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Influence of a new discrete-time LQR-based motion cueing
on driving simulator

B. Aykent1,*,†, F. Merienne1, D. Paillot1 and A. Kemeny1,2

1CNRS Le2i Arts et Metiers ParisTech, Chalon sur Saone, France
2Technical Centre for Simulation, Renault, Guyancourt, France

SUMMARY

This study proposes a method and an experimental validation to analyze dynamics response of the simu-
lator’s cabin and platform with respect to the type of the control used in the hexapod driving simulator.
In this article, two different forms of motion platform tracking control are performed as a classical motion
cueing algorithm and a discrete-time linear quadratic regulator (LQR) motion cueing algorithm. For each
situation, vehicle dynamics and motion platform level data are registered from the driving simulation soft-
ware. In addition, the natural frequencies of the roll accelerations are obtained in real-time by using FFT.
The data are denoised by using wavelet 1D transformation. The results show that by using discrete-time
LQR algorithm, the roll acceleration amplitudes that correspond to the natural frequencies and the total
roll jerk have decreased at the motion platform level. Also, the natural frequencies have increased reason-
ably by using the discrete LQR motion cueing (1.5–2.2 Hz) compared with using the classical algorithm
(0.4–1.5 Hz) at the motion platform, which is an indicator of motion sickness incidence avoidance. The
literature shows that lateral motion (roll, yaw, etc.) in the frequency range of 0.1–0.5 Hz induces motion
sickness. Furthermore, using discrete-time LQR motion cueing algorithm has decreased the sensation error
(motion platform–vehicle (cabin) levels) two times in terms of total roll jerk. In conclusion, discrete-time
LQR motion cueing has reduced the simulator sickness more than the classical motion cueing algorithm
depending on sensory cue conflict theory. Copyright © 2013 John Wiley & Sons, Ltd.

KEY WORDS: optimal control; linear quadratic regulator (LQR); discrete-time control; motion cueing;
washout; driving simulator

1. INTRODUCTION

Multi-sensory fusion (visual, auditory, haptic, inertial, vestibular and neuromuscular) [1] plays
important roles to represent a proper sensation in driving simulators. Thus, restituting the inertial
cues on driving simulators is essential to acquire a more proper sensation of driving [2]. Because
of the restricted workspace, it is not possible to represent the vehicle dynamics continuously with
scale 1 to 1 on the motion platform. Nevertheless, the most desired aim is to minimize the deviation
of the sensed accelerations between the represented dynamics as realistic as possible depending on
the driving task. Therefore, washout filters are used to simulate the real-world vehicle dynamics into
the realizable motion on the dynamic driving simulator (with a 6-DOF hexapod motion platform in
this study). If the sensory cue conflict between vehicle and platform levels increases, it may cause
simulator sickness. For that reason, simulator sickness has been one of the main research topics for
the driving simulators. It was assessed between dynamic and static simulators [3,4]. However, there
has been a very few publications of vehicle–platform cue conflict-based motion sickness depending
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Figure 1. Discrete-time LQR-based motion cueing.

