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Abstract

Penalty Logic is a natural and commonsense Knowl-
edge Representation technique to deal with potentially
inconsistent beliefs. Penalty Logic allows some kind of
compensation between different pieces of information.
But one of the main and less studied flaws of Penalty
Logic is the influence of the choice of weights on in-
ference: the same pieces of information can provide ex-
tremely different results just by changing some weights.

This paper concentrates on weightings and on the prob-
lem of collisions between interpretations which yield
weak conclusions. It focuses more particularly on a
family of weightings, the σ-weightings. We show that
some of these weightings avoid collisions but that in the
meanwhile they disable the mechanism of compensa-
tion (and so the interest) of Penalty Logic. We establish
then that two of them are suitable for avoiding collisions
and maintaining compensation. We obtain their logical
characterizations while considering the weightings only
and not the associated formulas. Finally, we propose
an original weighting, the Paralex Weighting, that im-
proves even more the previous weightings.

Introduction
Penalty Logic is a natural and commonsense Knowledge
Representation technique to deal with potentially inconsis-
tent beliefs. It has been proposed in (Pinkas 1991; 1995) and
developed in (Dupin de Saint-Cyr, Lang, & Schiex 1994).
Penalty logic provides an intuitive framework to deal with
weighted formulas. A penalty is associated with each inter-
pretation: this penalty is the sum of the weights of the for-
mulas falsified by the interpretation. Thus, the main char-
acteristic of this formalism is its ability to compensate by
additivity of the weights: if the most preferred piece of in-
formation is falsified by an interpretation, the interpretation
is not automatically rejected.

However this formalism is well-known to be syntax-
dependent as far as formulas are concerned. Moreover, one
of the main and less studied flaws of Penalty Logic is the
influence of the choice of weights on inference: the same
pieces of information can provide extremely different re-
sults just by changing some weights. But an expert can-
not take into account the processes of compensation and

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

deduction of Penalty Logic when he encodes his beliefs:
when they do not represent an additive measure (such as
money), the weights he provides are often artificial. It is
easier for an expert to represent a cost than the reliabil-
ity of testimonies, opinions or judgments. Many qualita-
tive methods have been provided to deal with prioritized
information only (without any weight). Different strate-
gies can be applied, like best-out ordering (Benferhat et
al. 1993), discrimin ordering (Brewka 1989; Geffner 1992;
Benferhat et al. 1993), leximin ordering (Lehman 1995;
Benferhat et al. 1993) or linear ordering (Nebel 1994). But
none of these formalisms allows compensation like Penalty
Logic: falsifying several formulas of less importance can be
equal to falsifying a formula of greater importance. More-
over, none of these methods treats the central problem of this
paper: collision avoiding.

This paper concentrates on weightings and on the prob-
lem of collisions between interpretations. Two interpreta-
tions are said to collide if their κ-values (the value of the
κ-function associated with the interpretations) are equal. In
this case, interpretations cannot be sorted out and the con-
clusion can be excessively cautious. If two interpretations
falsify formulas of different importance, they should ideally
have different κ-values in order to avoid weak conclusions.
We show in this paper how to improve the results of Penalty
Logic just by considering the choice of weightings.

This paper provides a survey of different natural weight-
ings that can automatically be generated from the initial
weighted beliefs provided by the expert. We show that
some of these weightings increase the risk of collision. Oth-
ers avoid collisions but in the meanwhile they disable the
mechanism of compensation (and so the interest) of Penalty
Logic. We study more particularly a family of weightings,
the σ-weightings. We establish then that two of them are
suitable for avoiding collisions and maintaining compensa-
tion. We obtain their logical characterizations while consid-
ering these weightings only and not the associated formulas.
But they compare interpretations with respect to the mini-
mal (least important) formulas that they falsify. That is the
reason why we propose finally an original weighting, called
Paralex Weighting, that solves this problem.

The first section provides some usual methods for deal-
ing with ranked information and Penalty Logic. The sec-
ond section presents the problem of collisions for Penalty



Logic and provides a complete study of a natural weighting:
Arithmetic Weighting. The next section proposes a survey of
different possible weightings and focuses more particularly
on a family of weightings, the σ-weightings. We show that
three of them, 2-repetition, Parabolic Weighting and Paralex
Weighting lead to interesting properties in terms of collision
avoiding and compensation.

