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Continuous compliance: a proxy-based
monitoring framework
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Abstract

Within the Own Risk and Solvency Assessment framework, the Solvency II
directive introduces the need for insurance undertakings to have efficient tools en-
abling the companies to assess the continuous compliance with regulatory solvency
requirements. Because of the great operational complexity resulting from each
complete evaluation of the Solvency Ratio, this monitoring is often complicated to
implement in practice. This issue is particularly important for life insurance com-
panies due to the high complexity to project life insurance liabilities. It appears
relevant in such a context to use parametric tools, such as Curve Fitting and Least
Squares Monte Carlo in order to estimate, on a regular basis, the impact on the
economic own funds and on the regulatory capital of the company of any change
over time of its underlying risk factors.

In this article, we first outline the principles of the continuous compliance re-
quirement then we propose and implement a possible monitoring tool enabling to
approximate the eligible elements and the regulatory capital over time. In a final
section we compare the use of the Curve Fitting and the Least Squares Monte Carlo
methodologies in a standard empirical finite sample framework, and stress adapted
advices for future proxies users.

Key words Solvency II, ORSA, continuous compliance, parametric proxy, Least
Squares Monte Carlo, Curve Fitting.
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1 Introduction

The Solvency II directive (European Directive 2009/138/EC), through the Own Risk
and Solvency Assessment process, introduces the necessity for an insurance undertak-
ing to be capable of assessing its regulatory solvency on a continuous yearly basis.
This continuous compliance requirement is a crucial issue for insurers especially for
life insurance companies. Indeed, due to the various asset-liability interactions and to
the granularity of the insured profiles (see e.g. Tosetti et al. [31] and Petauton [28]), the
highly-stochastic projections of life insurance liabilities constitute a tricky framework
for the implementation of this requirement.

In the banking industry the notion of continuous solvency has already been investi-
gated through credit risk management and credit risk derivatives valuation, considering
an underlying credit model (see e.g. Jarrow et al. [19] and Lonstaff et al. [22]). The
notions of ruin and solvency are different in the insurance industry, due in particular to
structural differences and to the specific Solvency II definitions. In a continuous time
scheme these have been studied in a non-life ruin theory framework, based on the ex-
tentions of the Cramr-Lundberg model [23], see e.g. Pentikinen [26], Pentikinen et al.
[27] and Loisel and Gerber [21]. In a life insurance framework, considering more em-
pirical schemes, closed formulas can be found under strong model assumptions. This
field has for example been investigated in Bonnin et al. [2] or Vedani and Virepinte
[33]. However, all these approaches are based on relatively strong model assumptions.
Moreover, on a continuous basis the use of such approaches generally faces the prob-
lem of parameters monitoring and needs adaptations to be extended to the continuous
compliance framework.

Monitoring a life insurance liabilities is very complex and will have to introduce
several stability assumptions in order to develop a practical solution. The great time and
algorithmic complexity to assess the exact value of the Solvency Ratio of an insurance
undertaking is another great issue. In practice, an only complete solvency assessment
is required by the directive: the insurance undertakings have to implement a complete
calculation of their Solvency Capital Requirement and of their eligible own funds at
the end of the accounting year. We have identified two possibilities to investigated
in order to implement a continuous compliance tool, either to propose a proxy of the
Solvency Ratio, easy enough to monitor, or directly to address the solvency state (and
not the solvency level). This last possibility leading to little information in terms of risk
measurement we have chosen to consider the first one, based on the actual knowledge
on the polynomial proxies applied to life insurance Net Asset Value (see e.g. Devineau
and Chauvigny [10]) and Solvency Ratios (Vedani and Devineau [32]), that is to say
Least Squares Monte Carlo and Curve Fitting.

Throughout Section 2 we lay the foundations of the continuous compliance re-
quirement adapted to life insurance. We underline and discuss the article designing the
continuous compliance framework and present the major difficulties to address when
implementing a monitoring tool. In Section 3 we propose a continuous compliance
assessment scheme based on a general polynomial proxy methodology. This tool is
implemented in Section 4, using a Least Squares Monte Carlo approach, on a standard
life insurance product. The Least Squares Monte Carlo approach is generally preferred,
in practice, to Curve Fitting because of its “supposed” advantages as soon as a large
dimension context is concerned, which is the case in our continuous compliance mon-
itoring scheme. We challenge this hypotheses in Section 5 where we implement both
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methodologies in various dimension frameworks and compared the obtained results.

2 Continuous compliance

The requirement for continuous compliance is introduced in Article 45(1)(b) of the
Solvency II Directive [6]: “As part of its risk-management system every insurance
undertaking and reinsurance undertaking shall conduct its own risk and solvency as-
sessment. That assessment shall include at least the following: (...) the compliance, on
a continuous basis, with the capital requirements, as laid down in Chapter VI, Sections
4 and 5”1.

In this section, we will first remind briefly what these capital requirements are and
what they imply in terms of modelling and calculation. We will then discuss continuous
compliance, what it entails and what issues it brings up for (re)insurance companies.
Finally we will highlight some key elements to the setting of a continuous compliance
framework in this business area.

2.1 Capital requirements

2.1.1 Regulatory framework

The capital requirements laid down in Chapter VI, Sections 4 and 5 are related to the
Solvency Capital Requirement, or SCR (Section 4), and the Minimum Capital Require-
ment, or MCR (Section 5).

The SCR corresponds to the Value-at-Risk of the basic own funds of the company
subject to a confidence level of 99.5% over a one-year period. It has to be calculated
and communicated to the supervisory authority. Additionally, companies falling within
the scope of the Financial Stability Reporting will have to perform a quarterly calcu-
lation (limited to a best effot basis) and to report its results. Companies will have to
hold eligible own funds higher or equal to the SCR. Failing to do so will trigger a
supervisory process aiming at recovering a situation where the eligible own funds are
in excess of the SCR. The SCR can be calculated using the Standard Formula - a set of
methodological rules set out in the regulatory texts - or an internal model (see below
for further details).

The MCR is a lower requirement than the SCR , calculated and reported quarterly.
It can be seen as an emergency floor. A breach of the MCR will trigger a supervisory
process that will be more severe than in the case of a breach of the SCR and could
lead to the withdrawal of authorization. The MCR is calculated through a factor-based
formula. The factors apply to the technical provisions and the written premiums in
non-life and to the technical provisions and the capital at risk for life business. It is
subject to an absolute floor and a floor based on the SCR. It is capped at 45% of the
SCR.

1Article 45(1)(b) also introduces continuous compliance “with the requirements regarding technical pro-
visions, as laid down in Chapter VI, Section 2”. This means that the companies should at all times hold
technical provisions valued on the Solvency II basis. This implies that they have to be able to monitor the
evolution of their technical provisions between two full calculations. The scope of this article is limited to
continuous compliance with capital requirements.
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This paper focuses on the estimation of the eligible own funds and the SCR. Basi-
cally, the MCR will not be used as much as the SCR when it comes to risk management,
and compliance with the SCR will imply compliance with the MCR.

2.1.2 Implementation for a life company

The estimation of the eligible own funds and the SCR requires to carry out calculations
that can be quite heavy. Their complexity depends on the complexity of the company’s
portfolio and the modelling choices that are made, in particular between the Standard
Formula and an internal model. In this section, we present the key issues to be dealt
with by a life insurer.

Implementation scheme. To assess the SCR it is necessary to project ecenomic bal-
ance sheets and calculate best estimates.

For many companies, the bulk of the balance sheet valuation lies in the estimation
of these best estimates. This can imply quite a long and heavy process, since the
assessment is carried out through simulations and is subject, amongst other things, to
the following constraints:

• updating the assets and liabilities model points;

• constructing a set of economic scenarios under the risk-neutral probability and
checking its market-consistency;

• calibrating and validating the stochastic model through a series of tests (e.g.:
leakage test);

• running simulations.

The valuation of the financial assets may also be quite time-consuming if a signifi-
cant part of the portfolio has to be marked to model.

SCR calculation through the Standard Formula. The calculation of the SCR through
the Standard Formula is based on the following steps:

• calculation of the various standalone SCR;

• aggregation;

• adjustment for the risk absorbing effect of technical provisions and deferred
taxes;

• calculating and adding up the capital charge for operational risk.

Each standalone SCR corresponds to a risk factor and is defined as the difference
between the current value of the eligible own funds and their value after a pre-defined
shock on the risk factor. As a consequence, for the calculation of each standalone SCR
a balance sheet valuation needs to be carried out, which means that a set of simulations
has to be run and that the assets must be valued in the economic conditions after shock.
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SCR calculation with a stochastic internal model. An internal model is a model
designed by the company to reflect its risk profile more accurately than the Standard
Formula. Companies deciding not to use the Standard Formula have the choice be-
tween a full internal model and a partial internal model. The latter is a model where
the capital charge for some of the risks is calculated through the Standard Formula
while the charge for the other risks is calculated with an entity-specific model. There
are two main categories of internal models2:

• models based on approaches similar to that of the Standard Formula, whereby
capital charges are calculated on the basis of shocks; the methodology followed
in this case is the same as the one described in Subsection 2.1.2;

• fully stochastic models: the purpose of this type of model is to exhibit a prob-
ability distribution of the own funds at the end of a 1-year period, in order to
subsequently derive the SCR , by calculating the difference between the 99.5%
quantile and the initial value.

