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This short paper deals with a 2D discrete linear Roesser model. The results introduced here are a follow-up of a paper we proposed recently and where we explained and motivated the reasons we need to adopt a new definition of exponential stability for 2D systems. However this previous result left aside a crucial point that we would like to asses here: is our new definition of exponential stability coherent with the existing stability criterion in the linear case? We hereby show that, in the linear case, 1. our new definition of exponential stability is equivalent to asymptotic stability and 2. the characteristic polynomial-based stability criterion is a sufficient and necessary condition for the exponential stability we have introduced.

I. INTRODUCTION

A. Background

Multidimensional systems were first introduced in the mid 1970s. Working on digital filters, several authors proposed to extend the framework which was mainly based on transfer functions to the multidimensional case: instead of having one independent variable, they looked at polynomial functions of higher dimensions. The notion of stability was also discussed in the BIBO (bounded input bounded output) sense [START_REF] Shanks | Stability and synthesis of twodimensional recursive filters[END_REF]. This allowed to extend a well-known stability criterion to the nD case and it was based on the characteristic polynomial equation of the studied system.

This famous criterion simply states that the transfer function is BIBO stable for systems devoid of poles outside the stability region, which seems natural as it is similar to the 1D case. However the criterion is not as simple as in the 1D case, the number of zeros are usually infinite and further techniques need to be used in order to have a tractable condition (see for instance [START_REF] Ghamgui | Robust stability of hybrid Roesser models against parametric uncertainty : A general approach[END_REF]). It was quoted as a necessary and sufficient condition, led to several stability tests [START_REF] Huang | Stability of two-dimensional recursive filters[END_REF], [START_REF] Anderson | Stability test for two-dimensional recursive filters[END_REF], and broadened to include exponential stability in [START_REF] Pandolfi | Exponential stability of 2-D systems[END_REF]. However Goodman later showed in [START_REF] Goodman | Some stability properties of two dimensional linear shiftinvariant digital filters[END_REF] that the condition is necessary only if the transfer function does not present a particular type of point called nonessential singularity of the second kind.

State-space models for multidimensional systems were given by different authors around the same time (see [START_REF] Roesser | Discrete state-space model for linear image processing[END_REF] and [START_REF] Fornasini | State-space realization theory of twodimensional filters[END_REF], [START_REF]Doubly-indexed dynamical systems: State-space models and structural properties[END_REF]). Fornasini-Marchesini also introduced a definition of asymptotic stability which is still in use today in the field. Introducing state space models allowed a large number of researchers to engage in the field of multidimensional systems as several techniques based on LMIs (linear matrix inequalities) and Lyapunov techniques were extended from the 1D case to the nD case ( [START_REF] Galkowski | LMI approach to statefeedback stabilization of multidimensional systems[END_REF], [START_REF] Kaczorek | LMI approach to stability of 2D positive systems[END_REF]).

Exponential stability, on the other hand, has been seldom studied directly in the 2D systems literature. In the linear case, one of the only works dealing with this problem is given by Pandolfi in [START_REF] Pandolfi | Exponential stability of 2-D systems[END_REF]. Pandolfi proved that asymptotic stability and exponential stability are equivalent, similarly to what happens in the 1D case. This equivalence could explain why this particular type of stability has not been very much investigated in the 2D field. Later in [START_REF] Dymkov | Exponential stability of discrete linear repetitive processes[END_REF], the authors extended this definition to repetitive systems but we are not discussing this special type of multidimensional systems in this paper; this work could however impact the results given in [START_REF] Dymkov | Exponential stability of discrete linear repetitive processes[END_REF]. In the continuous case, we also have proposed a definition in [START_REF] Ghamgui | Exponential stability conditions for 2D continuous state-delayed systems[END_REF]. However, in a recently published paper [START_REF] Yeganefar | Lyapunov theory for 2D nonlinear roesser models: application to asymptotic and exponential stability[END_REF] we have carefully explained the shortcomings of these definitions and strongly motivated the introduction of a new one (for the discrete case only).

