[11, 12] the authors define a class DA2 of propositional knowledge bases merg-
ing operators, based on a distance between interpretations and two aggregation
functions. A profile corresponds in this case to a multiset of knowledge bases,
each one expressed as a finite set of propositional formulas. A first step consists
in computing a local distance between an interpretation ω and a knowledge base
K through the aggregation of the distances between ω and every propositional
formula of K. A second step then consists in aggregating the local distances to
combine all knowledge bases of the profile. In the context of QCN merging, the
∆1 operators typically follow the same merging principle.

5.2 When to choose a ∆2 operator

∆2 operators are suited to the context when a global decision should be made
a priori for every pair of variables (vi, vj). In this case every pair of variables
is considered as a “criterion’ or “topic” on which a mutual agreement has to
be found as a first step. The second step then can be viewed as a relaxation of
the independence criteria which are combined in order to find consistent global



configurations. ∆2 operators consider a local distance df2 which coincides with
the one proposed in [4]. In this work, the authors use this local distance df2 to
define a constraint merging operator. Such an operator associates with a multiset
R of relations the set of basic relations for which the distance df2 toR is minimal.
In this framework, a QCN merging operator, denoted by Ω, associates with a
profile N a single QCN Ω(N ). Similarly to ∆2 operators, Ω operators take
into consideration inconsistent QCNs and consider every basic relation of all
constraints of the input QCNs as a relevant piece of information in the merging
process. However, Ω operators require to be given a fixed total ordering <V on
the pairs of variables (vi, vj). Following this ordering, the constraint of the QCN
Ω(N ) bearing on (vi, vj) is affected using the constraint merging operator on
the constraints of the QCNs of N bearing on (vi, vj). At each step, Ω(N ) is kept
consistent. Though the computation of Ω(N ) is efficient, the choice of <V leads
to specific results, while ∆2 operators - which do not require <V to be specified
- do not suffer from this drawback.

6 Conclusion

In this paper, we have defined two classes ∆1 and ∆2 of operators for merging
qualitative constraint networks (QCNs) defined on the same qualitative formal-
ism. We have studied their logical properties and we have also considered the
problem of deciding whether a given scenario belongs to the result of the merging.
From a methodology point of view, we have addressed the problem of choosing
such a merging operator. Compared with previous merging operators, ∆1 and
∆2 operators achieve a good compromise to QCN merging. Indeed, (i) they take
into account fine-grained information provided by the input sources in the sense
that each constraint from the input QCNs participates in the merging process
(in particular inconsistent scenarios are not excluded); (ii) the computational
complexity of query answering for those operators is not very high; (iii) they
are QCN merging operators since rationality postulates (N1) and (N2) hold. In-
terestingly, our operators do not trivialize when applied to a single inconsistent
QCN; as such, they can also be viewed as consistency restoring operators.

As a matter for further research, we plan to investigate in depth the com-
plexity issues for all classes of operators defined so far.
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Appendix

Proposition 1. ∆dB,f1,g1
1 is a QCN merging operator in the sense of Definition

6, i.e., it satisfies postulates (N1) and (N2). Moreover, ∆dB,f1,g1
1 satisfies (N5),

and if g1 is a strictly non-decreasing aggregation function, then ∆dB,f1,g1
1 satisfies

(N6). It does not satisfy (N3) and (N4).

Proof. (N1) By definition.
(N2) Let σ ∈ [NV

All]. From the identity of indiscernibles property of dB, we have
∀σ′ ∈ 〈NV

All〉, ∀vi, vj , i < j, dB(σij , σ
′
ij) = 0 iff σij = σ′ij . Hence, since f1 satis-

fies the property of minimality, we have ∀σ′ ∈ 〈NV
All〉, df1(σ, σ′) = 0 iff σ = σ′.

Thus df1(σ,Nk) = 0 iff σ ∈ [Nk]. By minimality of g1, we have dg1(σ,N ) = 0
iff σ ∈ [Nk]∀Nk ∈ N . Yet

⋂{[Nk] | Nk ∈ N} 6= ∅. Therefore by definition of
∆dB,f1,g1

1 , σ ∈ ∆dB,f1,g1
1 (N ) iff σ ∈ ⋂{[Nk] | Nk ∈ N}.

(N5) Let N1 and N2 be two profiles. Let σ ∈ ∆dB,f1,g1
1 (N1)∩∆dB,f1,g1

1 (N2) and let
σ′ ∈ [NV

All]. We have dg1(σ,N1) ≤ dg1(σ
′,N1) and dg1(σ,N2) ≤ dg1(σ

′,N2), or
still g1{df1(σ,Nk) | Nk ∈ N1} ≤ g1{df1(σ

′, Nk) | Nk ∈ N1} and g1{df1(σ,Nk) |
Nk ∈ N2} ≤ g1{df1(σ

′, Nk) | Nk ∈ N2}. Hence, by associativity and non-
decreasingness of g1, we have g1{df1(σ,Nk) |Nk ∈ N1tN2} ≤ g1{df1(σ