In the latter case, the calculations are based on a methodology called Nested Sim-
ulations. It is based on a twofold process of simulations:

• real-world simulations of the risk factors’ evolution over 1 year are carried out;

• for each real-world simulation, the balance sheet must be valued at the end of
the 1-year period. As per the Solvency II requirements, this valuation has to be
market-consistent. It is carried out through simulations under the risk-neutral
probability.

More details on Nested Simulations can be found in Broadie et al. [4] or Devineau
and Loisel [11].

2.2 An approach to continuous compliance

In the rest of this article we focus the scope of our study to life insurance.

2.2.1 Defining an approach

As mentioned above, the Solvency II Directive requires companies to permanently
cover their SCR and MCR. This is what we refer to as continuous compliance in this
paper. The regulatory texts do not impose any specific methodology. Moreover the
assessment of continuous compliance is introduced as an element of the Own Risk and
Solvency Assessment (ORSA), which suggests that the approach is for each company
to define.

Different approaches can be envisaged. Here below we present some assessment
methodologies that companies can rely on and may combine in a continuous compli-
ance framework.

• Full calculations: i.e. the same calculations as those carried out for annual re-
porting to the supervisory authority: this type of calculations can be performed

2These approaches can be mixed within one model.
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several times during the year. However the process can be heavy and time-
consuming, as can be seen from the description made in Subsection 2.1.2. As a
consequence, it seems operationally difficult to carry out such calculations more
than quarterly (actualy most companies are likely to run full calculations only
once or twice a year).

• Simplified full calculations: companies may decide to run calculations similar
to those described in the previous item but to freeze some elements. For example
they could decide not to update the liabilities model points if the portfolio is
stable and if the time elapsed since the last update is short; they could also decide
to freeze some modules or sub-modules that are not expected to vary significantly
over a short period of time.

• Proxies: companies may develop methods to calculate approximate values of
their Solvency Ratio3 (SR). Possible approaches include, among others, abacuses
and parametric proxies.

• Indicators monitoring: as part of their risk management, companies will moni-
tor risk indicators and set limits to them. These limits may be set so that respect-
ing them ensures that some SCR modules stay within a given range.

2.2.2 Overview of the proposed approach

The approach presented in this paper relies on the calibration of proxies allowing to
estimate the SR quickly and taking as input a limited number of easy-to-produce indi-
cators. It has been developed for life companies using the Standard Formula.

Proxies: generic principles. Simplifying the calculations requires limiting the num-
ber of risks factors that will be monitored and taken into account in the assessment
to the most significant. For most life insurance companies, these risk factors will be
financial (e.g.: stock level, yield curve).

In the framework described in the following sections, the proxies are supposed to be
potentially used to calculate the SR at any point in time. For operational practicality, the
inputs have to be easily available. In particular, for each risk factor, an indicator will be
selected for monitoring purpose and to be used as input for the proxy (see Section 3 for
more insight about proxies). The selected indicators will have to be easily obtainable
and reflect the company’s risk profile.

As explained in Section 3, our approach relies on the development and the cali-
bration of proxies in order to calculate in a quick and simple way the company’s Net
Asset Value (NAV ) and the most significant SCR sub-modules. The overall SCR is then
calculated through an aggregation process based on the Standard Formula’s structure
and using the tools the company uses for its regulatory calculations. As a consequence,
a selection has to be made regarding the sub-modules that will be calculated by proxy.
The others are frozen or updated proportionally to a volume measure (e.g. mortality
SCR set proportional to the technical provisions).

3Solvency Ratio = Eligible Own Funds / SCR.
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Figure 1: Continuous compliance framework.

Continuous compliance framework. Under Solvency II, companies will set a fre-
quency (at least annual) for the full calculation of the SCR 4. Additionally, they will
set a list of pre-defined events and circumstances that will trigger a full calculation
whenever they happen. The proxies will be used to estimate the SR between two full
calculations and should be calibrated every time a full calculation is performed. This
process is summarized in Figure 1 below.

Here below are a few examples of pre-defined events and circumstance,

• external events (e.g.: financial events, pandemics),

• internal decisions (e.g.: change in asset mix),

• risk factors outside the proxies’ zone of validity.

3 Quantitative approach to assess the continuous com-
pliance

Note first that the study presented in this paper was carried out in a context where the
adjustment for the loss-absorbing capacity of technical provisions was lesser than the
Future Discretionary Benefits (“FDB”) (see Level 2 Implementation Measures [5]). As
a consequence, the Value of In-Force and the NAV were always calculated net of the
loss-absorbing effect of future profit participation. In cases where the loss-absorbing
capacity of technical provisions breaches the FDB, further developments (and addi-
tional assumptions), not presented in this paper, will be necessary.

In Section 3 we present a proxy implementation that enables one to assess the
continuous compliance, and the underlying assumptions.

4We are referring here to full calculations in the broad sense: the infra-annual calculations may be sim-
plified full calculations.
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3.1 Assumptions underlying the continuous compliance assessment
framework

As explained in Subsection 2.2.2, several simplifications will be necessary in order to
operationalize the continuous compliance assessment using our methodology.

3.1.1 Selection of the monitored risks

First, we need to assume that the company can be considered subject to a limited num-
ber of significant and easily measurable risks with little loss of information.

In most cases this assumption is quite strong. Indeed, there are numerous underly-
ing risks for a life insurance undertaking and these are not always easily measurable.
For example, the mortality and longevity risks, to cite only those, are greatly difficult
to monitor on an infra-year time step, simply because of the lack of data. Moreover
the significant aspect will have to be quantifiably justified. For instance, this signifi-
cance can be defined considering the known impact of the risk on the SCR or on the
company’s balance sheet, or considering its volatility.

In the case of a life insurance business it seems particularly relevant to select the
financial risks, easily measurable and monitorable. As a consequence, the selected risk
will for example be the stock, interest rates (corporate, sovereign), implicit volatilities
(stock / interest rates), illiquidity premium.

In order to enable a frequent monitoring of the selected risks and of their impact,
it is necessary to add the assumption that their evolution over time can be satisfy-
ingly replicated by the evolution of composite indexes defined continuously through
the monitoring period.

This assumption is a more tangible translation of the measurable aspect of the risks.
The objective here is to enable the risks’ monitoring through reference indexes.

For example, an undertaking which is mainly exposed to European stocks can con-
sider the EUROSTOXX50 level in order to efficiently synthetize its stock level risk.
Another possibility may be to consider weighted European stock indexes to obtain an
aggregated indicator more accurate and representative of the entity-specific risk. For
example, for the sovereign spread risk, it seems relevant for a given entity to monitor
an index set up as a weighted average of the spread extracted from the various bonds
in its asset portfolio.

Eventually, the undertaking must aim at developing a indexes table, similar to the
following one.

Table 1: Example of indexes table — Significant risks and their associated indicators.
Significant risks Associated composite indicators

Stock (level) 70% CAC40 / 30% EUROSTOXX50
Risk-free rate (level) Euro swap curve (averaged level evolution)
Spread (sovereign) Weighted average of the spread by issuing country.

Weights : % market value in the asset portfolio
Spread (corporate) iTraxx Europe Generic 10Y Corporate
Volatility (stock) VCAC Index
Illiquidity premium Illiquidity premium (see QIS5 formula [7])
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Figure 2: Simplified monitoring framework: Illustration

Generally speaking, all the assumptions presented here are almost induced by the
operational constraints linked to the definition of the continuous compliance framework
(full calculation frequence / number of monitores risks). Indeed, it is impossible in
practice to monitor each underlying risk day by day. We therofore need to restrict the
framework by selecting the most influent risks and indicators enabling their practical
monitoring.

In addition, it is irrelevant to consider too stable risks or risks that cannot be mon-
itored infra-annually. In this case, they can simply be assumed frozen, or updated
proportionnaly to a volume measure, through the monitoring period, with little loss of
information.

In this simplified framework, a change of the economic conditions over time will
be summarize in the realized indexes’ level transition. It is then possible to build a
proxy enabling one to approximate quickly the SR at each monitoring date, knowing
the current level of the composite indicators.

Figure 2 illustrates the process to follow and the underlying assumptions made in
a simplified framework. Let us develop a case where the company’s asset portfolio
can be divided into one stock and one bond pools. Two underlying risks have been
identified, the stock level risk and the interest rate level risk (average level change of
the rates curve5). Our assumptions lead to consider that, once the risks associated to
composite indexes, it is possible to approximate the asset portfolio by a mix between,

5Note that other kinds of interest rates risks can be selected in order to address the term structure risk
more precisely, such as the slope and curvature risks. For more insight on this subject see e.g. Diebold and
Li [12].
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• a stock basket with the same returns, composed with the composite stock index
only (e.g. 70% CAC 40 / 30% EUROSTOXX50),

• a bond basket replicating the cash-flows of the bonds discounted using a rate
curve induiced from the initial curve translated of the average variation of the
reference rate curve (the “composite” curve, e.g. the Euro swap curve).

Eventually we can decompose the process presented in Figure 2 between,

• a vertical axe where one simplifies the risks themselves,

• and an horizontal axe where one transforms the risk into composite indexes.

