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CONCENTRATION INEQUALITIES, COUNTING PROCESSES AND

ADAPTIVE STATISTICS ∗

Patricia Reynaud-Bouret1

Abstract. Adaptive statistics for counting processes need particular concentration in-
equalities to define and calibrate the methods as well as to precise the theoretical perfor-
mance of the statistical inference. The present article is a small (non exhaustive) review
of existing concentration inequalities that are useful in this context.

Résumé. Les statistiques adaptatives pour les processus de comptage nécessitent des
inégalités de concentration particulières pour définir et calibrer les méthodes ainsi que
pour comprendre les performances de l’inférence statistique. Cet article est une revue
non exhaustive des inégalités de concentration qui sont utiles dans ce contexte.

Mathematics Subject Classification: 62G05, 62G10, 62M07, 62M09, 60G55, 60E15.

Keywords: Point process; counting process; adaptive estimation; adaptive testing; Talagrand
type inequalities; Bernstein type inequalities.

Introduction

Counting processes have been used for many years to model a large variety of situations from
biomedical data to seismic or financial data [2,34,35]. In neuroscience, they have been used almost
as soon as spike trains have been recorded [38]. They more recently appeared in genomics, for
instance as a limit of word distribution on the DNA [40]. Depending on the kind of data, it is
difficult to have a priori knowledge on their distribution and it is possible that those distributions
are very irregular, as we will see later. Therefore there is a huge need for adaptive statistical
methods that are able to deal with those kind of distributions.

The recent advances of adaptive statistics have been due to a strong link between the calibration
of those methods and concentration inequalities (see for instance [32]). It is the aim of the present
article to list some concentration inequalities for counting processes that are useful when dealing
with adaptive statistics.

Before going any further, let us define our main objects. A point process, N , is a random
countable set of points of some measurable space X. We denote by NA, the number of points of
N in the set A and dN denotes the point measure i.e. the sum of the Dirac masses at each point
of N (see [15] for a complete overview).

Poisson processes are the simplest point processes one can encounter [28]:

Definition 1. A Poisson process, N , on a measurable space X is a random countable set of points
such that
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• for all integer n, for all A1, . . . , An disjoint measurable subsets of X, NA1 , . . . , NAn
are

independent random variables.
• for all measurable subset A of X, NA obeys a Poisson distribution with parameter depending

on A and denoted m(A).

In the above definition, m actually defines a measure on X, which is called the mean measure
of the process N . Usually, X is a subset of Rd and m is absolutely continuous with respect to the
Lebesgue measure. In this case, s(x) = dm/dx is the intensity of the Poisson process N .

Poisson processes model a large variety of situations, and let us cite, as examples, positions
of genes on the DNA sequence [40], size of individual oil reservoirs in some petroleum field [54],
stockprice changes of extraordinary magnitude [34]. All these data have something in common:
there are good evidences that the underlying intensity is highly irregular, with very localized spikes
with unknown positions and shapes and, for some of them, a very large and typically unknown
support, when this support is finite.

The adaptive statistical inference aims at estimating s or at testing some hypothesis on s with
as few assumptions on s (or on the alternatives) as possible. Typically s belongs to Lp(X), for
1 ≤ p ≤ +∞, but we do not want to assume that s is smooth with the precise known regularity α.
Since the regularity is unknown and since the rate of convergence (or rate of separation) depends
on the regularity, we want the procedures to adapt to this unknown regularity and to be as precise
as the methods knowing the precise regularity of the target function s.

Actually, exhibiting such kind of procedures is not just a pure theoretical game. The procedures
that are theoretically adaptive, if they are calibrated, may provide practical methods that are
performing really well and that are robust to changes in the target function s. Indeed an adaptive
method that does not need any information on the regularity or on the support of the target
function is easier to use since we do not need to ask the practitioner to provide such information
on s before proceeding to the inference.

The calibration step, as we will see later, is at the root of the need for concentration inequalities
in adaptive statistics.

Counting processes are a generalization of the notion of Poisson process on the real (positive)
line. If the point process is, say, almost surely finite in finite intervals (i.e. N[a,b] < ∞ a.s.), then
one can count the points: if the positive real line represents time after 0, then there exist a first
point, a second .... The random function Nt = N[0,t] as a function of t ∈ R is a piecewise constant
increasing function such that N0 = 0 with jumps equal to 1. This is the definition of a counting
process. The interested reader may find in [9] a complete review of those processes and precise
definitions. Under suitable assumptions, one can informally define the (conditional) intensity λ(t)
of the counting process (Nt)t≥0 by

E(dNt|Ft−) = λ(t)dt, (0.1)

where dNt represents the infinitesimal increment of Nt at time t, Ft− represents the past informa-
tion of the process (what happened before t) and dt is the Lebesgue measure (see [2, Section II.4.1]
for more details). Obviously this means that λ(t) is random and depends on the past. So one can-
not statistically infer λ(t) without further assumption on the model. Note however that when we
apply this definition to Poisson processes, the independence property in Definition 1 implies that
λ(t) cannot depend on the past, it is a deterministic function, which corresponds to the intensity
s of the Poisson process defined before.

Let us mention two typical examples:

(1) the Aalen multiplicative intensity, i.e.

λ(t) = Y (t)s(t)dt, (0.2)

where Y (t) is a predictable process (i.e. informally, it only depends on the past) that
is observed and s is an unknown deterministic function that we want to estimate in an
adaptive way. The classical examples covered by this model are right-censoring models,
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finite state inhomogeneous Markov processes, etc. We refer to [2] for an extensive list of
situations, in particular for biomedical data and survival analysis.

(2) the Hawkes processes, which is defined in the most basic self-exciting model, by

λ(t) = ν +

∫ t−

−∞

h(t− u)dNu, (0.3)

where ν is a positive parameter, h a non negative function with support on R
+ and

∫

h < 1
and where dNu is the point measure associated to the process. Since λ(t) corresponds to
(0.1), (0.3) basically means that there is a constant rate ν to have a spontaneous occurrence
at t but that also all the previous occurrences influence the apparition of an occurrence
at t. For instance an occurrence at u increases the intensity by h(t − u). If the distance
d = t − u is favoured, it means that h(d) is really large: having an occurrence at u
significantly increases the chance of having an occurrence at t. The intensity given by
(0.3) is the most basic case, but variations of it enable us to model self interaction (i.e.
also inhibition, which happens when one allows h to take negative values, see Section 2.2.2)
and, in the most general case, to model interaction with another type of event.

Hawkes processes have been widely used to model the occurrences of earthquake [56].
The multivariate version can model dependency between action potentials of different
neurons in neuroscience [13,39]. It can also be used on genomic data, where this framework
was introduced in [21] to model occurrences of events such as positions of genes, promoter
sites or words on the DNA sequence. In [12], it has been used to model the positions of
transcription regulatory elements in genomic data.

