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Recovering Consistency by Forgetting Inconsistency

In this paper, we introduce and study a new paraconsistent inference relation |=c in the setting of 3-valued paraconsistent logics. Using inconsistency forgetting as a key mechanism for recovering consistency, it guarantees that the deductive closure Cn |=c (Σ) of any belief base Σ is classically consistent and classically closed. This strong feature, not shared by previous inference relations in the same setting, allows to interpret an inconsistent belief base as a set of classical worlds (hence to reason classically from them).

Introduction

Reasoning in a non-trivial way from inconsistent pieces of information (the paraconsistency issue) is a fundamental problem in artificial intelligence. Its importance is reflected by the number of approaches developed so far to address it: paraconsistent logics, belief revision, belief merging, reasoning from preferred consistent subsets, knowledge integration, argumentative logics, purification, etc. (see [START_REF] Besnard | Introduction to actual and potential contradictions[END_REF][START_REF] Hunter | Paraconsistent logics. In: Handbook of Defeasible Reasoning and Uncertainty Management Systems[END_REF][START_REF] Priest | Paraconsistent Logic[END_REF] for a survey).

The variety of existing approaches can be explained by the fact that paraconsistency can be achieved in various ways, depending on the exact nature of the problem at hand (hence, the available information). Each of them has its own pros and cons, and is more or less suited to different inconsistency handling scenarios. For instance, when Σ represents the (conflicting) beliefs of several agents, a merged base giving the beliefs of the group of agents can be designed by logically weakening some local belief bases (associated to the agents) in order to restore global consistency [START_REF] Grant | Reasoning in inconsistent knowledge bases[END_REF][START_REF] Lin | Integration of weighted knowledge bases[END_REF][START_REF] Revesz | On the semantics of arbitration[END_REF][START_REF] Konieczny | On the logic of merging[END_REF][START_REF] Konieczny | On the difference between merging knowledge bases and combining them[END_REF].

Compared with the other approaches listed above, paraconsistent logics (taken stricto sensu) offer a basic way to address the trivialization issue in presence of inconsistency. Indeed, belief revision, belief merging, knowledge integration, reasoning from preferred consistent subsets and purification need some extralogical information in order to be well-defined and avoid trivializing. Such extralogical information can be rather poor: A splitting between the belief base and the revision formula in the belief revision setting, a set (or multi-set) organization of the beliefs in a belief merging scenario. They can also be rather sophisticated: Preference relations over beliefs, knowledge gathering actions for purification. In both cases, they are required. In particular, unlike paraconsistent logics, none of those approaches can address in a significant way the case when the available information take the form of a single piece (hence encoded as a unique formula in a logical language) 1 .

Several (non mutually exclusive) techniques can be used to define an inference relation that avoid trivialization from an inconsistent propositional formula (see [START_REF] Priest | Paraconsistent Logic[END_REF]). One of them consists in preventing classically inconsistent belief bases from having no model, through the consideration of more general notions of interpretations. Several multi-valued logics are related to this line of research (among others, see [START_REF] D'ottaviano | Sur un problème de Jaśkowski[END_REF][START_REF] Belnap | A useful four-valued logic[END_REF][START_REF] Frisch | Inference without chaining[END_REF][START_REF] Levesque | A knowledge-level account of abduction (preliminary version)[END_REF][START_REF] Priest | Reasoning about truth[END_REF][START_REF] Priest | Minimally inconsistent LP[END_REF][START_REF] Besnard | Circumscribing inconsistency[END_REF][START_REF] Besnard | Signed systems for paraconsistent reasoning[END_REF][START_REF] Arieli | The value of four values[END_REF][START_REF] Arieli | A model-theoretic approach for recovering consistent data from inconsistent knowledge bases[END_REF][START_REF] Konieczny | Three-valued logics for inconsistency handling[END_REF][START_REF] Marquis | Resource-bounded paraconsistent inference[END_REF][START_REF] Coste-Marquis | On the complexity of paraconsistent inference relations[END_REF]).

In the following, the focus is laid on three-valued paraconsistent logics. The additional (epistemic) truth value (called middle element) intuitively means "proved both true and false" and allows to still reasoning meaningfully with variables that are not embedded directly in a contradiction. While a number of paraconsistent inference relations have been defined in this setting, none of them ensures that deductive closures are always classically consistent and classically closed. This is a strong drawback of such approaches since it prevents from interpreting inconsistent belief bases as sets of classical worlds (i.e., 2interpretations), and consequently it questions the possibility to exploit further the information encoded by an inconsistent belief base using standard inference or decision-making techniques (since such techniques typically require classically consistent information).

