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Abstract. This paper is about the fusion of multiple information
sources represented using default logic. More precisely, the focus is on
solving the problem that occurs when the standard-logic knowledge
parts of the sources are contradictory, as default theories trivialize
in this case. To overcome this problem, it is shown that replacing
each formula belonging to Minimally Unsatisfiable Subformulas by a
corresponding supernormal default allows appealing features. Moreover,
it is investigated how these additional defaults interact with the initial
defaults of the theory. Interestingly, this approach allows us to handle
the problem of default theories containing inconsistent standard-logic
knowledge, using the default logic framework itself.

Keywords: Default logic, logic-based fusion, inconsistency tolerance,
MUS, Minimally Unsatisfiable Subformulas.

1 Introduction

In the Artificial Intelligence (A.I.) research community, one of the most popular
tools to handle forms of defeasible reasoning remain Reiter’s default logic [1]
and its major variants (e.g. [2], [3], [4] and [5] just to name a few other seminal
papers). Default logic has been defined to allow forms of reasoning by default to
be modelled. It permits an inference system to jump to default conclusions and
to retract them when new information shows that these conclusions now lead to
inconsistency.

For example, default logic is a very convenient framework to encode patterns
of reasoning like “Given an employee x, by default we should allow x to access
the database unless this would contradict security rules. If some further addi-
tional information makes such contradictions occur then the permission must be
retracted”.

C. Sossai and G. Chemello (Eds.): ECSQARU 2009, LNAI 5590, pp. 578–589, 2009.
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A default-logic theory is made of two parts: a set of first-order logic formulas
representing knowledge and a set of default rules, i.e. a sort of inference rules
capturing patterns of defeasible reasoning as in the above example.

In this paper, we investigate how several1default theories in Reiter’s default
logic should be fused when it is assumed that each default theory represents the
knowledge of an agent or of a community of agents. More precisely, it is shown
that merging these theories is not an issue that is to be taken as granted when the
set-theoretical union of the standard-logic formulas to be fused is inconsistent.
Indeed, keeping all such formulas would make the whole language to be the set
of acceptable inferences because when the standard-logic knowledge part of a
default theory is inconsistent, the default theory itself trivializes.

Quite surprisingly, to the best of our knowledge, this trivialization property
of default logic has not been addressed so far in the literature. In this respect,
the goal of this paper is to revisit default logic in such a way that trivialization
is avoided in the presence of inconsistent premises, sharing the concerns of the
large research effort from the A.I. research community to study how to reason
in the presence of inconsistent knowledge and to develop inconsistency tolerence
techniques (see e.g. [6]). In particular, when several information sources are to
be aggregated, a single, possibly minor contradiction between two sources should
not cause the whole system to collapse.

In the paper, a family of approaches in that direction are discussed. Mainly,
they rely on the study of MUSes (Minimally Unsatisfiable Subformulas) in the
standard-logic formulas. Accordingly, a series of reasoning paradigms are inves-
tigated. Specifically, it is shown that replacing each formula in the set of MUSes
by a corresponding default rule is an appealing solution. As a special case, it
offers a powerful way to recover from the inconsistencies that might occur in
sets of standard-logic formulas. Interestingly, this latter technique can easily be
exported to the main variants of default logic, like e.g. constrained [2], ratio-
nal [3], justified [4] and cumulative default logic [5], of which some ensure that
general default theories have at least one extension.

The paper is organized as follows. In the next section, MUSes and the way
according to which they can be computed are presented. In Sections 3 and 4, an
approach to replace MUSes by additional default rules is introduced and studied
in the context of recovering from inconsistency in standard Boolean logic. Section
5 is devoted to how these additional rules interact with the default ones of the
initial theories. In Section 6, a complexity analysis of this technique is provided,
together with possible approximation techniques.

Throughout the paper, we use the following standard notations: ¬, ∨, ∧ and
⊃ represent the standard negation, disjunction, conjunction and material impli-
cation connectives, respectively. When Ω is a set of first-order formulas, Cn(Ω)
denotes the deductive closure of Ω. Also, let us recall that in the Boolean case a
CNF is a finite conjunction of clauses, where a clause is a disjunction of signed
Boolean variables.

1 On the other hand, the following applies to a single default theory, too.
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In the following, we assume that the reader is familiar with default logic [1].
A brief reminder about default logic is provided in Appendix A.

