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Abstract

A numerical investigation of the behaviour of a cavitation pocket developing along a

Venturi geometry has been performed using a compressible one-fluid hybrid RANS/LES

solver. The interplay between turbulence and cavitation regarding the unsteadiness

and structure of the flow is complex and not well understood. This constitutes a

determinant point to accurately simulate the dynamic of sheet cavities. Various tur-

bulent approaches are tested: a new Scale-Adaptive model and the Detached Eddy

Simulation. 2D and 3D simulations are compared with the experimental data. An

oblique mode of the sheet is put in evidence.
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Nomenclature

Abbreviation

CFD Computational Fluid Dynamic

CFL Courant-Friedrichs-Lewy num-

ber

DES Detached Eddy Simulation

DFT Direct Fourier Transform

EOS Equation Of State

LES Large Eddy Simulation

PANS Partial Average Navier-Stokes

RANS Reynolds-Average Navier-

Stokes

RMS Root Mean Square

SA Spalart and Allmaras turbulence

model

SAS Scale-Adaptive Simulation

TBLE Turbulent Boundary Layer

Equations

Greek symbols

α Void fraction

ǫ Turbulent dissipation rate

κ Von Karman constant

λ Mixture thermal conductivity

λt Mixture turbulent thermal conduc-

tivity

µ Mixture dynamic viscosity

µt Mixture dynamic eddy viscosity

ρ Mixture density

ρsatL Density of liquid at saturation

ρsatV Density of vapour at saturation

σ cavitation parameter

τ Mixture total stress tensor

ν̃ Pseudo eddy-viscosity

Latin symbols

Cp Heat capacity at constant pressure

cbaro Minimum speed of sound in the

mixture

CDES Constant of the DES model
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d̃ New distance of the DES model

d Distance to the nearest wall

e Mixture internal energy

Fc Convective flux density

Fv Viscous flux density

k Mixture turbulent kinetic energy

ℓ Integral turbulence length scale

Lvk Von Karman length scale

P Mixture pressure

Pk Turbulent production term

Pr Prandtl number

Prt Turbulent Prandtl number

Q Mixture total heat flux

Re Reynolds number

S Source term

Sij Stress tensor

T Temperature

u+ Non dimensional wall velocity

ui Mass velocity vector

Uτ Friction velocity

w Vector of conservative variables

y+ Non dimensional wall distance

Subscript

inlet Inlet value

k k-phase

ref Reference value

w Wall value

Superscript

t Turbulent part

v Viscous part
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1. Introduction

Cavitation is a significant engineering phenomenon that occurs in fluid machin-

ery, fuel injectors, marine propellers, nozzles, underwater bodies, etc. In most cases,

cavitation is an undesirable phenomenon, significantly degrading performance, re-

sulting in reduced flow rates, lower pressure increases in pumps, load asymmetry,

vibrations, noise and erosion. Such flows are characterized by important variations

of the local Mach number (due to the drastic diminution of the speed of sound in the

mixture), large density ratio between the liquid and the vapour phases, small-scale

turbulence interactions and non equilibrium thermodynamic states.

A considerable effort has been realized to understand the fundamental physics of

cavitation phenomena concerning the dynamics of both sheet and cloud cavitation.

Cavitation sheets that appear on solid bodies are characterized by a closure region

which always fluctuates, with the presence of a re-entrant jet. This jet is mainly

composed of liquid which penetrates the attached cavity from downstream and flows

upstream along the solid surface. Partial cavity can be classified as either closed or

open attached cavity, depending on the flow in the cavity closure region. A closed

partial cavity has a relatively stable cavity length and a cavity closure that is rel-

atively free of bubbles. An open cavity is typically frothy in appearance, and has

a periodically varying length that is associated with the shedding of vapour clouds

[1]. Both types of cavities have been studied, experimentally and numerically, to

describe and investigate the transition between stable and unstable behaviour, the

development of the re-entrant jet, the interaction with the turbulent boundary layer,

and the mechanism of cloud cavitation generation [2, 3, 4, 5].

Observations on hydrofoils with high-speed motion pictures put in evidence the three-
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dimensional structures associated with the phenomena. The re-entrant jet does not

progress uniformly toward the leading edge according to the spanwise location, and

the jet component normal to the closure line is reflected inward [6]. Studies of the

spanwise effect through the sweep angle concluded the re-entrant jet was directed

into the cavity allowing for a steady sheet which only sheds cavitating clouds at the

far downstream edge [7]. To distinguish between various directions of the re-entrant

flow, the term side-entrant jet was introduced. This term refers to the part of the jet

that has a strong spanwise velocity component directed into the cavity originating

from the sides. The term re-entrant jet is reserved for the flow originating from the

part of the cavity where the closure is more or less perpendicular to the incoming

flow and is thus mainly directed upstream. The shape of the closure region of the

cavity sheet governs the direction of the re-entrant and side-entrant jets. Both jets

may form an equally important source for the shedding [8]. The spanwise variation

in the cavity and its evolution leads to important variations in the thickness and the

void fraction of the sheet. The cloud cavitation structures generated are also fully

3D. The 3D shedding mechanism studied on a twisted hydrofoil marked differences

with the 2D shedding, and included secondary instabilities caused by side-entry [8].

Recently, an experimental analysis of a pulsating cavitation sheet made appear the

presence of a bifurcation of the cavitation sheet behaviours [9]. To put in evidence

this bifurcation, the authors applied the Proper Orthogonal Decomposition (POD)

and the Dynamic Mode Decomposition (DMD), which allowed to give the energetic

spectrum of the structures and the associated frequency. It seemed that when the

cloud shedding mechanism was driven by a shock wave, a low frequency associated

with spanwise structures is observed.

Besides these experimental investigations, numerical simulations were performed

5



to investigate such 3D unsteady cavitating flows on hydrofoils and venturis, based on

mixture homogeneous models (one-fluid methods). Various assumptions were done

on the viscous effects and the turbulence modelling. Inviscid compressible codes have

been developed to simulate the 3D twisted hydrofoil, with a special emphasis on the

detection of shock formation and propagation [10], or a study of the dynamics of

the phenomena [11]. To investigate the cavitation-turbulence interaction occurring

at small scales and the mechanism that generates the large-scale vortex structure,

3D turbulent codes have been developed. Different approaches for the turbulence

modelling have been investigated in order to capture the finer-scale dynamics. First

computations were performed solving the unsteady Reynolds-Averaged Navier-Stokes

(URANS) equations coupled with transport-equation turbulence models. Recently,

URANS computations of the 3D twisted hydrofoil showed the ability of such a com-

putation to capture the large scales of the cavitation sheet [12]. As the URANS

approach did not fully account for the turbulent-cavitation interactions, Large Eddy

Simulations (LES) were tested on both hydrofoil and Venturi geometries [13, 14].

