
HAL Id: hal-00866404
https://hal.science/hal-00866404

Preprint submitted on 30 Sep 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mind the rate ! Why rate of global climate change
matters, and how much

Philippe Ambrosi

To cite this version:
Philippe Ambrosi. Mind the rate ! Why rate of global climate change matters, and how much. 2005.
�hal-00866404�

https://hal.science/hal-00866404
https://hal.archives-ouvertes.fr


DOCUMENTS DE TRAVAIL / WORKING PAPERS 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
No 04-2006 

 
 
 
 
 
 
 
 
Mind the rate! 
Why rate of global climate change matters, and 
how much. 
 
Philippe Ambrosi 
 
 
 
 
 

SEPTEMBRE 2005 
 

 

C.I.R.E.D. 
Centre International de Recherches sur l'Environnement et le Développement 

UMR 8568 CNRS / EHESS / ENPC / ENGREF 
UMR CIRAD 

45 bis, avenue de la Belle Gabrielle 
F-94736 Nogent sur Marne CEDEX 

Tel : (33) 1 43 94 73 73 / Fax : (33) 1 43 94 73 70 
www.centre-cired.fr 





Abstract 
 
To assess climate policies in a cost-efficiency framework with constraints on the magnitude 
and rate of global climate change, we have built RESPONSE_�, an optimal control integrated 
assessment model. Our results show that the uncertainty about climate sensitivity leads to 
significant short-term mitigation efforts all the more as the arrival of information regarding 
this parameter is belated. There exists thus a high opportunity cost to know before 2030 the 
true value of this parameter, which is not totally granted so far. Given this uncertainty, a 
+2 °C objective could lead to rather stringent policy recommendations for the coming decades 
and might prove unacceptable. Furthermore, the uncertainty about climate sensitivity 
magnifies the influence of the rate constraint on short-term decision, leading to rather 
stringent policy recommendations for the coming decades. This result is particularly robust to 
the choice of discount rate and to the beliefs of the decision-maker about climate sensitivity. 
We finally show that the uncertainty about the rate constraint is even more important for 
short-term decision than the uncertainty about climate sensitivity or magnitude of warming. 
This means that the critical rate of climate change, i.e. a transient characteristic of climate 
risks, matters much more than the long-term objective of climate policy, i.e. the critical 
magnitude of climate change. Therefore, research should be aimed at better characterising 
climate change risks in view to help decision-makers in agreeing on a safe guardrail to limit 
the rate of global warming. 
 
Keywords: Climate policy, Climate sensitivity, Cost-efficiency analysis, Integrated 
modelling, Value of information. 
 
 
Résumé  
 
Pour évaluer les politiques climatiques dans un cadre coût-efficacité sous contraintes 
d’évolution du climat (amplitude du réchauffement et son rythme), nous avons développé 
RESPONSE_�, un modèle intégré de contrôle optimal. Nos résultats montrent que 
l’incertitude sur la sensibilité du climat implique de suivre une trajectoire d’émissions très 
contraignante à court terme, d’autant plus que l’information sur ce paramètre arrive tard. En 
raison de cette incertitude, un objectif comme +2°C pourrait donc impliquer une contrainte 
très lourde sur les émissions. Nous montrons en outre qu’il est encore plus important pour la 
décision de court terme de résoudre l’incertitude sur la contrainte de rythme que l’incertitude 
sur la sensibilité du climat ou l’amplitude du réchauffement. Il est donc urgent de poursuivre 
l’effort de recherche sur les risques du changement climatique afin de caractériser un garde-
fou acceptable pour limiter le rythme du réchauffement. 
 
Mots-clés: Analyse coût-efficacité, Modélisation intégrée, Politique climatique, Sensibilité du 
climat, Valeur de l’information. 



 
 
 



Mind the rate! 
Why rate of global climate change matters, and how much. 

 

Philippe AMBROSI 
 

1. Global mean temperature rise as a tentative metrics to capture climate risks 
 
As climate change damages estimates and their descriptions in integrated assessment models 
are still too fragile and controversial to underpin collective decision1, a first attempt to address 
climate risks has consisted in approximating those through dangerous thresholds, beyond 
which the threats of climate change might become unacceptable. 
 