2 MUSes

Assume that Σ is a set of Boolean formulas. A Minimally Unsatisfiable Subfor-
mulas (MUS) Φ of Σ is defined as follows:

– Φ ⊆ Σ,
– Φ is unsatisfiable,
– ∀Ψ ⊂ Φ, Ψ is satisfiable.

Accordingly, a MUS of Σ is a subset of Σ that is contradictory and that
becomes satisfiable whenever any of its formulas is removed. Thus, a MUS of Σ

describes a contradiction within Σ using a set of formulas of Σ that cannot be
made smaller.

Note 1. The set of all MUSes of a set of formulas Σ is denoted MUS(Σ). The
set of all formulas occurring in the MUSes of Σ is denoted ∪MUS(Σ).

Example 1. Let Σ = {a, a ⊃ b,¬b, a ⊃ (c ∨ d),¬d, c ⊃ b, d ⊃ e, (c ∧ e) ⊃ a}.
Clearly, Σ is unsatisfiable and contains two MUSes, namely Φ1 = {a, a ⊃ b,¬b}
and Φ2 = {a ⊃ (c ∨ d), a,¬d, c ⊃ b,¬b}.

This example also illustrates that MUSes can share non-empty intersections.
Many techniques to handle contradictions in logic-based systems have been

discussed in the literature (see e.g [6] and [7] for surveys in that matter). One
family of approaches amount to recovering satisfiability by dropping MUSes or
parts of MUSes. Indeed, removing one formula in each MUS allows consistency
to be recovered. Two extreme approaches can thus be proposed in that direction.
On the one hand, we might drop the set-theoretical union of all MUSes, thus
removing every minimal (w.r.t. the number of involved formulas) cause of in-
consistency. On the other hand, we might prefer a minimal change policy, which
requires us to drop at most one formula per MUS.

3 How to Handle Default Theories Containing

Contradictory Standard-Logic Knowledge

In the following, we assume that Σ is a set of Boolean formulas and we are
mostly interested in default theories Γ = (∆, Σ) where Σ is inconsistent. In
such a case, Γ has a unique extension, which is the whole logical language.

We distinguish between skeptical and credulous reasonings from a default
theory Γ : a formula f can be skeptically (resp. credulously) inferred from a
default theory Γ iff f belongs to all (resp. some) extensions of Γ .

Now, since a default theory consists of two parts, namely a set of defaults and
a set of facts, the fusion of default theories amounts to merging sets of facts and
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merging sets of defaults. In the following, we assume that facts (resp. defaults)
are unioned by this fusion process.

Assume that we are given n default theories Γi = (∆i, Σi) (i ∈ [1..n]) to be
fused, that are such that the set-theoretical union of their standard logic parts,
namely ∪n

i=1Σi, is inconsistent. One direct way to address the trivialization of
the resulting aggregated default theory consists of removing enough formulas
from ∪n

i=1Σi so that the resulting subset becomes consistent. However, dropping
formulas is unnecessarily destructive.

Indeed, a credulous reasoner might be interested in exploring the various ex-
tensions that could be obtained if regarding as being acceptable the various
maximal consistent subsets of the various MUSes of ∪n

i=1Σi. Also, a skeptical
reasoner might want to explore what would belong to all those extensions. In
this respect, if we replace each formula f in the MUSes of ∪n

i=1Σi by a corre-
sponding supernormal default :f

f , we get a new default theory where the reasoner
is considering that each formula f in the MUSes could be inferred if f could be
consistently assumed. However, since the set-theoretical union of the consequents
of these new defaults is inconsistent, default logic forbids the acceptance of all
such f within the same extension. Let us stress that this policy does not enforce
by itself any priority between the replaced formulas since all of those are treated
in a uniform way. Interestingly, this approach allows us to handle the problem
of default theories containing inconsistent standard-logic knowledge, using the
default logic framework itself.

Definition 1 (fused default theory). Let us consider a non-empty set of n

default theories of the form Γi = (∆i, Σi) to be fused. The resulting fused default
theory is given by Γ = (∆, Σ) where:

– Σ = ∪n
i=1Σi \ ∪MUS(∪n

i=1Σi),
– ∆ = ∪n

i=1∆i ∪ { :f
f | f ∈ ∪MUS(∪n

i=1Σi)}.

