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Abstract. In this paper, we introduce and study a new paraconsistent
inference relation |=c in the setting of 3-valued paraconsistent logics.
Using inconsistency forgetting as a key mechanism for recovering con-
sistency, it guarantees that the deductive closure Cn|=c

(Σ) of any belief
base Σ is classically consistent and classically closed. This strong feature,
not shared by previous inference relations in the same setting, allows to
interpret an inconsistent belief base as a set of classical worlds (hence to
reason classically from them).

1 Introduction

Reasoning in a non-trivial way from inconsistent pieces of information (the para-
consistency issue) is a fundamental problem in artificial intelligence. Its impor-
tance is reflected by the number of approaches developed so far to address it:
paraconsistent logics, belief revision, belief merging, reasoning from preferred
consistent subsets, knowledge integration, argumentative logics, purification, etc.
(see [1–3] for a survey).

The variety of existing approaches can be explained by the fact that para-
consistency can be achieved in various ways, depending on the exact nature of
the problem at hand (hence, the available information). Each of them has its
own pros and cons, and is more or less suited to different inconsistency handling
scenarios. For instance, when Σ represents the (conflicting) beliefs of several
agents, a merged base giving the beliefs of the group of agents can be designed
by logically weakening some local belief bases (associated to the agents) in order
to restore global consistency [4–8].

Compared with the other approaches listed above, paraconsistent logics (ta-
ken stricto sensu) offer a basic way to address the trivialization issue in presence
of inconsistency. Indeed, belief revision, belief merging, knowledge integration,
reasoning from preferred consistent subsets and purification need some extra-
logical information in order to be well-defined and avoid trivializing. Such extra-
logical information can be rather poor: A splitting between the belief base and
the revision formula in the belief revision setting, a set (or multi-set) organization
of the beliefs in a belief merging scenario. They can also be rather sophisticated:
Preference relations over beliefs, knowledge gathering actions for purification. In



both cases, they are required. In particular, unlike paraconsistent logics, none
of those approaches can address in a significant way the case when the available
information take the form of a single piece (hence encoded as a unique formula
in a logical language)1.

Several (non mutually exclusive) techniques can be used to define an inference
relation that avoid trivialization from an inconsistent propositional formula (see
[3]). One of them consists in preventing classically inconsistent belief bases from
having no model, through the consideration of more general notions of interpre-
tations. Several multi-valued logics are related to this line of research (among
others, see [10–22]).

In the following, the focus is laid on three-valued paraconsistent logics. The
additional (epistemic) truth value (called middle element) intuitively means
“proved both true and false” and allows to still reasoning meaningfully with
variables that are not embedded directly in a contradiction. While a number
of paraconsistent inference relations have been defined in this setting, none of
them ensures that deductive closures are always classically consistent and clas-
sically closed. This is a strong drawback of such approaches since it prevents
from interpreting inconsistent belief bases as sets of classical worlds (i.e., 2-
interpretations), and consequently it questions the possibility to exploit further
the information encoded by an inconsistent belief base using standard inference
or decision-making techniques (since such techniques typically require classically
consistent information).

In this paper, we fill the gap by introducing and studying a new paracon-
sistent inference relation |=c in the setting of three-valued paraconsistent logics.
This inference relation elaborates on a valuable paraconsistent inference rela-
tion |=≤ introduced by Priest [15]. Basically, the preferred 3-models of a belief
base Σ w.r.t. |=c are the 2-interpretations which are as close as possible to the
preferred 3-models of a belief base Σ w.r.t. |=≤. Determining the latter models
mainly amounts to forgetting the inconsistent “truth value” in the former inter-
pretations. Interestingly, |=c guarantees that the deductive closure Cn|=c

(Σ) of
any belief base Σ is classically consistent and classically closed (what we call the
classical closure property).