In this paper, we fill the gap by introducing and studying a new paraconsistent inference relation |= c in the setting of three-valued paraconsistent logics. This inference relation elaborates on a valuable paraconsistent inference relation |= ≤ introduced by Priest [START_REF] Priest | Minimally inconsistent LP[END_REF]. Basically, the preferred 3-models of a belief base Σ w.r.t. |= c are the 2-interpretations which are as close as possible to the preferred 3-models of a belief base Σ w.r.t. |= ≤ . Determining the latter models mainly amounts to forgetting the inconsistent "truth value" in the former interpretations. Interestingly, |= c guarantees that the deductive closure Cn |=c (Σ) of any belief base Σ is classically consistent and classically closed (what we call the classical closure property).

The rest of this paper is organized as follows. In Section 2, we present some background on three-valued paraconsistent logics; especially, we define the logical framework into which our inference relation |= c takes place. In Section 3, we present the classical closure property and show that three-valued paraconsistent inference relations from the literature do not satisfy it. On this ground, we introduce our relation |= c ; we show that it satisfies a number of expected logical properties, including the strong paraconsistency condition (i.e., the deductive closure of a belief base never trivializes), the preservation property (i.e., the deductive closure of a belief base coincides with its classical closure when the belief base is classically consistent), as well as all the properties of system P [START_REF] Kraus | Nonmonotonic reasoning, preferential models and cumulative logics[END_REF] but reflexivity. We also investigate some computational aspects of |= c , show that it is not harder than the underlying relation |= ≤ from a complexity point of view and explain how to turn any finite belief base Σ into a consistent propositional formula cl(Σ) such that Cn |=c (Σ) is equal to the classical closure of cl(Σ) (thus, cl(Σ) can be viewed as a compilation of Σ as a propositional formula, classically interpreted). Finally, Section 4 concludes the paper. For space reasons, some proofs are omitted. However, they are given in [START_REF] Coste-Marquis | Recovering consistency by forgetting inconsistency[END_REF], available from the authors.

Three-valued Paraconsistent Logics

When a belief base is classically inconsistent, every formula is a classical consequence of it ("ex falso quodlibet sequitur"). In order to avoid such a trivialization, one can take advantage of any logic in which an (epistemic) truth value "both" (⊤) denotes that a formula can be proved at the same time "true" (1) and "false" (0). This allows to highlight contradictory pieces of information, but still reasoning "reasonably" about the remaining ones. Thus the third truth value has to be understood as some encoding of the epistemic attitude "proved both true and false", and not as a standard truth value. Now, there are a number of many-valued paraconsistent logics where such an (epistemic) truth value "both" is considered. In the following, we consider Kleene's strong three-valued logic with middle element designated, restricted to the so-called monotone fragment [START_REF] Arieli | The value of four values[END_REF], i.e., the morphology of the language of the logic is reduced to the connectives ¬, ∨, ∧, only. When restricted to this fragment, this logic is equivalent to a number of other logics pointed out so far in the literature, including LP [START_REF] Priest | Reasoning about truth[END_REF], J 3 [START_REF] D'ottaviano | Sur un problème de Jaśkowski[END_REF], T HREE [START_REF] Arieli | The value of four values[END_REF] and other logics by Levesque [START_REF] Levesque | A knowledge-level account of abduction (preliminary version)[END_REF] and Frisch [START_REF] Frisch | Inference without chaining[END_REF].

Definition 1 (language). PROP PS is the propositional language generated from a finite set PS of propositional symbols, the unary connective ¬ (negation) and the binary connectives ∨ (disjunction), and ∧ (conjunction).

Clearly, this language coincides with a standard language for classical propositional logic.

We will write propositional symbols a, b, ... and formulas from PROP PS will be denoted by lower case Greek letters α, β, ... Belief bases, that will be denoted by upper case Greek letters Σ,... are (conjunctively-interpreted) sets of formulas. In order to alleviate notations, we identify every singleton belief base {α} with the formula α in it. V ar(Σ) denotes the set of propositional symbols occurring in Σ.

A literal is a symbol x ∈ PS or a negated one ¬x. x and ¬x are said to be complementary literals. A proper subset of PROP PS is composed by the CNF formulas, i.e., the (finite) conjunctions of clauses, where a clause is a (finite) disjunction of literals. Another proper subset of PROP PS is composed by the DNF formulas, i.e., the (finite) disjunctions of terms, where a term is a (finite) conjunction of literals.