Yet, due to high Reynolds number flows and the significant cost in the computa-

tional requirements, simulations were performed on coarse grids which leading to

under-resolved simulations. To overcome the high computational cost of a wall re-

solved LES, a wall model based on the logarithmic law of the wall was introduced in

an implicit LES solver [15, 16]. Validations on 3D cavitating cases clearly exhibited

secondary cavitating vortices in spite of the small spanwise extension. Another strat-

egy proposed by Spalart, referred to as Detached-Eddy Simulation (DES), enables

to simulate smaller scales with a minimal computational cost [17]. First cavitating

simulations were proposed for a massively separated hydrofoil [18], but results were

far from statistically stationary. Other simulations were performed on ventilated

bodies and an ogive [19] where DES appeared to yield more accurate flow mod-
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elling. A comparison with URANS, DES and ILES approach was proposed on the

twisted cavitating foil [20]. The major mechanisms governing the shedding dynam-

ics were well captured by simulations except for the URANS approach. Recently,

the Partial-Averaged Navier-Stokes (PANS) approach based on a k − ε turbulence

model, initially developed for aerodynamic flows, was tested for a cavitating flow

around a marine propeller [21] and the twisted hydrofoil [22]. This approach aims

at resolving a substantial part of the turbulent fluctuations but does not contain an

explicit dependency on the computational grid as LES. It involves the ratio of the

unresolved-to-total kinetic energy fk and the ratio of the unresolved-to-total dissi-

pation rate fε in the model constants. The user decides a priori how much of the

kinetic energy and dissipation rate is to be modelled.

In previous work, an in-house finite-volume code solving the URANS compress-

ible equations was developed with a mixture homogeneous approach. The cavitation

phenomenon was modelled by a barotropic liquid-vapour mixture equation of state

(EOS). Preliminary 2D computations were performed to assess the numerical as-

pects, thermodynamic constraints on the EOS and the influence of various transport-

equation turbulence models [23, 24]. Recently, an hybrid RANS/LES model able

to adjust the level of turbulent eddy viscosity was developed and validated on 2D

Venturi flows [25]. Such a strategy called Scale-Adaptive Simulation (SAS) was in-

troduced by Menter and Egorov (see [26] for a review of the SAS model). From

their work, we derived two SAS turbulence models based on one- and two-equation

models. As the PANS approach, Scale-Adaptive models do not imply explicitly a

dependence on the grid. To compare these models with other hybrid RANS/LES

models, computations are performed with the DES approach of Spalart. We per-

formed 2D and 3D computations, which show the advantage of hybrid RANS/LES
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turbulence models compared with standard turbulence models. Analyses have been

conducted with a special emphasis on the 3D effects. Our goals in this study are:

• To test a new formulation of a scale-adaptive model for cavitating flows and to

investigate the behaviour of the proposed model on unsteady cavitating flows.

• To study 3D effects on a Venturi geometry by comparing 2D and 3D simula-

tions.

• To compare SAS and DES for the simulation of cavitating flows.

This paper is organized as follows. We present first the governing equations,

including the physical models, followed by an overview of the numerical methods

adopted. The Venturi configuration and the associated numerical parameters are

then presented. 2D and 3D simulations are described and compared with experi-

mental data. A deeper analysis of the 3D flow simulated with the Scale-adaptive

model is proposed and discussed. The last part deals with conclusions and future

investigations.

2. Models, equations and numerics

The numerical simulations are carried out using an in-house CFD code solving

the one-fluid compressible hybrid RANS/LES system.

2.1. The homogeneous approach

The homogeneous mixture approach is used to model two-phase flows. The phases

are assumed to be sufficiently well mixed and the disperse particle size are sufficiently

small thereby eliminating any significant relative motion. The phases are strongly

coupled and moving at the same velocity. In addition, the phases are assumed to
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be in thermal and mechanical equilibrium: they share the same temperature T and

the same pressure P . The evolution of the two-phase flow can be described by the

conservation laws that employ the representative flow properties as unknowns just

as in a single-phase problem. We introduce αk the void fraction or the averaged

fraction of presence of phase k. The density ρ, the center of mass velocity u and the

internal energy e for the mixture are defined by [27]:

ρ =
∑

k

αkρk (1)

ρui =
∑

k

αkρkuk,i (2)

ρe =
∑

k

αkρkek (3)

To close the system, an equation of state (EOS) and a thermal relation are neces-

sary to link the pressure and the temperature to the internal energy and the density.

2.2. The cavitation model

To link the pressure to the thermodynamic variables, the stiffened gas EOS is

used for pure phases. In the mixture, a barotropic law proposed by Delannoy [28] is

considered.

This law is characterized by its maximum slope 1/c2baro. The quantity cbaro is an

adjustable parameter of the model, which can be interpreted as the minimum speed

of sound in the mixture.

When the pressure is between Pvap +∆P and Pvap −∆P , the following relationship

applies:

P (α) = Pvap +

(
ρsatL − ρsatV

2

)
c2baro Arcsin (1− 2α) (4)

where ∆P represents the pressure range of the law and, for a void ratio value of

0.5, the pressure is equal to the saturation pressure Pvap. This law introduces a small
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non-equilibrium effect on the pressure. Moreover, we assume that thermodynamic

effects on the cavitation are negligible.

The hyperbolicity and convexity of the EOS have been demonstrated for the

inviscid system [23]. The influence of cbaro has been studied in previous work. In the

present paper, the value of cbaro is set to 0.47 m/s, corresponding to a pressure range

of ∆P = 175 Pa.