Preliminaries

In this paper, we consider a finite propositional language
L composed of atoms a, b, ... and of the usual connectives
∨,∧,→,↔ (representing respectively conjunction, disjunc-
tion, material implication and equivalence). The set of inter-
pretations (or possible worlds) based on L is denoted by Ω
and ω represents one element of Ω. The logical consequence
is denoted by |= and the set of models of a formula ϕ is de-
noted by Mod(ϕ), i.e. Mod(ϕ) = {ω ∈ Ω : ω |= ϕ}.
The symbol ⊤ represents a formula that is always true
(Mod(⊤) = Ω) and the symbol ⊥ represents a formula that
is always false (Mod(⊥) = ∅).

Ranked Belief Bases and Penalty Logic

The basic considered inputs for Penalty Logic are ranked
belief bases. A ranked belief base B is a set of weighted for-
mulas such that B = {〈ϕi, ri〉}. Weights take their values
into the set of positive integers N. The greater is the weight,
the more important is the formula. Weight +∞ is devoted
to express integrity constraints, i.e. formulas that cannot be
violated.

From a ranked belief base B, one can define a weighting
on interpretations by considering the weights of the formulas
that they falsify.

Definition 1 (κ-functions) Let B be a ranked belief base.
A κ-function is a function that maps Ω to N ∪ {+∞} such
that:

κ⊙(ω) =

{

0 if ω |= B∗
⊙

〈ϕ,r〉∈FalseB(ω) r elsewhere

where B∗ is the weight-free counterpart of B. ⊙ represents
a given numeric operator and FalseB(ω) = {〈ϕ, r〉 ∈ B :
ω 6|= ϕ}.

From a κ-function, a total preorder on the set of interpre-
tations Ω can be defined as follows:

ω ≤κ⊙
ω′ iff κ⊙(ω) ≤ κ⊙(ω′).

Contrary to formulas, the least interpretations are the pre-
ferred ones. Hence propositional semantic consequence can
be extended: a formula is a consequence of a ranked belief
base, if and only if its models contain all the κ-preferred
models. More formally:

Definition 2 Let B be a ranked belief base and ϕ a propo-
sitional formula, then:

B |=κ⊙
ϕ iff Min(Ω,≤κ⊙

) ⊆ Mod(ϕ).

The main two operators that can be found in the litera-
ture are the max operator (max) and the sum operator (Σ).
The first one provides the semantics of Ordinal Conditional

Functions (Spohn 1988; Williams 1994) and the semantics
of Possibilistic Logic (Dubois, Lang, & Prade 1994), the
second one provides the semantics of Penalty Logic (Pinkas
1995; Dupin de Saint-Cyr, Lang, & Schiex 1994). The pre-
order on interpretations induced by κmax is equivalent to the
best-out ordering (Benferhat et al. 1993). Actually, when
considering operator max, the weighting is not really im-
portant: only the relative order between interpretations is
significant.

Example 3 Let B be a ranked belief base such that B =
{(a∧ b, 3), (¬a, 2), (¬b, 1)}. Table 1 summarizes the differ-
ent κ-functions using respectively max and Σ operator.

ωi ∈ Ω a b κmax(ωi) κΣ(ωi)
ω0 0 0 3 3
ω1 0 1 3 4
ω2 1 0 3 5
ω3 1 1 2 3

Table 1: Example of κmax(ω) and κΣ(ω)

For instance, ω1 falsifies two formulas ((a ∧ b, 3) and
(¬a, 2)), then κmax(ω1) = 3 and κΣ(ω1) = 3 + 2 = 5.
κmax induces the following orders on the set of interpreta-
tions:

ω3 <κmax ω0 ≈κmax ω1 ≈κmax ω2,

whereas κΣ induces:

ω3 ≈κΣ
ω0 <κΣ

ω2 <κΣ
ω1.

We have, for instance, B |=κmax
a, because:

Min(Ω,≤κmax) = {ω3} ⊆ {ω2, ω3} = Mod(a).

Moreover, we have B |=κΣ
a ∨ ¬b, because:

Min(Ω,≤κΣ
) = {ω0, ω3} ⊆ {ω0, ω2, ω3} = Mod(a∨¬b).