on natural frequencies, their corresponding roll acceleration amplitudes and the total sensed roll
jerks. To reduce the simulator sickness, the difference between the accelerations through the visual
(vehicle level) and inertial (platform level) cues have to be minimized (cost function minimization
via discrete-time linear quadratic regulator (LQR), which is a certain type of optimal control, in
this paper). Because of that fact, this paper addresses the simulator motion sickness as a function
of vehicle–platform roll acceleration and roll jerk sensitivities. This work was performed under
the dynamic operations of the Simulateur Atomobile Arts et Metiers (SAAM) driving simulator as
with a classical tracking control and a discrete-time LQR (DT LQR) tracking control. The dynamic
simulators are being used since the mid-1960s (Stewart platform) [5] first for the flight simulators,
and then the use has spread to the automotive applications. The utilization scope diversifies from
driver training to research purposes such as vehicle dynamics control, advanced driving assistance
systems [6] and motion and simulator sickness [7–9]. The dynamic driving simulator SAAM con-
sists of a 6-DOF motion system. It acts around a Renault Twingo 2 cabin with the original control
instruments (gas, brake pedals and steering wheel). The visual system is realized by an approxi-
mate 150 cylindrical view. Nearby the cabin, the multi-level measuring techniques (XSens motion
tracker and Biopac electromyography (EMG) device) and postural stability analysis (Technocon-
cept platform) are available, which were already used with numerous attempts [7–9] such as sinus
steer test, NATO chicane, sinusoidal roughness test and country road scenario. The visual (vehicle
(cabin) level) accelerations of translations (longitudinal X , lateral Y and vertical Z axes) as well
as the visual accelerations of roll and pitch, which correspond to the vehicle dynamics, were taken
into account for the control. Then, the platform positions and velocities were controlled and fed
back to the vehicle level in order to minimize the conflict between the vehicle and platform lev-
els in this article (Figure 1). For the evaluation and validation procedures [4, 6–14], the scenario
was driven on the simulator SAAM with a classical motion cueing and also with a constrained DT
LQR controlled motion cueing to describe the impact of the feedback control. Some results from
the simulator experiment were illustrated in the scope of this research with real-time controls of the
platform at a longitudinal velocity of 60 km/h.

1.1. Problem statement

There are different components in the dynamic simulators, which are related to the control theory
such as motion platform dynamics, vehicle (cabin) dynamics and human (muscular or head) dynam-
ics. From those, only the vehicle and platform dynamics can be designed by researchers and
engineers. The most important objective in dynamic simulators is to achieve the goal of consis-
tent dynamics in those two levels. The human (muscular, head) dynamics are monitored depending
on the changes of vehicle–platform dynamics interaction during the driving. That is why the human
reaction dynamics is very difficult to study, because even if the same subject drives with the same



INFLUENCE OF A NEW DISCRETE-TIME LQR-BASED MOTION CUEING

vehicle model, the same motion cueing algorithm and the same scenario, he or she will react
in different ways. However, by using the closed-loop or open-loop tracking control of the hexa-
pod platform, it can be possible to compare their performances with or without consideration of
human factors.

There are also some evaluation methods for the driving simulation that also considers the human
factors [7–9]. In [7], the effect of having adaptive motion cueing (a closed-loop tracking control of
the motion platform) and classical motion cueing (an open-loop tracking control of the platform)
algorithms was discussed in terms of the platform level dynamics and the subjective assessments
regarding the simulator sickness. Because the pitch and roll oscillations were objectively decreased
(measured and monitored via SCANERSTUDIO software) by using the adaptive motion cueing,
the disorientation-related (dizziness, nausea) severity was subjectively rated (via simulator sickness
questionnaires) lower compared with using the classical motion cueing [7]. Another possibility to
evaluate the human factors is to use biofeedback methods [8, 9]. They are considered as an objec-
tive metrics when it is compared with the questionnaire method. However in both cases, the human
factors are taken into account. The statistical analysis should be carried out in order to present the
results precisely, because it could be possible to have convergence or divergence in terms of the
biofeedback or the questionnaire analysis. In [8, 9], the neuromuscular analysis of the participants
in the driving experiments was investigated. The vestibular (participants’ heads) and arm muscle
(EMG analysis) dynamics interactions were compared for the adaptive (closed-loop control of the
platform) and classical motion cueing (open-loop control of the platform) algorithms [8] for the
same driving scenario. Moreover, the subjective sickness was assessed via a questionnaire method
[8]. The results revealed that the arm and vestibular dynamics cues conflict was decreased by using
the adaptive motion cueing compared with using the classical one. The head–arm muscle dynam-
ics interactions were discussed in [9] by using an LQR-based motion cueing (closed-loop tracking
control of the platform) and a classical (open-loop tracking control of the platform) algorithm. The
results from [9] indicated that using the LQR motion cueing provided an increased level of agility
for the subjects in driving compared with using the classical motion cueing for the same driving
scenario. In other words, the correlation of the head–arm muscles dynamics was yielded higher in
LQR algorithm than the one in classical algorithm.