To conclude, note that the assumptions made here will lead to the creation of a basis
risk. Indeed, even if the considered indexes are very efficient, one part of the insurance
portfolio sensitivity will be omitted due to the approximations. In particular the risks
and indexes must be chosen very precisely, entity-specifically. A small mistake can
have great repercussions on the approximate SR. In order to minimize the basis risk, the
undertaking will have to back-test the choices made and the underlying assumptions.

3.1.2 Selection of the monitored marginal SCR

The continuous compliance framework and tool presented in this paper applies to com-
panies that use a Standard Formula approach to assess the SCR value (but can provide
relevant information to companies that use an internal model).

In practice it will not be necessary to monitor every marginal SCR of a company.
Indeed, some risk modules will be little or not impacted by any infra-annual evolution
of the selected risks. Moreover, a certain number of sub-modules have a small weight
in the calculation of the Basic Solvency Capital Requirement (BSCR). These too small
and/or stable marginal SCR will be frozen or updated proportionally to a volume mea-
sure throughout the monitoring period.

Eventually, the number of risk modules that will have to be updated precisely (the
most meaningful marginal SCR) should be reduced to less than ten. Note that, among
the marginal SCR to recalculate, some can correspond to modeled risks factors but
others will not correspond to the selected risk factors while being very impacted by
those (e.g. the massive lapse SCR).

This selection of the relevant SCR sub-modules will introduce a new assumption
and a new basis risk, necessary for our methodology’s efficiency. The basis risk associ-
ated to this assumption, linked to the fact that some marginal SCR will not be updated at
each monitoring date, can be reduced by considering a larger number of sub-modules.
One will have to apprehend this problem pragmatically, to take a minimal number of
risk modules into account in order to limit the number of future calculations, while
keeping the error made on the overall SCR under control, the best possible way.

3.2 Use of parametric proxies to assess the continuous compliance

In the previous section we have defined a reference framework in which we will de-
velop our monitoring tool. The proposed methodology aims at calibrating proxies that
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replicate the central and shocked NAV as functions of the levels taken by the chosen
indexes.

3.2.1 Assumption of stability of the asset and liability portfolios

We now work with closed asset and liabities potfolios, with no trading, claim or pre-
mium cash-flow, in order to consider a stable asset-mix and volume of assets and lia-
bilities. Eventually, all the balance sheets movements are now induced by the financial
factors.

This new assumption may seem strong at first sight. However, it seems justified
on a short term period. In the general case the evolution of these portfolios is slow
for mature life insurance companies. This evolution is therefore assumed to have little
significance for the monitoring period of our continuous compliance monitoring tool.
Eventually, if a significant evolution happens in practice (e.g. a portfolio puchase / sale)
this will lead to a full recalibration of the tool (see Subsection 4.2.3 for more insight on
the monitoring tool governance).

3.2.2 Economic transitions

Let us recall the various assumptions considered until now.

• H1 : The undertaking’s underlying risks can be summarized into a small pool of
significant and easily quantifiable risks with little loss of information.

• H2 : The evolution of these risks can be perfectly replicated by monitoring com-
posite indicators, well defined at each date of the monitoring period.

• H3 : The number of marginal SCR that need to be precisely updated at each
monitoring date can be reduced to the most impacting risk modules with little
loss of information.

• H4 : The asset and liability portfolio are assumed frozen between two calibration
dates of the monitoring tool.

Under the assumptions H1, H2, H3 and H4 it is possible to summarize the im-
pact of a time evolution of the economic conditions on the considered portfolio into
an instant level shock of the selected composite indicators. This instant choc will be
denoted “economic transition” and we will see below that it can be identified to a set
of elementary risk factors similar to those presented in Devineau and Chauvigny [10].

Figure 3: Economic transition “0→ 0+”.

Let us consider a two shocks framework: the stock level risk, associated to an index
denoted by S(t) at date t ≥ 0 (t = 0 being the tool’s calibration date) and an interest
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rate level risk, associated to zero-coupon prices, denoting by P(t,m) the zero-coupon
of maturity m and date t ≥ 0. Now, let us consider an observed evolution between 0 and
a monitoring date t > 0. Finaly, to calculate the NAV at date t, under our assumptions,
it is only necessary to know the new levels S(t),P(t,m).

The real evolution, from
(
S(0),(P(0,m))m∈J1;MK

)
to
(
S(t),(P(t,m))m∈J1;MK

)
can

eventually be seen as a risk factors couple,

ε =

(
s
ε = ln

(
S(t)
S(0)

)
,ZC

ε =− 1
M

M

∑
m=0

ln
(

1
m

P(t,m)

P(0,m)

))
,

denoting by sε (respectively ZCε) the stock (resp. zero-coupon) risk factor.

This evolution of the economic conditions, translated into a risk factors tuple, is
called economic transition in the following sections of this paper and can easily be
extended to a greater number of risks. The risk factor will be used in our algorithm
to replicate the instant shocks “0→ 0+” equivalent to the real transitions “0→ t”.
Moreover, the notion of economic transition will be used to designate either an instant
shock or a real evolution of the economic situation between 0 and t > 0. In this latter
case we will talk about real or realized economic transition.

3.2.3 Probable space of economic transitions for a given α% threshold

Let us consider, for example, a 3-months monitoring period (with a full calibrations
of the monitoring tool at the start and at the end of the period). It is possible to a
priori assess a probable space of the probable quarterly economic transitions, under
the historic probability P and for a given threshold α%. One simply has to study a
deep enough historical data summary of the quarterly evolutions of the indexes and
to assess the interval between the 1−α%

2 and the 1+α%
2 historical quantiles of the risk

factors extracted from the historical data set.

For example, for the stock risk factor sε , knowing the historical summary
(

S i
4

)
i∈J0,4T+1K

one can extract the risk factor’s historical data set
(

sε i
4
= ln

( S i+1
4

S i
4

))
i∈J0,4TK

and ob-

tain the probable space of economic transitions for a given α% threshold,[
q 1−α%

2

((
s
ε i

4

)
i∈J0;4TK

)
;q 1+α%

2

((
s
ε i

4

)
i∈J0;4TK

)]
.

In a more general framework, consider economic transitions represented by J-
tuples of risk factors ε =

(
1ε, ...,J ε

)
of which one can get an historical summary(

1ε i
4
, ...,J ε i

4

)
i∈J0;TK

. The following probable interval of the economic transitions with

a α% threshold can be used,

E α =

{(
1ε, ...,1 ε

)
∈∏

J
j=1

[
q 1−α%

2

((
jε i

4

)
i∈J0;TK

)
;q 1+α%

2

((
jε i

4

)
i∈J0;TK

)]}
.

Note that such a space does not take correlations into account. Indeed each risk
factor’s interval is defined independently from the others. In particular, such a space is
prudent: contains more than α% of the historically probable economic evolutions.
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Figure 4: Calculation of an estimator of NAV0+ (ε) using a Monte Carlo method.

3.2.4 Implementation — Replication of the central NAV

We will now assume that J different risks have already been selected.

The implementation we will now descibe aims at calibrating a polynomial proxy
that replicates NAV0+ (ε), the central NAV at the date t = 0+, associated to an eco-
nomic transition ε =

(
1ε, ...,J ε

)
. The proxy will allow, at each monitoring date t, after

evaluating the observed economic transition εt (realized between 0 and t), to obtain a
corresponding approximate central NAV value, NAV proxy

0+ (εt).

Notation and preliminary definitions. To build the NAV proxy
0+ (ε) function, our ap-

proach is inspired from the Curve Fitting (CF) and Least Squares Monte Carlo (LSMC)
polynomial proxies approaches proposed in Vedani and Devineau [32]. It is possible
to present a generalized implementation plan for these kinds of approaches. They both
aim at approximating the NAV using a polynomial function whose monomials are sim-
ple and crossed powers of the elements in ε =

(
1ε, ...,J ε

)
.

Let us introduce the following notation. Let Q be a risk-neutral measure condi-
tioned by the real-world financial information known at date 0+, F0+ the filtration that
characterizes the real-world economic information contained within an economic tran-
sition between dates 0 and 0+. Let Ru be the profit realized between u−1 and u ≥ 1,
and δu the discount factor at date u≥ 1 . Let H be the liability run-off horizon.

The gist of the method is described here below.

The NAV0+ (ε) depends on the economic information through the period [0;0+],

NAV0+ (ε) = EQ [
∑

H
t=1 δtRt |F0+

]
.

For a given transition ε it is possible to estimate NAV0+ (ε) implementing a standard
Asset Liability Management model calculation at date t = 0+. In order to do so one
must use an economic scenarios table of P simulations generated under the probability
measure Q between t = 0+ and t = H initialized by the levels (and volatilities if the
risk is chosen) of the various economic drivers as induced by transition ε .

For each simulation p ∈ J1;PK and date t ∈ J1;HK, one has to calculate the profit
outcome Rp

t using an Asset-Liability Management (ALM) model and, knowing the
corresponding discount factor δ

p
t , to assess the Monte Carlo estimator,

N̂AV 0+ (ε) =
1
P ∑

P
p=1 ∑

H
t=1 δ

p
t Rp

t .
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When P = 1 we obtain an inefficient estimator of NAV0+ (ε) which we will denote
by NPV0+ (ε) (Net Present Value of margins), according to the notation of Vedani and
Devineau [32]. Note that for a given transition ε , NPV0+ (ε) is generally very volatile
and it is necessary to have P high to get an efficient estimator of NAV0+ (ε).