2.3. Hybrid RANS/LES turbulence modelling

For turbulent computations, the Reynolds-Averaged Navier-Stokes equations are

used in an hybrid RANS/LES framework, coupled with two-equation turbulence

models. For low Mach number applications, an inviscid preconditioning method

is necessary [29, 30], based on the modification of the derivative term by a pre-

multiplication with a suitable preconditioning matrix Pc. These equations can be

expressed as:

P−1
c

∂w

∂t
+ div (Fc − Fv) = S (5)

w =




ρ

ρV

ρE

ρk

ρΨ




; Fc =




ρV

ρV ⊗ V + pI

(ρE + p)V

ρkV

ρΨV




; Fv =




0

τ v + τ t

(τ v + τ t).V −Qv −Qt

(µ+ µt/σk) grad k

(µ+ µt/σΨ) gradΨ




where w denotes the conservative variables, Fc and Fv the convective and viscous

flux densities and S the source terms, which concern only the transport equations.

k is the mixture turbulent kinetic energy and Ψ is a mixture turbulent variable.
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The exact expression of the eddy-viscosity µt and the source terms depends on the

turbulence model as well as constants σk and σΨ.

The total stress tensor τ is evaluated using the Stokes hypothesis, Newton’s law and

the Boussinesq assumption. The total heat flux vector Q is obtained from the Fourier

law involving a turbulent thermal conductivity λt with the constant Prandtl number

hypothesis.

τ = τ v + τ t = (µ+ µt)

[
( gradV + ( gradV )t)−

2

3
( divV )I

]
−

2

3
ρkI

Q = Qv +Qt = − (λ+ λt) gradT with λt =
µtCp

Prt

(6)

In pure liquid, the viscosity µ is determined by an exponential law and, in pure

vapour, the viscosity follows the Sutherland law. The mixture viscosity is defined

as the arithmetic mean of the liquid and vapour viscosities (fluctuations of viscosity

are neglected) [27]:

µL(T ) = µ0L exp (B/T ) (7)

µV (T ) = µ0V

√
T

293

1 + TS/293

1 + TS/T
(8)

µ(T, α) = αµV (T ) + (1− α)µL(T ) (9)

where µ0L , µ0V , B and TS are constants.

The mixture thermal conductivity λ is also defined as the arithmetic mean of the

liquid and vapour values:

λ(α) = α
µVCpV

PrV

+ (1− α)
µLCpL

PrL

(10)

The turbulent Prandtl number Prt is set to 1.
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2.4. The turbulence modelling

Computations of cavitating flows with standard turbulence models are unable

to capture the unsteadiness of the cavitation sheet and mainly the liquid re-entrant

jet along the wall [24]. To capture the liquid re-entrant jet, various approaches have

been tested based on a reduction of the eddy viscosity in the mixture. The correction

proposed by Reboud [31] for the k− ǫ model is often used and consists in modifying

the computation of the eddy viscosity:

µt = f(ρ)Cµfµ
k2

ǫ
with f(ρ) = ρV +

(
ρV − ρ

ρV − ρL

)n

(ρL − ρV ) (11)

The parameter n is usually set to 10.

The use of the Reboud correction showed its ability to compute various cavitating

flows [32, 33, 34]. Nevertheless, this correction is empirical and there is no physical

proof for a drastic reduction of the eddy viscosity in two-phase flow regions.

In order to improve the turbulence modelling of cavitating flows, one way consists

in applying hybrid RANS/LES models known to reduce the eddy viscosity in region

where the mesh allows the resolution of a part of the turbulence spectrum. Such

hybrid models became popular during the last decade as the family of Detached

Eddy Simulation (DES) models [35, 36] and Scale Adaptive (SAS) models developed

by Menter and Egorov [37].

In the present work, the DES model is applied following formulation for the pseudo

viscosity ν̃:

∂ρν̃

∂t
+

∂

∂xl

[
ρ ul ν̃ −

1

σ
(µ+ ρν̃)

∂ν̃

∂xl

]
= cb1 (1− ft2) S̃ ρ ν̃ +

cb2
σ

∂ρν̃

∂xl

∂ν̃

∂xl

−
(
cω1fω −

cb1
κ2

ft2

) ν̃2

d̃2
(12)

with d̃ the new distance to walls defined as:

d̃ = min(d, CDES∆) (13)
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where d is the distance from the nearest wall, ∆ = max(∆x,∆y,∆z) and CDES =

0.65.

SAS models follow another approach compared to the DES models since they do

not depend explicitly on the mesh. Indeed, revisiting the k − kℓ model proposed by

Rotta [38], Menter shows that in inhomogeneous turbulent flows an additional term

including the second derivative of the velocity is present. Modelling this new term

and applying a variable change, Menter provides a k − Φ model with Φ =
√
kℓ:

∂ρk

∂t
+

∂ρujk

∂xj

= ρPk − c3/4µ ρ
k3/2

ℓ
+

∂

∂xj

(
µt

σk

∂k

∂xj

)

∂ρΦ

∂t
+

∂ρujΦ

∂xj

=
Φ

k
ρPk

(
ξ1 − ξ2

(
ℓ

Lvκ

)2
)

− ξ3ρk +
∂

∂xj

(
µt

σφ

∂Φ

∂xj

)
(14)

with:

µt

ρ
= νt = c1/4µ Φ ; ρPk = µtS

2 ; S =
√
2SijSij ; Sij =

1

2

(
∂ui

∂xj

+
∂uj

∂xi

)

and:

Lvκ = κ

∣∣∣∣
U

′

U ′′

∣∣∣∣ ;
∣∣∣U ′

∣∣∣ = S ;
∣∣∣U ′′

∣∣∣ =
√

∂2ui

∂x2
k

∂2ui

∂x2
j

The new term ξ2

(
ℓ

Lvκ

)2
involves the von Karman length scale Lvκ, which acts as an

indicator of the inhomogeneity of the flow. Consequently, in region where the flow

is highly inhomogeneous, the production of Φ is reduced leading to a decrease of the

eddy viscosity. Adapting this model to the well-known k − ω SST, Menter [37, 39]

and also Davidson [40] showed the ability of this model to adjust the level of the

eddy viscosity as a function of the resolved scales. From the work of Menter, we

derived a SAS formulation for the Smith k − ℓ model [25]. This model writes:

∂ρk

∂t
+

∂

∂xl

[
ρ ulk −

(
µ+

µt

σk

)
∂k

∂xl

]
= ρPk −

ρ (2k)3/2

B1ℓ
− 2µ

∂
√
k

∂xl

∂
√
k

∂xl

(15)
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∂ρℓ

∂t
+

∂

∂xl

[
ρ ulℓ−

(
µ+

µt

σl

)
∂ℓ

∂xl

]
= −

ℓ

k
Pkξ2

(
ℓ

Lvk

)2

+(2− E2)
ρ
√
2k

B1

[
1−

(
ℓ

κd

)2
]

−
µt

σℓ

1

ℓ

∂ℓ

∂xl

∂ℓ

∂xl

(
ℓ

κd

)2

+ ρℓ
∂ul

∂xl

+2
µt

σℓ

1

k

∂ℓ

∂xl

∂k

∂xl

(16)

with the additional term − ℓ
k
Pkξ2

(
ℓ

Lvk

)2
and ξ2 = 1, 47 as specified by Menter. The

others parameters are set to the values defined by Smith [41]. For our computations,

the new term is only activated in two-phase flow regions.