This study was accomplished by using an autopilot in order to have all the scenario settings
identical such as steering, brake pedal, gas pedal and vehicle model (engine, axle kinematics, axle
dynamics, etc.) without human factor. It surveyed the contribution of using a closed-loop tracking
control, which is a DT LQR algorithm, of the hexapod platform on ‘sensation error’ in order to
focus on the advantages associated to the cue conflict reduction. Here, the vehicle(cabin)–platform
cues were compared in frequency domain by using two different types of motion cueing (DT LQR
algorithm and classical algorithm).

This paper was organized as follows. Section 2 described the LQR-based motion cueing. Section 3
explained how the DT LQR control was developed and the data were processed. Section 4 continued
with the results and discussion. Eventually, Section 5 concluded the paper.

2. LQR-BASED MOTION CUEING

In this section, the washout filter design methodology based on the LQR theory was briefly summa-
rized, which constituted as the basics for the DT LQR motion cueing in Section 3. The main idea
of the LQR-based washout filter design is to find a linear transfer matrix W.s/ that minimizes a
certain quadratic cost involving the sensation error e and the simulator input us [7–9, 15–21] with-
out allowing the hexapod platform to exceed the simulator constraints as shown in Figure 2. The
LQR motion cueing algorithm design should be started with a mathematical model of the human
vestibular system. For this study, the proposed input u to the vestibular system contains

uD

�Z
axdt

Z
aydt

Z
a´dt P� P� P 

�T
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Figure 2. Optimal motion cueing algorithm.

As seen from this proposed input, it contains highly nonlinear elements such as translational and
rotational velocities. In this article, the system is assumed linear by using Riccati equation.Then,
the sensed rotational motion OPq (pitch, roll and yaw velocities) can be given by the mathematical
model of the semicircular canals [16, 20]. The sensed translational motion Ov is associated to the
input-specific force a by the otolith model [16, 20]. Denoting the vestibular system states from the
vehicle and simulator drive as Xveh and Xs , the corresponding state error can be defined as Xe [20]:

Xe , Xs �Xveh (1)

yielded the following state-space description for sensation error e. In addition to the sensation error,
the washout filter has to take the simulator stateXd into account, which is required to guarantee that
the simulator obeys its constraints. Defining the simulator state Xd ,

Xd D

�“
ax
sdt2

“
ay
sdt2

“
a´
sdt2

Z
P�
s
dt

Z
P�
s
dt

Z
P 
s
dt

�T
(2)

where axs , ays , a´s , P�
s
, P�

s
and P 

s
are translational accelerations (longitudinal, lateral and vertical)

and angular velocities (pitch, roll and yaw) in the simulator platform, respectively. After having
the dynamic models for sensation error and simulator state, the problem of designing an optimal
washout filter gets form as in (3)

J D

Z t1

t0

�
eTQeC uTs Rus C x

T
d Rdxd

�
dt (3)

where Œt0, t1� is the simulator drive duration and Q, R and Rd are the weighting matrices. The
solution of that optimization problem can be solved by a Riccati equation with MATLAB [9, 16, 22],
which gives the transfer matrix W.s/ as a result. First, the weighting matrices Q, R and Rd are
determined, and afterwards, the corresponding filter W.s/ is obtained, which generates us from
uveh. The procedure is iterated until us satisfies all the simulator constraints:ˇ̌̌
P�
s
.t/
ˇ̌̌
6 P� smax , jasx.t/j 6 asx,max ,