B. Goal of the paper

As pointed out above, in [START_REF] Yeganefar | Lyapunov theory for 2D nonlinear roesser models: application to asymptotic and exponential stability[END_REF], we have shown that the existing definition of exponential stability [START_REF] Pandolfi | Exponential stability of 2-D systems[END_REF] used in the literature of 2D systems is not correct. We have therefore introduced and motivated the use of a new definition that allowed us to investigate the exponential stability of nonlinear 2D systems and to propose the first converse Lyapunov theorem for 2D systems under certain assumptions. By doing so, we have left unanswered several questions, especially in the linear case. This paper therefore tries to fill the gap introduced by our work.

The questions we would like to answer in this short paper are the following:

1) Do we still have equivalence between our newly defined exponential stability and asymptotic stability in the linear case? 2) There is a well-known characteristic polynomial-based stability criterion from which a lot stability results are derived. Is this stability criterion still valid (ie. necessary and sufficient) if one uses our newly proposed definition? The answers to both of these questions are positive and the proofs of these answers are the main results of this article.

Let us now recall the results we are talking about.

C. Previous important results

In order to have a self-contained article, we think it is important to quickly recall a few of the important results we published in the previously mentioned work [START_REF] Yeganefar | Lyapunov theory for 2D nonlinear roesser models: application to asymptotic and exponential stability[END_REF]. Moreover, to make it easier to follow for the reader, we are going to use a Fornasini-Marchesini type model [START_REF] Fornasini | State-space realization theory of twodimensional filters[END_REF], [START_REF]Doubly-indexed dynamical systems: State-space models and structural properties[END_REF] contrary to [START_REF] Yeganefar | Lyapunov theory for 2D nonlinear roesser models: application to asymptotic and exponential stability[END_REF] where the model is a nonlinear version of the well-known Roesser model [START_REF] Roesser | Discrete state-space model for linear image processing[END_REF]. Both models are equivalent and therefore working with one or the other is the same. That being said, our system is described as follows:

x(i + 1, j + 1) = Ax(i, j + 1) + Bx(i + 1, j) (1) 
where x is a real vector of dimension n and matrices A, B are of appropriate dimensions. i and j are positive integers so that the initial conditions are taken in the first quadrant (ϕ(i) = x(i, 0), and ψ(j) = x(0, j) for i, j ∈ N), and we study the behavior of trajectories in N 2 as i + j → +∞. Note that the approach adopted by Fornasini-Marchesini ( [START_REF] Fornasini | State-space realization theory of twodimensional filters[END_REF], [START_REF]Doubly-indexed dynamical systems: State-space models and structural properties[END_REF]) for 2D systems is different: they consider initial conditions given on the subset {(i, j) ∈ Z 2 , i + j = 0}, and they study the behavior of trajectories as i + j → +∞. This choice of initial conditions is not without consequence on the stability definitions as we have pointed out in [START_REF] Yeganefar | Lyapunov theory for 2D nonlinear roesser models: application to asymptotic and exponential stability[END_REF], for further remarks on the importance of the initial conditions for 2D systems one can refer to eg. [START_REF] Valcher | Characteristic cones and stability properties of twodimensional autonomous behaviors[END_REF], [START_REF] Napp | Time-relevant stability of 2D systems[END_REF]. For such a system, observe that the definition of asymptotic stability we adopted in [START_REF] Yeganefar | Lyapunov theory for 2D nonlinear roesser models: application to asymptotic and exponential stability[END_REF] is more restrictive than the one usually found in the literature, as we define the concept of stability and attractivity (as in the 1D case).