In the following, we consider a number of inference relations ⊢ over PROP PS : Definition 2 (inference relation).

-An inference relation ⊢ is a subset of 2 PROPPS × PROP PS .

-For every Σ in 2 PROPPS , Cn ⊢ (Σ) denotes the deductive closure of a set of formulas Σ w.r.t. the inference relation ⊢, i.e., Cn

⊢ (Σ) = {α ∈ PROP PS | Σ ⊢ α}.
We will also need the following notions of interpretations:

Definition 3 (interpretations).

-A 3-interpretation ω over PROP PS is a total function from PS to {0, 1, ⊤}.

-A 2-interpretation ω over PROP PS is a total function from PS to {0, 1}.

3 -Ω (resp. 2 -Ω) denotes the set of all 3-interpretations (resp. 2-interpretations). 2-interpretations are the classical worlds. Clearly, they are also 3interpretations. However, the converse does not hold (we have 2 -Ω ⊂ 3 -Ω).

In the logic under consideration, all the connectives are truth functional ones and the semantics ω(α) of a formula α from PROP PS in a 3-interpretation ω is defined in the obvious compositional way given the following truth tables.

α β ¬α α ∧ β α ∨ β 0 0 1 0 0 0 1 1 0 1 0 ⊤ 1 0 ⊤ 1 0 0 0 1 1 1 0 1 1 1 ⊤ 0 ⊤ 1 ⊤ 0 ⊤ 0 ⊤ ⊤ 1 ⊤ ⊤ 1 ⊤ ⊤ ⊤ ⊤ ⊤ Table 1. Truth tables.
It is easy to check that restricting the entries of the previous table to 0 and 1, one recovers the standard semantics for the connectives ¬, ∨, ∧. Accordingly, a belief base can be considered classically unless it becomes inconsistent (typically via its expansion by a new, yet conflicting, piece of evidence).

In classical logic, notions of model and consequence are defined as:

Definition 4 (|= 2 ).
Let ω be a 2-interpretation over PROP PS . Let α be a formula from PROP PS , and let Σ be a set of formulas of PROP PS :

-

ω is a 2-model of α iff ω(α) = 1. -ω is a 2-model of Σ iff ω(α) = 1 for every α ∈ Σ. 2 -mod(Σ) denotes the set of 2-models of Σ. -α is a 2-consequence of Σ, noted Σ |= 2 α, iff every 2-model of Σ is a 2-model of α. A belief base Σ is classsically consistent iff it has a 2-model iff Cn |=2 (Σ) = PROP PS . It is well-known that |= 2 is not strongly paraconsistent:
Definition 5 (strong paraconsistency). An inference relation ⊢ satisfies the strong paraconsistency property iff for every Σ in 2 PROPPS , Cn ⊢ (Σ) = PROP PS .

When dealing with more than two truth values, one has to make precise the set of designated values, i.e., the set of values that a formula can take to be considered as satisfied. Since we want to define a paraconsistent logic, we choose D = {1, ⊤}: intuitively, a formula is satisfied if it is "at least true" (but it can also be false!). We are now ready to extend the previous notions of model and consequence to the three-valued case: Definition 6 (|= 3 ). Let ω be a 3-interpretation over PROP PS . Let α be a formula from PROP PS , and let Σ be a set of formulas of PROP PS :

-

ω is a 3-model of α iff ω(α) ∈ D. -ω is a 3-model of Σ iff ω(α) ∈ D for every α ∈ Σ. 3 -mod(Σ) denotes the set of 3-models of Σ. -α is a 3-consequence of Σ, noted Σ |= 3 α, iff every 3-model of Σ is a 3-model of α.
Two formulas α and β are said to be strongly (3-)equivalent iff for every 3-interpretation ω, we have ω(α) = ω(β).

Unlike |= 2 , an interesting feature of the inference relation |= 3 is that it is strongly paraconsistent; indeed, every formula from PROP PS has a 3-model (the 3-interpretation ω ⊤ such that ∀x ∈ PS , ω ⊤ (x) = ⊤). Thus, while we have a ∧ ¬a |= 2 b, we do not have a ∧ ¬a |= 3 b.