ˇ̌
� s.t/

ˇ̌
6 � smax , jV sx .t/j 6 V sx,max and jX s.t/j 6X smax

ˇ̌̌
P�
s
.t/
ˇ̌̌
6 P�smax ,

ˇ̌
asy.t/

ˇ̌
6 asy,max , j�s.t/j 6 �smax ,

ˇ̌
V sy .t/

ˇ̌
6 V sy,max and jY s.t/j 6 Y smax

ˇ̌̌
P 
s
.t/
ˇ̌̌
6 P smax ,

ˇ̌
as´.t/

ˇ̌
6 as´,max , j s.t/j 6 s

max ,
ˇ̌
V s´ .t/

ˇ̌
6 V s´,max and jZs.t/j 6Zsmax

for t 2 Œt0 , t1�, where

P�
s

max , a
s
x,max , �

s
max , Vx

s
,max , X

s
max 



INFLUENCE OF A NEW DISCRETE-TIME LQR-BASED MOTION CUEING

P�
s

max , asy,max , �smax ,V sy,max ,Y smax

P 
s

max , as´,max ,  smax ,V s´,max ,Zsmax

are the maximum allowable simulator platform angular rates, specific forces, velocities and
displacements of the simulator platform, respectively.

3. DISCRETE-TIME LQR-BASED MOTION CUEING

The DT LQR control is assured to produce a feedback that stabilizes the system as long as the
following basic theorems are fulfilled [23, 24]:

The system (A,B) must be reachable. R andQ must be positive definite. Then, the closed-loop
system (A-BK) has to be asymptotically stable. It should be noted that this retains in any case
the stability of the open-loop system. The reachability may be verified by checking that the
controllability matrix U D

�
B AB A2B � � � An�1B

�
has full rank n.

The system (A,B) must be stabilizable. R must be positive definite, Q must be positive semi-
definite and

�
A,
p
Q
�

must be observable. Then, the closed-loop system (A-BK) has to be
asymptotically stable [23, 24].

If the tracking problems have a priority, a better performance washout filter must be designed, which
utilizes the simulator capability and consequently reduces the sensation error to lower level than that
of classical motion cueing [7–9, 15, 16].

When a trajectory is taken as a priority, it is generally described in discrete time [16].
For most cases, it is usually quite challenging that dynamic programming must be solved numer-

ically. A few cases can be solved analytically; discrete LQR is one of them [16, 22]. Thus, DT
LQR-based motion cueing was chosen to reduce the sensation error in this paper.

First, sampling us at the sampling period ts D
.t1�t0/
N

gives us.k/ D us.t0 C kts/ for
k D 0, 1, : : : ,N . In terms of discretization, the optimization problem becomes the following:

J D

NX
kD0

QeT.k/ QQ Qe.k/C QuTs .k/
QR Qus.k/ (4)

ˇ̌̌
P�
s
.k/
ˇ̌̌
6 P� smax , jasx.k/j 6 asx,max ,

ˇ̌
� s.k/

ˇ̌
6 � smax , jV sx .k/j 6 V sx,max and jX s.k/j 6X smaxˇ̌̌

P�
s
.k/
ˇ̌̌
6 P�smax ,

ˇ̌
asy.k/

ˇ̌
6 asy,max , j�s.k/j 6 �smax ,

ˇ̌
V sy .k/

ˇ̌
6 V sy,max and jY s.k/j 6 Y smaxˇ̌̌

P 
s
.k/
ˇ̌̌
6 P smax ,

ˇ̌
as´.k/

ˇ̌
6 as´,max , j s.k/j 6 s

max ,
ˇ̌
V s´ .k/

ˇ̌
6 V s´,max and jZs.k/j 6Zsmax

The main goal is to convert (4) into a standard quadratic programming (QP) [16] by pil-
ing uveh.k/, us.k/ and e.k/ from the 0th sample to the N th sample to obtain Qe , Quveh and
Qus.2 R

2.NC1//, where ~ is used to denote a pile of vectors. Solving the state equation for sensational
error in discrete time gives an expression for Qe :

Qe D QK. Qus � Quveh/ (5)

is the vestibular model’s sensation error [16]. Equation (5) shows a state-variable feedback (SVFB)
control for the motion cueing. The cost function J can be consequently represented in a quadratic
form:

Q R (6)J D Q eT Q 
eeQ C Q us

T.k/ QsuQs.k/
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A discrete-time system can be given as QxkC1 D QA QxkC QB Quk . The aim is to seek an SVFB control
uk D Kxk that minimizes the discrete-time performance index for the proposed DT LQR motion
cueing [23].