Note that in the general case, there is no link between both
orders and the obtained conclusions can be completely dis-
joint. Possibilistic logic provides more stable result (i.e. it
is less affected by a modification of the weights), whereas
Penalty Logic considers the lowest strata and is less affected
by the problem of inheritance blocking and by the drowning
problem (Benferhat et al. 1993). In Possibilistic Logic, an
interpretation falsifying the most important formula is au-
tomatically excluded whereas in Penalty Logic, it can be
saved.

The sum operator is the key component of the semantics
of Penalty Logic (Pinkas 1995; Dupin de Saint-Cyr, Lang,
& Schiex 1994) and the preorder between interpretations in-
duced by κΣ strongly depends on the provided weights.

In the remainder of this paper, we only consider the sum
operator, therefore we write κ for κΣ.

Repeating the Information

Penalty Logic is well-known to be syntax-dependent. Con-
trary to Possibilistic Logic for instance, the repetition of in-
formation may have an impact on the provided inferences.
We will illustrate the influence of repeating information with



an example, but we need first to define the semantic equiv-
alence between two ranked belief bases. Two ranked belief
bases are said to be semantically equivalent if and only if
they induce the same κ-function. More formally:

Definition 4 Let B1 and B2 be two ranked belief bases and
κB1

(resp. κB2
) the κ-function associated with B1 (resp.

B2). Then B1 is said to be semantically equivalent to B2,
denoted by B1 ≡κ B2, iff:

κB1
= κB2

.

Example 5 Let B1, B2 and B3 be three ranked belief bases
such that:

B1 = {〈a, 4〉, 〈b, 4〉, 〈a, 2〉, 〈¬a ∨ ¬b, 1〉}
B2 = {〈a, 6〉, 〈b, 4〉, 〈¬a ∨ ¬b, 1〉}
B3 = {〈a ∧ b, 4〉, 〈a, 2〉, 〈¬a ∨ ¬b, 1〉}

Table 2 shows the three κ-functions associated with each
ranked belief base. One can remark that B1 and B2 are
semantically equivalent, but B3 is neither equivalent to B1

nor to B2.

ωi ∈ Ω a b κB1
(ωi) κB2

(ωi) κB3
(ωi)

ω0 0 0 10 10 6
ω1 0 1 6 6 6
ω2 1 0 4 4 4
ω3 1 1 1 1 1

Table 2: κB1
, κB2

and κB3

The previous example illustrates two characteristics of
Penalty Logic. The first one is that when the same formula
appears several times with different weights, one can replace
these occurrences with the formula coupled to the sum of its
weights without changing the induced κ-functions (see B1

and B2 in Example 5).
Moreover we only consider in this paper sets of cou-

ples 〈ϕ, r〉. Actually, Penalty Logic can be defined more
widely on multisets (or bags) of weighted formulas. But
each repetition of couples can be replaced with only one
equivalent weighted formula without any change on κ-
function.

The second feature of Penalty Logic is that, contrary to
Possibilistic Logic, two different formulas with the same
rank cannot be replaced by the conjunction of these formu-
las (see B1 and B3 in Example 5): Penalty Logic is very
dependent on the syntax (see (Konieczny, Lang, & Marquis
2005) for a global discussion on the difference between the
two connectors: "∧" and ",").

How to Choose a Weighting ?

As mentioned in the introduction, the conclusions obtained
by Penalty Logic from a ranked belief base are strongly de-
pendent on the chosen weights. But an expert cannot take
into account the processes of compensation and deduction
of Penalty Logic when he encodes his beliefs: the weights
he provides are often artificial. For instance, it is easier for
an expert to provide only an order between his beliefs, or

consecutive positive natural numbers (like 1, 2, 3, 4, ...) to
express the reliability on each pieces of belief of informa-
tion.

On the Incidence of the Weighting

Let us illustrate the incidence of the weights by consid-
ering a ranked belief base B such that B = {〈a ∧
b, 3〉, 〈¬a, 2〉, 〈¬b, 1〉}. Three possible weightings induced
by B and preserving the order between the weights are de-
scribed in table 3.

WB1
WB2

WB3

a ∧ b 3 4 4

¬a 2 2 3

¬b 1 1 2

Table 3: Compatible Weightings

From them, we define WB , which is the ordered set of the
weights that appear into a ranked belief base:

WB = {r : 〈ϕ, r〉 ∈ B}.
The first weighting is a "natural" weighting: if there are n

different strata, then the preferred stratum is associated with
n, the next one with n−1 and so on. The second weighting is
a "power" weighting: the least preferred stratum has weight
1, while the next one is associated with the double of the
previous stratum and so on. The last weighting is just a shift
of the first weighting (1 was added to each weight).