In an earlier paper, Menter [42] transformed the k−ǫ two equation model in a one

transport equation for the eddy viscosity νt and made appear the von Karman length

scale in the destruction term. Inspiring from this work, a SAS formulation for the

Spalart-Allmaras one-equation model (SA) is derived. First, the Spalart-Allmaras

model is written in a high Reynolds number form:

∂ρν̃

∂t
+

∂

∂xl

[
ρ ul ν̃ −

1

σ
(µ+ ρν̃)

∂ν̃

∂xl

]
= cb1S̃ ρ ν̃ +

cb2
σ

∂ρν̃

∂xl

∂ν̃

∂xl

−cω1ρ
ν̃2

d2
(17)

where the last term on the right side is the destruction term with d the distance

to the nearest wall. Replacing d by the von Karman length scale allows the model

to behave as a SAS model. Indeed, if we balance the production term and the

destruction term, we obtain:

ν̃ ∝ L2
vkS̃ (18)

therefore the eddy viscosity is proportional to the von Karman length scale and

adjusts to the resolved scales. Compared with the DES formulation, this formulation
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does not depend explicitly on the mesh. Incorporating this modification in the SA

model, the transport-equation for ν̃ becomes:

∂ρν̃

∂t
+

∂

∂xl

[
ρ ul ν̃ −

1

σ
(µ+ ρν̃)

∂ν̃

∂xl

]
= cb1 (1− ft2) S̃ ρ ν̃ +

cb2
σ

∂ρν̃

∂xl

∂ν̃

∂xl

−cω1fωρ ξsas
ν̃2

L2
vk

−
cb1
κ2

ft2ρ
ν̃2

d2
(19)

with ξSAS a constant to specify. In the present work, the use of Lvk instead of d is

applied only in two-phase flow regions and after several tests, the constant ξSAS is

set to 3.

2.5. Wall functions

At the wall, a two-layer wall law is used:

u+ = y+ if y+ < 11.13

u+ =
1

κ
ln y+ + 5.25 if y+ > 11.13

u+ =
u

Uτ

; y+ =
yUτ

νw
; Uτ =

√
τw
ρw

(20)

where κ = 0.41 is the von Karman constant and the subscript w indicates wall val-

ues. The wall shear stress τw is obtained from the analytical velocity profile (Eq.

20) by iterating on the product y+u+. We assume that wall functions are similar

in a two-phase flow and in a single-phase flow. The validity of this assumption was

studied in [43] for Venturi cavitating flows. Comparisons with the thin boundary

layer equations (TBLE) were performed and showed the good behaviour of the two-

layer approach. For three-dimensional boundary layers, the existence of a wall law

is assumed valid for the streamwise velocity component. Moreover, in adjacent cells
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to a wall, the velocity is supposed collinear to the wall friction direction.

With regard to the turbulent transport-equation models, the production of k is

computed according to the formulation proposed by Viegas and Rubesin [44]. The

value of ℓ in the first cell is computed with the linear relation ℓ = κy.

For the one-equation Spalart-Allmaras model, the transported quantity is calculated

using the model’s closure relations, the velocity profile and a mixing-length formu-

lation for the eddy-viscosity (see [43] for more details).

2.6. Numerical methods

The numerical simulations are carried out using an implicit CFD code solving the

RANS/turbulent systems for multi-domain structured meshes. This solver is based

on a cell-centered finite-volume discretization. For the mean flow, the convective flux

density vector on a cell face is computed with the Jameson-Schmidt-Turkel scheme

[45] in which the dispersive error is cancelled. It allows to reach the third-order space

accuracy. The artificial viscosity includes a second-order dissipation term D2 and a

fourth-order dissipation term D4, which involve two tunable parameters k(2) and k(4).

The viscous terms are discretized by a second-order space-centered scheme. For the

turbulence transport equations, the upwind Roe scheme [46] is used to obtain a more

robust method. The second-order accuracy is obtained by introducing a flux-limited

dissipation [47].

Time integration is achieved using the dual time stepping approach and a low-cost

implicit method consisting in solving, at each time step, a system of equations arising

from the linearization of a fully implicit scheme. The derivative with respect to the

physical time is discretized by a second-order formula.

The numerical treatment of boundary conditions is based on the use of the precon-
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ditioned characteristic relationships. We assume that inlet and outlet areas are in

a pure liquid region, no cavitation appears on these boundaries. An outlet pressure

and an inlet velocity are specified, whereas a no slip condition is applied at the walls.

More details are given in [23].

3. Experimental conditions and numerical set up

3.1. Experimental conditions [48]

The Venturi was tested in the cavitation tunnel of the CREMHyG (Centre d’Essais

de Machines Hydrauliques de Grenoble). The test section is 520 mm long, 50 mm

wide and 50 mm high in the inlet. It is characterized by a divergence angle of 4◦,

illustrated in Fig. 1. The edge forming the throat of the Venturi is used to fix the

separation point of the cavity. This geometry is equipped with five probing holes to

allow various measurements such as the local void ratio, instantaneous local speed

and wall pressure (Fig. 1).

The selected operating point is characterized by the following physical parameters

[48]:

Uinlet = 10.8 m/s, the inlet velocity

σinlet =
Pinlet − Pvap

0.5ρU2
inlet

≃ 0.55, the cavitation parameter in the inlet section

Tref ≃ 293K, the reference temperature

Lref=252 mm, the reference length, which corresponds to the chord of a blade of a

turbomachinery

ReLref
=

UinletLref

ν
= 2.7 106, the Reynolds number

With these parameters, a cavity length L ranging from 70 mm to 85 mm is obtained.