Upstream in the causal chain linking greenhouse gases (GHGs) emissions to damages, one 
has initially selected the most simple and most readily assessable measure: atmospheric 
concentration ceilings. In this context, one has sought the least-cost GHGs emissions pathway 
that complies with a given set of GHGs concentration ceilings, which factors in various 
believes about the dangerous level of interference with the climate system as well as various 
attitudes towards risk. Such an approach conforms itself to the UN Framework Convention on 
Climate Change which explicitly refers in its objective (Article 2) to the stabilisation of GHGs 
atmospheric concentrations and requires (Article 3, paragraph 3) policies and measures to be 
cost-efficient (UNFCCC,1992). 
 
Admittedly though, concentration ceilings provide a fairly crude scale on which to measure 
the diversity of climate change risks: they are a fairly intangible measure (they bypass many 
links from atmospheric chemistry to ultimate damages, not to speak of the propagation of 
uncertainty, among which the one about climate sensitivity2) and they only refer to long-term 
risks of climate change. By contrast, moving one step downward the chain, global mean 
temperature proves a better and more tangible surrogate of climate change risks because: 

− it is a synthetic index of the on-going climate change and it incorporates the 
uncertainty about climate dynamics; 

− it is a more palpable metrics of climate risks since every regional assessment of 
climate change impacts refers to this parameter, making it easier for stakeholders to 
link  a given magnitude of global climate change with a set of resulting impacts3; 

− it allows to take into account the rate of climate change, a major determinant of 
vulnerability, both for ecosystems and socio-economic systems. Indeed, were it too 
fast compared with our adaptive capacities (that socio-economic inertias notably 
hinder), residual damages will reach a much higher level than in a situation where 

                                                 
1Among the most important difficulties in assessing and modelling damages, let us mention our limited 
knowledge of their complex dynamics on long-term (ie which shape for the damage function to handle 
vulnerability thresholds or irreversible effects?) and their dependencies to socio-economic development 
pathways as well (notably, adaptation strategies in an uncertain context). For a review of these many 
shortcomings, see for instance Ambrosi (2004) and Hitz et Smith (2004). 
2 For instance, given the huge uncertainty relating to climate dynamics, were CO2 atmospheric concentration 
stabilised at 550 ppm, global mean temperature would rise by approx +1.5°C to +4.5C (wrt its preindustrial 
value) implying a very wide and uncertain range of resulting impacts. 
3 And precisely, that is the metrics used in the third IPCC report (McCarthy et al., 2001) to summarise in a 
synoptic way the information currently available on the potential impacts of global warming by the end of this 
century: a qualitative approach, giving insights into some categories of risks for various levels of global mean 
temperature change. More recently, rather exhaustive reviews of the impact literature also refer to global mean 
temperature as a landmark to synthesise our knowledge (see for instance, ECF (2004)). 
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climate changes more gradually and its impacts spread more evenly, thus enabling to 
timely adopt appropriate adaptation strategies. 

  
Therefore the scientific community has concentrated (with a noticeable acceleration in the last 
two years) on the assessment of climate policies in the context of climate stabilisation. There 
still are however relatively few contributions in this field compared to the bulk of studies in 
the context of concentration stabilisation4. These analyses have mainly examined the 
influence of the uncertainty about climate sensitivity5 on the allowable (short-term) GHGs 
emissions budget and on the corresponding stringency of the climatic constraints. Broadly 
speaking, one can distinguish three approaches, depending on the way this uncertainty is dealt 
with, on the degree of complexity and multi-disciplinarity of the underlying models and on 
the priority given to normative insights on decision-making: 

− probabilistic integrated assessment, which aims at assessing the risk of overshooting 
some climate target (absolute magnitude of global mean temperature rise or rate of 
climate change) for a set of emissions scenarios or at producing probabilistic climate 
change projections (or quantifying the likelihood of). Typical results consist of 
probability distributions of overshooting a given climate stabilisation goal, 
probabilistic scenarios of climate change, investigations of how a delayed/anticipated 
global action alters risks of overshooting or the likelihood of future climate outcomes 
(den Elzen and Meinshausen, 2005a;  Hare and Meinshausen, 2004; Knutti et al., 
2003; Meehl et al., 2005; Meinshausen, 2005; O’Neil and Oppeinheimer, 2004; 
Wigley, 2005) 

