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Abstract—We use Hawkes processes as models for spike trains
analysis. A new Lasso method designed for general multivariate
counting processes [1] enables us to estimate the functional
connectivity graph between the different recorded neurons.

I. INTRODUCTION

In Neurosciences, the action potentials (spikes) are the main
components for the real-time information processing in the
brain. Moreover it is possible to record in vivo several neurons
and have access to simultaneous spike trains. Those data are
fundamentally random and can be modeled easily by time
point processes, i.e. random countable sets of points on R+.
One of the fundamental questions is to guess whether the
neurons behave independently or not (see [2]). Such local
dependence (see [3] for further developments) can be modeled
by multivariate Hawkes processes [4].

To describe Hawkes models, we need the notion of con-
ditional intensity (see e.g. [4]). If a point process N has
a conditional intensity λ(.), then t → λ(t) is a random
predictable function that may depend on the past occurrences
of N . Informally, given the past, the quantity λ(t)dt gives the
conditional probability to have a new occurrence around time
t. This means that if we denote by Ft−, the past information
before time t, we have:

E(dN(t)|Ft−) = λ(t)dt, (1)

where dN(t) represents the point measure, that is the sum of
the Dirac masses at each point of the process N . This notion
of ”instantaneous expectation given the past” is very useful,
because it helps to handle the process in a more intrinsic way,
with respect to the classical expectation.

The multivariate Hawkes process models the instanta-
neous firing rates of M different neurons, with spike trains
N (1), ..., N (M) so that the conditional intensity of the mth
point process N (m) is defined for all t > 0 by:

λ(m)(t) =

(
ν(m) +

M∑
`=1

∫ t−

−∞
h

(m)
` (t− u)dN (`)(u)

)
+

, (2)

where the ν(m)’s are positive parameters representing the
spontaneous firing rates and where the h(m)

` ’s are called the
interaction functions and have support in R∗+. More precisely,
before the first occurrence of the multivariate process, the

N (m)’s behave like homogeneous Poisson processes with
constant intensities ν(m). The first occurrence (and the next
ones) affects all the processes by increasing or decreasing the
conditional intensity via the interaction functions h(m)

` ’s.
For instance, if h

(m)
` takes large positive values in the

neighborhood of the delay d and is null elsewhere, then after
the delay d of one occurrence of N (`), the probability to
have a new occurrence of N (m) will significantly increase:
the process N (`) excites the process N (m). On the contrary,
if h(m)

` is negative around d, then after the delay d of one
occurrence of N (`), the probability to have a new occurrence
of N (m) will significantly decrease: the process N (`) inhibits
the process N (m). Note in particular that the functions h(m)

m ’s
model self-interactions.

If one draws an arrow from ` to m whenever the interaction
function h

(m)
` is non zero, one can draw a graphical model

of local independence as in [3], which, to some extent,
should reflect the functional connectivity between the recorded
neurons, i.e. this graph reflects the way recorded neurons are
interacting. Figure 1 gives some examples of graphical models
with only 3 recorded neurons.
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Fig. 1. Examples of graphical models of local independence.

Note that the Hawkes process as described above cannot
really model non-stationary data. Indeed, when t grows (and
under conditions on the interaction functions), the process
converges quite quickly towards an equilibrium, which is
stationary (see for instance [5] and the references therein). If
those conditions are not satisfied, the number of points in the
process grows too fast to be a realistic model for spike trains
anyway. Hence Hawkes processes as defined in (2) cannot
model inhomogeneous data but can model dependent data.

Therefore, if we observe the spike trains on [0, Tmax], we
fix an interval [T1, T2] ⊂ [0, Tmax], typically an interval where
all the estimated mean firing rates seem constant, where we
assume that the processes are obeying a Hawkes model. We



want to estimate on this smaller interval

f∗ =
(

(ν(m))m=1,...,M , (h
(m)
` )`,m=1,...,M

)
, (3)