The cavity is characterized by an almost constant length, although the closure re-
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gion always fluctuates, with the presence of a re-entrant jet and little vapour cloud

shedding. For this geometry, no periodic cycles with large shedding were observed.

3.2. Meshes

The initial 2D grid is a H-type topology. It contains 251 nodes in the flow direction

and 62 nodes in the orthogonal direction. A special contraction of the mesh is applied

in the main flow direction just after the throat to better simulate the two-phase flow

area (Fig. 2). The y+ values of the mesh, at the center of the first cell, vary between

12 and 27 for a non cavitating computation.

An investigation of the mesh influence, especially in the near-wall area, was per-

formed in [43] for 2D Venturi cavitating flows. Results in good agreement with the

experimental data were obtained with the considered 251× 62 mesh.

From this grid, the 3D mesh was built by extruding the 2D mesh with 62 nodes in

the cross direction z. As the test section is a square, the same grid evolution was

applied in the y and z directions. A view of the mesh is presented in Figure 2. The

y+ values obtained from a non cavitating computation with the SA turbulence model

vary between 1 and 20.

3.3. Numerical parameters

For the non cavitating regime, computations are started from a uniform flow-field

using a local time step. For the unsteady cavitating regime, computations are per-

formed with the dual time stepping method and are started from the cavitating

numerical solution. The numerical parameters are:

- the dimensionless time step, ∆t∗ =
∆tUinlet

Lref

= 4.9 10−3

- number of sub-iterations for the dual time stepping method, 100

- the CFL number, 0.2
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- Jacobi iterations for the implicit stage, 15

- the two coefficients of the artificial dissipation, k(2) = 1 and k(4) = 0.045 for the 2D

computations and k(4) = 0.055 for the 3D computations.

- the farfield value of the turbulent kinetic energy, k∞ = 0.0045 m2/s2

- the farfield value of the turbulent length scale, ℓ∞ = 1.4 10−6 m

- the farfield value of the turbulent eddy-viscosity, µt∞ = 10−4 Pa.s

4. Results

Six computations were performed (Tab 1): three on the 2D mesh and three on

the 3D mesh.

For the DES computations, the value of the constant CDES has been modified in order

to capture a cavitation sheet behaviour in agreement with the experimental data.

Consequently, the value is set to 0.9 instead of 0.65. The main reason to increase

the value of the constant CDES comes from the fact that with the standard value,

the bottom wall just behind the throat is computed with the LES mode whereas

with a value of CDES = 0.9, the LES mode is moved a little bit away (Fig. 3). These

small differences between the two computations are sufficient to transform the cavity.

Indeed, with the standard value of CDES only large cloud shedding are observed with

no attached cavity at the throat.

First, a qualitative description of the 3D flow topology is displayed, followed by

comparisons of local profiles between 2D and 3D computations. Finally, a special

focus on the 3D solution obtained with the SA SAS model is presented with a study

of velocity fluctuations and two-point correlations.
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4.1. Qualitative description of the 3D computations

The Direct Fourier Transformation (DFT) of the vapour volume computed from

the 3D computations put in evidence a low frequency (Tab.1), which is not observed

with the 2D computations.

One way to explain such a behaviour can be provided from the results presented in

[9] where a pulsating cavitation sheet on a NACA0015 hydrofoil is analysed using

POD and DMD methods. It has been observed by several authors a bifurcation

of shedding mechanism around the value σ
2α

≈ 4. For a lower value, the shedding

mechanism would be driven by a shock wave, which propagates along the cavitation

sheet closure. In this case, a low frequency associated with spanwise structures is

observed. For an upper value, it is the re-entrant jet that controls the shedding

mechanism and no low frequency is measured. For our Venturi test case, the value

σ
2α

is closed to 4, near the regime transition. Therefore a low frequency phenomenon

can be expected. Furthermore, as it will be described below, this low frequency is

associated with spanwise structures.

Figure 4 shows the density gradient modulus (Schlieren-like visualization) at differ-

ent instants for the 3D computations. The throat of the Venturi is located at the

abscissa x = 0.002 m. For the SAS computations, the low frequency is linked to a

cross instability of the cavitation sheet. Indeed, the cavitation sheet growth is not

homogeneous in the spanwise direction but alternates between the two lateral walls

of the Venturi. In the case of the DES calculation, the sheet is more stable and

presents a U shape form. Another way to view the shape of the cavity is to use an

iso-surface of the void fraction. Figure 5 displays such an iso-surface for a value of

the void fraction equal to 60%. Once again, the DES computation presents a cavity

more stable compared to the SAS computations.

Downstream the cavitation sheet, the cross component w of the velocity field along

20



the bottom wall fluctuates at a low frequency and get value closed to 1 m/s (Fig.6),

which corresponds 10% of the longitudinal velocity u.

Instantaneous snapshots of the void ratio and the velocity vector are plotted in Figure

7 in a transversal cutting plane at station 3 (abscissa x = 0.0382 m). For visualiza-

tion convenience, the scale of the void fraction is widen to 1.5 but the value never

exceeds 1. The velocity field in the cavitation sheet shows the presence of a vortical

structure along the corner between the side wall and the bottom wall. The flow inside

the cavity differs between DES and SAS computations. For the SAS computations, a

transversal component is clearly present, which alternates at the same low frequency

that the volume of vapour. For the DES computation, the velocity vector is vertical

in the center of the Venturi and the cross component is quasi null. Near lateral walls,

the cross component is present due to the corner vortex.

Consequently, the 3D computations makes appear 3D effects due to the presence

of a cross flow component and a periodic fluctuation of the volume of vapour. For

the SAS computations an oblique mode is exhibited corresponding to the alternated

oscillation of the sheet in the spanwise direction. This phenomenon is not computed

with the DES computation. To evaluate the impact of 3D effects on the mean flow in

the mid-span section of the geometry, comparisons between 2D and 3D computations

are proposed.