A problem is that |= 3 is a very weak inference relation. Especially, it is wellknown that the disjunctive syllogism is not satisfied by |= 3 : a ∧ (¬a ∨ b) |= 3 b. Thus, |= 3 does not satisfy the expected preservation property: Definition 7 (preservation). An inference relation ⊢ satisfies the preservation property iff for every

Σ in 2 PROPPS , if Σ is classically consistent, then Cn ⊢ (Σ) = Cn |=2 (Σ).
In order to circumvent this difficulty, other three-valued paraconsistent inference relations have been proposed. Some of them are based on the following principle: focus on some preferred models of Σ in order to keep as much information as possible. Thus, in LP m [START_REF] Priest | Minimally inconsistent LP[END_REF], Priest suggests to prefer those 3-models of a belief base Σ which are "as classical as possible". Formally, let us consider the partial preordering ≤ over the set of 3-interpretations defined by ω -

≤ ω ′ if and only if {x ∈ PS | ω(x) = ⊤} ⊆ {x ∈ PS | ω ′ (x) = ⊤}; the "most classical" 3-
Σ |= ≤ arg α iff Σ |= ≤ α and Σ |= ≤ ¬α. -Σ |= ≤ 1 α iff ∀ω ∈ min(3 -mod(Σ), ≤), ω(α) = 1. -Σ |= ≤ t α iff ∀ω ∈ min(3 -mod(Σ), ≤), ω(Σ) ≤ t ω(α)
where the so-called "truth ordering" ≤ t is such that 0 ≤ t ⊤ ≤ t 1.

Those three relations correspond respectively to three refinement principles:

-considering only argumentative consequences of the belief base.

-selecting those consequences of the belief base that are "conflict-free" (i.e., true but not false). -selecting as consequences of the belief base formulas that are informally "more true" than the belief base.

All those relations are non-monotonic, strongly paraconsistent and they satisfy the preservation property. Furthermore they are strictly more cautious than |= ≤ (see [START_REF] Konieczny | Three-valued logics for inconsistency handling[END_REF] for more details). This is obvious for |= 3 , |= ≤ , and |= ≤ t since those relations are "reflexive" [START_REF] Konieczny | Three-valued logics for inconsistency handling[END_REF], i.e., for every α in PROP PS , we have α is a consequence of α w.r.t. the relation. Thus, take Σ = a∧¬a; Σ has to belong to its deductive closure w.r.t. any of those three relations, hence it cannot be classically consistent. As to |= ≤ arg , consider the classically inconsistent CNF formula Σ = (a ∨ b) ∧ (¬a ∨ b) ∧ (a ∨ ¬b) ∧ (¬a ∨ ¬b). Each of the four clauses in it is a consequence of Σ w.r. Using any of those inference relations thus prevents from interpreting inconsistent belief bases as sets of classical worlds (i.e., 2-interpretations), and consequently it questions the possibility to exploit further the information encoded by an inconsistent belief base using standard inference or decision-making techniques (since such techniques typically require classically consistent information). This motivates the introduction of our inference relation |= c .

Recovering Consistency by Forgetting Inconsistency

Intuitively, the preferred 3-models of a belief base Σ w.r.t. |= c are the 2interpretations which are as close as possible to the preferred 3-models of a belief base Σ w.r.t. |= ≤ . Determining the latter models mainly amounts to forgetting the inconsistent "truth value" in the former interpretations. Formally, for any belief base Σ, we define IncF org(Σ) as the set of 2-interpretations ω which are as close as possible to a 3-interpretation

ω ′ ∈ min(3-mod(Σ), ≤), in the sense that ∀x ∈ PS , if ω ′ (x) = ⊤, then ω ′ (x) = ω(x). More formally, IncF org(Σ) = {ω ∈ 2 -Ω | ∃ω ′ ∈ min(3 -mod(Σ), ≤) ∀x ∈ PS , if ω ′ (x) = ⊤, then ω ′ (x) = ω(x)}.
Computing IngF org(Σ) amounts to projecting each preferred 3-models of Σ on the variables classically interpreted in it (hence, forgetting inconsistency) and interpreting the resulting partial interpretations in a classical way. We are now ready to define is not empty whatever the belief base Σ, since this is the case for 3-mod(Σ) and ≤ is noetherian since [START_REF] Konieczny | Three-valued logics for inconsistency handling[END_REF]: Definition 12 (system P). An inference relation ⊢ is preferential iff it satisfies the following properties (system P):