J.ek/D
1

2

1X
iDk

�
QeTi
QQe Qei C Qu

T
si
QRsi Qusi

�
(7)

with design weighting matrices QQe D QQT
e > 0, QR D QRT > 0. It should be noted that this cost

function also depends on all the future control inputs ek , ekC1, : : :.
This is known as the DT LQR problem , because the system is linear and the cost is quadratic

[23].
Substituting the SVFB control into this yields

J.ek/D
1

2

1X
iDk

QeTi
�
QQe C QK

T QR QK
�
Qei (8)

The closed-loop system with the closed-loop plant matrix QAc using SVFB becomes

QekC1 D
�
QA� QB QK

�
Qek D QAc Qek (9)

A difference equation equivalent to (7) is

J .ek/D
1

2

�
QeTk
QQe Qek C Qu

T
s .k/

QRs Qus.k/
�
C
1

2

1X
iDkC1

�
QeTi
QQe Qei C Qu

T
si
QRsi Qusi

�
(10)

J .ek/D
1

2

�
QeTk
QQe Qek C Qu

T
s .k/

QRs Qus.k/
�
C J. QekC1/ (11)

where one requires the boundary condition J.ek D 0/ D 0. That is, if one can solve (11) given a
control input sequence, it is the same as finding .J.ek// for the given current state Qek by evaluating
the infinite sum in (7) [23, 24].

The optimal cost, minimizing the cost function, is given for all k in the form of (12).

J � .ek/D Qe
T
k
QP Qek (12)

That is, suppose the optimal cost is quadratic in terms of the current state and in terms of some
unknown kernel matrix P . If we can find the optimal feedback in terms of this assumption, then the
assumption will be valid [23].

It should be noted that J �.ek/ only depends on the initial state Qek , not the future inputs, because
the optimal cost is defined by selecting all future feedback controls as Qusi D QKeek withK the optimal
SVFB gain [23, 24].

To find the optimal SVFB and the optimal cost kernel P , we substitute (12) into (11) to obtain

QeTk
QP Qek D

1

2

�
QeTk
QQe Qek C Qu

T
s .k/

QRs Qus.k/
�
C QeTkC1

QP QekC1 (13)

Note that both J.ek/ and J.ekC1/ are expressed in terms of the same kernel P , according to (12).
By substituting QekC1 D QA Qek C QB Qus.k/ into (12),

J .ek/D Qe
T
k
QP Qek D

1

2

�
QeTk
QQe Qek C Qu

T
s .k/

QRs Qus.k/
�
C QA Qek C QB Qus.k/

T QP . QA Qek C QB Qus.k// (14)

The optimal control problem is now to minimize this with respect to Qus.k/. To do this,
differentiate to obtain

0D
@

@ Qus.k/
J . Qek/D Qe

T
k
QP Qek C QRs Qus.k/C QB

T QP
�
QA Qek C QB Qus.k/

�
(15)
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This yields the optimal control as�
QRC QBT QP QB

�
Qus.k/D� QB

T QP QA Qek (16)

or

Qus.k/D�
�
QRC QBT QP QB

��1 QBT QP QA Qek (17)

This defines the optimal gain as

QK D
�
QRC QBT QP QB

��1 QBT QP QA (18)

To find P, Qus.k/D� QK Qek should be substituted into (14) to obtain

QeTk Œ
�
QA� QB QK

�T QP �
QA� QB QK

�
� QP C QQC QKT QR QK� Qek D 0 (19)

Because this must hold for all current states ek , one has the matrix equation�
QA� QB QK

�T QP �
QA� QB QK

�
� QP C QQC QKT QR QK D 0 (20)

It has to be noted that this is a Lyapunov equation in terms of the closed-loop system matrix

QAc D QA� QB QK (21)

Now putting (18) into (21) yieldsh
QA� QB

�
QRC QBT QP QB

��1 QBT QP QA
iT
QP
h
QA� QB

�
QRC QBT QP QB

��1 QBT QP QA
i

� QP C QQC
h�
QRC QBT QP QB

��1 QBT QP QA
iT
QR
h�
QRC QBT QP QB

��1 QBT QP QA
i
D 0 (22)

after some simplification and determination gives

QAT QP QA� QP C QQ� QAT QP QB
�
QRC QBT QP QB

��1 QBT QP QAD 0 (23)

This equation is commonly used in modern control theory. It is known as the discrete-time alge-
braic Riccati equation [23]. At this point, solving the DT LQR problem was succeeded; therefore,
all our assumptions were justified [23].