This definition thus corresponds to a policy that requires a uniform treatment
of formulas inside MUSes. On the contrary, alternative definitions could make
use of selection operators select to deliver a subset of ∪MUS(∪n

i=1Σi) such
that ∪n

i=1Σi \ select(∪MUS(∪n
i=1Σi)) is consistent, and such that each formula

from select(∪MUS (∪n
i=1Σi)) is to be replaced by a corresponding supernormal

default in the fused theories.

4 Addressing the Trivialization Issue in the Standard

Boolean Case

First, let us consider the basic situations where the set of defaults ∪n
i=1∆i

is empty. Obviously enough, this coincides with the problem of fusing sets of
Boolean formulas that are such that their set-theoretical union is inconsistent.
The above definition thus provides an original approach to address this issue.

Example 2. Let Γ1 = (∅, {¬a ∨ b,¬b}) and Γ2 = (∅, {a}) two default theories
to be fused. Clearly, ∪2

i=1Σi = {¬a ∨ b, a,¬b} is inconsistent. The fused default
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theory Γ = ({ :a
a , :¬a∨b

¬a∨b , :¬b
¬b }, ∅) exhibits the extensions E1 = Cn({a,¬a ∨ b}),

E2 = Cn({¬b,¬a∨ b}) and E3 = Cn({a,¬b}); each of them containg two of the
consequents of the three defaults.

Interestingly, it is possible to characterize the set-theoretic intersection of all
extensions of the fused default theory, when the initial theories do not contain
any default.

To do that, we resort to (usual) choice functions θ for a finite family of non-
empty sets Ξ = {Ω1, . . . , Ωn}, which “pick” an element in every Ωi of the
family. In the limiting case that Ξ is empty, θ(Ξ) is empty.

Note 2. Let Θ denote the subclass of choice functions θ for Ξ = {Ω1, . . . , Ωn}
such that for i �= j, θ(Ωi) ∈ Ωj ⇒ θ(Ωj) = θ(Ωk) for some k �= j (but k may,
or may not, be i). This subclass is reduce to choices functions θ whose image is
minimal s.t. if θ ∈ Θ then ∄θ′ ∈ Θ s.t. θ′(Ξ) ⊂ θ(Ξ).

Proposition 1. Let n > 1. Consider n finite default theories of the form Γi =
(∆i, Σi) to be fused. If ∆i is empty for i = 1..n, then the set-theoretic intersection
of all extensions of the resulting fused default theory Γ = (∆, Σ) is Cn({ψ})
where:

ψ =
∨

θ∈Θ

∧

(

(∪n
i=1Σi) \ θ(MUS(∪n

i=1Σi))
)

.

Remark 1. It is essential that the default theories to be fused are finite for Propo-
sition 1 to hold. Otherwise, MUS(∪n

i=1Σi) can be infinite. Then, not only would
the axiom of countable choice be needed, but even worse, an infinite disjunction
would be needed (which is outside classical logic). For example, assume that the
default theories to be fused are Γ1 = (∅, Σ1), Γ2 = (∅, Σ2), and Γ3 = (∅, Σ3)
where:

Σ1 = {p1, q1, r1, . . .},
Σ2 = {p2, q2, r2, . . .},
Σ3 = {¬p1,¬p2,¬q1,¬q2,¬r1,¬r2, . . .}.

Clearly, MUS(∪3
i=1Σi) = {{p1,¬p1}, {p2,¬p2}, {q1,¬q1}, {q2,¬q2}, . . .} is infi-

nite. Therefore, ψ would have infinitely many conjuncts and disjuncts. For in-
stance, taking θ1 to pick only negative literals yields the infinite conjunction
∧

{p1, p2, q1, q2, r1, r2, . . .}. The disjunction would also be infinite because in-
finitely many choice functions must be taken into account.

In this example, Σ is empty but it is easy to alter it to make Σ infinite:

Σ1 = {p1, q1, r1, s1, . . .},
Σ2 = {p2, q2, r2, s2, . . .},
Σ3 = {¬p1, p2, q1,¬q2,¬r1, r2, s1,¬s2, . . .}.

Interestingly, the following proposition shows us that any formula in the
set ∪MUS(∪n

i=1Σi) belongs to at least one extension of the fused theory. Ac-
cordingly, no formula is lost in the fusion process in the sense that each non-
contradictory formula that is replaced by a default – and that would be dropped
in standard fusion approaches – can be found in at least one extension of the
fused theory.
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Proposition 2. Let n > 1. Consider n finite default theories Γi = (∆i, Σi) such
that ∪n

i=1∆i is empty and ∪n
i=1Σi is inconsistent. Let Γ denote the resulting fused

default theory. There exists no extension of Γ that contains ∪MUS(∪n
i=1Σi) but

for any satisfiable formula f in ∪MUS(∪n
i=1Σi), there exists an extension of Γ

containing f .