PS is finite. -Preservation: If Σ is classically consistent, then min(3 -mod(Σ), ≤) = 2 - mod(Σ). Consequently, IncF org(Σ) = 2 -mod(Σ),
(Ref ) α ⊢ α Reflexivity (LLE) If α and β are strongly 3-equivalent and α ⊢ γ, then β ⊢ γ Left Logical Equivalence (RW) If α ⊢ β and β |= 3 γ, then α ⊢ γ Right Weakening (Or) If α ⊢ γ and β ⊢ γ, then α ∨ β ⊢ γ Or (Cut) If α ∧ β ⊢ γ and α ⊢ β, then α ⊢ γ Cut (CM) If α ⊢ β and α ⊢ γ, then α ∧ β ⊢ γ
Cautious Monotony Following seminal works in non-monotonic logic [START_REF] Gabbay | Theoretical foundations for nonmonotonic reasoning in experts systems[END_REF][START_REF] Makinson | General Pattern in nonmonotonic reasoning[END_REF][START_REF] Kraus | Nonmonotonic reasoning, preferential models and cumulative logics[END_REF][START_REF] Lehmann | What does a conditional knowledge base entail?[END_REF], this set of normative properties that a non-monotonic inference relation should satisfy has been given in [START_REF] Kraus | Nonmonotonic reasoning, preferential models and cumulative logics[END_REF]. These properties have been primarily stated in the framework of classical logic [START_REF] Kraus | Nonmonotonic reasoning, preferential models and cumulative logics[END_REF], but they can be extended to multi-valued settings in a straightforward way as above (such an extension has also been considered in [START_REF] Arieli | The value of four values[END_REF]).

Thus, an important question is to determine whether going from |= ≤ to |= c leads to lose such valuable logical properties. Fortunately, most important properties still hold but reflexivity: Proposition 2. |= c satisfies all the properties of system P, except reflexivity.

Proof. -Reflexivity: Take α = a ∧ ¬a. We have α |= c α.

-Left Logical Equivalence: Obvious from the fact that (strongly) equivalent formulas have the same 3-models. -Right Weakening: If β |= 3 γ, then β |= 2 γ due to the inclusion 2mod(β) ⊆ 3-mod(β). The fact that |= c satisfies the classical closure property concludes the proof.

-Or: We have that 3mod(α ∨ β) = 3mod(α) ∪ 3mod(β). As a consequence, min(3-mod(α∨β), ≤) ⊆ min(3-mod(α), ≤)∪min(3-mod(β), ≤). Therefore, IncF org(α ∨ β) ⊆ IncF org(α) ∪ IncF org(β). Since every ω ∈ IncF org(α) ∪ IncF org(β) is such that ω(γ) = 1 when α ⊢ γ and β ⊢ γ, this must be the case for every ω ∈ IncF org(α ∨ β). -Cut: We first prove the following lemma:

Lemma 1. Let ω and ω ′ be two 3-interpretations such that ∀x ∈ PS , if ω ′ (x) = ⊤, then ω ′ (x) = ω(x). Then for any formula α of PROP PS , we have that if ω ′ (α) = 1 (resp. ω ′ (α) = 0), then ω(α) = 1 (resp. ω(α) = 0).
The proof of this lemma is easy by structural induction on α. Now, by reductio ad absurdum, assume that there exists ω ∈ IncF org(α) such that ω(γ) = 0. Then by definition of IncF org(α), there exists

ω ′ ∈ min(3 - mod(α), ≤) such that ∀x ∈ PS , if ω ′ (x) = ⊤, then ω ′ (x) = ω(x). Since ω ′ ∈ 3 -mod(α), we have that ω ′ (α) = 0. Since α |= c β, we have that ω(β) = 1.
As a consequence of the lemma, we get that ω ′ (β) = 0. Hence, we have ω

′ (α ∧ β) = 0: ω ′ ∈ 3 -mod(α ∧ β). Since 3 -mod(α ∧ β) ⊆ 3 -mod(α) and ω ′ ∈ min(3 -mod(α), ≤), we must have ω ′ ∈ min(3 -mod(α ∧ β), ≤). Hence ω ∈ IncF org(α ∧ β). Since α ∧ β |= c γ, we must have ω(γ) = 1, contradiction.
-Cautious Monotony: We first exploit the previous lemma to show that for any formulas α and β of PROP PS , if α |= c β, then α |= ≤ β. By reduction ad absurdum, assume that there exists Finally, it is important to determine whether the relaxation of |= ≤ we realised to ensure the classical closure property does not lead to a too weak inference relation |= c . The following inclusions show that this is not the case:

ω ′ ∈ min(3 -mod(α), ≤) such that ω ′ (β) = 0. From the lemma, for every 2-interpretation ω that ∀x ∈ PS , if ω ′ (x) = ⊤, then ω ′ (x) = ω(x), we must have ω(β) = 0. Since ω ′ ∈ min(3 -mod(α), ≤),
Proposition 5. |= ≤ 1 ⊂ |= c ⊂ |= ≤ .
Thus, all the "conflict-free" consequences α of a belief base Σ w.r.t. |= ≤ preserved by |= c . Furthermore, |= c does not add consequences that would not be derivable using |= ≤ 1 .

Computational aspects

In this section, we investigate some computational aspects of |= c . We assume the reader familiar with some basic notions of complexity, especially the complexity classes coNP and Π p 2 of the polynomial hierarchy PH (see [START_REF] Papadimitriou | Computational Complexity[END_REF] for a survey). We first consider the complexity of the inference problem for |= c : Definition 13 (|= c -inference). |= c -inference is the following decision problem:

-Input: A finite set Σ of formulas from PROP PS and a formula α in PROP PS .

-Question: Does Σ |= c α hold?

We have obtained the following result:

Proposition 6. |= c -inference is Π p 2 -complete. Proof.
Membership is easy; one considers the complementary problem: in order to show that Σ |= c α holds, we guess a 2-interpretation ω and a 3-interpretation ω ′ over V ar(Σ) ∪ V ar(α); then we check that ω ′ belongs to min(3mod(Σ), ≤) (one call to an NP oracle since this problem is in coNP); finally, we check in polynomial time that for every x ∈ V ar(Σ)∪V ar(α), we have that ω(x) = ω ′ (x) whenever ω ′ (x) = ⊤, and that ω(α) = 1.

Hardness holds even in the restricted case when Σ is a CNF formula and α is a propositional symbol; we consider the problem of determining, given a CNF formula Σ and a symbol a, whether every element ω of min(3mod(Σ), ≤) is such that ω(a) = ⊤. This problem has been shown Π p 2 -hard in [START_REF] Coste-Marquis | On the complexity of paraconsistent inference relations[END_REF]. The fact that every element ω of min

(3 -mod(Σ), ≤) is such that ω(a) = ⊤ if and only if Σ ∧ (a ∨ b) ∧ (¬a ∨ b) |= c b where b ∈ PS \ V ar(Σ), completes the proof. ⊓ ⊔
This proposition shows that |= c is not harder than the underlying relation |= ≤ from a computational complexity point of view; indeed, the inference problem for |= ≤ also is Π p 2 -complete [START_REF] Coste-Marquis | On the complexity of paraconsistent inference relations[END_REF]. We now show how to turn any finite belief base Σ (viewed as the conjunction of its elements) into a "classical" consistent propositional formula cl(Σ) such that |= c (Σ) is equal to the classical closure of cl(Σ). The basic idea is to turn first Σ into a DNF formula which is strongly equivalent. As in classical propositional logic, such a DNF formula can be computed by applying iteratively to Σ the following equivalences, considered as rewrite rules (left-to-right oriented):

-¬(¬α) is strongly 3-equivalent to α. -¬(α ∨ β) is strongly 3-equivalent to (¬α) ∧ (¬β). -¬(α ∧ β) is strongly 3-equivalent to (¬α) ∨ (¬β). -α ∧ (β ∨ γ) is strongly 3-equivalent to (α ∧ β) ∨ (α ∧ γ) (and similarly for (β ∨ γ) ∧ α).
Of course, the obtained DNF formula can be of exponential size in the size of Σ. It now remains to forget inconsistencies in this DNF formula after isolating terms representing the preferred models (the minimization step); formally, for every term α, let inc(α) be the set of "inconsistencies" occurring in α: inc(α) = {x ∈ PS | x and ¬x occur in α}. cl(Σ) is the DNF formula obtained by successively:

1. removing in the current DNF every term α such that inc(α) is not minimal w.r.t. set-inclusion in the set {inc(α) | α a term in the current DNF}. 2. removing in every term of the resulting DNF formula every literal l when the complementary literal also occurs in the term, then removing every empty term (and finally adding a ∨ ¬a if the resulting DNF formula contains no term).