4.2. Comparisons between 2D and 3D computations

Comparisons between 2D and 3D simulations concern time-averaged quantities

extracted on the mid-span plane: the longitudinal velocity u, the void fraction α,

the pressure and the RMS pressure fluctuations at the wall. For the longitudinal

velocity, the experimental value corresponds to the most probable one.
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4.2.1. SAS computations

At station 1 (Fig.8), both the time-averaged velocity and void fraction are similar

between 2D and 3D computations. At station 2, the k − ℓ SAS computation under-

estimates the void fraction due to the presence of a re-entrant jet along the bottom

wall, which is not observed experimentally. At station 3 and 4, the void fraction

predicted by the 3D computations is lower than in the 2D computations. About

the velocity u, 3D computations do not have the same behaviour compared with

2D computations. The Spalart-Allmaras SAS 3D computation leads to a stronger

and thicker re-circulation compared with the 2D computation, whereas the k − ℓ

SAS 3D computation minimizes the re-circulation intensity compared with the 2D

computation. Finally, at station 5, the SA SAS 3D computation does not predict

void fraction, which is not the case for the 2D computation. For the k − ℓ SAS

computations, 3D simulation provides a void fraction higher than the 2D solution.

The time-averaged wall pressure, plotted in Figure 9, does not evolved in the same

way for the 3D computations. Indeed, the inlet cavitation number σinlet is higher for

the 3D computations than the 2D computations, therefore, we expect that the mean

wall pressure be higher for the 3D computations than the 2D ones. However, if this

is the case for the computation with the Spalart-Allmaras SAS model, the opposite

occurs with the k − ℓ SAS model.

The RMS wall pressure fluctuations (Fig.9) put in evidence large discrepancies be-

tween 2D and 3D computations. For the 2D computations, the peak of fluctuations

is correctly located with an amplitude in agreement with the experimental measure-

ments. Moreover, the decrease of the fluctuations level in the wake of the cavitation

sheet is well captured. This is not the case for the 3D computations since the level

of pressure fluctuations is largely overestimated in the wake.
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4.2.2. DES computations

The time-averaged profiles for the void fraction and the longitudinal velocity are

displayed in Figure 10. At the first two stations, the profiles are the same for the 2D

and 3D calculations. At station 3, the 3D computation predicts a void fraction lower

and a re-circulation slightly thicker than the 2D solution. At station 4, contrary to

the 2D computation, the 3D calculation provides a void fraction and a longitudinal

velocity close to the experimental one. Finally, at station 5, as previously observed

with the SA SAS model, the 3D computation under-estimated the cavitation sheet

length since no vapour is present at this station. This is linked to a smoother re-

entrant jet in the 3D computation in comparison with the 2D case.

The time-averaged wall pressure profile and RMS fluctuations, plotted in Figure

11, show large discrepancy between the 2D and the 3D computations. The 3D

computation under-estimates the wall pressure by a factor of three compared with

the experiment and the 2D calculation. Similarly to SAS simulations, the RMS

pressure fluctuations present a large value in the wake of the cavity for the 3D

computation.

4.2.3. Partial conclusions

The time-averaged void fraction and velocity profiles show some small discrepan-

cies between 2D and 3D computations particularly in the re-circulation area. Nev-

ertheless, the re-entrant jet is well captured whatever the dimension of the domain.

Moreover, a part of the difference can be explained by the fact that comparisons are

done for different inlet cavitation numbers.

The wall pressure analysis put in evidence a 3D effect on the dynamic behaviour of

the cavitation sheet. Mainly, the intensity of the pressure fluctuations are overesti-

mated in the sheet as well as in the wake. Further reasons can be invoke to explain
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these discrepancies between the 2D and 3D compuations. Firstly, the considered cav-

itation model (barotropic model) has never been tested in such 3D cavitating flows.

It has been calibrated with 2D simulations. Maybe the link between the pressure and

the density is too strong to simulate the 3D behaviour. Secondly, we assumed that

the Boussinesq assumption is available with a relation between the mixture Reynolds

tensor and the center of volume averaged velocity gradient. Maybe the assumptions

are too strong in 3D cavitating flows. Additional experimental or numerical data are

needed.

Therefore, 3D effects plays a role in the dynamic of the cavitation sheet even if both

the velocity and void fraction profiles, where measurements are available, are not

strongly affected. Indeed, it seems that 3D effects as we can see on the pressure fluc-

tuations are essentially presented in the wake region located downstream the station

of measurements. These effects manifest also by the low frequency pointed out on

the vapour volume signal.

4.3. Analysis of the oblique mode

From the 3D computations performed with the Spalart-Allmaras SAS model, a

global view of the dynamic of the cavitation sheet is displayed (statistical treatment

on 2.2 seconds). Secondly, a deeper analysis is proposed with distributions and

correlations in the mid-span section and a cross section (statistical treatment on

0.45 second only).

4.3.1. Global analysis

As shown before in Figure 4, the cavitation sheet is not symmetric in the spanwise

direction and grows alternatively from one side of the Venturi to the other. The

intensity of the cross flow is dampened away from the bottom wall, which confirms

the role plays by the cavitation sheet in the formation of this flow. The structure of
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the flow in the cavitation sheet is studied using a longitudinal cutting plane located

at distance y = 0.001 m from the bottom wall. Six snapshots of the sheet are shown

in Figure 12. The time between two snapshots is approximately T0 = T
6
≈ 0.028

second where T is the period of the oblique mode. The asymmetry of the cavitation

sheet and the velocity field are well exhibited. At t = 0, the sheet is asymmetric

with an attached cavity (defined by a void fraction higher than 0.9) expands to

x = 0.06 m on the side z = 0.05m and only to x = 0.03 m on the other side. At

the center of the Venturi, the re-entrant jet develops more upstream than at the

walls. The presence of the side walls can explain such a behaviour. Firstly, for the

flow upstream the Venturi throat, the sheet is equivalent to an obstacle. To by-pass

this obstacle, two possibilities are offered to it: to pass over the cavity or to pass

along the side walls. Forcing the pass leads to an acceleration of the flow (Fig.13)

confined between the cavitation sheet and the wall, which plays the role of a small

local venturi. Consequently, the momentum energy of the flow is increased, allowing

it to better resist to the re-entrant jet. Secondly, the side walls involve the formation

of corner vortices (Fig.7), which deflect the re-entrant jet to the center. Therefore,

the re-entrant momentum energy is enforced at the center, which allows it to develop

deeper.