Here the unknown quantity is the couple s = (ν, h). In biology, very little is known on
the function h, except that it should consist in localized spikes at preferred distances/delays
corresponding to biological interactions in genomics or neuroscience. The aim of an adap-
tive procedure is actually to find in practice the localisation of those spikes and their size.
Once again, the main ingredient is concentration inequalities.

We begin this review with the link between model selection and Talagrand type inequalities for
supremum. Next we deal with more particular methods (such as thresholding or Lasso methods)
and their link with Bernstein type inequalities. We finish by a brief overview of the link between
tests and concentration inequalities.

Finally, let us just introduce a notation that will avoid tedious explanations. We use in the
sequel the notation � which represents a positive function of the parameters that are written in
indices. Each time �θ is written in some equation, one should understand that there exists a
positive function of θ such that the equation holds. Therefore the values of �θ may change from
line to line and even change in the same equation. When no index appears, � represents a positive
absolute constant.

1. Model Selection and Talagrand type inequalities

The model selection method in its theoretical adaptive presentation has been introduced and
developed by Barron, Birgé and Massart [4]. Massart’s course [32] in Saint-Flour is one of the best
reference on this topic. In particular, Massart emphasizes how concentration inequalities are the
fundamental tool to perform model selection. In the next sections, a brief summary of the model
selection method is given for Poisson processes, and the corresponding exponential inequality is
given. Then the main difficulties arising for other counting processes are emphasized.

1.1. Poisson framework

This section is mainly inspired by [41], but we give a simpler version here. We observe a Poisson
process N , on X (say a compact subset of Rd) and we want to estimate its intensity s with respect
to the Lebesgue measure, denoted µ. Let T be the Lebesgue measure of X, assumed to be finite.
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We work with the L2-norm defined by

||f ||2 :=
1

T

∫

X

f2(x)dx,

and we define the following least-square contrast

γ(f) := − 2

T

∫

X

f(x)dNx +
1

T

∫

X

f2(x)dx. (1.1)

Note that

E(γ(f)) = − 2

T

∫

X

f(x)s(x)dx +
1

T

∫

X

f2(x)dx = ||f − s||2 − ||s||2,

which is minimal when f = s. Hence minimizing the least-square contrast should enable us to
obtain a good estimator.

Other contrasts may be used. Usually people in point processes theory use MLE ( [58], [36], [37])
which corresponds to the minimization of

− 2

T

∫

X

ln(f(x))dNx +
1

T

∫

X

f(x)dx,

but those contrasts are actually more difficult to handle than least-square contrasts for model
selection (see [32, Chapter 7] for an extensive comparison of both contrasts in the density setting).

Next the contrast can be minimized on a finite vectorial subspace S of L2 with orthonormal
basis given by {ϕ1, . . . , ϕD}. The minimization leads to the projection estimator of s

ŝ =
D
∑

i=1

(
∫

X

ϕi(x)
dNx
T

)

ϕi. (1.2)

Let us study the risk of ŝ, E(||s − ŝ||2). To do so, let us introduce s̄ the orthonormal projection
of s on S. This gives

E(||s− ŝ||2) = ||s− s̄||2 + 1

T

D
∑

i=1

∫

ϕ2
i (x)s(x)dx. (1.3)

The first term is a bias term, it decreases when S increases whereas the second term, the variance
term, increases with the dimension D of S. Obviously finding the best compromise depends on s.

Hence model selection consists in searching for the best S in a family of models (i.e. here, finite
vectorial subspaces) {Sm,m ∈ MT }. To each model Sm let us associate the projection estimator
ŝm and the orthonormal projection of s on Sm, sm. In a naive approach, the best model we should
use, is of course

m̄ := argminm∈MT
E(||s − ŝm||2).

This model, m̄, is called the oracle. Of course we cannot obtain it without knowing s. One can
adapt Mallows’ computations [31] to our context and find easily that

m̄ = argminm∈MT

{

E(γ(ŝm)) + 2E(||sm − ŝm||2)
}

.

It is possible to estimate the previous quantity without bias. Let us denote by (ϕλ,m)λ an or-
thonormal basis of Sm. One obtains the following choice

m̂ := argminm∈MT

{

γ(ŝm) + 2

∫

∑

λ

ϕ2
λ,m(x)

dNx
T 2

}

. (1.4)

More generally, we consider minimization of the type

m̂ := argminm∈MT
{γ(ŝm) + pen(m)} (1.5)
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and s̃ = ŝm̂ is the penalized projection estimator.
We would like to prove that the choice m̂ is good, meaning that it can satisfy an oracle inequality

in expectation, typically

E(||s̃− s||2) ≤ CE(||ŝm̄ − s||2) = C inf
m∈MT

E(||s − ŝm||2), (1.6)

with C an adequate (not too large) multiplicative factor. This would mean that we are able,
without knowing m̄ to find a model m̂ that is performing in essentially the same way. However,
we do not obtain (1.6): there is usually a small additive error, which is negligible, and, most
importantly, C may grow slowly with T depending on the family of models.

1.1.1. Histograms

Let us illustrate this behaviour on the simplest estimators: histograms on an interval (ie X =
[0, T ]). This example is fundamental to understand what model selection can or cannot do.

Let Sm be a vectorial subspace of L2 defined by

Sm =

{

g
/

g =
∑

I∈m

aI1I , aI ∈ R

}

,

where m is a set of disjoint intervals of X. For histograms, it is actually natural to identify the
model Sm and the set m, which is called in the sequel "model" too for sake of simplicity. Let |m|
denote the number of intervals in m.

A strategy refers to the choice of the family of models MT . To avoid any confusion, let #{MT }
denote the number of models m in MT . In the sequel, a partition Γ of [0, T ] should be understood
as a set of disjoint intervals of [0, T ] such that their union is the whole interval [0, T ]. A regular
partition is such that all its intervals have the same length. We say that a model m is written on
Γ if all the extremities of the intervals in m are also extremities of intervals in Γ. For instance
if Γ =

{

[0, 0.25], (0.25, 0.5], (0.50.75], (0.75, 1]
}

then
{

[0, 0.25], (0.25, 1]
}

or
{

[0, 0.25], (0.75, 1]
}

are
models written on Γ. Now let us give some examples of families MT . Let J and N be two positive
integers.

Nested strategy: Take Γ a dyadic regular partition such that |Γ| = 2J . Then take MT as
the set of all dyadic regular partitions of [0, T ] that can be written on Γ. In particular, note
that #{MT } = J + 1. We say that this strategy is nested since for any pair of partitions
in this family, one of them is always written on the other one.

Irregular strategy: Assume now that we know that s is piecewise constant on [0, T ] but
that we do not know where the cuts of the resulting partition are. We can consider Γ a
regular partition such that |Γ| = N and then consider MT the set of all possible partitions
written on Γ. In this case #{MT } ≃ 2N .