Definition 1.1 ( [START_REF] Liu | Stability analysis of state-space realizations for two-dimensional filters with overflow nonlinearities[END_REF], [START_REF] Yeganefar | Lyapunov theory for 2D nonlinear roesser models: application to asymptotic and exponential stability[END_REF]): The point x e = 0 is said to be asymptotically stable (in the sense of Lyapunov) if:

1) x e = 0 is stable (for all > 0, there exists δ( ) > 0 such that if ϕ(i) < δ, ψ(j) < δ then x(i, j) < for all i, j > 0), 2) lim i+j→∞ x(i, j) = 0 when lim i→∞ ϕ(i) = 0 and lim j→∞ ψ(j) = 0. This property will be called attractivity as in the 1D case. Exponential stability is defined as follows:

Definition 1.2 ( [START_REF] Yeganefar | Lyapunov theory for 2D nonlinear roesser models: application to asymptotic and exponential stability[END_REF]): The equilibrium point x e = 0 of system (1) is said to be exponentially stable if there are constants q ∈ (0, 1) and M > 0 such that for any initial conditions ϕ and ψ, and for all (i, j) ∈ N 2 , we have:

x(i, j) ≤ M i r=0 ϕ(r) q r+1 + j s=0 ψ(s) q s+1 q i+j (2)
Remark 1: This definition was mainly supported by two observations in [START_REF] Yeganefar | Lyapunov theory for 2D nonlinear roesser models: application to asymptotic and exponential stability[END_REF]. First, notice that each term x(i, j) is determined by the knowledge of ϕ(r) and ψ(s), for r = 0, . . . i, and s = 0, . . . , j, so that it is natural to express the bound (2) in terms of these quantities (see for instance (5) which gives the full expression of the solutions). Second, analyze the following special example of an upper triangular matrix with a single eigenvalue 0 < q < 1:

x(i + 1, j + 1) = q 1 0 0 x(i, j + 1) + 0 0 0 q x(i + 1, j) (3) 
As expected, because q ∈ (0, 1), 0 is an exponentially stable equilibrium point as defined in Definition 1.2. However, the trivial solution of system (3) is not exponentially stable using the definition introduced in [START_REF] Pandolfi | Exponential stability of 2-D systems[END_REF] (for further details, please see [START_REF] Yeganefar | Lyapunov theory for 2D nonlinear roesser models: application to asymptotic and exponential stability[END_REF]).

II. MAIN RESULTS

Proposition 2.1: Exponential stability implies asymptotic stability (Definition 1.1).

Proof: Let us first show that exponential stability implies stability. This comes from the fact that for a given > 0, there exists a δ = (1-q) 4M > 0 such that if for all i, j ≥ 0, ϕ(i) ≤ δ and ψ(j) ≤ δ, then

x(i, j) ≤ M j k=0 ψ(k) q k+1 + i k=0 ϕ(k) q k+1 q i+j ≤ M δ j k=0 1 q k+1 + i k=0 1 q k+1 q i+j ≤ M δ q j-1 + q i-1 -2q i+j 1 -q ≤
Attractivity follows by similar arguments. Note that this proof is independent of the linearity of the system. Theorem 2.2: The linear system (1) is exponentially stable if and only if

det (I -z 1 A -z 2 B) = 0 (4) in the closed set (z 1 , z 2 ) ∈ C 2 , |z 1 | ≤ 1, |z 2 | ≤ 1 Proof:
The proof is very similar to the one given in [START_REF] Pandolfi | Exponential stability of 2-D systems[END_REF] (and inspired by [START_REF]Doubly-indexed dynamical systems: State-space models and structural properties[END_REF]) only the final steps are different. The idea of the proof can be easily explained following this path:

(ES) ⇒ (AS) ⇔ (4) ⇒ (ES)
Indeed from Proposition 2.1, exponential stability (ES) implies asymptotic stability (AS). From the work of Fornasini-Marchesini [START_REF]Doubly-indexed dynamical systems: State-space models and structural properties[END_REF], we know that asymptotic stability is equivalent to the characteristic polynomial condition (4). We still need to prove that if (4) is verified then the system is exponentially stable. Note that this will also prove that exponential and asymptotic stability are equivalent in the linear case.

To do so, we need to explicitly find the solutions of the linear system [START_REF] Shanks | Stability and synthesis of twodimensional recursive filters[END_REF]. Following Pandolfi's work in [START_REF] Pandolfi | Exponential stability of 2-D systems[END_REF], we know that the solutions of system (1) can be explicitly computed using a (z, ζ)-transform of x(i, j):

x(i, j) = i r=0 E(i -r, j)Φ(r, 0) + j s=0 E(i, j -s)Ψ(0, s) (5) 
where E(i, j), Φ(i, j) and Ψ(i, j) are defined by their (z, ζ)transform.