Based on the above proposition, it could be imagined that the intersection of
all extensions will merely coincide with the extensions of the default theory
Γ ′ = (∅,∪n

i=1Σi \ ∪MUS(∪n
i=1Σi)). As the following example shows, this is not

the case since the computation of the multiple extensions mimics a case analysis
process that allows inferences to be entailed that would simply be dropped if
∪MUS(∪n

i=1Σi) were simply removed from ∪n
i=1Σi.

Example 3. Let us consider Γ1 = (∅, {a∧b, c ⊃ d}) and Γ2 = (∅, {¬a∧c, b ⊃ d}).
Clearly, {a∧b,¬a∧c} is a MUS. If we simply drop the MUS, we get Γ ′ = (∅, {c ⊃
d, b ⊃ d}). Clearly, Γ ′ has a unique extension Cn({c ⊃ d, b ⊃ d}) that does not
contain d. This is quite inadequate since the contradiction is explained by the
co-existence of a and ¬a. Assume that a is actually true. Then, from a ∧ b and
b ⊃ d we should be able to deduce d. Similarly, if a is actually false then we
should also be able to deduce d. Now, Γ = ({ :a∧b

a∧b , :¬a∧c
¬a∧c }, {c ⊃ d, b ⊃ d}) exhibits

two extensions, each of them containing d. Accordingly, d can be inferred using
a skeptical approach to default reasoning.

This last example also shows us that this treatment of inconsistency permits
more (legitimate) conclusions to be inferred than would be by removing MUSes
or parts of MUSes. This is not surprising since by weakening formulas into default
rules, we are dropping less information than if we were merely removing them.
An alternative approach to allow such a form of case-analysis from inconsistent
premises can be found in [8].

Applying Proposition 1 to Example 3 shows what the consequences of the
resulting fused default theory Γ = (∆, Σ) are:

Example 4 (con’d). MUS(∪2
i=1Σi) = {{a∧ b,¬a∧ c}} because Σ1∪Σ2 has only

one MUS, that is, {a∧b,¬a∧c}. Hence, there are only two choice functions over
{a ∧ b,¬a ∧ c}. One picks a ∧ b and the other picks ¬a ∧ c. Let us denote them
θ1 and θ2 respectively. Then, the formula ψ in Proposition 1 becomes:

ψ =
∨

θ∈{θ1,θ2}

∧

(

(∪2
i=1Σi) \ θ(MUS(∪2

i=1Σi))
)

.

That is:

ψ =
∨

θ∈{θ1,θ2}

∧

(

(Σ1 ∪ Σ2) \ θ({{a ∧ b,¬a ∧ c}})
)

.

So:

ψ =
(

∧

{¬a ∧ c, c ⊃ d, b ⊃ d}
)

∨

(

∧

{a ∧ b, c ⊃ d, b ⊃ d}
)

.
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Applying various logical laws, ψ becomes the conjunction of the following four
formulas:

(¬a ∧ c) ∨ (a ∧ b),
((c ⊃ d) ∧ (b ⊃ d)) ∨ (¬a ∧ c),
((c ⊃ d) ∧ (b ⊃ d)) ∨ (a ∧ b),
((c ⊃ d) ∧ (b ⊃ d)) ∨ ((c ⊃ d) ∧ (b ⊃ d)).

Of course, the latter disjunction is equivalent with (c ⊃ d)∧(b ⊃ d) and subsumes
the preceding two formulas. As a consequence:

ψ = ((¬a ∧ c) ∨ (a ∧ b)) ∧ (c ⊃ d) ∧ (b ⊃ d).

Finally, the set-theoretic intersection of all extensions of the resulting fused de-
fault theory Γ = (∆, Σ) is Cn({b ⊃ d, c ⊃ d, b ∨ c,¬a ∨ b, a ∨ c}).

Observe that Cn({b ⊃ d, c ⊃ d, b ∨ c,¬a ∨ b, a ∨ c}) can be simplified as
Cn({b ⊃ d, c ⊃ d,¬a ∨ b, a ∨ c}). In any case, both b ∨ c and d are in Cn({b ⊃
d, c ⊃ d,¬a ∨ b, a ∨ c}).