where it is assumed that the interaction functions are bounded
with support contained in (0, A] with T1 > A. Inference for
Hawkes models has been studied for a long time, in particular
for parametric models, using likelihood [6] and it has been
used in Neurosciences in [7]. However, in Neurosciences, it is
not possible to design a parametric model with few parameters
on the spike trains. Hence in [7] piecewise constants functions
with hundreds of parameters were used to estimate the interac-
tion functions. The number of points that need to be observed
to perform correctly such estimation is huge (several thousands
of points). This amount is usually not reached on the real
spike trains data, because the lack of stationnarity cannot be
neglected over trials involving that many points. More recently,
inference has been obtained by combining likelihood with tests
and various kinds of penalization [8], [9] or with Bayesian
models on the real-valued parameters and on the graph [10].
Those works used for Hawkes processes, or variations of them,
are essentially parametric with no theoretical guarantee when
the parametric models are false. More classical model selection
based on AIC has also been used in genomics [11]. However
it does not adapt well to irregular nonparametric functions.
This is the reason why adaptive inference has recently been
developed in such models. The univariate case (M = 1) has
been studied in [12], where a model selection method based on
`0 penalty is developed. However the high computational cost
for the multivariate analysis makes this method quite useless
in practice. Hence a multivariate approach has been developed
in [1] for more general multivariate processes, based on a
weighted `1 penalty. In the sequel, we detail this last method
and apply it to the spike trains analysis.

II. INTENSITY CANDIDATES AND LEAST-SQUARES
CONTRAST

We first define conditional intensity candidates. Let H be
the Hilbert space of all f = (µ(m), (g

(m)
` )`=1,...,M )m=1,...,M

such that the µ(m)’s are real parameters and the g
(m)
` ’s are

bounded functions with support in (0, A]. For any f in H,
we consider the predictable linear transformation ψ(f) =
(ψ(1)(f), ..., ψ(M)(f)) such that for any t > 0,

ψ
(m)
t (f) = µ(m) +

M∑
`=1

∫ t−

−∞
g

(m)
` (t− u)dN (`)(u). (4)

Note that λ(m)(t) = [ψ
(m)
t (f∗)]+. Therefore ψ(m)(f) can be

considered as a good intensity candidate as long as it is close
enough to λ(m) and this even if it becomes slightly negative.
In this context, the following quantity D(f, f∗) measures
somehow the distance between f and f∗:

D2(f, f∗) :=

M∑
m=1

∫ T2

T1

[ψ
(m)
t (f)− λ(m)(t)]2dt. (5)

Of course, we cannot compute it without knowing f∗. But
minimizing it with respect to f is equivalent to minimizing

M∑
m=1

∫ T2

T1

(
−2ψ

(m)
t (f)λ(m)(t) + [ψ

(m)
t (f)]2

)
dt. (6)

By (1), this should be not far from

γ(f)=

M∑
m=1

[
−2

∫ T2

T1

ψ
(m)
t (f)dN (m)(t) +

∫ T2

T1

[ψ
(m)
t (f)]2dt

]
,

which is the least-squares contrast for point processes with
conditional intensity. This observable expression can be min-
imized if f depends on a finite number of parameters.

If n i.i.d. trials are recorded, each trial i corresponds to
the observation of Ni = (N

(1)
i , ..., N

(M)
i ), the multivariate

Hawkes process whose intensity is given by the predictable
transformation denoted ψi. Furthermore, to each trial i, we
can associate an intensity λi and a contrast γ(i). The global
least-squares contrast over the n trials is then defined by

γn(f) =

n∑
i=1

γ(i)(f). (7)

We use the following notations: for any predictable processes
H = (H

(1)
i , ...,H

(M)
i )i=1,...n, K = (K

(1)
i , ...,K

(M)
i )i=1,...,n,

set

H •N =

n∑
i=1

M∑
m=1

∫ T2

T1

H
(m)
i,t dN

(m)
i (t), (8)

H �K =

n∑
i=1

M∑
m=1

∫ T2

T1

H
(m)
i,t K

(m)
i,t dt, (9)

and H�2 = H �H.
Our method is based on the dictionary approach. We choose

a dictionary Φ of known functions of H and we only consider
linear combinations of functions of Φ for estimating f∗:

fa =
∑
ϕ∈Φ

aϕϕ, for a ∈ RΦ. (10)

Then, by linearity of ψ, one can rewrite (7) as

γn(fa) = −2a′bn + a′Gna, (11)

where for any ϕ and ϕ̃ in Φ,

(bn)ϕ = ψ(ϕ) •N and (Gn)ϕ,ϕ̃ = ψ(ϕ) � ψ(ϕ̃).