At t = T0

6
, the re-entrant jet leads to the cavity decrease along the side z = 0.05m

whereas the cavitation sheet is growing along the opposite wall. At t = 2T0

6
, the

re-entrant jet on the side z = 0.05m is deflected to the center of the Venturi. On the

other side, the cavitation sheet follows its growth. At t = 3T0

6
, the cavitation sheet

reaches its maximum length on the side z = 0 and a liquid re-entrant jet appears. On

the opposite side, the vortex corner begins to expand, taking with it the sheet. At

t = 4T0

6
, the re-entrant jet along the side z = 0 makes face to the vortex corner and

is deflected to the center. Along the other side, the cavitation sheet lengthens. At
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t = 5T0

6
, the re-entrant jet on the side z = 0 flows to the center of the Venturi, while

on the opposite side no re-entrant jet is observed and the cavitation sheet reaches its

maximum length.

Figure 13 shows the time-averaged velocity and void ratio evolutions in the spanwise

direction at different abscissa (x = 0.0083 m and x = 0.02 m inside the attached

cavity and x = 0.027 m at the end of the attached cavity). The void fraction increases

along the side walls due to the fact that the corner vortex sucks a part of stable cavity,

which has to make faced to the re-entrant jet.

4.3.2. Analysis in the mid-span section

The analysis focuses on both the longitudinal and cross components of the ve-

locity. Except for the longitudinal velocity, no comparisons can be done with the

experiments.

In the experimental data, due the non gaussian distribution of the longitudinal veloc-

ity inside the cavitation sheet, the most probable values were chosen for the longitudi-

nal velocity profiles instead of time-averaged values. In order to verify the capability

of computations to capture a part of this non gaussian distribution, we extracted

the distributions of the resolved fluctuating part of both the longitudinal and cross

velocities at all measurement stations. These distributions are plotted in Figures 14

and 15 at stations 3 to 5. Four altitudes are selected: one in the re-circulation area

(y = 0.7 mm), two in the shear stress layer (y = 2 mm and y = 4 mm) and one out

of the cavitation sheet (y = 8.5 mm). The distribution of the velocities is closed to

be gaussian at station 5 and for all the stations at the distance y = 8.5 mm. On the

other hand, in the cavitation sheet, the distribution are not gaussian and displayed

a large interval of probable values. For instance, the distribution of the longitudinal

velocity at station 3 and at the distance y = 4 mm from the bottom wall shows a
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plateau of probable values from 6 to 11 m/s. For the cross velocity, the large dis-

crepancy between the probable value makes appear often two peaks: one located in

the negative values and the other located in the positive values. This observation is

correlated with the cross instability mentioned above.

The RMS velocity fluctuations and the comparison between mean and most probable

values are illustrated in Figure 16 for the five stations of measurement. At stations

1 and 2, the mean and the most probable longitudinal velocity profiles are closed

one to each other. The RMS values of the resolved part of the velocity field are of

the same order of magnitude in each direction, which means that the turbulence is

isotropic. From stations 3 to 5, the velocity field shows a non gaussian behaviour.

Indeed, the mean and most probable profiles differ particularly in the shear stress

region. For instance, at station 3, the gap between the most probable and the mean

value can reach 2 m/s. For the RMS velocity fluctuations, the fluctuations in the

longitudinal direction are largely higher in comparison with values in the orthogonal

and cross directions. At station 3, the ratio urms/vrms can be close to 10. There-

fore, the turbulence can not be considered as isotropic in the re-circulating area. At

station 5, the gap between the most probable value and the mean value reduces and

the fluctuation comes back to an isotropic behaviour.

To conclude, the analysis in the mid-span section put in evidence that the velocity

field is not gaussian in the re-circulation area and the turbulence at large-scales can

not be considered as isotropic. Out of the re-circulation area, the velocity field is

gaussian and the large-scales turbulence is isotropic.
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4.3.3. Analysis in a transversal cutting plane

The analysis in a transversal cutting plane located at station 3 (abscissa x = 38

mm) inside the re-circulation zone is proposed. Three instantaneous snapshots of the

void ratio and the velocity vector are depicted in Figure 17. Only an enlargement

near the side z = 0 is presented. For these pictures, the scale of the void ratio is

greater than 1 to improve the contrast of visualizations. A preliminary portrait of

the flow can be derived. Firstly, the corner vortex is 5 mm large and seems to be

weakly affected by the cross flow. These vortices play two roles: in one hand, they

capture a part of the outer flow and feed the sheet in vapour, on the other hand, they

deflect the liquid re-entrant jet to the center of the Venturi. Secondly, the cross flow

is located in the re-circulation area whereas out of the cavitation sheet, the velocity

vectors do not show a global alignment with a strong intensity. Therefore, the shear

stress induced by the re-entrant jet leads to a de-correlation of the flow between the

cavitation sheet and the outer flow.

Spatial two-point correlations based on the void fraction and the longitudinal and

cross velocities have been calculated along the span. Three different distances from

the bottom wall have been considered: y = 5 mm, y = 6.4 mm and y = 7.2 mm.

Along the spanwise, three different points have been chosen in order to verify the

width on which the flow can be considered to be two-dimensional. The considered

reference points are located at the third, the half and the two-third of the span,

respectively. These correlations are presented in Figure 18. For the extreme points,

the longitudinal velocity and void fraction correlations are very low compared with

the cross velocity correlation. Therefore, we conclude that the re-entrant jet is not

coherent in the cavitation sheet and the cross flow is a motion over all the span. At

mid-span, correlations show that the re-entrant jet is correlated over a distance of
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5 mm on each side of the mid-point. Over this distance, the correlations decrease,

which is not the case for the cross velocity. Once more, the cross velocity shows only

a slight decrease of the correlation over the span (excepted at the distance y = 6.4

mm) that confirms the presence of a global cross motion in the cavitation sheet.

Correlations between the two lateral sides have been also evaluated for the longi-

tudinal velocity and the void ratio. The temporal evolution is presented in Figure

19. It is noticeable that the void fraction and the longitudinal velocity correlations

superimpose. Therefore, the re-entrant jet and the evolution of the cavity are linked

one to each other. The analysis of the correlated signal put in evidence the low

frequency of 6 Hz and a phase difference close to π and confirms that the cavitation

sheet evolves in an opposite phase between the two sides of the Venturi.

5. Conclusion

In the present study, 2D and 3D computations of a cavitation sheet developing

along the bottom wall of a Venturi geometry have been performed using the DES

approach and Scale-Adaptive models. The DES model has undergone a modification

of the constant CDES since the standard value was replaced by 0.9, which allowed to

capture a cavitation sheet behaviour in agreement with the experimental one.