Now, another interesting feature of the fusion process given by Definition. 1 is
that a skeptical reasoner will be able to infer (at least) all formulas that it would
be able to infer if the MUSes of ∪n

i=1Σi were simply dropped.

Proposition 3. Let n > 1. Consider n finite default theories Γi = (∆i, Σi) to
be fused. Let ∩jEj denote the set-theoretic intersection of all extensions of the
resulting fused default theory Γ = (∆, Σ). Let E denote the unique extension of
Γ ′ = (∅, Σ). If ∆i is empty for i = 1..n, then E ⊆ ∩jEj .

Example 5. Assume Γi =(Σi, ∆i) where ∪n
i=1Σi = {a,¬a∨¬b, b, c} and ∪n

i=1∆i =
∅. ∪MUS(∪n

i=1Σi) = {a,¬a ∨ ¬b, b}. The resulting fused default theory is Γ =
(∆, Σ) where Σ = {c} and ∆ = { :a

a , :¬a∨¬b
¬a∨¬b , :b

b }. The extensions of Γ are E1 =
Cn({c, a,¬a∨¬b}), E2 = Cn({c,¬a∨¬b, b}) and E3 = Cn({c, a, b}). The unique
extension of the default theory where all formulas from ∪MUS(∪n

i=1Σi) are
dropped is E = Cn({c}). We have ∩n

j=1Ej = Cn({c, a ∨ b}) and E ⊆ ∩n
j=1Ej .

Let us now consider the general case where theories contain defaults, and study
how new defaults interact with defaults of the initial theories.

5 How the New Defaults Interact with the Defaults of

the Theories to be Fused

First, it is well-known that normal default theories enjoy interesting properties,
like semi-monotonicity [1]. This property ensures that whenever we augment a
normal default theory Γ with an additional normal default, every extension of
Γ is included in an extension of the new theory. Accordingly, we can insure that
the extension of Proposition 2 to normal default theories holds since we only
add supernormal defaults to the set-theorical union of initial theories.

On the other hand, the extension of Proposition 3 to normal default theories
does not hold: as the following example shows, the unique extension of Γ ′ =
(∪n

i=1∆i, Σ) is not necessarily contained in the set-theorical intersection of all
the extensions of the resulting fused theory.
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Example 6. Let us assume that ∪n
i=1Σi = {a,¬a ∨ ¬b, b, c} and ∪n

i=1∆i = {a:d
d ,

c:¬d
¬d }. The resulting fused default theory is Γ = (∆, Σ) where Σ = {c} and ∆ =

{ :a
a , :¬a∨¬b

¬a∨¬b , :b
b , a:d

d , c:¬d
¬d }. The extensions of Γ are E1 = Cn({c, a,¬a ∨ ¬b, d}),

E2 = Cn({c,¬a ∨ ¬b, b,¬d}) and E3 = Cn({c, a, b, d}). The unique extension
of the default theory Γ ′ = (∪n

i=1∆i, Σ) is E = Cn({c,¬d}) while ∩n
j=1Ej =

Cn({c}). Thus E � ∪n
j=1Ej .

Indeed, removing MUSes prevents the application of initial (normal) defaults
whose prerequisite belongs to MUSes. Accordingly, we derive the following
proposition.

Proposition 4. Let n > 1. Consider n finite normal default theories Γi =
(∆i, Σi) to be fused and Γ ′ = (∪n

i=1∆i,∪n
i=1Σi \ ∪MUS(∪n

i=1Σi)). For any ex-
tension E of Γ ′, there exists an extension of the resulting fused default theory
that contains E.

Interestingly, this proposition ensures that whenever we iterate the fusion process
of normal default theories, we are always ensured that any extension can only
be extended in the process.

Now, in the general case, replacing MUSes or subparts of MUSes by corre-
sponding defaults does not ensure that we shall obtain supersets of the extensions
that would be obtained if those MUSes or some of their subparts were removed:
the semi-monotonicity does not hold.

Example 7. Let us consider Γ = (∆, {a,¬a}) where ∆ = { :b
b ,a:c

¬b ,¬a:c
¬b }. The

default theory Γ ′ = (∆, ∅) exhibits one extension, which is Cn({b}). On the
contrary, (∆ ∪ { :a

a , :¬a
¬a }, ∅) does not contain any extension containing b.