There are some numerical procedures available for solving the discrete-time algebraic Riccati
equation. The MATLAB routine, which performs this, is named dlqr (A,B,Q,R) [22, 25].

Finally, the DT LQR-based motion cueing algorithm took the form as in (24) after considering
the closed-loop system matrix (HP stands for high-pass filtered motion, and LP for low-pass filtered
motion), which was discretized with a sampling interval of T D 1=60 s to obtain the discrete-time
motion cueing algorithms implemented in our dll plugin.

24 x.kC 2/

y.kC 2/

´.kC 2/

35D
264

2x.kC1/HPC4.9985
x.kC2/HPC1

0 0

0 2y.kC1/HPC4.9985
y.kC2/HPC1

0

0 0 2´.kC1/HPC4.9985
´.kC2/HPC1

375 �
2664
x.kC 1/

y.kC 1/

´.kC 1/

3775

C

24 � arcsin
�
x.kC2/LPC509.19

9.81

�
0 0

0 � arcsin
�
y.kC2/LPC509.19

9.81

�
0

0 0 0

35 �
264 �.k/
�.k/
 .k/

375

�

"
41 0 0
0 41 0
0 0 0

#
�

264 �.kC 1/
�.kC 1/
 .kC 1/

375

C

264
10x.k/HP�3.4543
x.kC2/HPC1

0 0

0 10y.k/HP�3.4543
y.kC2/HPC1

0

0 0 10´.k/HP�3.4543
´.kC2/HPC1

375 � " x.k/
y.k/
´.k/

#
(24)
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3.1. Fast Fourier transform

An FFT is an algorithm to compute the discrete Fourier transform (DFT) and its inverse (25 and (26))
[26].

For this study, the roll acceleration temporal runs were converted into frequency domain by FFT,
which is allowing us to achieve frequential analysis.

X.k/D

NX
jD1

x.j /!
.j�1/.k�1/
N (25)

From (25), (26) can be obtained as its inverse transform [26]:

x.j /D
1

N

NX
kD1

X.k/!
�.j�1/.k�1/
N (26)

where !N D e
�2�i
N is the N th root of unity [26].

MATLAB uses the functions YD fft(x) and yD ifft(X) to implement the FFT and inverse transform
pair given for vectors of length N by (25) and (26) [26].

3.2. Data denoising

The wavelet transform is used as a mathematical instrument in order to analyze any non-stationary
time series, showing the temporal variability of the PSD [27].

The data collected from SCANERSTUDIO driving simulation software were denoised by using
Daubechies wavelets (dbN ) 1D wavelet packet of MATLAB. For the entropy, Shannon type [28–30]
was chosen for the research pursued in this paper.

In dbN , N is the order. More detailed information about Daubechies wavelets can be found in
[30, 31]. By typing wavemenu at the MATLAB command prompt, the GUI of the wavelet can be
called. After the GUI comes to the apparent window, both the cabin and motion platform level roll
accelerations of the two washout algorithms (classical and DT LQR algorithms) are loaded sepa-
rately and independently to the 1D wavelet packet to denoise (Figure 3). db4 was used as 1D wavelet
packet of MATLAB to process the noisy signals. For entropy, Shannon type was assigned [30].

Soft thresholding method [32] as fixed form threshold (unscaled wn) was applied to process the
noisy roll acceleration signals from both cabin and platform levels in the wavelet 1D denoising
window. The global threshold was adjusted to 80% of the maximum global threshold. Lastly, by
pressing the ‘De-noise button’, the denoised signal was obtained.