Methodology. Let us consider a set of N transitions obtained randomly from a proba-
ble space of economic transitions and denoted by

(
εn =

(
1εn, ...,J εn

))
n∈J1;NK. We now

have to aggregate all the N associated risk-neutral scenarios tables, each one initialized
by the drivers’ levels (and volatilities if needed) corresponding to one of the economic
transitions in the set, in a unique table (see Figure 5).

Figure 5: Aggregate table.

The ALM calculations launched on such a table enables one to get N×P outcomes(
NPV p

0+ (ε
n)
)

n∈J1;NK,p∈J1;PK ,

and subsequently a N sample(
NAV0+ (ε

n) =
1
P

P

∑
p=1

NPV p
0+ (ε

n)

)
n∈J1;NK

.

Then, the outcomes
(

N̂AV 0+ (ε
n)
)

n∈J1;NK
are regressed on simple and crossed

monomials of the risk factors in ε =
(

1ε, ...,J ε
)
. The regression is made by Ordinary

Least Squares (OLS) and the optimal regressors x =
(
Intercept,1X , ...,K x

)
(with, for all

k ∈ J1;KK,kx = ∏
J
j=1
(

jεk
)α j , for a certain J-tuple (α1, ...,αJ) in NJ) are selected using

a stepwise methodology. For more developments about these approaches see Draper
and Smith [13] or Hastie et al. [16].

Let β =
(

Intβ ,1β , ...,K β
)

be the optimal multilinear regression parameters.
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The considered multilinear regression can therefore be written under a matricial
form Y = Xβ +U , denoting by

Y =

 NAV0+
(
ε1
)

...
NAV0+

(
εN
)
 ,

X =

 x1

...
xN

 ,

with, for all n ∈ J1;NK, xn =
(
1,1xn, ...,K xn

)
, for all k ∈ (|1;K|), kxn = ∏

J
j=1
(

jεn
)α j

and U = Y −Xβ .

In this regression, the conditional expectation of NAV0+ (ε
n) given the σ -field gen-

erated by the regressors matrix X is simply seen as a linear combination of the regres-
sors. For more insight about multiple regression models the reader may consult Saporta
[30].

The underlying assumption of this model can also be written ∃β ,E [Y |X ] = Xβ .

Under the assumption that X ′X is invertible (with Z′ the transposition of a given
vector or matrix Z), the estimated vector of the parameters is,

β̂ = (X ′X)−1 X ′Y.

Moreover, for a given economic transition ε̄ and its associated set of optimal regres-
sors x̄, x̄.β̂ is an unbiased and consistent estimator of E

[
N̂AV 0+ (ε̄) |x̄

]
=E [NAV0+ (ε̄) |x̄].

When σ (x) = F0+ , which is generally the case in practice, x̄β̂ is an efficient estimator
of NAV0+ (ε) and we get an efficient polynomial proxy of the central NAV for every
economic transition.

Eventually, it is necessary to test the goodness of fit. The idea is now to calculate
several approximate outcomes of central NAV , associated to an out of sample6 set of
economic transition, using a Monte Carlo method on a great number of secondary
scenarios, and to compare these outcomes to those obtained using the proxy.

3.2.5 Implementation — Replication of the shocked NAV

At each monitoring date, we aim at knowing each pertinent marginal SCR value, for
each chosen risk modules. With the proxy calibrated in the previous section one can
calculate an approximate value of the central NAV . We now have to duplicate the
methodology presented in Subsection 3.2.4, adapted for each marginally shocked NAV
(considering the Standard Formula shocks).7

The implementation is fully similar except the fact that the shocked proxies are
calibrated on N outcomes of marginally shocked NAV0+ . Indeed each marginal SCR is
a difference between the central NAV and a NAV after the application of the marginal

6Scenarios that are not included in the set used during the calibration steps.
7Note that it is necessary to calibrate new “after shock” proxies because it is impossible to assimilate a

Standard Formula shock to a transition shock...
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shock. We therefore need the NAV after shock that takes the conditions associated to
an economic trasition into account.

This enables one to obtain, for each shock nb i, a set
(
NAV shock nb i

0+ (εn)
)

n∈J1;NK,

a new optimal regressors set
(
Intercept,1xshock nb i, ...,Kxshock nb i

)
and new optimal pa-

rameters estimators β̂ shock nb i.

3.2.6 Practical monitoring

Once the methodology has been implemented, the obtained polynomial proxies enable
one, at each date within the monitoring period, to evaluate the central and shocked NAV
values knowing the realized economic transition.

At each monitoring date t, the process is the following.

• Assessment of the realized transition between 0 and t, ε̂ .

• Derivation of the values of the optimal regressors set for each proxy:

– x̄ the realized regressors set for the central proxy,

– x̄shock nb 1, ..., x̄shock nb J the regressors set for the J shocked proxy.

• Calculation of the approximate central and shocked NAV levels at date t:

– x̄β̂ , the approximate central NAV ,

– x̄shock nb 1β̂ shock nb i, ..., x̄shock nb J β̂ shock nb J the J approximate shocked NAV .

• Calculation of the approximate marginal SCR and, considering frozen values,
or values that are updated proportionally to a volume measure, for the other
marginal SCR, Standard Formula aggregation to evaluate the approximate overall
SCR and SR8.

3.3 Least-Squares Monte Carlo vs. Curve Fitting — The large di-
mensioning issue

The implementation developed in Subsection 3.2 is an adapted application, generalized
to the N×P framework, of the polynomial approaches such as LSMC and CF , already
used in previous studies to project NAV values at t years (t ≥ 1). For more insight
about these approaches, see for example Vedani and Devineau [32], Algorithmics [1]
or Barrie & Hibbert [17].

When P = 1 and N is very large (basically the proxies are calibrated on Net Present
Values of margins / NPV ), we are in the case of a LSMC approach. On the contrary,
when N is rather small and P large, we are in the case of a CF approach.

Both approaches generally deliver similar results. However the LSMC is often seen
as more stable than a CF when a large number of regressors are embedded in the
proxy. This clearly matches the continuous compliance case where the user generally
considers a larger number of risk factors compared to the usual LSMC methodologies,

8For more insight concerning the Standard Formula aggregation, especially about the evaluation of the
differed taxes, see Subsection 4.1.5.
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used to accelerate Nested Simulations for example. In our case, this large dimensioning
issue makes a lot of sense.

In Section 4 we will apply the methodology on four distinct risk factors, the stock
level risk, the interest rates level risk, the widening of corporates spread and of sovereign
spread risks. We have chosen to implement this application using a LSMC method. In
Section 5 we eventually try to challenge the commonly agreed idea that this methodol-
ogy is more robust than CF in a large dimension context.

4 LSMC approach adapted to the continuous compli-
ance issue

In Section 4 we will implement the presented methodology, in a standard savings prod-
uct framework. The ALM model used for the projections takes profit sharing mech-
anisms, target crediting rate and dynamic lapses behaviors of policy holders into ac-
count. Its characteristics are similar to those of the model used in Section 5 of Vedani
and Devineau [32]. The economic assumptions are those of 31/12/2012.

4.1 Implementation of the monitoring tool — Initialization step
and proxies calibration

Firstly it is necessary to shape the exact framework of the study. We have to select
the significant risks to be monitored, to choose representative indexes and then to iden-
tify the risk modules that will be updated. Note that the other risk modules will be
considered frozen through the monitoring period.

The monitoring period must be chosen short enough to ensure a good validity of
our stability assumptions for the risk modules that are not updted and for the balance
sheet composition. However, it also defines the time during two complete proxy cali-
brations and, as a consequence, it must be chosen long enough not to force too frequent
calibrations, which are highly time-consuming. In this study we have therefore chosen
to consider a quarterly monitoring period.

4.1.1 Initialization step — Implementation of a complete regulatory solvency
calculation

In order to quantify the relative relevance of the various marginal SCR of the Standard
Formula, it is recommended to implement, as a preliminary step, a complete regulatory
solvency calculation before a calibration of the monitoring tool. Moreover, seen as an
out of sample scenario, this central calculation can be used as a validation point for the
calibrated proxies.9

It is also possible to select the marginal SCR based on expert statements or on the
undertaking’s expertise, knowing the products sensitivities to the various shocks and
economic cycles at the calibration date (and the previous SCR calculations).

9The implementation of two to four complete regulatory solvency calculations may be a strong constraint
for most insurance undertakings however, due to the several assumptions made to implement the monitoring
tool, we recommend to consider monitoring period no longer than six months.
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4.1.2 Initialization step — Risk factor and monitored indexes selection

We have selected four major risks and built the following indexes table.

Table 2: Selected risks and associated indicators.
Selected risks Composite indicators

Stock (level) 100% EUROSTOXX50
Risk-free rate (level) Euro swap curve (averaged level evolution)
Spread (sovereign) Average spread French bonds rate vs. Euro swap rate
Spread (corporate) iTraxx Europe Generic 10Y Corporate

These four risks generally have a great impact on the NAV and SCR in the case
of savings products, even on a short monitoring period. Moreover, they are highly
volatile at the calibration date (31/12/12). In particular, the division of the spread risk
in two categories (sovereign and corporate) is absolutely necessary within the European
sovereign debt context.