The rest of this paper is organized as follows. In Section 2, we present some
background on three-valued paraconsistent logics; especially, we define the logical
framework into which our inference relation |=c takes place. In Section 3, we
present the classical closure property and show that three-valued paraconsistent
inference relations from the literature do not satisfy it. On this ground, we
introduce our relation |=c; we show that it satisfies a number of expected logical
properties, including the strong paraconsistency condition (i.e., the deductive
closure of a belief base never trivializes), the preservation property (i.e., the
deductive closure of a belief base coincides with its classical closure when the

1 Note that approaches based on consistent subsets take advantage of a specific
“comma” connective [9] which is not equivalent to conjunction in the general case;
every singleton consisting of an inconsistent formula like {a ∧ (¬a ∨ b) ∧ c ∧ ¬c} has
∅ as its unique consistent subset.



belief base is classically consistent), as well as all the properties of system P [23]
but reflexivity. We also investigate some computational aspects of |=c, show that
it is not harder than the underlying relation |=≤ from a complexity point of view
and explain how to turn any finite belief base Σ into a consistent propositional
formula cl(Σ) such that Cn|=c

(Σ) is equal to the classical closure of cl(Σ) (thus,
cl(Σ) can be viewed as a compilation of Σ as a propositional formula, classically
interpreted). Finally, Section 4 concludes the paper. For space reasons, some
proofs are omitted. However, they are given in [24], available from the authors.

2 Three-valued Paraconsistent Logics

When a belief base is classically inconsistent, every formula is a classical conse-
quence of it (“ex falso quodlibet sequitur”). In order to avoid such a trivialization,
one can take advantage of any logic in which an (epistemic) truth value “both”
(⊤) denotes that a formula can be proved at the same time “true” (1) and “false”
(0). This allows to highlight contradictory pieces of information, but still rea-
soning “reasonably” about the remaining ones. Thus the third truth value has
to be understood as some encoding of the epistemic attitude “proved both true
and false”, and not as a standard truth value.

Now, there are a number of many-valued paraconsistent logics where such
an (epistemic) truth value “both” is considered. In the following, we consider
Kleene’s strong three-valued logic with middle element designated, restricted to
the so-called monotone fragment [18], i.e., the morphology of the language of
the logic is reduced to the connectives ¬, ∨, ∧, only. When restricted to this
fragment, this logic is equivalent to a number of other logics pointed out so far
in the literature, including LP [14], J3 [10], THREE [18] and other logics by
Levesque [13] and Frisch [12].

Definition 1 (language). PROPPS is the propositional language generated
from a finite set PS of propositional symbols, the unary connective ¬ (negation)
and the binary connectives ∨ (disjunction), and ∧ (conjunction).

Clearly, this language coincides with a standard language for classical propo-
sitional logic.

We will write propositional symbols a, b, ... and formulas from PROPPS will
be denoted by lower case Greek letters α, β, ... Belief bases, that will be denoted
by upper case Greek letters Σ,... are (conjunctively-interpreted) sets of formulas.
In order to alleviate notations, we identify every singleton belief base {α} with
the formula α in it. V ar(Σ) denotes the set of propositional symbols occurring
in Σ.

A literal is a symbol x ∈ PS or a negated one ¬x. x and ¬x are said to be
complementary literals. A proper subset of PROPPS is composed by the CNF
formulas, i.e., the (finite) conjunctions of clauses, where a clause is a (finite)
disjunction of literals. Another proper subset of PROPPS is composed by the
DNF formulas, i.e., the (finite) disjunctions of terms, where a term is a (finite)
conjunction of literals.



In the following, we consider a number of inference relations ⊢ over PROPPS :

Definition 2 (inference relation).

– An inference relation ⊢ is a subset of 2PROPPS × PROPPS .
– For every Σ in 2PROPPS , Cn⊢(Σ) denotes the deductive closure of a set of

formulas Σ w.r.t. the inference relation ⊢, i.e., Cn⊢(Σ) = {α ∈ PROPPS |
Σ ⊢ α}.

We will also need the following notions of interpretations:

Definition 3 (interpretations).

– A 3-interpretation ω over PROPPS is a total function from PS to {0, 1,⊤}.
– A 2-interpretation ω over PROPPS is a total function from PS to {0, 1}.

3 − Ω (resp. 2 − Ω) denotes the set of all 3-interpretations (resp. 2-inter-
pretations). 2-interpretations are the classical worlds. Clearly, they are also 3-
interpretations. However, the converse does not hold (we have 2 − Ω ⊂ 3 − Ω).