4. RESULTS AND DISCUSSION

In this article, two different motion cueing algorithms were proposed: classical and optimal (DT
LQR) algorithms. Their roll-jerk-based sensation errors (Tables III and IV) were compared in order
to determine the sensory cue conflict [33, 34] conditions for the same scenario chosen (Figure 5).
Also, the natural frequencies and their corresponding amplitudes were discussed.

The experiments were driven on two conditions of motion cueing: classical and optimal (DT
LQR) algorithms (Figure 4). According to the proposed approach, the sensation error was aimed
to decrease in order to decrease the simulator sickness with the implementation of the optimal (DT
LQR) algorithm on the simulator compared with the already implemented classical algorithm.

Figure 1 demonstrates the block diagrams of the used DT LQR and classical motion cueing algo-
rithms. The dashed lines indicates the strategy for the DT LQR, whereas the continuous lines show
the classical strategy. It can easily be identified that the classical strategy is an open loop; inversely,
the DT LQR one is a closed-loop system with an SVFB that enables to control the dynamics of the
platform.

Figure 5 illustrates a specific country road scenario that was used in the experimental stage. The
red curve shows the trajectory followed by the vehicle.
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Figure 3. Denoising procedure.

Figure 4. Motion cueing algorithms integration in the simulator.

Figure 5. Trajectory of the scenario driven in the experiments.

According to the scenario, the vehicle goes straight, takes the first left turn, continues till the right
turn is reached, takes the right turn and drives till the crossroad section of the scenario. Then, it stops
with a full brake (Figure 6).

During the straight direction, the vehicle drives at a constant speed of 60 km/h for 126 s (Figure 6).
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Figure 6. Vehicle velocity profile for simulator experiments.

Table I. SAAM hexapod platform capability.

DOF Displacement Velocity Acceleration

Pitch ˙22ı ˙30ı/s ˙500ı/s2

Roll ˙21ı ˙30ı/s ˙500ı/s2

Yaw ˙22ı ˙40ı/s ˙400ı/s2

Heave ˙0.18 m ˙0.3 m/s ˙0.5 g
Surge ˙0.25 m ˙0.5 m/s ˙0.6 g
Sway ˙0.25 m ˙0.5 m/s ˙0.6 g

Table I shows the maximum limits of translational and angular displacements, velocities and
accelerations of the hexapod platform for the SAAM driving simulator [7–9] where gravitational
acceleration is given by g � 9.81 m/s2.

The implemented washout algorithms took the constraints of the hexapod platform of the
simulator into account (Figure 1; Table I).

Table II summarizes the motion cueing parameters used for the dynamics operation of SAAM
hexapod platform automobile simulator [7–9].

Those parameters were applied for both algorithms. As an exception, the DT LQR strategy had
an SVFB.

Figure 7 resumes the basic logic of dynamic automobile simulators. This paper discussed the
motion drive algorithms’ effects on simulator sickness by integrating two different kinds of motion
cueing strategy.

The DT LQR algorithm was developed to have a less sensation error (for the platform to cabin
level change, refer to Tables III and IV); thus, the simulator sickness could be decreased.

The sensory-conflict-based sickness was evaluated at the vehicle–platform levels in frequency
domain (Figures 8 and 9). The simple curves demonstrate the classical motion cueing algorithm,
whereas the dashed ones illustrate the optimal (DT LQR) algorithm in Figures 8 and 9.

Table II. Motion cueing parameters for the dynamic operation for a 6-DOF hexapod platform.

Longitudinal Lateral Roll Pitch Yaw
Classical motion cueing (gainD 1) (gainD 1) (gainD 0.25) (gainD 0.25) (gainD 1)

Second-order LP cut-off frequency (Hz) 0.3 0.3
Second-order LP damping factor 0.7 0.7
First-order LP time constant (s) 0.1 0.1 0.1

Second-order HP cut-off frequency (Hz) 0.5 0.5 2
Second-order HP damping factor 1 1 1
First-order HP time constant (s) 2 2 2
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Figure 7. Multi-sensory interaction in dynamic driving simulator.