Islands strategy: This last strategy has been especially designed to answer biological ques-
tions, i.e. for s having a very localized support. The interval [0, T ] is really large and in
fact s is non zero on a really smaller interval or a union of really smaller intervals: the
resulting model is sparse. We can consider Γ a regular partition such that |Γ| = N and
then consider MT the set of all the subsets of Γ. A typical m corresponds to a vectorial
space Sm where the functions g are zero on [0, T ] except on some disjoints intervals which
look like several "islands". In this case #{MT } = 2N .

For all the previous strategies one can prove the following result.

Proposition 1 (Reynaud-Bouret 2003). Let {Lm,m ∈ MT } be a family of positive weights such
that

∑

m∈MT
e−Lm|m| ≤ Σ and assume that |Γ| ≤ T (lnT )−2 with T > 2. For any c > 1, if

pen(m) =
cM̃ |m|
T

(1 +
√

2κLm)
2 with M̃ = sup

I∈Γ

NI
µ(I)

,
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then

E(||s− s̃||2) ≤ �c inf
m∈MT

[

||s− sm||2 + M |m|
T

(1 + Lm)

]

+�c,Σ,M
1

T
, (1.7)

where

M = sup
I∈Γ

∫

I s(x)dx

µ(I)
.

NB : κ is an absolute constant, namely κ = 6.

This result is an adapted and simpler version of the one presented in [41], which can be extended
to other settings than just histograms.

To shorten mathematical expressions, �c and �c,Σ,M have been used even if precise formulas
are available. In an asymptotic analysis where T tends to infinity, we consequently need to make
c,Σ and M independent of T . However any dependency between MT and T is allowed. In this
sense, the result of (1.7) (as the ones due to Barron, Birgé and Massart [4]) is non asymptotic
with respect to various existing works (such as Mallows’ [31]) where the family of models is held
fixed whereas T tends to infinity. To obtain (1.7), the fundamental tool is to derive concentration
inequalities. Before stating these probabilistic results, let us understand the different behaviours
of (1.7) with respect to the different strategies.

Note that for the Nested strategy there exists at most one model m in the family with dimension
|m| = D and therefore choosing Lm = ǫ > 0 fixed leads to a quantity Σ independent of T whatever
Γ is. We can also remark that M |m|/T is a natural upper bound for the variance term (see (1.3))
and that it is sufficient to assume that s is lower bounded on X to lower bound the variance term
by r|m|/T where r = infx∈X s(x). Therefore the result is an oracle inequality as expected in (1.6)
with a true constant C, up to some negligible residual term.

On the other hand, for the Irregular or Islands strategies, there are approximately (N/D)D

models in the family with the same dimension |m| = D, therefore one has to take Lm = α ln(N)
or α ln(N/D) to ensure that Σ will not depend on T whatever Γ is (in particular when the case
N = |Γ| = T (lnT )−2 is considered). In this case we recover an oracle inequality (see (1.6)) where C
is multiple of ln(T ), up to some negligible residual term. This phenomenon is actually unavoidable
when considering such complex families of models (i.e. families with complex cardinality: there
are more models with the same dimension D than a power of D). Indeed, there exists a minimax
lower bound (see Proposition 4 of [41]) that proves the existence of this logarithmic factor. See
also [5] and [6] for a more thorough study in the Gaussian setup.

1.1.2. Concentration inequalities

The fundamental probabilistic ingredient to show such oracle inequalities is to control the devi-
ations of ||sm − ŝm|| which can be written, in the more general setup, as

χ(m) =

√

√

√

√

∑

λ

(
∫

X

ϕλ,m(x)
dNx − s(x)dx

T

)2

,

where (ϕλ,m)λ is an orthonormal basis of Sm.
In [32], Massart emphasizes the link between Gaussian concentration phenomenon (due to

Cirel’son, Ibragimov and Sudakov [14]) and oracle inequalities in the Gaussian setup, but also
the link between Talagrand’s inequality [53] (and the successive improvements due to Ledoux [30],
Massart [33], Klein and Rio [29] or Bousquet [7]) and the density estimation or the classifica-
tion problem. For Poisson processes, the inequalities of [59] or [24] are not sharp enough to
build nice oracle inequalities. Using the infinitely divisible properties of the Poisson process and
Ledoux/Massart’s approach, one gets the following result

Theorem 1 (Reynaud-Bouret 2003). Let N be a Poisson process on X with finite mean measure
m. Let {ψa, a ∈ A} be a countable family of functions with values in [−b; b]. If

Z = sup
a∈A

∫

X

ψa(x)(dNx − dmx),
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then for all u, ε > 0,
P(Z ≥ (1 + ε)E(Z) + 2

√
κvu+ κ(ε)bu) ≤ e−u,

with

v = sup
a∈A

∫

X

ψ2
a(x)dmx

and κ = 6, κ(ε) = 1.25 + 32ε−1.

This result, which can be found in [41], has essentially the same flavour as Talagrand’s inequal-
ity for supremum of empirical processes. The point measure replaces the empirical measure of
Talagrand’s inequality and the mean measure replaces the expectation. One can also note that
the term κ appearing in Theorem 1 is actually the same as the one appearing in the penalty of
Proposition 1. The shape of the penalty that is required to obtain an oracle inequality is actually
completely related to the shape of this concentration inequality. Indeed it is now easy to obtain
an exponential inequality for χ(m), since

χ(m) = sup
f∈Sm,||f ||=1

1

T

∫

f(x)(dNx − s(x)dx).

Corollary 1 (Reynaud-Bouret 2003). Let

Mm = sup
f∈Sm,||f ||=1

1

T

∫

X

f2(x)s(x)dx and Bm = sup
f∈Sm,||f ||=1

||f ||∞.

Then for all u, ε > 0,

P

(

χ(m) ≥ (1 + ε)

√

1

T

∑

λ

∫

ϕ2
λ,m(x)s(x)dx +

√

2κMmu

T
+ κ(ε)

Bmu

T

)

≤ e−u. (1.8)

One can see that there are actually two behaviours. When u is small, the behaviour is sub-
Gaussian with a variance of the order Mm/T ≤ ||s||∞/T which does not grow with the dimension
|m| of the model. When u is large, the behaviour is sub-exponential.

There are several improvements of this inequality. For instance, it is possible by restricting
oneself to a large event, depending on the model Sm, to privilege the sub-Gaussian behaviour (see
Proposition 9 of [41]). This is a classical trick due to Massart, which is easily done once one has
a Talagrand type inequality. Using this trick and simplifying a little, the penalty is obtained by
keeping the first two terms of (1.8) with u = Lm. The fact that c > 1 in Proposition 1 is directly
connected with the factor (1 + ε) in (1.8).

1.2. Other counting processes

Let us present a unified approach for several counting processes. This approach leads to the
results of [46] for the Hawkes case in a straightforward way. A slightly different approach has
been used in [43] for the Aalen case. Let us recall that the notation s represents the deterministic
unknown function appearing in (0.2) for the Aalen setup and that we basically assume that s in
this case belongs to

L2 =

{

g with support in [0, A]
/

∫ A

0

g2 <∞
}

.