A wide range of risks have been set aside of this study that is just intended to be
a simple example. In practice both the stock and interest rates implicit volatility risks
are also relevant risks that can be added in the methodology’s implementation with
no major issue. For the stock implicit volatility risk it is possible to monitor market
volatility indexes such as the VIX. Note that the interest rates implicit volatility risk
raises several questions related to the application of the risk in the instant economic
transitions, in the calibration scenarios. These issues can be set aside considering re-
calibration/regeneration approaches (see Devineau [9]) and will not be discussed in this
paper.

4.1.3 Initialization step — Choice of the monitored marginal SCR

Considering the updated risk modules to update, we have chosen the most significant in
the Standard Formula aggregation process. These are also the less stable trough time,

• the stock SCR,

• the interest rates SCR,

• the spread SCR,

• the liquidity SCR.

The lapse risk SCR, generally greatly significant, has not been considered here.
Indeed with the very low rates, as at 31/12/2012, the lapse risk SCR is close to zero.
Certain other significant SCR sub-modules such as the real estate SCR have been omit-
ted because of their low infra-year volatility.

4.1.4 Proxies calibration and validation

The calibration of the various proxies is made through the same process as developed
in Vedani and Devineau [32]. The proxy is obtained by implementing a standard OLS
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Table 3: Market marginal SCR as at 31/12/2012.
Market SCR Value as at 31/12/2012

IR SCR 968
Stock SCR 3930
Real Estate SCR 943
Spread SCR 2658
Liquidity SCR 3928
Concentration SCR 661
Currency SCR 127

... ...

methodology and the optimal regressors are selected through a stepwise approach. This
enables the process to be completely automated. The validation of each proxy is made
by considering ten out of the sample scenarios. These are scenarios that have not be
used to calibrate the proxies but on which we have calculated shocked and central
outcomes of N̂AV 0+ . These “true” outcomes are then compared to the approximate
outcomes obtained from our proxies.

To select the out of the sample scenarios we have chosen to define them as the 10
scenarios that go step by step from the “initial” position to the “worst case” situation
(the calibrated worst case limit of the monitored risks).

For each risk factor ε j,

• the “initial” position is ε
j

init = 0,

• the “worst case” situation10 is ε
j

w.c.= q 1−α%
2

((
ε i

4

)
i∈J0;TK

)
or q 1+α%

2

((
ε i

4

)
i∈J0;TK

)
,

depending on the direction of the worst case for each risk,

• the kth (k ∈ J1;9K) out of sample scenario is ε
j

nb. k =
k

10 ε
j

w.c.+
10−k

10 ε
j

init .

Below are shown the relative deviations, between the proxies outcomes and the
corresponding out of sample fully-calculated scenarios, obtained on the first five val-
idation scenarios. As one can see, the relative deviations are always close to 0 apart
from the illiquidity shocked NAV proxy. In practice this proxy is the most complex to
calibrate due to the high volatility of the illiquidity shocked NAV . To avoid this issue,
the user can add more calibration scenarios or select more potential regressors when
implementing the stepwise methodology. In our study we have chosen to validate our
proxy, staying critical on the underlying approximate marginal SCR illiquidity.

All the proxies being eventually calibrated and validated, it is now necessary to
rebuild the Standard Formula aggregation process in order to assess the approximate
overall SCR value.

4.1.5 Proxies aggregation through the Standard Formula process

In practice the overall SCR is calculated as an aggregation of three quantities, the BSCR,
the operational SCR (SCRop) and the tax adjustments (Ad j).

10= the 10th out of sample scenario
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Table 4: Relative deviations proxies vs. full-calculation NAV (check on the five first
validation steps).

Validation scenarios 1 2 3 4 5
Central NAV -0.07% 1.65% 1.56% 1.05% 0.29%
IR shocked NAV -0.18% 1.67% 1.14% 0.44% -0.83%
“Global” Stock shocked NAV 0.24% 1.93% 1.56% 1.15% 0.28%
“Other” Stock shocked NAV 0.19% 1.95% 1.78% 1.31% 0.27%
Spread shocked NAV 0.01% 2.29% 2.15% 1.06% 0.18%
Illiquidity shocked NAV -5.35% -3.27% -2.43% -3.03% -2.39%

As far as the BSCR is concerned, no particular issue is raised by its calculation.
At each monitoring date, the selected marginal SCR are approximated using the prox-
ies and the other SCR are assumed frozen. The BSCR is simply obtained through a
Standard Formula aggregation (see for example Devineau and Loisel [11]).

To derive the operational SCR, we consider that this capital is also stable through
time, which is in practice an acceptable assumption for a halfyearly or quarterly mon-
itoring period (and consistent with the asset and liability portfolios stability assump-
tion).

The Tax adjustments approximation leads to the greatest issue. Indeed we need
to know the approximate Value of In-Force (V IF) at the monitoring date. We obtain

the approximate V IF as the approximate central NAV
(

N̂AV
central proxy)

minus a fixed
amount calculated as the sum of the tier-one own funds (tier one OF) and of the sub-
ordinated debt (SD) minus the financial management fees (FMF), as at the calibration
date. Let t be the monitoring date and 0 be the proxies’ calibration date (t > 0),

V̂ IF t ≈ NAV central proxy
t − (tier one OF0 +SD0−FMF0).

Assuming a frozen corporation tax rate of 34.43% (French corporation tax rate),
the approximated level of deferred tax liability D̂T L is obtained as,

D̂T Lt = 34.43%×V̂ IF t .

Eventually, the income tax recovery associated to new business
(
IT RNB

)
is as-

sumed frozen through the monitoring period and the approximate tax adjustments at
the monitoring date is obtained as,

Âd jt = IT RNB
0 + D̂T Lt .

Knowing the approximate values B̂SCRt and Âd jt , and the initial value SCRop0,
one can obtain the approximate overall SCR (simply denoted by ŜCR) at the monitoring
date as,

ŜCRt = B̂SCRt +SCRop0− Âd jt .

Eventually, in order to obtain the SR approximation we obtain the approximate
eligible own funds ÔF as,
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ÔF t = (tier one OF0 +SD0−FMF0)+V̂ IF t × (1−34.43%).

Eventually, the approximate SR at the monitoring date is,

ŜRt =
ÔFt
ŜCRt

.

4.2 Practical use of the monitoring tool

In subsection 4.2 we will first see the issues raised by the practical continuous compli-
ance’s monitoring through our tool, and the tool’s governance. In a second part we will
develop the other possible uses of the monitoring tool, especially in the area of the risk
management and for the development of preventive measures.

4.2.1 Monitoring the continuous compliance

At each monitoring date the process to assess the regulatory compliance is the same as
presented in Subsection 3.2.6.

• Assessment of the realized transition between 0 and t, ε̂ .

• Derivation of the values of the optimal regressors set for each proxy.

• Derivation of the values of the optimal regressors set for each proxy.

• Calculation of the approximate central and shocked NAV levels at date t.

• Calculation of the levels of each approximate marginal SCR at date t (the other
marginal SCR are assumed frozen through the monitoring period).

This, with other stability assumptions such as stability of the tax rate and of the
tier-one own funds, enables one to reconstruct the Basic SCR, the operational SCR and
the Tax adjustments and, eventually, to approximate the overall SCR and the SR at the
monitoring date.

Note that this process can be automated to provide a monitoring target such as the
one depicted below and a set of outputs such as the eligible own funds, the overall SCR,
the SR, but also the various marginal SCR (see Figure 6).

4.2.2 Monitoring the daily evolution of the SR

In practice the ability to monitor the SR day by day is very interesting and provides a
good idea of the empirical volatility of such a ratio (see Figure 7).

In particular, in an ORSA framework it could be relevant to consider an artificially
smoothed SR, for example using a 2-week moving average, in order to depict a more
consistent solvency indicator. Considering the same data as presented in the previous
figure we would obtain the following two graphs (see Figure 8).
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Figure 6: Target used to monitor the evolution of the risk factors

Figure 7: Monitoring of the approximate SR and of the four underlying risk factors,
from 30/06/12 to 30/06/13.

4.2.3 Monitoring tool governance

Several assumptions are made to provide the approximate SR but we can observe in
practice a good replication of the risk impacts and of the SR variations. However the
use of this monitoring tool only provides a proxy and therefore the results must be used
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Figure 8: Comparison of the standard approximate SR and of a smoothed approximate
SR - Monitoring from 30/06/12 to 30/06/13.

with caution and its governance must be managed very carefully.

The governance of the tool can be divided into three parts.

• Firstly it is necessary to a priori define the recalibration frequency. The monitor-
ing period associated to each total calibration of the tool should not be too long.
The authors believe it should not exceed half a year.

• Secondly it is important to identify clearly the data to update for each recalibra-
tion. These data especially cover the asset and liability data.

• Finally the user must define the conditions leading to a total (unplanned) recal-
ibration of the tool. In particular, these conditions must include updates follow-
ing management decisions (financial strategy changes inside the mode, asset mix
changes,...) and updates triggered by the evolution of the economic situation.