Table III. Cabin roll acceleration based results in frequency domain.

Classical algorithm Optimal (DT LQR) algorithm

Natural frequencies (Hz) 1.8–2.2 1.8–2.5
Corresponding amplitudes to natural frequencies .ı=s2/ 0.5–0.34 0.62–0.48
Total sensed roll jerk .ı=s3/ 0.92 1.30

Table IV. Platform roll acceleration based results in frequency domain.

Classical algorithm Optimal (DT LQR) algorithm

Natural frequencies (Hz) 0.4–1.5 1.5–2.2
Corresponding amplitudes to natural frequencies .ı=s2/ 2.6–1.7 1.7–1.8
Total sensed roll jerk .ı=s3/ 5.76 4.05

Figure 8. Cabin roll acceleration frequential analysis.



B. AYKENT ET AL.

Figure 9. Platform roll acceleration frequential analysis.

Equation (27) calculates the total sensed roll jerk at cabin (vehicle) level. This level signifies the
vehicle dynamics model that moves in the visual environment during the simulator drive experi-
ments. The vehicle model has to be created depending on the data (kinematics data: camber angle,
toe-in and toe-out, etc; dynamics data: suspension, damper, tires, etc.) of a real vehicle in the driv-
ing simulation software [35]. It should be denoted that same passenger car model was used for both
algorithms during the experimental phase.

Cabin level total sensed roll jerkD
Z f

o

R'veh � df (27)

where R'veh is the roll acceleration of the vehicle (cabin) in ı=s2 and f is the frequency in Hz.
Equation (28) calculates the total sensed roll jerk at simulator platform level. Jerk is defined as the

first derivative of the acceleration. This level signifies the hexapod platform dynamics that moves
inertially during the simulator drive experiments (Figure 7).

Depending on the motion cueing type whether it is an open-loop control or a closed-loop control
(Figures 1 and 4), the platform dynamics response changes (Figure 9).

Simulator platform level total sensed roll jerkD
Z f

o

R's � df (28)

where R's is the roll acceleration of the simulator platform in ı=s2 and f is the frequency in Hz.
In the postprocessing phase of the real-time data registered during the simulator drives, ‘trapz’

command was used in MATLAB to compute the total sensed roll jerk at both algorithms for
cabin–platform levels.

Resonant frequency in roll was declared as in the range of 2 Hz or more in vehicle body (sprung
mass) [36]. Realistic natural roll frequency values were explained as 1.5 Hz for a passenger car [37].
From another research, the findings showed that lateral motion (roll, yaw, etc.) in the frequency
range of 0.1–0.5 Hz induces car sickness [38].

Tables III and IV show the frequential analysis results of the measured roll accelerations for both
vehicle and platform in real-time simulator experiments.

It is seen from these tables that the roll jerk sensitivities (5.76=0.92 � 6.26 for classical and
4.05=1.30 � 3.12 for DT LQR algorithm, finally 6.26=3.12 � 2) from platform to cabin stages
decreased approximately two times by using optimal (DT LQR) strategy.
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5. CONCLUSION AND FUTURE WORK

This study investigated the effect of a closed-loop tracking control (DT LQR-based optimal control
strategy) of the hexapod platform on sensation error (between vehicle and platform levels).

Having optimal (DT LQR) algorithm provided two times less contradicting cues between visual
(vehicle) and inertial (platform) signals for the same scenario driven with the identical conditions.

Regarding the motion sickness, classical motion cueing presented a sickness incidence because
the motion platform yielded a natural roll frequency of 0.4 Hz (Table IV). According to [38], it is
provocative to induce sickness. On the other hand, using DT LQR algorithm increased the natu-
ral roll frequency to 1.5 Hz for the sprung mass (vehicle body) that is convenient for a passenger
car [37].

For prospective research, the hybrid (discrete-time model reference adaptive control + DT LQR )
motion cueing performance will be assessed in multi-sensory level (vehicle, platform) and their
interaction with biofeedback response methods (EMG and postural stability) for the dynamic
simulator.
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