− inverse approach, such as Safe Landing Analysis (Alcamo and Kreileman, 1996;  
Swart et al., 1998) and Tolerable Windows Approach (Kriegler and Bruckner, 2004; 
Toth et al., 2003a&b), which aims at defining a corridor of allowable emissions given 
a set of constraints referring to unacceptable impacts (for instance, global mean 
temperature rise, its rate, sea-level rise) and to intolerable mitigation costs as well as 
other constraints (inter alia, maximal yearly decarbonisation rate). The Tolerable 
Windows Approach differs from the Safe Landing Analysis in that it goes beyond 
global scale on a more detailed regional integrated model; it thus possible to specify 
constraints relating to some categories of sectoral/regional impacts (eg, preserve two-
thirds of the natural vegetation in non-agricultural areas) or mitigation costs (upper 
bound to protect consumption, relative distribution between regions). Through 
sensitivity studies, both approaches help in analysing the relative influence on short-
term decisions of a set of constraints for a set of uncertain parameters. They do not 
prescribe emissions pathways but delineate an allowable emissions corridor; the 
choice of a given admissible emissions trajectory is left to decision-makers, by 
considering additional criteria. 

− cost-efficiency analysis, which aims at defining the least-cost GHGs trajectory which 
complies with a given climate target. Once again the uncertainty can be dealt with 
through sensitivity study (Böhringer et al., 2005; Caldeira et al., 2003; den Elzen and 
Meinshausen, 2005b; Richels et al., 2004). However, unlike the two other approaches, 
it is here possible to examine the interaction between uncertainty and decision, 
eventually taking into account the reduction of uncertainties in the future. Two cases 
can be distinguished whether decision-makers require (subjective) probabilities or not. 

                                                 
4 For a review, see Metz et al. (2001), chp. VIII and X. 
5 The major contributor to the uncertainty in global warming projections for a given concentration pathway. It is 
defined as the global mean temperature rise at equilibrium for a constant atmospheric forcing, set at twice the 
pre-industrial level (ie, 2x280ppm=560ppm). 
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The first alternative is a standard approach to decision-making under uncertainty. 
Classically, one seeks the optimal strategy given a decision criterion (here least-cost) 
across a set of likely future states of the world (Manne and Richels, 2005; this study). 
The second alternative, robust decision-making, gets round the difficulties of 
probabilities elicitation in a situation of deep uncertainty (or deep controversies): one 
seeks strategies that are robust (ie largely insensitive) to many uncertainties. (Hammit 
et al., 1992; Lempert, 2002; Lempert et al. 1994, 2001;Yohe et al., 2004)  

 
On the whole, whatever the approach followed, these studies reach similar conclusions, 
outlining how significant the uncertainty about climate sensitivity is. For instance, Caldeira et 
al. (2003) state that were climate sensitivity equal to 4.5°C, “one should almost totally reduce 
emissions by 2050; by the turn of the century, almost 75% of the energy supply should be 
carbon free whatever the value of climate sensitivity”. Den Elzen and Meinshausen (2005b) 
conclude that “[f]or achieving the 2°C target with a probability of more than 60%, 
greenhouse gas concentrations need to be stabilized at 450 ppm CO2-equivalent or below, if 
the 90% uncertainty range for climate sensitivity is believed to be 1.5 to 4.5°C”. Kriegler and 
Bruckner (2004) come to similar results: the lower the warming threshold and the higher the 
climate sensitivity (both implying stringent concentrations ceilings), the narrower the global 
carbon budget (see also Lempert et al., 1994; Hammitt et al., 1992). Studies also insist on the 
consequences of a delayed global action: “the next 5 to 15 years might determine whether the 
risk of overshooting 2°C can be limited to a reasonable range” (Meinshausen, 2005). 
Mastrandrea and Schneider (2005) compared the probability distributions of temperature 
change induced by specific overshoot and non-overshoot scenarios stabilizing at 500 ppm 
CO2 equivalent, based on published probability distributions on climate sensitivity. They 
found that, from 2000 to 2200, the overshoot scenario increased the probability of temporary 
or sustained exceedence of a 2ºC above preindustrial threshold by 70%. Hare and 
Meinshausen (2004) calculated that each 10 year delay in emission action commits us to at 
least a further 0.2-0.3°C warming over 100-400 year time horizons. Yohe et al. (2004) further 
conclude: “uncertainty [about climate sensitivity] is the reason for acting in the near term and 
uncertainty cannot be used as a justification for doing nothing”. 
 