Here a′ denotes the transpose of a. Note that the vector
bn and the matrix Gn are both data-driven quantities so are
observable. Minimizing a 7→ γn(fa) leads to the solution

ân = G−1
n bn, (12)

and the least-squares estimate of f∗ is f̂n = fân .



III. LASSO ESTIMATE

Besides the same drawbacks that least-squares estimates
share with MLE, their components are all non-zero almost
surely. Therefore the reconstructed functional connectivity
graph is complete and not informative with respect to other
sparse graphs. Sparsity can be obtained by combining f̂n with
`1-penalization. Given a vector of positive weights d, the Lasso
estimate of f∗ is f̃n := fãn where ãn is a minimizer of the
following `1-penalized least-square contrast:

ãn ∈ arg min
a∈RΦ

{−2a′bn + a′Gna+ 2d′|a|}. (13)

We can prove the following oracle inequality on f̃n.

Theorem 1. We introduce the following two events:

ΩV,B = {∀ϕ ∈ Φ, sup
t∈[T1,T2],m,i

|ψ(m)
i,t (ϕ)| ≤ Bϕ and

(ψ(ϕ))2 •N ≤ Vϕ},

for positive deterministic constants Bϕ and Vϕ and

Ωc =
{
∀ a ∈ RΦ, a′Gna ≥ c a′a

}
,

for a positive constant c. Let x and ε be strictly positive
constants and for all ϕ ∈ Φ,

dϕ =

√
2(1 + ε)V̂ µϕ x+

Bϕx

3
, (14)

with

V̂ µϕ =
µ

µ− φ(µ)
(ψ(ϕ))2 •N +

B2
ϕx

µ− φ(µ)

for a real number µ such that µ > φ(µ), where φ(µ) =
exp(µ)− µ− 1. Then, with probability larger than

1− 4
∑
ϕ∈Φ

 log
(

1 +
µVϕ

B2
ϕx

)
log(1 + ε)

+ 1

 e−x − P((ΩV,B ∪ Ωc)
c),

the following inequality holds

[ψ(f̃n)− λ]�2 ≤ C inf
a∈RΦ

[ψ(fa)− λ]�2 +
1

c

∑
ϕ∈S(a)

d2
ϕ

 ,

where C is an absolute positive constant and where S(a) is
the support of a, i.e. its coordinates with non-zero coefficients.

The proof is an easy adaptation of Theorem 2 of [1], which
is originally stated for n = 1, to the case of n multivariate
Hawkes processes (see also [13]).

This oracle inequality is stated by using a distance be-
tween predictable processes expressed via �. On the event{
∀ i,m, t λ

(m)
i (t) > 0

}
, by linearity of ψ, this can also be

seen as a random distance between f̃n and f∗. The upper
bound is quite classical with a bias term and a variance term,
where the ”variance” of each coefficient aϕ is measured via

d2
ϕ. The leading term in dϕ is indeed

√
2αε,µṼ (ϕ)x where

αε,µ is strictly larger than 1 but as close to 1 as desired and
where Ṽ (ϕ) := (ψ(ϕ))2 • N is an unbiased estimate of the

bracket of the compensated (bn)ϕ, the analog of the variance
in the martingale setting. The shape of the dϕ’s comes from a
particular Bernstein type inequality for martingales, stated in
[1] and the resulting estimate is therefore called a Bernstein-
Lasso estimate.

The variance term is renormalized by c and therefore c gives
the rate of convergence of the oracle inequality. It has been
proved in [1] where the case n = 1 is investigated, that if
the process is stationary and if the interaction functions are
non negative, under some technical assumptions on both the
process and the dictionary, then c is of the order of T2−T1 with
high probability. In [13], the n trials set-up is considered and
it has been proved that even if the process is not stationary and
under technical assumptions, then the order of magnitude of c
is n with high probability. In practice, since Gn is a symmetric
non negative observable matrix, it is easy to compute its
smallest eigenvalue to assess the quality of the estimate.