These three ranked belief bases induce three different κ-
functions given in Table 4. They are obviously not se-
mantically equivalent. Moreover, the three κ-functions pro-
duce three different sets of conclusions: {ω0, ω3}, {ω3} and
{ω0}. From the second set, one can deduce a, from the third
one, one can deduce ¬a and from the first one, one can de-
duce neither a nor ¬a.

a b κWB1
κWB2

κWB3

ω0 0 0 3 4 4

ω1 0 1 4 5 6

ω2 1 0 5 6 7

ω3 1 1 3 3 5

Table 4: induced κWi

On the Incidence of Collisions

According to Definition 2, the inference of Penalty Logic
is based on the interpretations that have a minimal κ-value.
The greater is the set of κ-minimal interpretations, the
poorer and less informative are the inferences produced: all
the inferred information have to contain all the κ-minimal
interpretations. Intuitively, the set of preferred interpreta-
tions has to be as small as possible in order to be as precise
as possible.

Let B be a ranked belief base, and ω, ω′ be two interpre-
tations, then ω and ω′ collide iff:

κ(ω) = κ(ω′).



If two interpretations falsify exactly the same formulas,
by definition of κ, they have the same κ-value. On the con-
trary if they falsify formulas of different importance, they
should ideally be associated with different κ-values, in or-
der to avoid collisions. This notion of Collision Freedom
can be characterized as follows:

(CCF) ∀ω, ω′ ∈ Ω, κ(ω) = κ(ω′) iff FalseB(ω) =
FalseB(ω′). 1

Note that, by definition, weight 0 can never be involved in
a collision: two interpretations violating no formula have a
0 weight and falsify the same set of formulas -the empty set-
so they cannot be in collision. We illustrate this concept of
collision with the following example.

Example 6 Let B be a new ranked belief base such that
B = {〈a ∨ b, 6〉, 〈a ↔ b, 4〉, 〈¬a, 3〉, 〈¬b, 2〉, 〈¬a ∨
¬b, 1〉, 〈a ∧ ¬b, 1〉}. Table 5 represents the induced κ-
function κB .

a b κB

ω0 0 0 7 = 6 + 1
ω1 0 1 7 = 4 + 2 + 1
ω2 1 0 7 = 4 + 3
ω3 1 1 7 = 3 + 2 + 1 + 1

Table 5: An extreme example of collision

In this case, all the interpretations collide and one can only
deduce ⊤ from B, which is the poorest possible inference.

In the previous example all the interpretations are con-
sidered equally preferred. However, two of them (ω0 and
ω2) falsify less formulas than the others. Considering these
interpretations only, one can deduce ¬b. This remark leads
us to introduce the criterion of Majority Preservation:

(CMP) |FalseB(ω)| < |FalseB(ω′)| implies ω <κ ω′,

where |E| represents the cardinality of the set E. This cri-
terion states that an interpretation falsifying less formulas
than another one must be preferred: it allows some kind of
compensation, like Penalty Logic.

A Study Case: Arithmetic Weighting

In order to leave out the logical structures of information
and consider only the weighting, we impose the following
restriction in the sequel of this paper: each weight appears
only one time in a given base. In other words, two formulas
cannot have the same weight. The expert can only express
that two formulas are considered equally preferred by com-
bining them with a conjunction. The expert can be proposed
a set of weights, denoted by Wn, from which he can choose
the weights for his n formulas.

1
FalseB(ω) is defined in Definition 1.

From a weighting Wn, we can compute all the possible
values mapped to a κ-function. This set of values, denoted
by Wn

Σ , is such that, for each n ≤ |A|:

Wn
Σ =

{

∑

a∈A

a : A ⊆ Wn

}

.

Note that, since weightings are applied to formulas, not
to interpretations, the weight 0 has no interest: it does not
occur in the calculus of penalties, so it does not belong to
the considered weightings.

Studying possible collisions is equivalent to searching for
different sums of elements of Wn (standing for different sets
of formulas) leading to the same value.

A natural idea in order to choose a weighting is to con-
sider the sequence of the first n positive integers, corre-
sponding to n proposed formulas:

W arith,n = (1, 2, 3, 4, ..., n).