In the logic under consideration, all the connectives are truth functional ones
and the semantics ω(α) of a formula α from PROPPS in a 3-interpretation ω is
defined in the obvious compositional way given the following truth tables.

α β ¬α α ∧ β α ∨ β

0 0 1 0 0

0 1 1 0 1

0 ⊤ 1 0 ⊤
1 0 0 0 1

1 1 0 1 1

1 ⊤ 0 ⊤ 1

⊤ 0 ⊤ 0 ⊤
⊤ 1 ⊤ ⊤ 1

⊤ ⊤ ⊤ ⊤ ⊤

Table 1. Truth tables.

It is easy to check that restricting the entries of the previous table to 0 and 1,
one recovers the standard semantics for the connectives ¬, ∨, ∧. Accordingly, a
belief base can be considered classically unless it becomes inconsistent (typically
via its expansion by a new, yet conflicting, piece of evidence).

In classical logic, notions of model and consequence are defined as:

Definition 4 (|=2). Let ω be a 2-interpretation over PROPPS . Let α be a for-
mula from PROPPS , and let Σ be a set of formulas of PROPPS :

– ω is a 2-model of α iff ω(α) = 1.
– ω is a 2-model of Σ iff ω(α) = 1 for every α ∈ Σ. 2 − mod(Σ) denotes the

set of 2-models of Σ.



– α is a 2-consequence of Σ, noted Σ |=2 α, iff every 2-model of Σ is a 2-model
of α.

A belief base Σ is classsically consistent iff it has a 2-model iff Cn|=2
(Σ) 6=

PROPPS . It is well-known that |=2 is not strongly paraconsistent:

Definition 5 (strong paraconsistency). An inference relation ⊢ satisfies the
strong paraconsistency property iff for every Σ in 2PROPPS , Cn⊢(Σ) 6= PROPPS .

When dealing with more than two truth values, one has to make precise the
set of designated values, i.e., the set of values that a formula can take to be
considered as satisfied. Since we want to define a paraconsistent logic, we choose
D = {1,⊤}: intuitively, a formula is satisfied if it is “at least true” (but it can
also be false!). We are now ready to extend the previous notions of model and
consequence to the three-valued case:

Definition 6 (|=3). Let ω be a 3-interpretation over PROPPS . Let α be a for-
mula from PROPPS , and let Σ be a set of formulas of PROPPS :

– ω is a 3-model of α iff ω(α) ∈ D.
– ω is a 3-model of Σ iff ω(α) ∈ D for every α ∈ Σ. 3 − mod(Σ) denotes the

set of 3-models of Σ.
– α is a 3-consequence of Σ, noted Σ |=3 α, iff every 3-model of Σ is a 3-model

of α.

Two formulas α and β are said to be strongly (3-)equivalent iff for every
3-interpretation ω, we have ω(α) = ω(β).

Unlike |=2, an interesting feature of the inference relation |=3 is that it is
strongly paraconsistent; indeed, every formula from PROPPS has a 3-model
(the 3-interpretation ω⊤ such that ∀x ∈ PS , ω⊤(x) = ⊤). Thus, while we have
a ∧ ¬a |=2 b, we do not have a ∧ ¬a |=3 b.

A problem is that |=3 is a very weak inference relation. Especially, it is well-
known that the disjunctive syllogism is not satisfied by |=3: a ∧ (¬a ∨ b) 6|=3 b.
Thus, |=3 does not satisfy the expected preservation property:

Definition 7 (preservation). An inference relation ⊢ satisfies the preserva-
tion property iff for every Σ in 2PROPPS , if Σ is classically consistent, then
Cn⊢(Σ) = Cn|=2

(Σ).