4.2.4 Alternative uses of the tool

This monitoring tool enables the risk managers to run a certain number of studies, even
at the beginning of the monitoring period, in order ton anticipate the impact of future
risk deviations for example.

Sensitivity study and stress testing. The parametric proxy that replicates the central
NAV can also be used to stress the marginal and joint sensitivities of the NAV to the
various risks embedded in our proxies. Even more interesting for the risk managers,
it is possible to assess a complete sensitivity study directly on the SR of the company,
which is very difficult to compute without using an approximation tool (see Figures 9
and 10).

This sensitivity analyses needs no additional calculations to the proxies’ assess-
ment and enables the risk managers to compute as many “approximate” stress tests as
needed. In practice such a use of the tool enables to gain better insight about the impact
of each risk, taken either individually or jointly, on the SR.
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Figure 9: 1D solvency ratio sensitivities.

Figure 10: 2D solvency ratio sensitivities.

Monitoring the marginal impacts of the risks and market anticipations. Using
our monitoring tool it is possible to trace the evolution of the SR risk after risk (only
for the monitored risks). Figures 11 and 12 correspond to a ficticious evolution of the
risks implemented between the calibration date and a “virtual” monitoring date).

Such a study can be run at each monitoring date, or on fictitious scenarios (e.g. mar-
ket anticipations), in order to provide better insight about the SR movements through
time.

Concerning market anticipations, if a risk manager anticipates a rise or a fall of
the stocks / interest rates / spread, he can directly, through our tool, evaluate the corre-
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Figure 11: Monitoring target after the ficticious evolution of the monitored risks.

Figure 12: Marginal impact of the risks on the SR between the calibration date and a
virtual monitoring date.

sponding impact on the undertakings SR. In particular, such a study can be relevant to
propose quantitative preventive measures.
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In practice it also seems possible for the user to add asset-mix weights in the moni-
tored risk factors set. This would enable the user to a priori test asset-mix rebalancing
possibilities in order to select specific preventive measures and prevent the worse mar-
ket anticipation. This implementation has not been done yet but will be part of the
major future developments of the monitoring tool.

5 Empirical comparison between LSMC and CF

In Section 5 we will try to challenge the generally agreed idea that the LSMC method-
ology is more robust than CF in a large dimension context. We will also consider
the various possibilities to build asymptotic confidence intervals for the obtained NAV
estimators using our polynomial proxies.

5.1 Mathematical formalism — Probabilistic vs. statistic frame-
work

Through Subsection 5.1, we intend to describe a general polynomial proxy framework,
calibrated at a given date t (t ≥ 1 as in Vedani and Devineau [32] for example, but also
t = 0+ which is the case in the framework developed and implemented in Sections 3
and 4). We will then discriminate two distinct regressions (LSMC and CF) that can be
apprehended in a probabilistic or a statistic framework.

In a probabilistic framework, we note NAVt the Net Asset Value at date t, NPVt the
Net present Value of margins variable seen at date t and N̂AV t the estimated variable
considered in the CF regression. These variables are P⊗Qt - measurable, denoting by
P⊗Qt the probability measure as introduced in Section 4 of Vedani and Devineau [32].
The indexation by P⊗Qt will be omitted for the sake of simplicity. Finally, we note
F RW

t the filtration that characterizes the real-world economic information contained
between 0 and t, Ru the profit realized between dates u− 1 and u ≥ 1, and δu the
discount factor at date u.

We have,

NPVt = ∑
t+H
u=1

δu
δt

Ru

and denoting NPV 1
t , ...,NPV P

t , P i.i.d. random variables conditionally to F RW
t ,

which follow the same probability distribution as NPVt , conditionnaly to F RW
t ,

N̂AV t =
1
P ∑

P
p=1 NPV p

t ,

for a chosen P number of secondary scenarios. Moreover,

NAVt = E
[
N̂AV t |F MR

t

]
= E

[
NPVt |F MR

t
]
.

Denoting by xt the chosen regressors random vector (intercept included), 1β (resp.
2β ) the true value of the CF (resp. LSMC) regression parameters, and 1ut (resp. 2ut )
the residual of the CF (resp. LSMC) regression, both considered regressions can be
written as follow.
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{
(regression 1−CF) N̂AV t = xt

1β +1 ut under the assumption E
[
N̂AV t |xt

]
= xt

1β

(regression 2−LSMC) NPVt = xt
2β +2 ut under the assumption E [NPVt |xt ] = xt

2β

Note that this probabilist framework is the one chosen in Monfort [25].

Moreover, as seen in Vedani and Devineau [32] and Kalberer [20], we have 1β = 2β

(= β , in the rest of this paper).

In a statistical framework one will first consider the samples used for the model
calibration. As a consequence, let 1N (resp. 2N) be the length of the calibration
sample used in a CF (resp. LSMC) regression,

(
1xn

t
)

n∈J1;1NK (resp.
(

2xn
t
)

n∈J1;2NK)

the xt outcomes,
(

N̂AV
n
t

)
n∈J1;1NK

(resp. (NPV n
t )n∈J1;2NK) the associated N̂AV t (resp.

NPVt ) outcomes11 and
(

1un
t
)

n∈J1;1NK (resp.
(

2un
t
)

n∈J1;2NK the associated residuals. Note
that in order to compare the relative efficiency of both approaches we will obviously
have to consider an equal algorithmic complexity of the two approaches, which means
2N =1 N×P.

In a statistical matrix framework we have,

{
(regression 1−CF) 1Yt =

1Xt
1β +1 Ut under the assumption E

[
1Yt |1Xt

]
= 1Xt

1β

(regression 2−LSMC) 2Yt =
2Xt

2β +2 Ut under the assumption E
[

2Yt |2Xt
]
= 2Xt

2β

Denoting,

1Yt =


N̂AV

1
t

...

N̂AV
1N
t

 and 2Yt =

 NPV 1
t

...
NPV

2N
t

 ,

1Xt =


1x1

t
...

1x
1N
t

 and 2Xt =


2x1

t
...

2x
2N
t

 ,

1Ut =


1u1

t
...

1u
1N
t

 and 2Ut =


2u1

t
...

2u
2N
t

 .

For example, this statistical framework is the one developed in Crpon and Jacquemet
[8].

As the study goes forward and for the sake of simplicity, the time index will be
omitted.

11For a given value of P for the simulation of the
(

N̂AV
n
t

)
n∈J1;1NK

sample.
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5.2 Comparison tools in a finite sample framework

In Subsection 5.2 we determine comparison elements to challenge the comparative
efficiency of the CF and LSMC estimators, based on standard finite sample econometric
results. We will see below that, in the general case, it is necessary to study first the
properties of the residuals covariance matrices. Note that we will now consider the
regressions in a statistical vision, more representative of the finite sample framework,
and two assumptions will be made, which are verified in pratice.

H0 : The
(

N̂AV
i
,1xi
)
(resp. (NPV i,2xi)) outcomes are i.i.d.

H1 : The matrix 1X ′1X (resp. 2X ′2X) is invertible.

Under these assumptions, the OLS parameters estimators are respectively,

1β̂ =
(

1X ′1X
)−1 (1X ′1Y

)
and 2β̂ =

(
2X ′2X

)−1 (2X ′2Y
)

These two estimators are consistent and unbiased.

In the following subsections we will introduce two comparison tools for the LSMC
and CF methodologies in a finite sample framework: estimators of the parameters
covariance matrices and asymptotic confidence intervals.

As far as the estimated covariance matrices are concerned, it is complicated to use
them to compare models exept when the eigenvalues of one matrix are all inferior to
the eigenvalues of the other one. In this case the partial order on the hilbertian matrices
tells us that the methodology leading to the first matrix is better (see Horn and Johnson
[18] for more insight). However, this seldom happens in practice.

As far as the asymptotic confidence intervals are concerned, we are able to compare
the length of these intervals, obtained on the same set of primary scenarios, for the β̂

estimated with the two different methodologies. If one methodology leads to smaller
lengths than the other, it is the better one. This is the approach we will use in our
empirical tests.

5.2.1 Estimators covariance matrices under an homoskedasticity assumption

In Subsection 5.2.1 we add an homoskedasticity assumption for the residuals of both
models,

H2 : V
[

1U |1X
]
= 1σ2.I1N and V

[
2U |2X

]
= 2σ2.I2N ,

denoting by IN the identity matrix with rank N.

H2 can be operationally tested using an homoskedasticity test such as the Breusch
and Pagan [3], the White [34] or the Goldfeld — Quandt [14] test. This assumption
makes the Gauss — Markov theorem applicable (see Plackett [29]) and the OLS esti-
mators are the Best Linear Unbiased Estimators (BLUE). This means that considering
the same calibration samples it is impossible to find less volatile estimators than the
OLS ones. Under this assumption it is also easy to assess the estimators’ covariance
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matrices, conditionally to the explicative variables,

V
[

1
β̂ |1X

]
=
(1X ′1X

)−1 (1X ′V
[1Y |1X

]1X
)(1X ′1X

)−1
,

V
[

1
β̂ |1X

]
=
(1X ′1X

)−1 (1X ′V
[1U |1X

]1X
)(1X ′1X

)−1
,

V
[

1
β̂ |1X

]
= 1

σ
2 (1X ′1X

)−1
.