This weighting is called Arithmetic Weighting, because it
derives from an arithmetic progression. The most preferred
formula is associated with n while the least preferred for-
mula is associated with 1. As a matter of fact, this naïve
weighting is one of the worst weightings in terms of colli-
sions. Figure 1 presents the number of collisions for each
possible value with n = 17. Notice that this curve char-
acterizes a binomial law and that values 76 and 77 can be
obtained by exactly 2410 different summations.

It can be shown that the maximal number of collisions oc-
curs for the median of W arith,n

Σ = (1, 2, 3, ..., n(n + 1)/2),
namely ⌊n(n + 1)/4⌋, where ⌊x⌋ is the integer part of x.

Figure 1: Collisions for Arithmetic Weighting with n = 17

In fact, considering the problem of collision with Arith-
metic Weighting is equivalent to a well-known problem in
Number Theory: the partition of integer n into distinct parts
from 1 to n (Hardy & Wright 1979). Hence the number of

collisions for each value of W arith,n
Σ is related to the expan-

sion of:

(1 + x)(1 + x2)(1 + x3)...(1 + xn).

For instance, let n = 4. The expansion of (1 + x)(1 +
x2)(1 + x3)(1 + x4) is:

1+x+x2 +2x3 +2x4 +2x5 +2x6 +2x7 +x8 +x9 +x10.



The monomial 2x3 means that there are two ways to pro-
duce 3.

It can be easily shown that, for any n, only six values
do not lead to collision: 0 (representing the case where no
formula is falsified), 1, 2 and, symmetrically,

∑n
i=1 i =

n(n + 1),
∑n−2

i=1 i and
∑n−1

i=1 i. All the other values are
obtainable by at least two different summations of weights,
thus leading to collision. Although often used, Arithmetic
Weighting is not a suitable weighting for the criterion of
Collision Freedom.

The family of σ-weightings

The previous section shows that arithmetic weighting is too
naïve and leads to poor and less informative results in terms
of inference.

We gather in this section weightings that have common
properties and we call this family the σ-weightings. Each
member of this family is built upon a σ-sequence, the ele-
ments of which are summations of preceding elements. A
σ-sequence is itself based on a sequence Φ which gives the
number of elements to sum. Following is the generic defini-
tion of a σ-sequence:

σ =

{

σ1 = 1,

σi =
∑i−1

j=i−Φi−1
σj .

where Φi is the ith term of the sequence Φ.
Let us illustrate this family with a well-known sequence:

Fibonacci numbers.

Example 7 (Fibonacci numbers) Let us consider the fol-
lowing sequence:

ΦFibo = (1, 2, 2, 2, 2, 2, 2, ...).

We can compute the σ-sequence based on ΦFibo and de-
noted by σFibo:

σFibo = (1, 1, 2, 3, 5, 8, 13, 21, ...).

For instance, to compute σFibo
3 , we consider ΦFibo

2 = 2

and compute
∑2

j=3−2=1 σj = σFibo
1 + σFibo

2 = 1 + 1 = 2.
This sequence happens to be the Fibonacci numbers. Sim-

ilarly the sequence ΦTribo = (1, 2, 3, 3, 3, ...) generates the
sequence often called Tribonacci numbers, in which each el-
ement is the sum of its three predecessors.

Note that in the general case neither Fibonacci numbers
nor Tribonacci numbers have good properties as regards col-
lisions, since every weight (except the first ones) is the sum
of the two (or three) previous weights.

Lexicographic sequence

We study in this section another sequence based on:

Φlex = (1, 2, 3, 4, 5, 6, ...).

This sequence can be computed directly, without any iter-
ation, with the simple relation: Φlex

i = i. The σ-sequence

generated from Φlex can directly be used as a weighting:

σlex = (1, 2, 4, 8, 16, 32, 64, 128...).

In this case, we obtain the successive powers of 2 and
Penalty Logic turns out to have exactly the same behavior as
Lexicographic Inference (Dupin de Saint Cyr 1996). An in-
terpretation ω is preferred to another interpretation ω′ if and
only if ω and ω′ falsify the same weighted formulas down to
some weight r, where ω′ falsifies a formula satisfied by ω.
More formally:

Proposition 8 Let B be a ranked belief base such that
|B| = n and such that WB = {σlex

i : i ≤ n}. Then,
κB(ω) < κB(ω′) iff ∃r such that:

(i) 〈ϕ, r〉 ∈ B and ω |= ϕ but ω′ 6|= ϕ

(ii) ∀〈ϕ, r′〉 ∈ B such that r′ > r, ω |= ϕ iff ω′ |= ϕ.