In order to circumvent this difficulty, other three-valued paraconsistent in-
ference relations have been proposed. Some of them are based on the following
principle: focus on some preferred models of Σ in order to keep as much infor-
mation as possible. Thus, in LPm [15], Priest suggests to prefer those 3-models
of a belief base Σ which are “as classical as possible”. Formally, let us consider
the partial preordering ≤ over the set of 3-interpretations defined by ω ≤ ω′ if
and only if {x ∈ PS | ω(x) = ⊤} ⊆ {x ∈ PS | ω′(x) = ⊤}; the “most classical”
3-models of a belief base are the 3-models that are minimal w.r.t. ≤:



Definition 8 (|=≤). Let Σ be a set of formulas of PROPPS . Let α be a formula
from PROPPS . Σ |=≤ α iff ∀ω ∈ min(3 − mod(Σ),≤), ω(α) ∈ D.

The resulting relation |=≤ is still strongly paraconsistent and it is strictly
less cautious than |=3, i.e., we have the inclusion |=3⊂|=≤. Unlike |=3, it is non-
monotonic; for instance, we have a ∧ (¬a ∨ b) |=≤ b but a ∧ (¬a ∨ b) ∧ ¬a 6|=≤

b. Furthermore, |=≤ satisfies the preservation property: the preferred 3-models
w.r.t. |=≤ of any classically consistent belief base Σ are exactly its 2-models.

Other inference relations have been defined so far for refining the inference
relation |=≤ (especially in order to discriminate between the 3-consequences of
a belief base Σ which are subject to a contradiction – like a if Σ = a ∧ ¬a ∧ b –
and those which are contradiction-free – like b if Σ = a ∧ ¬a ∧ b). Here are the
main ones [20]:

Definition 9 (refined inference relations). Let Σ be a set of formulas of
PROPPS . Let α be a formula from PROPPS .

– Σ |=≤
arg α iff Σ |=≤ α and Σ 6|=≤ ¬α.

– Σ |=≤
1

α iff ∀ω ∈ min(3 − mod(Σ),≤), ω(α) = 1.

– Σ |=≤
t α iff ∀ω ∈ min(3 − mod(Σ),≤), ω(Σ) ≤t ω(α) where the so-called

“truth ordering” ≤t is such that 0 ≤t ⊤ ≤t 1.

Those three relations correspond respectively to three refinement principles:

– considering only argumentative consequences of the belief base.

– selecting those consequences of the belief base that are “conflict-free” (i.e.,
true but not false).

– selecting as consequences of the belief base formulas that are informally
“more true” than the belief base.

All those relations are non-monotonic, strongly paraconsistent and they sat-
isfy the preservation property. Furthermore they are strictly more cautious than
|=≤ (see [20] for more details).

3 Recovering Consistency by Forgetting Inconsistency

3.1 The inference relation |=c

Now, a major problem with the inference relations considered in the previous
section (except |=2 which is not paraconsistent) is that they do not satisfy the
classical closure property:

Definition 10 (classical closure). An inference relation ⊢ satisfies the clas-
sical closure property iff for every Σ in 2PROPPS , ⊢ (Σ) is classically consistent
and is closed w.r.t. classical deduction, i.e., Cn|=2

(Cn⊢(Σ)) = Cn⊢(Σ).



This is obvious for |=3, |=
≤, and |=≤

t since those relations are “reflexive” [20],
i.e., for every α in PROPPS , we have α is a consequence of α w.r.t. the relation.
Thus, take Σ = a∧¬a; Σ has to belong to its deductive closure w.r.t. any of those
three relations, hence it cannot be classically consistent. As to |=≤

arg, consider the
classically inconsistent CNF formula Σ = (a∨ b)∧ (¬a∨ b)∧ (a∨¬b)∧ (¬a∨¬b).

Each of the four clauses in it is a consequence of Σ w.r.t. |=≤
arg: since their

conjunction Σ is classically inconsistent, it cannot be the case that Cn
|=
≤

arg
(Σ)

is classically consistent and closed w.r.t. classical deduction. Finally, one can
prove that Cn

|=
≤
t

(Σ) is always classically consistent but this set is not necessarily

closed w.r.t. classical deduction: take Σ = a ∧ ¬a; we have Σ 6|=≤
t a ∨ ¬a. Since

a ∨ ¬a is a classical tautology, the conclusion follows.
Using any of those inference relations thus prevents from interpreting in-

consistent belief bases as sets of classical worlds (i.e., 2-interpretations), and
consequently it questions the possibility to exploit further the information en-
coded by an inconsistent belief base using standard inference or decision-making
techniques (since such techniques typically require classically consistent infor-
mation). This motivates the introduction of our inference relation |=c.