Note that the natural corresponding norm is ||g||2 =
∫ A

0
g2.

For the Hawkes process (see (0.3)), s = (ν, h) represents the couple where ν is the spontaneous
rate of apparition (this is a real number) and h is the interaction function. In this case, we basically
assume that s belongs to

L2 =

{

f = (µ, g)
/

g with support in (0, A] and

∫ A

0

g2 <∞
}

.
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In this case, the natural corresponding norm is ||f ||2 = µ2 +
∫ A

0 g2.
In both cases, the intensity of the process λ(t) is of the shape Ψs(t), where Ψ is a linear

application that transforms any f in the corresponding L2 space into a predictable process. Indeed

for the Aalen case, Ψf (t) = Ytf(t) and in the Hawkes case, Ψf (t) = µ +
∫ t−

t−A
g(t − u)dNu. Note

that the Poisson process is also of this type with Ψf = f . Actually, the preliminary forthcoming
computations are true for any kind of counting process whose intensity has this linear shape.

Let us observe the counting process N on an interval [0, T ] (or (−A, T ] for the Hawkes process)
and let us define a least-square contrast by

∀f ∈ L2, γ(f) = − 2

T

∫ T

0

Ψf(t)dNt +
1

T

∫ T

0

Ψf(t)
2dt. (1.9)

Indeed, because of the martingale properties, one easily sees that the compensator of the previous
formula at time T is

− 2

T

∫ T

0

Ψf (t)Ψs(t)dt+
1

T

∫ T

0

Ψf (t)
2dt =

1

T

∫ T

0

Ψf−s(t)
2dt− 1

T

∫ T

0

Ψs(t)
2dt.

Hence the expectation of γ(f) is minimal when Ψf−s(t) = 0 for almost every t almost surely.
The fact that this implies that f = s depends of course of the process. For the Aalen multiplicative
case, this amounts to assume that E(Y 2

t ) > 0 for all t ≤ T whereas it is more difficult to prove but
still true for Hawkes processes when one assumes that h has a bounded support.

We divided by T so that the contrast is exactly the one used for Poisson process, but this division
does not change the point were the minimum is reached, so it is not really necessary. Note that
for the Poisson process, the division by T is a nice way to introduce asymptotic properties when
T tends to infinity. Indeed remark that to derive a true oracle inequality we basically assumed the
intensity to be lower bounded. Hence if T grows, the total number of points grows. This vision is
still the correct one for Hawkes processes: when T grows, one observes more and more interactions
so the estimation should be better. However for the Aalen case, it is not true that the estimation
is better when the time T grows. For instance, in the right-censored case, if the hazard rate of the
life time of only one patient is estimated, it is not because one observes this patient longer (after
his death) that more information is obtained. On the contrary, our estimation will improve when
the total number of patients is growing, and this will be true for any kind of aggregated processes
(i.e. n i.i.d. point processes are observed and one considers their union as process N). In [43], a
slightly different least-square contrast was used but it heavily depends on the multiplicative shape
of the intensity. Here we only need the linear transformation Ψ.

We can pursue the construction of the projection estimators as before. If Sm is a finite vectorial
subspace of L2 then

ŝm := argminf∈Sm
γ(f). (1.10)

Note however that it is not evident to find a closed-form expression for the solution of this mini-
mization. Indeed, with respect to the Poisson case (1.1), on the right hand side of (1.9) appears a
random quantity

DT (f) :=
1

T

∫

Ψf (t)
2dt

which is a random quadratic form on L2. It happens that in the Poisson case it is the L2-norm ,
fact which simplifies several computations.

Next we consider a family of models {Sm,m ∈ MT } and we consider again

m̂ := argminm∈MT
{γ(ŝm) + pen(m)} , (1.11)

and s̃ = ŝm̂.

1.2.1. Concentration inequalities for counting processes

As we have seen in the Poisson case, the penalty is directly linked to the concentration inequality.
Hence, before stating the corresponding oracle inequalities, let us stress the main problems and
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results occurring when we deal with general counting processes. Without further details, it is quite
obvious to see that the main quantity to control is

χ(m) =

√

√

√

√

∑

λ

(

∫ T

0

Ψϕλ,m
(x)

dNx − λ(x)dx

T

)2

= sup
f∈Sm,||f ||=1

∫ T

0

Ψf(x)
dNx − λ(x)dx

T
,

where (ϕλ,m)λ is an orthonormal basis of Sm. In [42], the compensator of a supremum of counting
processes is computed. It allows to derive the following result

Theorem 2 (Reynaud-Bouret 2006). Let (Nt)t≥0 be a counting process with intensity λ(t) assumed
to be almost surely integrable on [0, T ]. Let {(Ha,t)t≥0, a ∈ A} be a countable family of predictable
processes and let

∀t ≥ 0, Zt = sup
a∈A

∫ t

0

Ha,s(dNs − λ(s)ds).

Then the compensator (At)t≥0 exists, is non negative et non decreasing and

∀0 ≤ t ≤ T, Zt −At =

∫ t

0

∆Z(s)(dNs − λ(s)ds),

for a particular predictable process ∆Z(s) satisfying ∆Z(s) ≤ supa∈AHa,s.

Moreover, if the Ha,s’s have values in [−b, b] and if
∫ T

0
supa∈AH

2
a,sλ(s)ds ≤ v almost surely for

some deterministic constants v and b, then for all u > 0,

P

(

sup
[0,T ]

(Zt −At) ≥
√
2vu+

bu

3

)

≤ e−u.

This result is a shortened version of Proposition 1 and Theorem 1 of [42]. This result seems
more general than Theorem 1 because it deals with general counting processes and as icing on
the cake, we obtain an additional supremum on t. But this has a cost. Indeed we can observe
that there is an exchange between the supremum and the integral in the definition of v. This cost
has already been observed in several frameworks involving dependent structures. For instance the
results developed by Wu [59] and Houdré and Privault [24], using martingales techniques, present
this exchange. This exchange was also noticed in other dependent setup (see for instance Samson’s
work on Markov chains [49]).

To understand more precisely what this exchange means, let us apply the previous result to
χ(m).

Corollary 2 (Reynaud-Bouret 2006). Let

C =
∑

λ

∫ T

0

Ψϕλ,m
(x)2

T 2
λ(x)dx,

and assume that C is bounded by v and
∑

λΨϕλ,m
(x)2 is bounded by b for all x ∈ [0, T ]. Then, for

all u > 0,

P

(

χ(m) ≥
√
C + 3

√
2vu+ bu

)

≤ 2e−u.

Assume than in our case, one can suppose (1/T )
∫ T

0
Ψϕλ,m

(x)2λ(x)dx bounded by some fixed
constant. If we denote by Dm the dimension of Sm then the Gaussian part has a variance of the
order Dm/T and grows with the dimension of Sm, whereas it was a constant for the Poisson case.
As a consequence, the oracle inequality that we derive using this exponential inequality cannot be
as sharp as the one we obtain for Poisson processes in general.