And, similarly, V
[

2β̂ |2X
]
= 2σ2

(
2X ′2X

)−1.

Moreover, we can express consistent and unbiased estimators of 1σ2 and 2σ2. Let
K +1 be the dimention of x, these estimators are respectively,

1σ̂2 = 1
1N−K−1 ∑

1N
n=1

1ûn2
and 2σ̂2 = 2

2N−K−1 ∑
2N
n=1

2ûn2
,

with 1ûn = N̂AV
n
− 1xn1β̂ and 2ûn = NPV n− 2xn2β̂ , the empirical residuals of regres-

sions 1 and 2.

We therefore get two unbiased estimators of the previously given conditional co-
variance matrices,

V̂
[

1β |1X
]
=1 σ̂2

(
1X ′1X

)−1 and V̂
[

2β |2X
]
=2 σ̂2

(
2X ′2X

)−1.

Eventually we have the two following convergences in distribution,

V
[

1β̂ |1X
]− 1

2
(

1β̂ −β

)
d
 N


0

...
0

 , IK+1


and V

[
2β̂ |2X

]− 1
2
(

2β̂ −β

)
d
 N


0

...
0

 , IK+1

.

Moreover, using the previously given estimators and adding simple assumptions on
the first moments of the regressors (generally verified in practice), we have,

V̂
[

1β̂ |1X
]− 1

2
(

1β̂ −β

)
d
 N


0

...
0

 , IK+1


and V̂

[
2β̂ |2X

]− 1
2
(

2β̂ −β

)
d
 N


0

...
0

 , IK+1

.

5.2.2 Comparison between the estimators covariance matrices without the ho-
moskedasticity assumption

In practice it is unusual to observe homoskedastic residuals. We now suppress H2 in
order to consider a more robust framework. Note first that, in the heteroskedastic case,
the OLS estimators are no longer the BLUE.
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Moreover, in this new framework we do not have a simple form for the estimators’
covariance matrices any more,

V
[

1
β̂ |1X

]
=
(1X ′1X

)−1 (1X ′V
[1U |1X]1X

)(1X ′1X
)−1

andV
[

2
β̂ |2X

]
=
(2X ′2X

)−1 (2X ′V
[2U |2X]2X

)(2X ′1X
)−1

.

However, we still have the two following convergences in distribution,

V
[

1β̂ |1X
] 1

2
(

1β̂ −β

)
d
 N


0

...
0

 , IK+1


and V

[
2β̂ |2X

]− 1
2
(

2β̂ −β

)
d
 N


0

...
0

 , IK+1


White [34] proposes the use of a biased estimator of the residuals variance, in

the case of independent calibration samples. In our case, it aims at resorting to the
following estimators,

V̂
[

1U |1X
]
=


1û12 · · · 0

...
. . .

...

0 · · · 1û
1N

2

 and V̂
[

1U |1X
]
=


2û12 · · · 0

...
. . .

...

0 · · · 2û
2N

2

.

Note that other less biased estimators are proposed in MacKinnon and White [24].
These adapted estimators are less used in practice and will not be considered in this
paper. This new data enables one to assess two biased but consistent estimators of the
covariance matrices of the OLS estimators,

V̂White
[

1
β̂ |1X

]
=
(1X ′1X

)−1
(

1N

∑
n=1

1ûn2 1xn′1xn

)(1X ′1X
)−1

andV̂White
[

2
β̂ |2X

]
=
(2X ′2X

)−1
(

2N

∑
n=1

2ûn2 2xn′2xn

)(2X ′2X
)−1

Moreover, under simple assumptions concerning the first moments of the regressors
(generally verified in practice), these estimators enables one to obtain the following
convergences in distribution,

V̂White
[

1β̂ |1X
] 1

2
(

1β̂ −β

)
d
 N


0

...
0

 , IK+1


and V̂White

[
2β̂ |2X

]− 1
2
(

2β̂ −β

)
d
 N


0

...
0

 , IK+1


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To conclude on the heteroskedastic framework, it is important to note that these
variance-covariance matrices estimators are biased and sometimes very volatile. The
heteroskedastic framework is more general and robust than the homoskedastic frame-
work. It is generally more adapted to our proxy methodologies.

5.3 Asymptotic confidence intervals

In practice, the length of the asymptotic confidence intervals given the estimators of
the covariance matrices are good comparison tools provided by both homoskedastic
and heteroskedastic frameworks. This subsection describes the construction steps of
these intervals.

5.3.1 Asymptotic confidence intervals under the homoskedasticity assumption

If H2 is assumed, an asymptotic confidence interval for the approximate NAV can be
obtained, using the following convergences in law,

V̂
[

1β̂ |1X
]− 1

2
(

1β̂ −β

)
d
 N


0

...
0

 , IK+1


and V̂

[
2β̂ |2X

]− 1
2
(

2β̂ −β

)
d
 N


0

...
0

 , IK+1

.

For the CF regression, the α% (with α% close to 1) asymptotic confidence interval
obtained from this formula, for x̄, a given regressors’ outcome, is,

1IC
1N
α% (x̄β ) =

[
x̄1β̂ ±q 1+α%

2

√
1σ̂2
(

x̄(1X ′1X)−1 x̄′
)]

,

and for the LSMC,

2IC
2N
α% (x̄β ) =

[
x̄2β̂ ±q 1+α%

2

√
2σ̂2
(

x̄(2X ′2X)−1 x̄′
)]

,

denoting by q 1+α%
2

the 1+α%
2 quantile of a standard Gaussian distribution.

5.3.2 Asymptotic confidence intervals without the homoskedasticity assumption

Without the homoskedasticity assumption it is also possible to build asymptotic con-
fidence intervals, based on Whites estimator [34] properties. Indeed, this estimator
enables one to assess the following convergence in law,

V̂White
[

1β̂ |1X
] 1

2
(

1β̂ −β

)
d
 N


0

...
0

 , IK+1


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and V̂White
[

2β̂ |2X
]− 1

2
(

2β̂ −β

)
d
 N


0

...
0

 , IK+1


For the CF regression, the α% (with α% close to 1) asymptotic confidence interval

obtained from this formula, for x̄, a given regressors’ outcome, is,

1IC
1N
α% (x̄β ) =

[
x̄1β̂ ±q 1+α%

2

√
x̄(1X ′1X)−1

(
∑

1N
n=1

1ûn2 1xn′1xn
)
(1X ′1X)−1 x̄′

]
,

and for the LSMC,

2IC
2N
α% (x̄β ) =

[
x̄2β̂ ±q 1+α%

2

√
x̄(2X ′2X)−1

(
∑

2N
n=1

2ûn2 2xn′2xn
)
(2X ′2X)−1 x̄′

]
.

Consider now a set of N independent outcomes following the same distribution as x,(
x̄i
)

i∈J1;NK. It is possible to calculate the lengths of the asymptotic confidence intervals
built for both CF and LSMC, and to compare these values to assess which estimator is
more efficient in practice (this will be used to see what happens when the number of
risk factors increases).

In the following subsection we will test empirically the results previously presented
when t = 0+ (continuous compliance framework).

5.4 Empirical tests

5.4.1 Implementation framework

The implementation framework used in this section is the same as the one presented in
Section 4.

The LSMC approach has been run on a sample of 50 000 independent NPV0+ out-
comes. To equalize the algorithmic complexity between both procedures, the CF ap-
proach has been launched on a sample of 100 independent N̂AV 0+ outcomes, calculated
as means of 500 NPV0+ (100 primary scenarios × 500 secondary scenarios).

To consider a more statistically efficient (due to the larger number of outcomes)
implementation framework we have chosen the LSMC methodology as a base to assess
the optimal set of regressors.

For each given number of risk factors J(J = 1, ...,4), these have been designated
using a stepwise backward approach based on the AIC stopping criteria and on an
initialization set of potential regressors

{
iεk. jε l ,∀i, j ∈ J1;JK,∀k, l ∈ N|k+ l ≤ 3

}
, de-

noting by iεk the i-th risk factor power k.

The implementation steps are the same for each value of J,

• assessment of the LSMC optimal set of regressors Jx and OLS estimator Jβ̂ LSMC,

• use of the Jx set of regressors to obtain the associated CF OLS estimator J β̂CF ,
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• implementation of a Breusch-Pagan homoskedasticity test on the LSMC method-
ology (there are too few outcomes to use a Breusch-Pagan test on the CF ap-
proach),

• comparison of the confidence interval lengths obtained on the 50 000 primary
scenarios sample used to implement the LSMC approach.

5.4.2 Heteroskedasticity test

In this study the heteroskedasticity has been tested using a Breusch-Pagan test. The
following results have been obtained on the various LSMC models on one, two, three
and four risk factors datas.

Table 5: Breusch-Pagan tests — LSMC datas.
LSMC methodology 1 risk factor 2 risk factor 3 risk factor 4 risk factor

Breusch-Pagan statistic 25.0 41.6 50.7 76.0
Breusch-Pagan p-value 5.8e-07 7.3e-08 2.2e-06 4.5e-06

The tests, and the homoskedastic assumption, are rejected even for a significance
level of 1%. Note that there are too few CF implementation data (100 outcomes per
number of risk factor) to assess robust homoskedasticity tests.