Intuitively, the preferred 3-models of a belief base Σ w.r.t. |=c are the 2-
interpretations which are as close as possible to the preferred 3-models of a belief
base Σ w.r.t. |=≤. Determining the latter models mainly amounts to forgetting
the inconsistent “truth value” in the former interpretations. Formally, for any
belief base Σ, we define IncForg(Σ) as the set of 2-interpretations ω which are as
close as possible to a 3-interpretation ω′ ∈ min(3−mod(Σ),≤), in the sense that
∀x ∈ PS , if ω′(x) 6= ⊤, then ω′(x) = ω(x). More formally, IncForg(Σ) = {ω ∈
2 − Ω | ∃ω′ ∈ min(3 − mod(Σ),≤) ∀x ∈ PS , if ω′(x) 6= ⊤, then ω′(x) = ω(x)}.
Computing IngForg(Σ) amounts to projecting each preferred 3-models of Σ on
the variables classically interpreted in it (hence, forgetting inconsistency) and
interpreting the resulting partial interpretations in a classical way. We are now
ready to define |=c:

Definition 11 (|=c). Let Σ be a set of formulas of PROPPS . Let α be a formula
from PROPPS . Σ |=c α iff ∀ω ∈ IncForg(Σ), ω(α) = 1.

Example 1. Let Σ = a∧ (¬a∨ b)∧ c∧¬c. Assuming that PS = {a, b, c}, min(3−
mod(Σ),≤) has only one preferred 3-model ω such that ω(a) = ω(b) = 1 and
ω(c) = ⊤. Accordingly, IncForg(Σ) contains two elements ω′ and ω′′ such that
ω′(a) = ω′(b) = ω′′(a) = ω′′(b) = 1 and ω′(c) = 0 and ω′′(c) = 1. As a
consequence, we have Σ |=c a ∧ b, Σ 6|=c c, and Σ 6|=c ¬c. This contrasts with
|=≤ which is such that Σ |=≤ c ∧ ¬c.

Clearly enough, |=c is a non-monotonic inference relation. For instance, we
have a |=c a but a ∧ ¬a 6|=c a.

3.2 Logical properties

We now investigate in more depth the logical properties satisfied by |=c. Interest-
ingly, |=c compares favourably with the underlying inference relation |=≤ w.r.t.



logical properties: first of all, like |=≤, |=c also is strongly paraconsistent and
satisfies the preservation property. Furthermore, it satisfies the classical closure
property:

Proposition 1. |=c is strongly paraconsistent and satisfies the preservation pro-
perty and the classical closure property.

Proof. – Strong paraconsistency: Direct from the fact that min(3−mod(Σ),≤)
is not empty whatever the belief base Σ, since this is the case for 3−mod(Σ)
and ≤ is noetherian since PS is finite.

– Preservation: If Σ is classically consistent, then min(3−mod(Σ),≤) = 2−
mod(Σ). Consequently, IncForg(Σ) = 2 − mod(Σ), conclusion follows.

– Classical closure: Since min(3 − mod(Σ),≤) is not empty (see above), this
is also the case of IncForg(Σ). Hence |=c (Σ) is classically consistent. Since
IncForg(Σ) ⊆ 2−Ω, we obviously have that |=c (Σ) is closed w.r.t. classical
deduction: |=2 (|=c (Σ)) =|=c (Σ).