Recently, Baraud [3] proves via chaining arguments a result that supersedes Corollary 2 to some
extent. His result actually states, in a more general setup than the one of counting processes, that
one can obtain a Gaussian part with dimension-free variance at the cost of a larger constant term
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(i.e. the concentration phenomena in his case is not around
√
C but around something larger).

In good cases (special choices of u ≃ Dm and "nice" counting processes), it may happen that
one recovers the order of magnitude of the Poisson case instead of the present deteriorate rate.
However the fact that the leading term which replaces

√
C is not the expectation of χ(m) but some

thing much larger, makes this kind of inequality quite unsuitable for practical purpose.

1.2.2. Oracle inequalities

It is quite difficult to write a general oracle inequality, because it heavily depends on the norm one
considers. The natural norm we would like to consider is DT (f). But DT (f) is a random quadratic
form and not strictly speaking a norm: it may eventually be null for some non zero f . Of course this
function f would have to be random and very peculiar. It is easier to understand it in the Aalen
case, even if the same phenomenon applies for Hawkes processes. If Yt = 0 on some subinterval of
[0, T ], then a function f which is non zero on this random interval is a solution. Assuming that
E(Y 2

t ) > 0 on the whole interval [0, T ] does not prevent the random variable to be null eventually.
For the Aalen case, one has to restrict oneself to the event {Yt bounded from below on [0, T ]}.
More generally we will have to restrict oneself at least to the event

E =
{

∀m ∈ MT , ∀f ∈ Sm, r2||f ||2 ≤ D2
T (f) ≤ R2||f ||2

}

, (1.12)

for some fixed constants r and R, with ||f || the natural norm on L2. But then of course the resulting
oracle inequality (1.6) cannot hold in expectation on the whole probability space. To do so, among
other technicalities, one obviously needs to control P(Ec) and this is basically not related to the
martingale structure of the counting process but to some additional properties.

Aalen multiplicative intensity. For the Aalen case, the additional properties may come from
the aggregated case. Let us just give a brief summary of the type of oracle inequalities that can
be found in [43].

• If one uses histograms, and if, among other technical assumptions, one assumes that N is
a bounded aggregated process, then a result strictly equivalent to Theorem 1 is available,
since Talagrand’s inequality can be used on the aggregated process.

• If one uses random models, with known orthonormal basis for DT (f), then one is forced
to use the exponential inequality of Corollary 2.

– Hence the oracle inequality is limited to not too complex families of models. One model
per dimension is the basic case, for which the penalty should be pen(m) = cDm/T
for some large enough constant c.

– the oracle inequality is stated as follows

E(DT (s− s̃)1E) ≤ �c,s inf
m∈MT

[

E(DT (s− ŝm)) +
Dm

T

]

+�c,s
1

T
.

– One can control E if one assumes again the process to be aggregated.

Note that the approach based on least-square contrasts for aggregated counting processes has
been developed and widened by Brunel and Comte (and co-authors) in a succession of papers, in
particular under various type of censoring (see for instance [10] and [11]).

Hawkes processes. For the Hawkes process, one cannot use that N is an aggregated process
any more and that the individual processes are more or less bounded. It is true that the Hawkes
process is infinitely divisible but it is typically unbounded, the number of points per interval being
sensibly larger than a Poisson variable (exponential moments exist but not of any order). The
concentration for infinite divisible variables developed in [26] cannot be applied directly to the
resulting χ(m). Indeed χ(m) can be viewed as the norm of a random vector of infinitely divisible
variables, but the structure of Ψ does not allow those variables to be independent.

However, one still needs to control the event E . Actually, the Hawkes process has ergodic
properties that show that DT (f) tends to a true norm on L2 when T tends to infinity. In [44], two
main types of exponential inequalities for Hawkes processes have been derived. First, a control of
the number of points of the Hawkes process per interval is given. Second and most importantly, a
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non asymptotic control of the rate of convergence in the ergodic theorem is inferred. The results
of [44] imply the following result:

Lemma 1 (Reynaud-Bouret Roy 2007). Let (Nt)t∈R be a stationary Hawkes process, with intensity
given by λ(t) = Ψs(t) with s = (ν, h) in L2 and positive h. Note that the definition of L2 implies
that the interaction function h has a bounded support included in (0, A]. Let g be a function of
the points of (Nt)t∈R lying in [−A, 0), with values in [−B,B] and zero mean. Let (θt)t∈R be the
flow induced by (Nt)t∈R i.e. g ◦ θt is the same function as before, but now the points are lying in
[−A+ t, t). Then there exists a positive constant T0(p,A) depending on p =

∫

h and A, such that
for all T ≥ T0(p,A)

P

(∣

∣

∣

∣

∣

1

T

∫ T

0

g ◦ θtdt
∣

∣

∣

∣

∣

≥ 2

√

c1Var(g)A log(T )2

T (p− log p− 1)
+

c2BA log(T )2

T (p− log p− 1)

)

≤ �ν,p

T 3
,

where c1 and c2 are absolute constants.

The key of the proof is the behaviour of the process not in terms of martingale, as before, but in
terms of branching process, when h is non negative (see [23]). This lemma is the main probabilistic
tool for controlling E . A more precise statement and variations of Lemma 1 can be found in [44].

Now we can consider as models Sm, sets of couples (µ, g) where µ is any real number and where
g is a piecewise constant function on a set m of intervals of (0, A]. All the strategies, i.e. families of
possible m’s, that have been described as histograms strategies for Poisson processes apply here.

The only remaining problem is that we need to control s̃ on Ec, which can be done theoretically
via clipping. Let us define for all real numbers H > 0, η > ρ > 0, 1 > P > 0, the following subset
of L2:

Lη,ρH,P =

{

f = (µ, g) ∈ L2

/

µ ∈ [ρ, η], g(.) ∈ [0, H ] and

∫ A

0

g(u)du ≤ P

}

,

and let us assume that we know that s belongs to this set. Recall that the penalized projection
estimator s̃ = (ν̃, h̃) is given by (1.11). Then, under the previous assumption, it is natural to
consider the clipped penalized projection estimator, s̄ = (ν̄, h̄), given, for all positive t, by







































ν̄ =







ν̃ if ρ ≤ ν̃ ≤ η,
ρ if ν̃ < ρ,
η if ν̃ > η,

h̄(t) =







h̃(t) if 0 ≤ h̃(t) ≤ H,

0 if h̃(t) < 0,

H if h̃(t) > H.

(1.13)

Theorem 3 (Reynaud-Bouret Schbath 2010). Let (Nt)t∈R be a Hawkes’ process with intensity
Ψs(.). Assume that we know that s belongs to Lη,ρH,P . Moreover assume that all the models in MT ,

i.e. possible sets m of intervals, are written on Γ, a regular partition of (0, A] such that

|Γ| ≤
√
T

(logT )3
. (1.14)

Let Q > 1. Then there exists a positive constant κ depending on η, ρ, P,A,H such that if

∀m ∈ MT , pen(m) = κQ
(

|m|+ 1
) log(T )2

T
, (1.15)

then

E
(

||s̄− s||
)2 ≤ �η,ρ,P,A,H inf

m∈MT

[

||s− sm||2 +
(

|m|+ 1
) log(T )2

T

]

+�η,ρ,P,A,H
#{MT }
TQ

,
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where sm is the orthogonal projection of s on Sm.