We have that: Since the computation of cl(Σ) can be achieved in time polynomial in the size of Σ when Σ is a DNF and since cl(Σ) is a DNF formula, we easily get that: Proposition 8.

-Under the restriction where Σ is a DNF formula, |= c -inference is coNPcomplete. -Under the restriction where Σ is a DNF formula and α is a CNF formula, |= c -inference is in P.

Thus the formula cl(Σ) is a classically consistent formula which can be viewed as a compilation of Σ (in the sense that any finite belief base Σ interpreted w.r.t. |= c is equivalent to the corresponding formula cl(Σ) classically interpreted and that the inference problem from cl(Σ) is computationally easier than the inference problem from Σ, unless the polynomial hierarchy collapses at the first level).

Conclusion

In this paper, we have introduced and studied a new paraconsistent inference relation |= c in the setting of 3-valued paraconsistent logics. Using inconsistency forgetting as a key mechanism for recovering consistency, it guarantees that the deductive closure Cn |=c (Σ) of any belief base Σ is classically consistent and classically closed. This strong feature, not shared by previous inference relations in the same setting, allows to interpret an inconsistent belief base as a set of classical worlds (hence to reason classically from them).We have investigated the logical properties and the computational complexity of |= c . Among other things, we have shown that |= c satisfies many interesting properties which are shared by the underlying inference relation |= ≤ , without any complexity shift compared to it.

We have considered in this paper a basic language for three-valued paraconsistent logic (the monotone fragment). A first perspective for further research is to extend the approach to more complex morphologies. It is also clear that the inconsistency forgetting mechanism at work here could be applied to other many-valued paraconsistent logics, especially four-valued ones. This is another extension of this work that we plan to do.

  models of a belief base are the 3-models that are minimal w.r.t. ≤: Definition 8 (|= ≤ ). Let Σ be a set of formulas of PROP PS . Let α be a formula from PROP PS . Σ |= ≤ α iff ∀ω ∈ min(3mod(Σ), ≤), ω(α) ∈ D. The resulting relation |= ≤ is still strongly paraconsistent and it is strictly less cautious than |= 3 , i.e., we have the inclusion |= 3 ⊂|= ≤ . Unlike |= 3 , it is nonmonotonic; for instance, we have a ∧ (¬a ∨ b) |= ≤ b but a ∧ (¬a ∨ b) ∧ ¬a |= ≤ b. Furthermore, |= ≤ satisfies the preservation property: the preferred 3-models w.r.t. |= ≤ of any classically consistent belief base Σ are exactly its 2-models. Other inference relations have been defined so far for refining the inference relation |= ≤ (especially in order to discriminate between the 3-consequences of a belief base Σ which are subject to a contradiction -like a if Σ = a ∧ ¬a ∧ band those which are contradiction-free -like b if Σ = a ∧ ¬a ∧ b). Here are the main ones [20]: Definition 9 (refined inference relations). Let Σ be a set of formulas of PROP PS . Let α be a formula from PROP PS .

3. 1

 1 The inference relation |= c Now, a major problem with the inference relations considered in the previous section (except |= 2 which is not paraconsistent) is that they do not satisfy the classical closure property: Definition 10 (classical closure). An inference relation ⊢ satisfies the classical closure property iff for every Σ in 2 PROPPS , ⊢ (Σ) is classically consistent and is closed w.r.t. classical deduction, i.e., Cn |=2 (Cn ⊢ (Σ)) = Cn ⊢ (Σ).

  |= c : Definition 11 (|= c ). Let Σ be a set of formulas of PROP PS . Let α be a formula from PROP PS . Σ |= c α iff ∀ω ∈ IncF org(Σ), ω(α) = 1. Example 1. Let Σ = a ∧ (¬a ∨ b) ∧ c ∧ ¬c. Assuming that PS = {a, b, c}, min(3mod(Σ), ≤) has only one preferred 3-model ω such that ω(a) = ω(b) = 1 and ω(c) = ⊤. Accordingly, IncF org(Σ) contains two elements ω ′ and ω ′′ such that ω ′ (a) = ω ′ (b) = ω ′′ (a) = ω ′′ (b) = 1 and ω ′ (c) = 0 and ω ′′ (c) = 1. As a consequence, we have Σ |= c a ∧ b, Σ |= c c, and Σ |= c ¬c. This contrasts with |= ≤ which is such that Σ |= ≤ c ∧ ¬c. Clearly enough, |= c is a non-monotonic inference relation. For instance, we have a |= c a but a ∧ ¬a |= c a.