As a corollary of this proposition, any ranked belief base
B such that WB = σlex

n is collision-free. Actually if two in-
terpretations falsify different sets of formulas, their κ-values
are the sums of different powers of 2.

Proposition 9 Let B be a ranked belief base such that
|B| = n and WB = {σlex

i : i ≤ n} then B satisfies CCF .

This weighting avoids collisions but in the meanwhile it
disables the mechanism of compensation (and so the inter-
est) of Penalty Logic, as it is shown by the following exam-
ple.

Example 10 Let B be a ranked belief base such that WB =
{σlex

i : i ≤ 5} and B = {〈¬a, 16〉, 〈a ∧ b, 8〉, 〈a, 4〉, 〈a ∨
b, 2〉, 〈a ∨ ¬b, 1〉}. Table 6 gives the induced κ-function.

a b κB

ω0 0 0 14 = 8 + 4 + 2
ω1 0 1 13 = 8 + 4 + 1
ω2 1 0 24 = 16 + 8
ω3 1 1 16 = 16

Table 6: Lexicographic Weighting

The two preferred interpretations are the interpretations
that falsify as many formulas as possible, namely ω0 and
ω1. One can observe that ω3 is rejected whereas it falsifies
only one formula (¬a), which, moreover, is not a constraint
integrity.

We introduce now three weightings that avoid collisions
and allow some kind of compensation.

2-repetition sequence

We first present a σ-sequence initially proposed in (Stern
1938) for Weighted Voting Systems. It is based on the fol-
lowing generating sequence:

Φrep = (1, 2, 2, 3, 3, 4, 4, 5, 5, ...).

This sequence contains consecutively all the integers re-
peated twice, except for 1. Any term of this sequence can
be computed directly with the following formula: Φrep

i =
1 + ⌊i/2⌋. The first terms of the corresponding σ-sequence
are:

σrep = (1, 1, 2, 3, 6, 11, 22, 42, 84, 165, 330, 654, 1308, ...).



This sequence increases more quickly than Fibonacci
Numbers. We do not use this sequence directly as a weight-
ing, but use instead sums of its elements to build one:

W rep,n
i =

n
∑

j=n−i+1

σrep
j .

In other words, if one needs n different weights, σrep
n is

associated with the lowest weight, σrep
n +σrep

n−1 with the sec-

ond lowest one and the greatest weight is the sum of all σrep
i

such that i ≤ n. Table 7 presents the first nine weightings.

n W rep,n

1 1
2 1 2
3 2 3 4
4 3 5 6 7
5 6 9 11 12 13
6 11 17 20 22 23 24
7 22 33 39 42 44 45 46
8 42 64 75 81 84 86 87 88
9 84 126 148 159 165 168 170 171 172

Table 7: W rep,n for n < 10

The weighting W rep,n is a powerful weighting: not only
does it satisfy CCF , but it also allows compensation by sat-
isfying the criterion CMP .

Proposition 11 Let B be a ranked belief base such that
|B| = n and WB = W rep,n then B satisfies CCF and
CMP .

An unexpected result occurs when two interpretations fal-
sify exactly the same number of formulas. Then these inter-
pretations are ordered with respect to the minimal weight of
the different formulas they falsify. This is the criterion of
Reverse Lexicographic Cardinality.

(CRLC) if |FalseB(ω)| = |FalseB(ω′)| then ω <κ ω′ iff
min{r : 〈ϕ, r〉 ∈ FalseB(ω) \ FalseB(ω′)} < min{r′ :
〈ϕ′, r′〉 ∈ FalseB(ω′) \ FalseB(ω)}.

Proposition 12 Let B be a ranked belief base such that
|B| = n and WB = W rep,n then B satisfies CRLC .

Let us illustrate these propositions with the following ex-
ample.

Example 13 (continued) Let us again consider the same
ranked belief base B as in Example 10, with the same or-
der between formulas, but with a different weighting, based
on W rep,n. As W rep,5 = {6, 9, 11, 12, 13}, now B =
{〈¬a, 13〉, 〈a ∧ b, 12〉, 〈a, 11〉, 〈a ∨ b, 9〉, 〈a ∨ ¬b, 6〉}. Ta-
ble 8 provides the induced κ-function.