One can compare Proposition 1 and Theorem 3. First |Γ| should be smaller for the Hawkes
process: this comes basically from the control of E , which was unnecessary for the Poisson process
since DT (f) was deterministic in this case. Next, weights - the Lm’s - were appearing in the
Poisson case: they are replaced here by the factor Q log(T ). Actually the concentration we used
(Corollary 2) is not sharp enough to use weights as precisely as in Proposition 1. Indeed since the
dimension appears in the variance term in Corollary 2, one needs basically to take u = Q ln(T ) to

obtain a deviation of order
√

Dm/T up to some logarithmic term. On the contrary, the variance
does not depend on the dimension in Corollary 1 for the Poisson case and one can take u = LmDm.

In addition, the penalty has an extra log(T ) factor which comes from the fact that the intensity
λ(t) is unbounded: λ(t) behaves basically as the number of points in an interval of length A,
quantity for which tail estimates are available in [44]. As we want to control it on the whole
interval [0, T ] we lose an extra logarithmic factor.

Hence, if the results look similar between Proposition 1 and Theorem 3, up to logarithmic factors,
we can note the following main differences. For the Nested strategy, the constraint |Γ| <<

√
T

slightly limits the size of the family and the penalty is a little bit larger with extra-logarithmic
factors. For the Irregular and Islands strategies, the limitation in size is much more drastic since
one needs |Γ| ≤ � log(T ) to ensure that the residual term #MT /T

Q is not exploding with T .

1.3. Main drawbacks of model selection

There are two main criticisms to the previous method.
First, the computational cost of such general model selection method may be too high to be of

real interest in practice. For instance, when one consider the Islands family of models with a regular
partition Γ of length, say 25, one needs to compute 225 models, reaching very rapidly the limit
memory of any existing computer. There are several ways to avoid such a problem. Either there
are algorithmic simplifications, using either thresholding rules or dynamic programming, where
one can avoid to compute all the models before selecting one. But those kind of simplifications are
not always possible, in particular for Hawkes processes. Or one can use a convex criteria, typically
a Lasso penalty, to obtain an implementable algorithm on classical data size.

The second main drawback is due to the concentration itself. Indeed, comparing the previous
results, one clearly sees that the better the concentration, the better the penalty and the more
complex the family of models. But even in the nicest case, i.e. the Poisson case, the term v in
Theorem 1 is not the variance of the supremum Z but the supremum of the variances. This fact
implies that in Proposition 1, the penalty term involves M̃ |m|/T as an estimate not of the variance
of ŝm, but of an upper bound of the variance, namely M |m|/T (see also (1.3) and the ideal Mallows
penalty in (1.4)). Theoretically speaking, this does not change the order of magnitude of the oracle
inequality as we have seen in Proposition 1 but in practice if the function has very localised spikes
(as we expect for some data), using this upper bound instead of the true variance, makes us lose
the right order of magnitude and the resulting estimate will have a very poor behavior. Of course
when dealing with other counting processes the exchange between integral and supremum in v,
as noticed before, is not only deteriorating the practical performance, it is also deteriorating the
general theoretical performance of the estimate.

2. Thresholding, Lasso and Bernstein type inequalities

If we want sharper concentration inequalities, we have to focus on simpler concentration in-
equalities involving not a supremum of processes but only one process at a time. So we turn
toward Bernstein type inequalities [32], where the quantity v is indeed the variance of the quantity
whose deviation is computed. Consequently there are two main issues. First we need other adap-
tive statistical methods, which can be proved to satisfy oracle inequalities if we can only provide
Bernstein type inequalities. These methods are less general than model selection methods, but can
be calibrated in a more precise way. Next, we need to provide Bernstein type inequalities where
the variance v can be replaced by a data-driven quantity of the same order, so that the resulting
method is completely data-driven.
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2.1. Thresholding and Poisson processes

Thresholding methods can be viewed as a very particular example of model selection (see [32]).
But actually because they are much simpler, they can reached adaptive properties that cannot be
proved for other methods. In particular, there exists the following very general result, which can
also been considered as an oracle inequality (see [45]).

Theorem 4 (Reynaud-Bouret, Rivoirard 2010). To estimate a sequence β = (βλ)λ∈Λ such that

‖β‖ℓ2 <∞, two observable sequences (β̂λ)λ∈Γ and (ηλ)λ∈Γ are given, where Γ ⊂ Λ.

Consider β̃ = (β̂λ1|β̂λ|≥ηλ
1λ∈Γ)λ∈Λ the thresholding estimate of the sequence β.

Let ǫ > 0 be fixed. If there exists (Fλ)λ∈Γ and κ ∈ [0, 1[, ω ∈ [0, 1], ζ > 0 such that

(A1) For all λ in Γ, P
(

|β̂λ − βλ| > κηλ

)

≤ ω.

(A2) There exists 1 < a, b <∞ with 1
a + 1

b = 1 and G > 0 such that λ ∈ Γ,

(

E

[

|β̂λ − βλ|2a
])

1
a ≤ Gmax

(

Fλ, F
1
a

λ ǫ
1
b

)

.

(A3) There exists τ such that for all λ in Γ / Fλ < τǫ, P
(

|β̂λ − βλ| > κηλ, |β̂λ| > ηλ

)

≤ Fλζ.

Then

E‖β̃ − β‖2ℓ2 ≤ �κE inf
m⊂Γ







∑

λ6∈m

β2
λ +

∑

λ∈m

(β̂λ − βλ)
2 +

∑

λ∈m

η2λ







+�G,κ,τ,ω,ǫ,ζ

∑

λ∈Γ

Fλ.

The main two ingredients are (A1), a control of the difference between the basic estimate β̂λ
and its target βλ by the threshold ηλ and (A2), a Rosenthal type inequality. Assumption (A3) is
a very technical assumption that is usually fulfilled.

Let us apply this theorem to Poisson processes. Assuming that s in an L2 function, we decompose
the intensity s on the Haar basis, i.e.

s =
∑

j≥−1

∑

k∈Z

βj,kϕj,k, (2.1)

where for any j ≥ −1 and any k ∈ Z,

βj,k =

∫

s(x)ϕj,k(x)dx,

with for any x ∈ R,

ϕ−1,k(x) = 1k≤x<k+1, and for all j ≥ 0, ϕj,k(x) = 2
j
2

(

10≤2jx−k<1/2 − 11/2≤2jx−k<1

)

.