E(z, ζ) = I - A z - B ζ -1 Φ(z, ζ) = I - A z ϕ(z) Ψ(z, ζ) = I - B ζ ψ(ζ).
Let us also give the expression of Φ (Ψ is analogous, see [START_REF] Pandolfi | Exponential stability of 2-D systems[END_REF] for details). Φ(i, j) = Φ 1 (i, j) -AΦ 2 (i, j) with

Φ 1 (i, j) = ϕ(i), i ≥ 0, j = 0 0, otherwise, Φ 2 (i, j) = ϕ(i -1), i ≥ 1, j = 0 0, otherwise.
From inequality [START_REF] Pandolfi | Exponential stability of 2-D systems[END_REF] and the definitions of Φ and Ψ, we can derive the following bound:

x(i, j) ≤ i r=0 E(i -r, j) ϕ(r)

+ A i r=0 E(i -r, j) ϕ(r -1) + j s=0 E(i, j -s) ψ(s) + B j s=0 E(i, j -s) ψ(s -1) . (6) 
As shown in [START_REF]Doubly-indexed dynamical systems: State-space models and structural properties[END_REF], [START_REF] Pandolfi | Exponential stability of 2-D systems[END_REF], if condition ( 4) is verified then there exists a number α ∈ (0, 1) such that the series

∞ r=0 ∞ s=0 z -r ζ -s E(r, s) is absolutely convergent for |z| > α, |ζ| > α. Choosing α < q < 1, then ∞ r=0 ∞ s=0 q -r q -s E(r, s) < M.
As we are dealing only with positive terms, the following inequality holds:

q -(i+j) E(i, j) ≤ ∞ r=0 ∞ s=0 q -r q -s E(r, s) , so that E(i, j) ≤ M q i+j .
Therefore we can bound the different terms in (6) as follows:

i r=0 E(i -r, j) ϕ(r) ≤ M i r=0 q i+j-r ϕ(r) i r=0 E(i -r, j) ϕ(r -1) = i-1 r=0 E(i -r -1, j) ϕ(r) ≤ M i-1 r=0 q i+j-r-1 ϕ(r) = M 1 q i-1 r=0 q i+j-r ϕ(r)
and similarly for the other two terms in [START_REF] Goodman | Some stability properties of two dimensional linear shiftinvariant digital filters[END_REF]. Playing with the indices and the constants, we can easily show that there exists a constant M such that

x(i, j) ≤ M i r=0 ϕ(r) q r+1 + j s=0 ψ(s) q s+1 q i+j
Thus, (4) implies ES which concludes the proof. Remark 2: The attentive reader could notice that Pandolfi in [START_REF] Pandolfi | Exponential stability of 2-D systems[END_REF] showed that his definition of ES is equivalent to the criterion (4). We have just proved that using our definition of ES, we also have equivalence with (4). However we pointed out earlier that both definitions are not equivalent (see Remark 1). The problem lies in the fact that Pandolfi wrongly assumed that his definition of ES implies AS: this is not true. But as indirectly pointed out several times in this paper, he did all the hard work and his contribution to our paper is invaluable.

III. CONCLUSION

In this short paper, we wanted to complete the results introduced in a recently published work on exponential stability [START_REF] Yeganefar | Lyapunov theory for 2D nonlinear roesser models: application to asymptotic and exponential stability[END_REF]. Whereas [START_REF] Yeganefar | Lyapunov theory for 2D nonlinear roesser models: application to asymptotic and exponential stability[END_REF] was focused on nonlinear systems, this paper deals with linear systems and deals with several questions left unanswered. Indeed, by introducing a new definition of exponential stability, it was important to show that this definition is in coherence with the huge literature in the linear case. This is done by showing, first, that exponential stability and asymptotic stability are equivalent in the linear case, second, that a necessary and sufficient condition for exponential stability is given by the well-known characteristic polynomial condition. Whether this work impacts the definition of exponential stability given for repetitive systems remains to be investigated.
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