Generalizing Proposition 2 to default theories with non-empty sets of defaults
does not hold either: as shown by the following example, it may happen that
consistent formulas of ∪MUS(∪n

i=1Σi) are in no extension of the resulting fused
default theory.

Example 8. Let us consider the default theory Γ1 = (∅, {a, c}) and Γ2 = ({ c:b
¬a},

{¬a}) to be fused. ∪MUS(∪2
i=1Σi) = {a,¬a}. The resulting fused default theory

is Γ = ({ :a
a , :¬a

¬a , c:b
¬a}, {c}). The unique extension of Γ is E = Cn({c,¬a}), which

does not contain a.

6 Complexity Issues and Approximation Techniques

In the Boolean case, computing MUSes is computationally heavy in the worst
case since checking whether a clause belongs or not to the set of MUSes of a
CNF is Σ

p
2 -complete [9]. Accordingly, the whole process of finding and replacing

contradictory formulas by corresponding defaults, and then achieving Boolean
credulous default reasoning is not computationally harder than credulous default
reasoning itself since, in the general case, the latter is also Σ

p
2 -complete (whereas

it is Π
p
2 -complete in the skeptical case) [10].
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Interestingly, recent algorithmic techniques make it possible to compute one
MUS for many real-life problems [11]. However, the number of MUSes in a set of

n clauses can be intractable too, since it is C
n/2
n in the worst case. Fortunately,

efficient techniques have also been defined recently to compute all MUSes for
many benchmarks, modulo a possible exponential blow-up limitation [12].

However, in some situations we cannot afford to compute the set-theoretical
union of all MUSes. In this context, several techniques can then be applied.

First, it should be noted that it is not required to replace all formulas in all
MUSes by corresponding defaults to recover consistency. Indeed, one could first
detect one MUS, replace all its formulas by defaults, then iterate this process
until consistency is recovered. Such an approach may avoid us computing all
MUSes; it has been studied in the clausal Boolean framework in the context of
the detection of strict inconsistent covers [13].

Definition 2 (strict inconsistent cover). Let Σ be a set of Boolean formulas.
Σ′ ⊆ Σ is a strict inconsistent cover of Σ iff Σ \ Σ′ is satisfiable and Σ′ = ∪A
for some A ⊆ MUS(Σ) such that, if |A| > 1, any two members of A are disjoint.

Lemma 1. A strict inconsistent cover of Σ is empty iff Σ is satisfiable.

Lemma 2. A strict inconsistent cover of Σ always exists.

Lemma 3. For all M ∈ MUS(Σ), there exists a strict inconsistent cover of Σ

that contains M .

Strict inconsistent covers IC(Σ) are thus minimal sets of formulas in Σ that
can capture enough sources of contradiction in Σ to recover consistency if they
were fixed. In [13] a technique to compute strict inconsistent covers in the
Boolean clausal case has been introduced and proved efficient for many diffi-
cult benchmarks. Clearly, strict inconsistent covers is an approximation of the
set-theoretical union of MUSes in the sense that all formulas of the cover always
belong to this union but not conversely, and that dropping the cover causes
consistency to be restored. The price to be paid for this approximation is that
several different inconsistent covers can co-exist for a given set of MUSes.

Now, most of the time, it is possible to extract a super-set Ω of all MUSes
of ∪n

i=1Σi very quickly, in such a way that retracting Ω would restore the con-
sistency of ∪n

i=1Σi. At the extreme, this super-set can be ∪n
i=1Σi itself. Accord-

ingly, we could replace all formulas in Ω by corresponding supernormal defaults.
Clearly, such a process would restore consistency. The price to be paid is that
both uncontroversial and problematic information, i.e. both formulas belonging
and not belonging to MUSes would be downgraded and treated in the same
manner.

An alternative approach consists in replacing at most one formula per MUS.
Clearly, from a practical point of view, detecting one such formula does not
require us to compute one MUS exactly but simply a superset of a MUS, such
that dropping the formula would make this superset consistent. Since MUSes
can share non-empty intersections, let us note that it is however difficult to
guarantee that a minimal number of formulas are replaced without computing
all MUSes explicitly.
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7 Conclusions and Future Works

In this paper, a “patch” to default logic, one of the most popular logics for
representing defeasible reasoning, has been proposed. It allows a reasoner to
handle theories involving contradictory standard-logic bases whereas standard
default logic trivializes in this case. Interestingly, the new framework offers a
powerful way to treat inconsistent standard logic theories as well. Such a default
logic variant is of special interest when the fusion of several sources of knowledge
is considered: indeed, without the patch, a default logic reasoner would be able to
infer any conclusion (and its logical contrary) whenever two pieces of (standard
logic) information appear to be contradicting one another in the sources.