Hence we identify λ = (j, k), βλ = βj,k, Λ = {(j, k), k ∈ Z, j ≥ −1} and Γ = {(j, k), k ∈ Z, j ≤ j0},
where j0 is some largest resolution level. In the Poisson setup , β̂λ is easy to find, this is

β̂λ =

∫

ϕλ(x)dNx.

For a given thresholding estimator β̃, as in Theorem 4, of the sequence β, one can associate s̃, the
classical thresholding estimator of s, by

s̃ =
∑

λ∈Γ

β̃λϕλ.

Therefore Theorem 4 gives conditions on the threshold ηλ such that s̃ fulfills classical oracle in-
equalities. We refer to [45] for the solution of (A2) and (A3) and we just focus on (A1). This
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is where Bernstein type inequalities come into play. Indeed, there is a well-known result, namely
Campbell’s Theorem [28], which states that for all measurable function f ,

E

[

exp

(
∫

f(x)dNx

)]

= exp

(
∫

(ef(x) − 1)dmx

)

,

as soon as the right hand side is finite. Inverting this formula as for Bernstein’s inequality (see [32]
for instance), leads to this Bernstein type inequality (see also [41]): for all positive u,

P

(

∫

f(x)(dNx − dmx) ≥
√

2u

∫

f2(x)dmx +
1

3
||f ||∞u

)

≤ exp(−u), (2.2)

as soon as
∫

f2(x)dmx and ||f ||∞ are finite.
But if we combine directly this result with (A1), we obtain a threshold that is not observable,

indeed of the form

ηλ =

√

2u

∫

ϕ2
λs(x)dx +

1

3
||ϕλ||∞u,

for some u of typical logarithmic order (see [45] for more details). More explicitly, a classical
Bernstein type inequality allows us to use the exact variance in the threshold (instead of an upper
bound of the variance as in the model selection penalty) but since the variance is unknown it
cannot be used in practice. But it is easy to derive this Lemma from the previous result.

Lemma 2 (Reynaud-Bouret, Rivoirard 2010). For any u > 0,

P

(∣

∣

∣

∣

∫

f(x)(dNx − dmx)

∣

∣

∣

∣

≥
√

2uV̆f (u) +
||f ||∞u

3

)

≤ 3e−u. (2.3)

where

V̆f (u) = V̂f +

√

2V̂f ||f ||2∞u+ 3||f ||2∞u,

with V̂f =
∫

f2(x)dNx.

This means that we can take

ηλ =

√

2uV̆ϕλ
(u) +

1

3
||ϕλ||∞u, (2.4)

which is observable as a threshold, for some well-chosen u of logarithmic order.
In [45], using this main idea, several things have been proved.

• A classical oracle inequality on s̃ exists and this even if s is unbounded, or has no finite
support. So in this sense, it supersedes Proposition 1 or its generalisations of [41].

• Because now the variance "v" factor is now V̆ψλ
(u), which is, up to negligible term, an

unbiased estimate of the variance of β̂λ, one can prove precise lower bounds for the threshold
in the spirit of [6] for model selection penalty in the Gaussian setup. More precisely, if
the thresholds ηλ’s are given by (2.4) with u = γ ln(n) in an aggregated framework, and if
γ < 1, then the rate of convergence of s̃ is worse than when γ > 1 for true functions s as
simple as 1[0,1].

• Because the fluctuations of β̂λ around its mean are now very well approximated by the
threshold and not just largely upper bounded by it, the practical performance of the
corresponding thresholding estimator is very good and it has been used in neuroscience [48]
for instance.

This kind of approach by thresholding rules coupled with sharp observable thresholds resulting
from Bernstein type inequalities has also been applied to other frameworks: density estimation [47]
and Poissonian interaction models [50].
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2.2. Lasso criterion and other counting processes

For more general counting processes, under the assumption of linearity of the intensity, the same
kind of considerations can be done, except that the adaptive method that can be used is not the
thresholding method but the Lasso method, since there is no easy access to unbiased estimate of

β̂λ in general.
We follow [22] except that the framework is restricted to univariate counting processes, for sake

of simplicity. We consider again general linear predictable intensity of the type Ψs for s in some
Hilbert L2 space. More precisely, following [22], we consider a dictionary Φ of L2 and denote for
any a ∈ R

Φ

fa =
∑

ϕ∈Φ

aϕϕ.

Given positive weights (dϕ)ϕ∈Φ, the Lasso estimate of s is ŝ := fâ where â is a minimizer of the
following ℓ1-penalized least-square contrast (see also (1.9)):

â := argmina∈RΦ







γ(fa) +
∑

ϕ∈Φ

dϕ|aϕ|







= argmina∈RΦ{−2a′b + a′Ga+ 2d′|a|},

where for any ϕ and ϕ̃,

bϕ =

∫ T

0

Ψϕ(t)dNt Gϕ,ϕ̃ =

∫ T

0

Ψϕ(t)Ψϕ̃(t)dt,

are observable data-driven quantities and where a′ denotes the transpose of the vector a.
Because the criterion is convex, the computation cost of the minimization is reasonable. More-

over a general oracle inequality in the spirit of Theorem 4 can be found in [22], except that it
only holds in probability. The main condition, which replaces (A1) is that the probability of the
following event is small:

{

∀ϕ ∈ Φ,

∣

∣

∣

∣

∣

∫ T

0

Ψϕ(dNt − λ(t)dt)

∣

∣

∣

∣

∣

≤ dϕ

}

.

Once again the main point is a Bernstein type inequality in the spirit of Lemma 2.3. Let us give
here a simple version, the multivariate version being in [22].

Theorem 5. Let (Nt)t≥0 be a counting process with intensity λ(t) assumed to be almost surely

integrable on [0, T ]. Let (Hs)s≥0 be a predictable process and Mt =
∫ t

0 Hs(dNs−λ(s)ds). Let b > 0
and v > w > 0 such that for all ξ ∈ (0, 3), for all t,

∫ t

0

exp(ξHs/b)λ(s)ds <∞ a.s. and

∫ t

0

exp(ξH2
s /b

2)λ(s)ds <∞ a.s. <∞ a.s. (2.5)

For all x, µ > 0 such that µ > φ(µ), let

V̂ µτ =
µ

µ− φ(µ)

∫ τ

0

H2
sdNs +

b2x

µ− φ(µ)
,

where φ(u) = exp(u)− u− 1.
Then for every stopping time τ and every ε > 0

P

(

Mτ ≥
√

2(1 + ε)V̂ µτ x+ bx/3, w ≤ V̂ µτ ≤ v and sup
s∈[0,τ ]

|Hs| ≤ b

)

≤ 2
log(v/w)

log(1 + ε)
e−x.
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This result is based on the exponential martingale for counting processes, which has been used
for a long time in the context of counting process theory. See for instance [9], [52] or [55]. This
basically gives a concentration inequality taking the following form, which is the general counting
process equivalent of (2.2): for any x > 0,

P

(

Mτ ≥
√

2ρx+
bx

3
and

∫ τ

0

H2
sλ(s)ds ≤ ρ and sup

s∈[0,τ ]

|Hs| ≤ b

)