⊓⊔

Now, compared with |=≤
arg, |=≤

1
and |=≤

t , |=≤ exhibits quite a good logical
behaviour in the sense that it is a preferential inference relation [20]:

Definition 12 (system P). An inference relation ⊢ is preferential iff it satisfies
the following properties (system P):

(Ref) α ⊢ α Reflexivity
(LLE) If α and β are strongly 3-equivalent

and α ⊢ γ, then β ⊢ γ Left Logical Equivalence
(RW) If α ⊢ β and β |=3 γ, then α ⊢ γ Right Weakening
(Or) If α ⊢ γ and β ⊢ γ, then α ∨ β ⊢ γ Or

(Cut) If α ∧ β ⊢ γ and α ⊢ β, then α ⊢ γ Cut
(CM) If α ⊢ β and α ⊢ γ, then α ∧ β ⊢ γ Cautious Monotony

Following seminal works in non-monotonic logic [25, 26, 23, 27], this set of
normative properties that a non-monotonic inference relation should satisfy has
been given in [23]. These properties have been primarily stated in the framework
of classical logic [23], but they can be extended to multi-valued settings in a
straightforward way as above (such an extension has also been considered in
[18]).

Thus, an important question is to determine whether going from |=≤ to
|=c leads to lose such valuable logical properties. Fortunately, most important
properties still hold but reflexivity:

Proposition 2. |=c satisfies all the properties of system P, except reflexivity.

Proof. – Reflexivity: Take α = a ∧ ¬a. We have α 6|=c α.
– Left Logical Equivalence: Obvious from the fact that (strongly) equivalent

formulas have the same 3-models.
– Right Weakening: If β |=3 γ, then β |=2 γ due to the inclusion 2−mod(β) ⊆

3−mod(β). The fact that |=c satisfies the classical closure property concludes
the proof.



– Or: We have that 3 − mod(α ∨ β) = 3 − mod(α) ∪ 3 − mod(β). As a conse-
quence, min(3−mod(α∨β),≤) ⊆ min(3−mod(α),≤)∪min(3−mod(β),≤).
Therefore, IncForg(α ∨ β) ⊆ IncForg(α) ∪ IncForg(β). Since every ω ∈
IncForg(α)∪ IncForg(β) is such that ω(γ) = 1 when α ⊢ γ and β ⊢ γ, this
must be the case for every ω ∈ IncForg(α ∨ β).

– Cut: We first prove the following lemma:

Lemma 1. Let ω and ω′ be two 3-interpretations such that ∀x ∈ PS, if
ω′(x) 6= ⊤, then ω′(x) = ω(x). Then for any formula α of PROPPS , we
have that if ω′(α) = 1 (resp. ω′(α) = 0), then ω(α) = 1 (resp. ω(α) = 0).

The proof of this lemma is easy by structural induction on α. Now, by
reductio ad absurdum, assume that there exists ω ∈ IncForg(α) such that
ω(γ) = 0. Then by definition of IncForg(α), there exists ω′ ∈ min(3 −
mod(α),≤) such that ∀x ∈ PS , if ω′(x) 6= ⊤, then ω′(x) = ω(x). Since
ω′ ∈ 3 − mod(α), we have that ω′(α) 6= 0. Since α |=c β, we have that
ω(β) = 1. As a consequence of the lemma, we get that ω′(β) 6= 0. Hence, we
have ω′(α∧β) 6= 0: ω′ ∈ 3−mod(α∧β). Since 3−mod(α∧β) ⊆ 3−mod(α)
and ω′ ∈ min(3 − mod(α),≤), we must have ω′ ∈ min(3 − mod(α ∧ β),≤).
Hence ω ∈ IncForg(α ∧ β). Since α ∧ β |=c γ, we must have ω(γ) = 1,
contradiction.