3. 2 Proposition 1 .

 21 Logical propertiesWe now investigate in more depth the logical properties satisfied by |= c . Interestingly, |= c compares favourably with the underlying inference relation |= ≤ w.r.t. logical properties: first of all, like |= ≤ , |= c also is strongly paraconsistent and satisfies the preservation property. Furthermore, it satisfies the classical closure property: |= c is strongly paraconsistent and satisfies the preservation property and the classical closure property.Proof. -Strong paraconsistency: Direct from the fact that min(3-mod(Σ), ≤)

Proposition 3 .

 3 for at least one 2-interpretation ω ∈ IncF org(α), we must have ω(α) = 0. This contradicts the fact that α |= c β. Now, in order to prove the Cautious Monotony property, it is enough to show that whenever α |= c β, we have that min(3mod(α ∧ β), ≤) = min(3mod(α), ≤). Let ω ∈ min(3mod(α), ≤). Since α |= c β, we have that α |= ≤ β. Hence, ω is a 3-model of β. Since it is a 3-model of α, it is a 3-model of α∧β. Since 3-mod(α∧β) ⊆ 3-mod(α), we have that ω ∈ min(3-mod(α∧ β), ≤). Hence the inclusion min(3mod(α), ≤) ⊆ min(3mod(α ∧ β), ≤) holds. Conversely, assume that there exists ω ′ ∈ min(3mod(α ∧ β), ≤ ) \ min(3mod(α), ≤). Since 3mod(α ∧ β) ⊆ 3mod(α), there exists ω ∈ min(3mod(α), ≤) such that ω < ω ′ (i.e., ω ≤ ω ′ and ω ′ ≤ ω). From the previous inclusion, we must have that ω ∈ min(3mod(α ∧ β), ≤). The fact that ω < ω ′ contradicts that ω ′ ∈ min(3mod(α ∧ β), ≤). ⊓ ⊔Observe that there would be no way to keep reflexivity while ensuring the classical closure property. Indeed, we have the following easy proposition: No inference relation ⊢ satisfies both reflexivity and the classical closure property.Proof. Consider Σ = a ∧ ¬a. If Σ ⊢ Σ then it does not satisfy reflexivity. Contrastingly, If Σ ⊢ Σ then it does not satisfy the classical closure property since Σ is classically inconsistent.⊓ ⊔It is also interesting to note that |= c satisfies other properties which are not shared by |= ≤[START_REF] Konieczny | Three-valued logics for inconsistency handling[END_REF], especially "transitivity" (this is a direct consequence of the fact that it satisfies both the classical closure property and the preservation property): Proposition 4. |= c satisfies transitivity, i.e. for any formulas α, β, γ from PROP PS , if α |= c β and β |= c γ, then α |= c γ.

Proposition 7 .

 7 Cn |=c (Σ) = Cn |=2 (cl(Σ)). As a matter of illustration, consider again Example 1: let Σ = a ∧ (¬a ∨ b) ∧ c ∧ ¬c and PS = {a, b, c}. Σ is strongly 3-equivalent to the following DNF formula (a ∧ ¬a ∧ c ∧ ¬c) ∨ (a ∧ b ∧ c ∧ ¬c). Now, forgetting inconsistency in Σ leads to the DNF formula cl(Σ) = a ∧ b (the first term (a ∧ ¬a ∧ c ∧ ¬c) of the previous DNF is removed during the minimization step). We can easily check that Cn |=c (Σ) = Cn |=2 (cl(Σ)).

  conclusion follows. -Classical closure: Since min(3mod(Σ), ≤) is not empty (see above), this is also the case of IncF org(Σ). Hence |= c (Σ) is classically consistent. Since IncF org(Σ) ⊆ 2-Ω, we obviously have that |= c (Σ) is closed w.r.t. classical deduction: |= 2 (|= c (Σ)) =|= c (Σ). ⊓ ⊔ Now, compared with |= ≤ arg , |= ≤ 1 and |= ≤ t , |= ≤ exhibits quite a good logical behaviour in the sense that it is a preferential inference relation

Note that approaches based on consistent subsets take advantage of a specific "comma" connective[START_REF] Konieczny | Reasoning under inconsistency: The forgotten connective[END_REF] which is not equivalent to conjunction in the general case; every singleton consisting of an inconsistent formula like {a ∧ (¬a ∨ b) ∧ c ∧ ¬c} has ∅ as its unique consistent subset.
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