In the basic approaches described in the previous section, no distinction is
made between the defaults from the initial theories and the defaults that are
introduced to replace MUSes or subparts of MUSes, as if all defaults were of the
same epistemological nature. Indeed, the new defaults are introduced to correct
and weaken some pieces of knowledge that exhibit some deficiencies. Our way
to correct MUSes amounts to considering that formulas participating in MUSes
should be accepted by default. In this respect, it can be argued that the role of
the additional defaults is similar to the role of defaults of initial theories, which
are normally intended to represent pieces of default reasoning.

On the contrary, it can be argued that new defaults should be given a higher
(resp. lower) priority than defaults of initial theories. In these cases, we must
resort to a form of prioritized default logic (see eg. [14]). We plan to investigate
this issue in the future.

References

1. Reiter, R.: A logic for default reasoning. Artificial Intelligence 13, 81–132 (1980)
2. Schaub, T.: On constrained default theories. In: Neumann, B. (ed.) European con-

ference on Artificial Intelligence (ECAI 1992), New York, NY, USA, pp. 304–308.
John Wiley & Sons, Inc., Chichester (1992)
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Appendix A: Default Logic

The basic ingredients of Reiter’s default logic [1] are default rules (in short,
defaults). A default d is of the form:

α(x) : β1(x) , . . . , βm(x)

γ(x)
,

where α(x), β1(x), . . . , βm(x), γ(x) are first-order formulas with free variables
belonging to x = {x1, . . . , xn}, and are called the prerequisite, the justifications
and the consequent of d, respectively.

Intuitively, d is intended to allow the reasoning “Provided that the prereq-
uisite can be established and provided that each justification can be separately
consistently assumed w.r.t. what is derived, infer the consequent”.

Accordingly, the example in the introduction could be encoded by:

employee(x) : permit access DB(x)

permit access DB(x)
.

Such a default where the justification and consequent are identical is called a
normal default. A normal default with an empty prerequisite is called a super-
normal default. For a default d, we use pred(d), just(d), and cons(d) to denote
the prerequisite, the set of justifications and the consequent of d, respectively.

A default theory Γ is a pair (∆, Σ) where Σ is a set of first-order formulas
and ∆ is a set of defaults. It is usually assumed that ∆ and Σ are in skolemized
form and that open defaults, i.e. defaults with free variables, represent the set
of their closed instances over the Herbrand universe. A default theory with open
defaults is closed by replacing open defaults with their closed instances. In the
following, we assume that defaults theories are closed.

Defining and computing what should be inferred from a default theory is not
a straightforward issue. First, there is a kind of circularity in the definition and
computation of what can be inferred. To decide whether a consequent of a default
should be inferred, we need to check the consistency of its justifications. However,
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this consistency check amounts to proving that the opposites of the justifications
cannot be inferred in turn. Actually, in the general case, fixpoints approaches
are used to characterize what can be inferred from a default theory. Secondly,
zero, one or several maximal sets of inferred formulas, called extensions, can be
expected from a same default theory. One way to characterize extensions is as
follows [1].

Let us define a series of sets of formulas Ei where E0 = Cn(Σ) and Ei+1 =

Cn(Ei ∪ {γ s.t.
α : β1, . . . , βm

γ
∈ ∆ where α ∈ Ei and ¬β1, . . . ,¬βm �∈ E}),

for i = 0, 1, 2, etc. Then, E is an extension of Γ iff E =
⋃∞

i=0 Ei.
A default d is called generating in a set of formulas Π , if pred(d) ∈ Π and

{¬a s.t. a ∈ just(d)} ∩ Π = ∅. We note GD(∆, E) the set of all defaults from
∆ that are generating in E. It is also well-known that every extension of a
default theory Γ = (∆, Σ) is characterized through GD(∆, E), i.e. E = Cn(Σ ∪
cons(GD(∆, E))), where cons(∆′) = {cons(d) s.t. d ∈ ∆′} for any set ∆′.
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