It is also quite easy to find Vϕ and Bϕ such that P(ΩV,B) is
large. With respect to T2−T1 and n, their orders of magnitude
are typically log(T2 − T1) or log(n) (see [1], [13]).

IV. SIMULATIONS

To illustrate our purpose, let us simulate the very simple
graph of local independence corresponding to the second
graph of Figure 1, with spontaneous rates ν(m) = 10 Hz
for m = 1, 2, 3 and interaction functions h

(2)
1 = h

(3)
2 =

160 × 1[0.005,0.01], the others being null. We simulate 100
trials with Tmax = 2 seconds each. The classical statistical
spike trains analysis generally consists in performing various
independence tests in the spirit of [2] and on this example,
spike trains are declared dependent, but we are not able
to distinguish between the second and the third graphical
models of Figure 1. Another classical analysis (see Figure 2)
consists in performing cross-correlograms between each pair
of neurons, i.e to plot the histograms of the (xi − xj) for
xi ∈ Ni and xj ∈ Nj . There is clearly a favored delay of
roughly 5-10 ms between N1 and N2 and between N2 and
N3, giving a visual hint for interaction of the type 1→ 2 and
2→ 3, even if it seems that interaction 2→ 3 is much stronger
than 1→ 2. This difference can be explained: there are more
points in N2 than in N1, which implies mechanically a larger
number of pairs in the second cross-correlogram with respect
to the first one. Moreover, there is also, mechanically, a favored
delay of roughly 10-20 ms between N1 and N3, making
practitioners believe that interaction 1 → 3 exists and seems
almost as high as 1 → 2. This phenomenon is an artefact of
cross-correlograms. Since cross-correlograms can only study
pairs of neurons, they will see the ”convolution” of h(2)

1 by
h

(3)
2 as an interaction 1→ 3. The two presented estimators f̂n

and f̃n are able to disentangle the different phenomena and,
for f̃n to reconstruct the correct graph. To do so, let us restrict
ourself to T1 = 1s and T2 = 2s. The dictionnary, Φ, used here,
is very simple and consists in regular histograms. Namely, we
estimate each interaction function independently by piecewise
constant functions on a regular partition of [0, 0.03] of 30 bins.
Since there are also 3 spontaneous parameters to estimate,
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Fig. 2. Cross-correlograms on the simulated data.
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Fig. 3. Reconstructions of h(2)
1 , h

(3)
2 and h

(3)
1 by f̂n.

there are finally 273 parameters to estimate. Figure 3 gives
the reconstruction of 3 of the 9 interaction functions by the
least-square estimate f̂n. Interactions 1 → 2 and 2 → 3 have
clearly the same strength and the interaction 1 → 3 is much
more negligible. However with f̂n, the complete graph (i.e.
the third graph in Figure 1) is always obtained and there is no
clear way to declare that the bump around 10-20 ms for the
interaction 1 → 3 is significative or not. For a correct sparse
reconstruction of the underlying graph of local dependence,
we consider f̃n (see Figure 4). In this simulation, the weights
dϕ are given by

dϕ =
√

2[(ψ(ϕ))2 •N ]x+
(supt∈[a,b],m,i |ψ

(m)
i,t (ϕ)|)x

3
, (15)

with x = ln(n(T2−T1)). This formula is simpler than (14) and
corresponds to the limit choice αε,µ = 1. Figure 4 shows that
the support recovery of the interaction functions is perfect.
This also implies that the reconstruction of the functional
connectivity graph (second graph of Figure 1) is perfect.
However as usual for Lasso estimates, shrinkage effects lead to
non-negligible bias on the interaction functions that is reduced
when performing the ordinary least-square estimate, f̃OLSn , on
the support given by the Lasso estimate f̃n.
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Fig. 4. Reconstructions of h(m)
` (`=column, m=row) for `,m = 1, 2, 3 by

f̃n in green (SB is the spontaneous rate estimate) and by f̃OLS
n in red (SBO

is the spontaneous rate estimate). The true f∗ appears in black (S* is the true
spontaneous rate).

A more extensive study can be found in [1] and an appli-
cation on real neuronal data has been done in [13].
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