– Cautious Monotony: We first exploit the previous lemma to show that for
any formulas α and β of PROPPS , if α |=c β, then α |=≤ β. By reduction
ad absurdum, assume that there exists ω′ ∈ min(3 − mod(α),≤) such that
ω′(β) = 0. From the lemma, for every 2-interpretation ω that ∀x ∈ PS ,
if ω′(x) 6= ⊤, then ω′(x) = ω(x), we must have ω(β) = 0. Since ω′ ∈
min(3 − mod(α),≤), for at least one 2-interpretation ω ∈ IncForg(α), we
must have ω(α) = 0. This contradicts the fact that α |=c β.
Now, in order to prove the Cautious Monotony property, it is enough to show
that whenever α |=c β, we have that min(3 − mod(α ∧ β),≤) = min(3 −
mod(α),≤). Let ω ∈ min(3 − mod(α),≤). Since α |=c β, we have that
α |=≤ β. Hence, ω is a 3-model of β. Since it is a 3-model of α, it is a 3-model
of α∧β. Since 3−mod(α∧β) ⊆ 3−mod(α), we have that ω ∈ min(3−mod(α∧
β),≤). Hence the inclusion min(3 − mod(α),≤) ⊆ min(3 − mod(α ∧ β),≤)
holds. Conversely, assume that there exists ω′ ∈ min(3 − mod(α ∧ β),≤
) \ min(3 − mod(α),≤). Since 3 − mod(α ∧ β) ⊆ 3 − mod(α), there exists
ω ∈ min(3 − mod(α),≤) such that ω < ω′ (i.e., ω ≤ ω′ and ω′ 6≤ ω). From
the previous inclusion, we must have that ω ∈ min(3−mod(α∧ β),≤). The
fact that ω < ω′ contradicts that ω′ ∈ min(3 − mod(α ∧ β),≤).

⊓⊔

Observe that there would be no way to keep reflexivity while ensuring the
classical closure property. Indeed, we have the following easy proposition:

Proposition 3. No inference relation ⊢ satisfies both reflexivity and the classi-
cal closure property.



Proof. Consider Σ = a ∧ ¬a. If Σ 6⊢ Σ then it does not satisfy reflexivity.
Contrastingly, If Σ ⊢ Σ then it does not satisfy the classical closure property
since Σ is classically inconsistent. ⊓⊔

It is also interesting to note that |=c satisfies other properties which are not
shared by |=≤ [20], especially “transitivity” (this is a direct consequence of the
fact that it satisfies both the classical closure property and the preservation
property):

Proposition 4. |=c satisfies transitivity, i.e. for any formulas α, β, γ from
PROPPS , if α |=c β and β |=c γ, then α |=c γ.

Finally, it is important to determine whether the relaxation of |=≤ we realised
to ensure the classical closure property does not lead to a too weak inference
relation |=c. The following inclusions show that this is not the case:

Proposition 5. |=≤
1

⊂ |=c ⊂ |=≤.

Thus, all the “conflict-free” consequences α of a belief base Σ w.r.t. |=≤ are
preserved by |=c. Furthermore, |=c does not add consequences that would not

be derivable using |=≤
1

.

3.3 Computational aspects

In this section, we investigate some computational aspects of |=c. We assume the
reader familiar with some basic notions of complexity, especially the complexity
classes coNP and Π

p

2
of the polynomial hierarchy PH (see [28] for a survey).

We first consider the complexity of the inference problem for |=c:

Definition 13 (|=c-inference). |=c-inference is the following decision prob-
lem:

– Input: A finite set Σ of formulas from PROPPS and a formula α in PROPPS .
– Question: Does Σ |=c α hold?

We have obtained the following result:

Proposition 6. |=c-inference is Π
p

2
-complete.

Proof. Membership is easy; one considers the complementary problem: in order
to show that Σ |=c α holds, we guess a 2-interpretation ω and a 3-interpretation
ω′ over V ar(Σ)∪V ar(α); then we check that ω′ belongs to min(3−mod(Σ),≤)
(one call to an NP oracle since this problem is in coNP); finally, we check in
polynomial time that for every x ∈ V ar(Σ)∪V ar(α), we have that ω(x) = ω′(x)
whenever ω′(x) 6= ⊤, and that ω(α) = 1.

Hardness holds even in the restricted case when Σ is a CNF formula and α

is a propositional symbol; we consider the problem of determining, given a CNF
formula Σ and a symbol a, whether every element ω of min(3 − mod(Σ),≤) is
such that ω(a) 6= ⊤. This problem has been shown Π

p

2
-hard in [22]. The fact

that every element ω of min(3 − mod(Σ),≤) is such that ω(a) 6= ⊤ if and only
if Σ ∧ (a ∨ b) ∧ (¬a ∨ b) |=c b where b ∈ PS \ V ar(Σ), completes the proof. ⊓⊔



This proposition shows that |=c is not harder than the underlying relation |=≤

from a computational complexity point of view; indeed, the inference problem
for |=≤ also is Π

p

2
-complete [22].