First, comparisons between 2D and 3D (in the mid-span section) computations were

presented together with the experimental results. The mean void fraction and the

mean longitudinal velocity profile exhibited very small discrepancies between the 2D

and the 3D computations. On the contrary, the mean pressure profile and the RMS

pressure fluctuations at the bottom wall put in evidence large differences between 2D

and 3D computations. Overall, 3D computations tend to underestimate the pressure

in the wake of the cavitation sheet, whereas the RMS pressure fluctuations are over-

estimated in the cavitation sheet and in the wake. Indeed, downstream the cavitation
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sheet, the 3D computations provide a plateau of RMS pressure fluctuations, which

is not observed experimentally or computed by the 2D simulations. The dynamic

behaviour of the cavitation sheet changes between the 2D and 3D computations.

The 3D computations were analyzed in more details. A cross instability at low

frequency (around 6 Hz) was illustrated corresponding to a cross flow inside the re-

circulation area and leading to a growth of the cavitation sheet in an opposite phase

between the two Venturi sides. This results are in agreement with recent observations

provided by an experimental study of a pulsating cavitation sheet over a NACA0015

hydrofoil [9]. From the numerical computations, the main reason to explain this

phenomenon comes from the presence of a vortex at each side of the Venturi, which

modify the structure of the cavitation sheet. These vortices suck a part of the flow

allowing a larger growth of the cavity and deflects the re-entrant jet to the center of

the geometry. It was observed that the thickness of the vortex was almost constant

in time and close to 5 mm. The cross flow takes place in all the re-circulation area

as it is confirmed by the high level of the spanwise velocity correlations through the

cavitation sheet. On the contrary, the re-entrant jet is not uniform in the spanwise

direction but only in a section laying from z = 0.02 m to z = 0.03 m.

On the other hand, the analysis of the longitudinal and spanwise velocity distri-

butions made appear a turbulent flow that is not isotropic and gaussian in the re-

circulation zone. Consequently, the most probable value of the longitudinal velocity

differs from the mean value and the RMS fluctuations of the resolved longitudinal

velocity are larger than the other components.

From this investigation, 3D effects are suggested through the presence of corner vor-

tices and a cross instability. Moreover, a non canonical turbulent flow is shown in

the re-circulation zone, which can be an explanation for the inability of the standard

turbulence models to capture the unsteady behaviour of the cavitation sheet. Even
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if the pressure fluctuations obtained with the 3D computations are less accurate,

several lessons can be drawn:

• enhanced turbulence models are needed to capture the behaviour of unsteady

cavities (particularly the re-entrant jet),

• side-wall effects have an major influence on the cavity growth and the flow

downstream the cavity,

• the investigation of the sheet dynamics can not restrain itself to the evaluation

of mean quantities and has to focus on resolved fluctuations.

Finally, additional experimental measurements or computations will be welcome to

attest the presented results and to better understand the phenomenon.
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Table 1: Numerical computations.

Turbulence model Dimension of the domain σinlet Frequency (Hz)

k − ℓ SAS 2D 0.580 no particular frequency

k − ℓ SAS 3D 0.590 ≈ 6

SA-SAS 2D 0.588 no particular frequency

SA-SAS 3D 0.6 ≈ 6

SA-DES 2D 0.588 no particular frequency

SA-DES 3D 0.6 ≈ 3
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Figure 1: Schematic view of the 4◦ Venturi profile.

39



x (m)

y
(m

)

-0.05 0 0.05 0.1 0.15

-0.02

0

0.02

0.04

0.06

X

Y

Z

inlet

outlet

Figure 2: View of the 2D mesh near the Venturi throat and view of the 3D mesh.
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Figure 3: View of the RANS (black) ans LES (white) regions in the mid-span section for the DES

computations with CDES = 0.65 (top) and CDES = 0.9 (bottom).
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Figure 4: Gradient density modulus visualization at two different instants: k−ℓ SAS (top), Spalart-

Allmaras SAS (middle) and DES (bottom), 3D computations.
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Figure 5: Iso-surface of the void fraction for the value of 60% at two different instants: k − ℓ SAS

(top), Spalart-Allmaras SAS (middle) and DES (bottom), 3D computations.
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Figure 8: Time-averaged void fraction (left) and longitudinal velocity (right) profiles from station

1 (top) to 5 (bottom), SAS computations.
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SAS computations.
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Figure 10: Time-averaged void fraction (left) and longitudinal velocity (right) profiles from station

1 (top) to 5 (bottom), DES computations.
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wall, DES computations.
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Figure 12: Void fraction and velocity vector at six different instants, in a cutting plane located at

y = 10−3 m.
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Figure 13: Time-averaged longitudinal velocity (left) and void fraction (right) profiles in the span

direction at distance y = 10−3 m and abscissa x = 8.3 10−3 m (top) ; x = 210−2 m (middle) and

x = 2.7 10−2 m (bottom).
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station 3 station 4 station 5

Figure 14: Distribution of the longitudinal velocity u from station 3 to 5 (left to right) at four

distances from the bottom wall: y = 0.7 mm ; y = 2 mm ; y = 4 mm and y = 8.5 mm (top to

bottom). (•) refers to the mean value.
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station 3 station 4 station 5

Figure 15: Distribution of the transversal velocity w from station 3 to 5 (left to right) at four

distances from the bottom wall: y = 0.7 mm ; y = 2 mm ; y = 4 mm and y = 8.5 mm (top to

bottom). (•) refers to the mean value.
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Figure 16: Time-averaged and most probable longitudinal velocity u (left) and RMS of the resolved

part of the fluctuating velocities (right) in the mid-span from station 1 (top) to 5 (bottom).54
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Figure 17: Snapshot of the void ratio and the velocity vector in a transversal cutting plane at

station 3.
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third-span mid-span two-third-span

Figure 18: Spatial correlations based on the void fraction, the longitudinal and transversal velocities

with three reference points: third-span (left), mid-span (middle) and two-third-span (right) and at

three distances from the bottom wall: y = 5 mm, y = 6.4 mm and y = 7.2 mm (top to bottom).
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Figure 19: Spatial correlations based on the void fraction and the longitudinal velocity between

two points located on each side of the Venturi.
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