In the following subsections we will study the results obtained with both the LSMC
and CF methodologies (1/2/3/4 risk factors), for both the heteroskedastic and ho-
moskedastic formulas.

5.4.3 Results in the homoskedastic framework

Turning from an homoskedastic to an heteroskedastic framework enables to obtain
more robust results. Moreover, the heteroskedastic scheme seems more adapted for
our study. However, the homoskedastic formulas provide interesting results that can be
compared to those obtained using the heteroskedastic formulas in order to conclude on
this empirical subsection. The comparison of the homoskedastic parameters covariance
matrix estimators provides the following results.

One risk factor framework. Only two significant regressors have been selected after
implementing a backward stepwise methodology with an AIC stopping criteria.

Table 6: LSMC covariance matrix eigenvalues — 1 risk factor (stock).
1 risk factor λ1 λ2
LSMC 5.21e+15 2.69e+14
CF 5.80e+15 2.66e+14

Here below we display the tables comparing the asymptotic confidence intervals’
lengths on the 50 000 primary scenarios used in the LSMC implementation.

On average (on the 50 000 scenarios), the LSMC methodology leads to a slightly
smaller asymptotic confidence interval than the CF . Moreover, the LSMC approach
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Table 7: Asymptotic confidence intervals lengths — 1 risk factor (stock).
1 risk factor LSMC CF

Number of smaller asymptotic confidence 38 956 11 044
intervals (max = 50 000 scenarios) (77.9%) (22.1%)

leads to a lesser asymptotic confidence interval for 77.9% of the 50 000 independent
scenarios considered here.

Two risk factor framework. Six significant regressors are selected after implement-
ing a backward stepwise methodology with an AIC stopping criteria.

Table 8: LSMC covariance matrix eigenvalues — 2 risk factors (stock, interest rates).
2 risk factors λ1 λ2 λ3 λ4 λ5 λ6

LSMC 3.64e+18 6.02e+16 2.27e+16 4.77e+15 1.88e+15 2.08e+14
CF 3.64e+15 6.87e+14 2.18e+16 5.00e+15 1.87e+15 1.98e+14

Here below we display the tables comparing the asymptotic confidence intervals’
lengths on the 50 000 primary scenarios used in the LSMC implementation.

Table 9: Asymptotic confidence intervals lengths — 2 risk factors (stock, interest rates).
2 risk factors LSMC CF

Number of smaller asymptotic confidence 22 228 27 772
intervals (max = 50 000 scenarios) (44.5%) (55.5%)

Three risk factor framework. Fourteen significant regressors are selected after im-
plementing a backward stepwise methodology with an AIC stopping criteria.

Here below we display the tables comparing the asymptotic confidence intervals’
lengths on the 50 000 primary scenarios used in the LSMC implementation.12.

Table 10: Asymptotic confidence intervals lengths — 3 risk factors (stock, IR, corpo-
rate spread).

3 risk factors LSMC CF
Number of smaller asymptotic confidence 45 398 4 602
intervals (max = 50 000 scenarios) (90.8%) (9.2%)

Four risk factor framework. Thirty significant regressors are selected after imple-
menting a backward stepwise methodology with an AIC stopping criteria.

Here below we display the tables comparing the asymptotic confidence intervals’
lengths on the 50 000 primary scenarios used in the LSMC implementation.

12The eigenvalues of the covariance matrix estimator, only presented as illustrations for the 1 and 2 risk
factors frameworks, are omitted, for the sake of simplicity, in the following studied cases.
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Table 11: Asymptotic confidence intervals lengths — 4 risk factors (stock, IR, corpo-
rate spread, sovereign spread).

4 risk factors LSMC CF
Number of smaller asymptotic confidence 42 044 7 956
intervals (max = 50 000 scenarios) (84.1%) (15.9%)

We now present the same results obtained without the homoskedasticity assump-
tions.

5.4.4 Results in the heteroskedastic framework

Comparison of the homoskedastic parameters covariance matrix estimators.

Table 12: Asymptotic confidence intervals lengths — 1 risk factor (stock).
1 risk factor LSMC CF

Number of smaller asymptotic confidence 22 664 27 336
intervals (max = 50 000 scenarios) (45.3%) (54.7%)

Table 13: Asymptotic confidence intervals lengths — 2 risk factors (stock, interest
rates).

2 risk factors LSMC CF
Number of smaller asymptotic confidence 10 656 39 344
intervals (max = 50 000 scenarios) (21.3%) (78.7%)

Table 14: Asymptotic confidence intervals lengths — 3 risk factors (stock, IR, corpo-
rate spread).

3 risk factors LSMC CF
Number of smaller asymptotic confidence 18 803 31 197
intervals (max = 50 000 scenarios) (37.6%) (62.4%)

Table 15: Asymptotic confidence intervals lengths — 4 risk factors (stock, IR, corpo-
rate spread, sovereign spread.

4 risk factors LSMC CF
Number of smaller asymptotic confidence 17 513 32 487
intervals (max = 50 000 scenarios) (35.0%) (65.0%)

5.4.5 Conclusion on the empirical tests

Two major comments can be made after having studied these results.
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First, it is important to go further than just considering the results obtained under
the homoskedasticity assumption. If these results alone are observed the LSMC ap-
proach seems to be the best methodology in most cases. This is not the case when one
studies the results provided without the homoskedasticity assumption. Nota that the
heteroskedastic framework is more robust in general and is much more realistic here,
considering the Breusch-Pagan tests.

Second, we can assume that the heteroskedasticity shape has a great impact on the
efficiency comparison between both CF and LSMC methodology in a finite sample
framework. In particular, this directly modifies the V̂White estimator. One should note
that there are several econometrical methods to reduce the heteroskedasticity of our
model that have not been tested here. For more insight on these approaches see Greene
[15].

In any case, our study does not evidence any superiodity of the LSMC over the
CF methodology. However, we have clearly seen, throughout the implementation,
that the small number of outcomes considered in the CF approach leads to statistical
issues while assessing homoskedasticity tests and confidence intervals. The problem
here seems to comes from the fact that there are too few outcomes to get through
the sample bias embedded within the secondary scenarios tables used to calculate the
N̂AV 0+ outcomes. In opposition, the sample bias that comes from the LSMC scenarios
is mitigated between the primary simulations. Eventually, the squared errors of the CF
implementation are lower than they would be if calculated on more outcomes, which
leads to artificially small confidence intervals. It is clear that this phenomenon takes
more and more importance as the number of risk factors / regressors rises.

To conclude we can only advise practitioners to prefer an LSMC methodology to
assess approximate NAV outcomes. The heteroskedasticity tests may always lead to a
rejection of the homoskedasticity assumption but the confidence intervals obtained will
always be more robust than those of a CF approach.

Note that this implementation and its conclusions correspond to a specific (but real-
istic) empirical framework. The authors did not aim at drawing general conclusions on
the use of parametric proxies for life insurance NAV projections. This section, initially
only aiming at challenging the generally agreed idea that the LSMC methodology is
more robust than CF in a large dimension context, is eventually a good opportunity
to raise proxies implementation issues such as the heteroskedasticity management and
the asymptotic confidence intervals assessment.

The authors notice that Subsection 5.4 could have been completed with the compar-
ision the CF and LEMC results to real values of NAV . However, the real NAV outcomes
are unobservable in practice and good estimators imply a great number of secondary
scenarios. We wanted here to stay in a practical scheme, with great algorithmic con-
straints.

6 Conclusion

The continuous compliance requirement is a key strategic issue for European insur-
ers. In this article, we have presented the various characteristics of this problem and
provided a monitoring tool to answer it. Our monitoring scheme is based on the imple-
mentation of parametric proxies, already used among the insurance players to project
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the Net Asset Value over time, adapted to fit the ORSA continuous compliance re-
quirements. The tool has been implemented on a realistic life insurance portfolio to
present the main features of both the development and the practical use of the monitor-
ing scheme. In particular several other relevant possible uses for the tool are presented.
In the last Section we have seen that the comparison of the Curve Fitting and the Least
Squares Monte Carlo methodologies in a finite sample framework and considering an
increasing dimensioning scheme, did not lead to firm conclusions but that the Least
Squares Monte Carlo led to fewer statistical issues especially to assess robust asymp-
totic confidence intervals. In addition, this section has been an opportunity to raise
several practical issues, such as the heteroskedasticity management and asymptotic
confidence intervals calculation, concerning the use of polynomial proxies (both Least
Squares Monte Carlo and Curve Fitting), in our framework (a life insurance savings
product).

Note that the monitoring tool only provides approximate values and is based on
assumptions that can be discussed. The authors notice that the modelling choices can
lead to errors. In particular we can only advice the future users of our tool to update
the proxies frequently in order to make sure that the underlying stability assumptions
are reasonable. One of the future axes to investigate is clearly to aim at a better control
of the error and to address in depth the issue of the proxies recalibration frequency.

In addition the possibility to add asset-mix weights in the monitored risk factors set
should be tested. This would greatly help asset managers to select optimal asset-mixes,
consistently with the risk strategy of the undertaking.

Eventually we intend to investigate the various possibilities provided by the econo-
metric theory to optimize the proxies calibration process in order to decrease the het-
eroskedasticity of our models and the volatility of the obtained estimators.
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