The order between interpretations induced by the κ-
function is more convincing. They are ordered with respect
to the number of formulas they falsify first. Hence, the pre-
ferred interpretation is ω3.

a b κB

ω0 0 0 32 = 12 + 11 + 9
ω1 0 1 29 = 12 + 11 + 6
ω2 1 0 25 = 13 + 12
ω3 1 1 13 = 13

Table 8: 2-repetition Weighting

Parabolic Sequence

The parabolic sequence has been proposed more recently
(Alvarez Rodriguez 1983). The aim of the Parabolic Weight-
ing is to refine the 2-repetition sequence to provide a mini-
mal collision-free weighting. This weighting is based on a
well-known sequence, the Parabolic Sequence.

Φparab = (1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, ...).

Each integer n in this sequence appears n times. One
remarks that this sequence is equivalent to Φrep for their
first five terms, but then Φparab increases much more slowly
than 2-repetition sequence. Each element of this sequence is

directly computable with the following formula: Φparab
i =

⌊(1 +
√

8i − 7)/2⌋ (Knuth 1968). Historically the name of
Parabolic Sequence comes from this formula. The first terms
of the associated σ-sequence are:

σparab = (1, 1, 2, 3, 6, 11, 20, 40, 77, 148, 285, 570, ...).

The construction of the weighting induced by Φparab is
similar to the construction of the weighting W rep,n:

W parab,n
i =

n
∑

j=n−i+1

σparab
j .

Table 9 presents the Parabolic Weighting from 1 to 9 for-
mulas. The first six lines are identical to 2-repetition weight-
ing first six lines, but the weightings diverge for n > 5.
Moreover, one remarks that for n > 5, W parab,n is lesser
than W rep,n. In fact, it has been shown in (Alvarez Ro-
driguez 1983) that the first weight of W parab,n is the min-
imal first weight for a collision-free weighting with n el-
ements: one cannot find a collision-free weighting with a
lesser first element.

n W parab,n

1 1
2 1 2
3 2 3 4
4 3 5 6 7
5 6 9 11 12 13
6 11 17 20 22 23 24
7 20 31 37 40 42 43 44
8 40 60 71 77 80 82 83 84
9 77 117 137 148 154 157 159 160 161

Table 9: W parab,n for n < 10



Like 2-Repetition Weighting, Parabolic Weighting re-
spects the criteria of Collision Free and of Majority Preser-
vation, but also Reverse Lexicographic Cardinality:

Proposition 14 Let B be a ranked belief base such that
|B| = n and WB = W parab,n then B satisfies CCF , CMP

and CRLC .

Next, we present a weighting that satisfies a more natural
criterion: the criterion of Lexicographic Cardinality.

Paralex Weighting

The criterion CRLC is not satisfactory. It would be more in-
tuitive to consider the most important formula falsified by an
interpretation in order to decide between two interpretations
falsifying the same number of formulas. We provide in this
section an original weighting that compares interpretations
falsifying the same number of formulas with respect to the
maximal falsified formula. This property is represented by
the following criterion of Lexicographic Cardinality:

(CLC) if |FalseB(ω)| = |FalseB(ω′)| then ω <κ ω′ iff
max{r : 〈ϕ, r〉 ∈ FalseB(ω) \ FalseB(ω′)} < max{r′ :
〈ϕ′, r′〉 ∈ FalseB(ω′) \ FalseB(ω)}.

Obviously, 2-repetition and Parabolic Weightings do not
satisfy this property. For this purpose, we build another
weighting, W paralex,n upon σparab:

{

W paralex,n
1 =

∑n
j=⌊(n+1)/2⌋ σparab

j ,

W paralex,n
i = W paralex,n

i−1 + σparab
i−1 .

Indeed, the Paralex Weighting W paralex,n is related to
Parabolic Sequence. It starts with the sum of the ⌊(n+1)/2⌋
first elements of σparab, then for each weight its successor
is the sum of the current weight with the current element of
σparab. Table 10 presents Paralex Weightings for n < 10.
One can remark that weights diverge from W parab,n when
n ≥ 3.

n W paralex,n

1 1
2 1 2
3 3 4 5
4 5 6 7 9
5 11 12 13 15 18
6 20 21 22 24 27 33
7 40 41 42 44 47 53 64
8 77 78 79 81 84 90 101 121
9 154 155 156 158 161 167 178 198 238

Table 10: W paralex,n for n < 10

As expected, this weighting satisfies the properties of
Collision Freedom, Majority Preserving and Lexicographic
Cardinality.