′, Nk) |Nk ∈
N1 tN2}. Therefore σ ∈ ∆dB,f1,g1

1 (N1 tN2).
(N6) LetN1 andN2 be two profiles. Let σ ∈ ∆dB,f1,g1

1 (N1tN2). By absurd, let us
suppose that σ /∈ ∆dB,f1,g1

1 (N1)∩∆dB,f1,g1
1 (N2). Let σ /∈ ∆dB,f1,g1

1 (N1) (the proof
is similar if we suppose σ /∈ ∆dB,f1,g1

1 (N2)). Since ∆dB,f1,g1
1 (N1)∩∆dB,f1,g1

1 (N2) 6=
∅, ∃σ′ ∈ [NV

All] such that dg1(σ
′,N1) < dg1(σ,N1) and dg1(σ

′,N2) ≤ dg1(σ,N2),
or still g1{df1(σ

′, Nk) | Nk ∈ N1} < g1{df1(σ,Nk) | Nk ∈ N1} and
g1{df1(σ

′, Nk) | Nk ∈ N2} ≤ g1{df1(σ,Nk) | Nk ∈ N2}. Hence, by associativity
and strict non-decreasingness of g1, we have g1{df1(σ

′, Nk) | Nk ∈ N1 t N2} <

g1{df1(σ,Nk) | Nk ∈ N1 tN2}, that contradicts σ ∈ ∆dB,f1,g1
1 (N1 tN2). ut

Proposition 2. ∆dB,f2,g2
2 is a QCN merging operator in the sense of Definition

6, i.e., it satisfies the postulates (N1) and (N2). The postulates (N3) - (N6) are
not satisfied.

Proof. (N1) By definition.
(N2) From the indentity of indiscernibles property of dB, we have ∀b ∈ B, ∀R ∈
2B, dB(b, R) = 0 iff b ∈ R. Let R be a multiset of relations of 2B. By minimality
of f2, we have df2(b,R) = 0 iff b ∈ R ∀R ∈ R. Let σ ∈ [NV

All]. By minimality of
g2, we have dg2(σ,N ) = 0 iff ∀vi, vj , i < j, σij ∈ Nk[i, j] ∀Nk ∈ N . This means
σ ∈ ∆dB,f2,g2

2 (N ) iff σ ∈ ⋂{[Nk] | Nk ∈ N}. ut



Proposition 3. If f1 = g2, f2 = g1 and f1 and f2 are commuting aggregation
functions, then ∆dB,f1,g1

1 (N ) = ∆dB,f2,g2
2 (N ).

Proof. It is sufficient to show that global distances dg1 and dg2 (respectively
steping in the computation of ∆dB,f1,g1

1 (N ) and ∆dB,f2,g2
2 (N )) coincide. Let Nk ∈

N and σ ∈ [NV
All]. Let h be an aggregation function, let us denote αk(h) =

dh(σ,Nk) = min{h{dB(σij , σ
′
ij) | vi, vj ∈ V, i < j} | σ′ ∈ 〈Nk〉} and βk(h) =

h{min{dB(σij , b) | b ∈ Nk[i, j]} | vi, vj ∈ V, i < j}. Let us show first that
αk(f1) = βk(f1). By non-decreasingness of f1, we clearly have αk(f1) ≥ βk(f1),
thus let us show αk(f1) ≤ βk(f1). Let σ′ be a consistent scenario defined ∀vi, vj

by σ′ij = b such that b ∈ Nk[i, j] and dB(σij , b) = min{dB(σij , b
′) | b′ ∈ Nk[i, j]}.

By definition, σ′ ∈ 〈Nk〉, hence βk(f1) = f1{dB(σij , σ
′
ij) | vi, vj ∈ V, i < j}.

Therefore αk(f1) ≤ βk(f1). The global distance dg1 between σ and N steping
in the computation of ∆dB,f1,g1

1 (N ) is defined as dg1(σ,N ) = g1{αk(f1) | Nk ∈
N} = g1{βk(f1) | Nk ∈ N}. Since f1 = g2 and f2 = g1, we have dg1(σ,N ) =
f2{βk(g2) | Nk ∈ N}. dg2 is the global distance steping in the computation
of ∆dB,f2,g2

1 (N ); since f2 and g2 are commuting aggregation functions, we have
dg1(σ,N ) = dg2(σ,N ). ut
Proposition 4. If fi, gi are computed in polynomial time, then MS ∈ coNP.

Proof. It is sufficient to consider the following algorithm:

(1) guess a scenario σ over V ;
(2) check that σ is consistent;
(3) compute dgi(σ,N ) and dgi(σ∗,N ), and check that dgi(σ,N ) < dgi(σ∗,N );

Step (2) runs in polynomial time, for every qualitative algebra.
It can be shown that for i ∈ {1, 2}, step (3) runs in polynomial time. For ∆2,
it is obvious from the definition of the global distance dg2 and since f2, g2 are
computed in polynomial time. For ∆1, as it is shown in the proof of Proposi-
tion 3 (without assuming the hypotheses of Proposition 3), we have for every
scenario σ and for every QCN Nk ∈ N , df1(σ,Nk) = f1{min{dB(σij , b) | b ∈
Nk[i, j]} | vi, vj ∈ V, i < j} (i.e., the global distance df1(σ,Nk) between a sce-
nario σ and a QCN Nk can be computed componentwise). Yet min{dB(σij , b) | b ∈
Nk[i, j]} is computed in constant time since the cardinality of B is a constant,
and f1, g1 are computed in polynomial time. Therefore dg1 is computed in poly-
nomial time.
Thus this algorithm runs in polynomial time and it shows that the complemen-
tary problem of MS is in NP, from which the result follows. ut
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