≤ e−x. (2.6)

In (2.6), ρ is a deterministic upper bound of v =
∫ τ

0 H
2
sλ(s)ds, the bracket of the martingale,

and consequently the martingale equivalent of the variance term. Moreover b is a deterministic
upper bound of sups∈[0,τ ] |Hs|. The leading term for moderate values of x and τ large enough is

consequently
√
2ρx where the constant

√
2 is not improvable since this coincides with the rate of

the central limit theorem for martingales. However in the central limit theorem for martingales, it
is assumed that v tends to a deterministic value, which is the asymptotic variance (once everything

is correctly renormalized). So if the
√
2 is not improvable, it is likely that a fixed deterministic

value which upper bounds v constitutes a loss. In this sense, Theorem 5 improves the bound and
consists in plugging the estimate v̂ =

∫ τ

0
H2
sdNs instead of a non sharp deterministic upper bound

of v. Two small losses have to be underlined: we are not able to recover exactly the constant
√
2

but any value strictly larger than
√
2, as close as we want to

√
2 and we lose some additive terms

depending on b that are negligible for moderate values of x.
Hence we are able to obtain a much sharper concentration inequality for one single integral than

for a supremum (see Theorem 2), with respect to the discussions of Section 1.3. Of course it is a
simpler framework (only one process), but this inequality helps us to furnish a fully data-driven
choice of the weights dϕ, as in (2.4), leading to a fully calibrated method for general counting
processes (see [22] for more details). The counterpart is that we cannot do general model selection
with general models Sm but are forced to search the estimate within a dictionary (and under
particular conditions on the dictionary). The resulting method is very well calibrated as shown on
the simulations of [22] and has been successfully applied on real neuronal data [48].

Lasso (and similar) methods for particular counting processes such as Cox model or multiplica-
tive Aalen intensity have also been derived for instance in [8] or [19].

3. Test and U-statistics

We conclude this review with a very small section dedicated to adaptive testing. It is much more
difficult to present tests in unified way. Indeed depending on whether one tests goodness-of-fit [27],
homogeneity [17], two-sample problems [18] or independence [51], the test statistics may have very
different shapes and therefore it is difficult to point out which bounds may be useful. So let us
just illustrate where exponential inequalities are useful when dealing with testing on the particular
framework of [17].

We observe a Poisson process N with unknown intensity s(x) wrt ndx on [0, 1], where n is a
positive integer, to simplify notations. Here n replaces T and tends to infinity for asymptotic
purposes, this setup being equivalent to the aggregation of n i.i.d. Poisson processes on [0, 1] with
intensity s wrt dx.

We assume that ‖s‖∞ < ∞ and that one can again decompose s on the Haar basis. Since we
are on [0, 1], this amounts to

s = β−1,0ϕ−1,0 +
∑

j∈N

2j−1
∑

k=0

βj,kϕj,k.

We want to test H0: "s is constant" (i.e. N is a homogeneous Poisson process) against H1: "s is
not constant". Adaptive testing procedures consist in designing a test that is powerful for a wide
class of possible spaces as alternatives.

Let us just understand where the concentration inequalities may be useful on one finite vectorial
subspace. Letm ⊂ {(j, k), j ≥ 0, k = 0, ..., 2j−1} and consider the model Sm = Span(ϕ−1,0, ϕλ, λ ∈
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m) with dimension Dm. When we want to test the homogeneity, we actually want to reject when
the distance between s and S0 = Span(ϕ−1,0) is too large. This distance can be estimated and the
estimate may be used as test statistic. This idea is very old. It has been introduced in the Poisson
setting by Watson [57]. The procedure is consequently decomposed as follows:

(1) We approximate d(s, S0)
2 by

∑

λ∈m β
2
λ.

(2) We unbiasly estimate it by Tm =
∑

λ∈m Tλ with

Tλ = β̂2
λ −

1

n2

∫

ϕ2
λdN.

(3) Under H0 the distribution of Tm given that N[0,1] = K is free of s, so there exists t
(K)
m,α, the

1− α quantile of the conditional distribution of Tm, such that

P(Tm > t(K)
m,α|N[0,1] = K) ≤ α.

(4) We consequently reject H0 when Tm > t
(N[0,1])
m,α .

Hence concentration inequalities are not helpful for calibrating the test (this is done at step 3 by
using the exact quantiles). But they are helpful to find bounds on the separation distance, i.e. to
answer the question "under H1, how far from S0 should s be to obtain P(accept H0) ≤ β?" for
some fixed error β ∈ [0, 1].

If there exists a quantity Am,α,β such that

P(t
(N[0,1])
m,α ≥ Am,α,β) ≤ β/3, (3.1)

and if

d2(s, S0) ≥ ‖s− sm‖2 +�β,‖s‖∞

√
Dm

n
+Am,α,β ,

then, under suitable assumptions, it is easy to prove that the error of second kind is less than β (see
the precise version with slightly different notations in Theorem 4 of [17]). However the presence of
Am,α,β is crucial.

One can prove, using exponential inequalities for degenerate U-statistics of order 2 - which is
the case for Tm - that

Am,α,β = �β,‖s‖∞

[

√

Dm log(α−1)

n
+

log(α−1)

n
+
Em log2(α−1)

n2

]

,

satisfies (3.1) where Em =
∑

j/(j,k)∈m 2j may be much larger than Dm.

The logarithmic dependency of Am,α,β in terms of α is fundamental, because when we want to
turn those tests into adaptive tests, we have to consider a collection of tests (i.e. various choices
for m) and we have to roughly divide the level α by the number of tests in order to guarantee a
fixed level α. Hence the lighter the dependence in α, the larger the number of tests that can be
used together. This explains the need for concentration inequalities for U-statistics, when dealing
with tests of homogeneity, but also the need for control of Rademacher chaos for the two-sample
problem [18], etc. Each time, concentration inequalities will give the behaviour of the quantiles of
the test statistics in terms of α. Hence, in testing problems, concentration inequalities do not need
to have sharp constants since they are not used for practice but only for theory.

On this particular example, for U-statistics, note that exponential inequalities are described in
the book of de la Peña and Giné [16]. These upper bounds have been improved but still with
unknown constants by Giné, Latala and Zinn [20]. In [25], precise constants in those formula are
derived by combining Talagrand’s inequality and martingale properties for degenerate U-statistics
of order 2. This also applies to Poisson processes since one can replace Talagrand’s inequality by
Theorem 1 (see [25] for more details). Let us also mention [1], which involves degenerate U-statistics
of any order for independent variables but also for processes with independent increments.
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Conclusion

Adaptive statistics can exist only because of specific probabilistic inequalities and this is true
also in the setup of counting processes. The present review of such inequalities is of course not
exhaustive, but I hope that the concentration inequalities that have been used in the works pre-
sented here are general enough to be of interest for other researchers, who are looking for specific
exponential inequalities for counting processes.
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