Proposition 15 Let B be a ranked belief base such that
|B| = n and WB = W paralex,n then B satisfies CCF , CMP

and CLC .

Note that, contrary to Parabolic Weighting, the low-
est weight is not minimal. For instance, for n = 5,
experimental results show that the minimal weighting is
{7, 8, 9, 11, 14}. This weighting is obtained by considering
all possible weightings. This systematic computing is not
tractable and can only be used with small values of n: ac-
tually, we must enumerate the sums of all the subsets of the
considered weightings. Paralex Weighting is not minimal,
but it offers an efficient method to ensure CCF , CMP and
CLC .

Let us illustrate the difference between Paralex Weight-
ing and 2-repetition/Parabolic Weigthings with the follow-
ing example.

Example 16 Let us consider the ranked belief base B de-
scribed in table 11 with two different weightings. One can
note that for n = 6, W rep,n = W parab,n.

ϕ W paralex,6 W rep,6/W parab,6

a → ¬b 33 24
b 27 23
a 24 22

a ∨ ¬b 22 20
¬a ∨ b 21 17
a ↔ ¬b 20 11

Table 11: Two different weightings

Both weightings induce the two different κ-functions de-
scribed in Table 12. In both cases, ω0 is the least preferred
interpretation: it falsifies one more formula than the other
interpretations. However, κparalex

B prefers ω1 to ω3, because
ω3 falsifies a more important formula than ω1. On the con-

trary, κ
rep/parab
B prefers ω3 to ω1, because ω3 falsifies a

lesser formula than ω1.

a b κparalex
B κ

rep/parab
B

ω0 0 0 71 = 27 + 24 + 20 56 = 23 + 22 + 11
ω1 0 1 46 = 24 + 22 42 = 22 + 20
ω2 1 0 48 = 27 + 21 40 = 23 + 17
ω3 1 1 52 = 33 + 20 35 = 24 + 11

Table 12: Induced κ-functions

The relative order between interpretations induced by
Parabolic and 2-repetition weightings is the following one:

ω3 <
κ

rep/parab
B

ω2 <
κ

rep/parab
B

ω1 <
κ

rep/parab
B

ω0,

while the order induced by Paralex Weighting is:

ω1 <κparalex
B

ω2 <κparalex
B

ω3 <κparalex
B

ω0.



The order between interpretations induced by κParalex
B is

the most convincing one. Indeed κ
rep/parab
B considers that

ω3 is the preferred interpretation, from which one can de-
duce a and b. This interpretation falsifies as many formulas
(namely two) as ω1 and ω2, but it falsifies the most important
formula, a → ¬b.

On the contrary, κParalex
B associates the minimal penalty,

namely 46, with the interpretation ω1. From this interpre-
tation, one can deduce ¬a and b, which is consistent with
a → ¬b.

Conclusion and perspectives

This paper offers several solutions to a fundamental problem
that has never been addressed in the literature: the problem
of collisions between interpretations in Penalty Logic. Col-
lisions are a weakening agent for conclusions. Two main
factors prevail in collision process: the logical expression of
beliefs and the weighting itself. This paper focuses on the
choice of weightings for Penalty Logic in order to respect
the criterion of Collision Freedom, while keeping the capac-
ity of compensation of Penalty Logic.

This paper provides a survey of mostly used weightings.
Most naïve weightings have no interesting logical properties
and do not prevent the occurrence of collisions. Others, like
Lexicographic Weighting, avoid collisions but in the mean-
while they disable the mechanism of compensation (and so
the interest) of Penalty Logic. We present finally three pow-
erful and easily tractable weightings: 2-repetition, Parabolic
and Paralex Weightings, that are Collision-Free and that deal
with the number of formulas falsified by interpretations.

But some questions remain open, such as the question of
the existence of a minimal and tractable weighting satisfying
CCF , CMP and CLC or such as finding a way to deal with
several formulas equally weighted. The criterion CMP has
been chosen in order to have the most precise conclusions
as possible. But other criteria, like set inclusion, could be
studied.

Moreover, the different weightings presented in this pa-
per can be used in other logical frameworks than Penalty
Logic. For instance, they could be exploited in belief merg-
ing, where they could be used for distance modeling and for
solving some problems of manipulation.
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