We now show how to turn any finite belief base Σ (viewed as the conjunction
of its elements) into a “classical” consistent propositional formula cl(Σ) such that
|=c (Σ) is equal to the classical closure of cl(Σ). The basic idea is to turn first
Σ into a DNF formula which is strongly equivalent. As in classical propositional
logic, such a DNF formula can be computed by applying iteratively to Σ the
following equivalences, considered as rewrite rules (left-to-right oriented):

– ¬(¬α) is strongly 3-equivalent to α.
– ¬(α ∨ β) is strongly 3-equivalent to (¬α) ∧ (¬β).
– ¬(α ∧ β) is strongly 3-equivalent to (¬α) ∨ (¬β).
– α ∧ (β ∨ γ) is strongly 3-equivalent to (α ∧ β) ∨ (α ∧ γ) (and similarly for

(β ∨ γ) ∧ α).

Of course, the obtained DNF formula can be of exponential size in the
size of Σ. It now remains to forget inconsistencies in this DNF formula after
isolating terms representing the preferred models (the minimization step); for-
mally, for every term α, let inc(α) be the set of “inconsistencies” occurring in α:
inc(α) = {x ∈ PS | x and ¬x occur in α}. cl(Σ) is the DNF formula obtained
by successively:

1. removing in the current DNF every term α such that inc(α) is not minimal
w.r.t. set-inclusion in the set {inc(α) | α a term in the current DNF}.

2. removing in every term of the resulting DNF formula every literal l when the
complementary literal also occurs in the term, then removing every empty
term (and finally adding a ∨ ¬a if the resulting DNF formula contains no
term).

We have that:

Proposition 7. Cn|=c
(Σ) = Cn|=2

(cl(Σ)).

As a matter of illustration, consider again Example 1: let Σ = a ∧ (¬a ∨
b) ∧ c ∧ ¬c and PS = {a, b, c}. Σ is strongly 3-equivalent to the following DNF
formula (a ∧ ¬a ∧ c ∧ ¬c) ∨ (a ∧ b ∧ c ∧ ¬c). Now, forgetting inconsistency in Σ

leads to the DNF formula cl(Σ) = a ∧ b (the first term (a ∧ ¬a ∧ c ∧ ¬c) of the
previous DNF is removed during the minimization step). We can easily check
that Cn|=c

(Σ) = Cn|=2
(cl(Σ)).

Since the computation of cl(Σ) can be achieved in time polynomial in the
size of Σ when Σ is a DNF and since cl(Σ) is a DNF formula, we easily get that:

Proposition 8.

– Under the restriction where Σ is a DNF formula, |=c-inference is coNP-
complete.

– Under the restriction where Σ is a DNF formula and α is a CNF formula,
|=c-inference is in P.



Thus the formula cl(Σ) is a classically consistent formula which can be viewed
as a compilation of Σ (in the sense that any finite belief base Σ interpreted
w.r.t. |=c is equivalent to the corresponding formula cl(Σ) classically interpreted
and that the inference problem from cl(Σ) is computationally easier than the
inference problem from Σ, unless the polynomial hierarchy collapses at the first
level).

4 Conclusion

In this paper, we have introduced and studied a new paraconsistent inference
relation |=c in the setting of 3-valued paraconsistent logics. Using inconsistency
forgetting as a key mechanism for recovering consistency, it guarantees that the
deductive closure Cn|=c

(Σ) of any belief base Σ is classically consistent and
classically closed. This strong feature, not shared by previous inference relations
in the same setting, allows to interpret an inconsistent belief base as a set of
classical worlds (hence to reason classically from them).We have investigated
the logical properties and the computational complexity of |=c. Among other
things, we have shown that |=c satisfies many interesting properties which are
shared by the underlying inference relation |=≤, without any complexity shift
compared to it.

We have considered in this paper a basic language for three-valued paracon-
sistent logic (the monotone fragment). A first perspective for further research
is to extend the approach to more complex morphologies. It is also clear that
the inconsistency forgetting mechanism at work here could be applied to other
many-valued paraconsistent logics, especially four-valued ones. This is another
extension of this work that we plan to do.
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