We propose here to go on with climate policy assessment within a cost-efficiency framework, 
using constraints referring to global mean temperature rise (its magnitude and rate). We focus 
on short-term policy, up to 2050, keeping in mind that the transition of energy systems 
towards low-carbon societies will at least last fifty years. We address three issues: 

− does uncertainty regarding climate dynamics and the definition of climate risks lead to 
very stringent recommendations ? In other words, does an explicit reference to the 
Precautionary Principle6 imply significant abatement efforts as long as our knowledge 
has not yet progressed? 

− has learning a critical impact on short-term decision? In other words, can we wait to 
know more before we decide to act, and until when? 

− can we sort out these uncertainties, especially with regard to short-term decision? 
The decision-making framework of this study (sequential decision with learning, which very 
few studies are referring to) and its scope alike are thus quite similar to Manne and Richels 
(2005) but there exist two differences: first, we consider also a rate constraint (which to date 
has not been much taken into account, especially in Manne and Richels (2005)); second, we 
                                                 
6 ”The Parties should take precautionary measures to anticipate, prevent or minimize the causes of climate 
change and mitigate its adverse effects. Where there are threats of serious or irreversible damages, lack of 
scientific certainty should not be used as a reason for postponing such measures […]”  (UNFCCC, 1992, Article 
3, paragraph 3). 
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compute the value of information to rank the uncertainties we face in the model and to assess 
the influence of the date of learning (which, to our knowledge, is new in the context of 
climate stabilisation). 
 
The first section is devoted to the presentation of RESPONSE_Θ, a cost-efficiency aggregate 
optimal control integrated assessment model, with constraint on global mean temperature rise, 
which we use for these numerical experiments. The implications of the uncertainty regarding 
climate sensitivity on short-term abatement efforts are examined in the second section, 
following a precautionary approach: does this uncertainty result in significant economic 
regrets?; does the eventuality of learning imply a relative flexibility in short-term decision? 
To complete this analysis we consider in the third section the uncertainty relating to both 
climate constraints so as to rank the three uncertainties we face in our model: climate 
sensitivity and critical magnitude and rate of climate change. 

2. RESPONSE_Θ, a cost-efficiency optimal control integrated assessment model 

RESPONSE_Θ belongs to the RESPONSE model family (Ambrosi et al., 2003), a generic set 
of stochastic climate policy optimisation integrated assessment models. It includes a simple 
description of climate policy costs (baseline scenario and abatement cost function) and of the 
chain linking emissions to climate change through reduced-forms of carbon cycle and climate 
dynamics. RESPONSE_Θ seeks to minimise the discounted sum of abatement costs (1) with 
respect to two climate constraints (see Figure 1) 7:  
 

− one constraint on the magnitude of warming (2). MAXθ∆  is set at +2 °C (in the central 
case), which is close to the long-term climate policy goal stated by the European 
Union in 1996 and very recently reaffirmed with a formal statement coming just after 
the tenth Conference of the Parties to the Climate Convention: “the global average 
[temperature] should not exceed the preindustrial level by more than 2 °C” (Council 
of the European Union, 2004)8. Likewise the International Climate Change Taskforce 
(2005) recommends a similar objective. This approach outlines environmental risks: 
by specifying such a constraint, or guardrail, it delimits a space inside which climate 
change impacts and their socio-economic repercussions are considered socially 
tolerable9. Whether objective dangerous thresholds are clearly characterised (a drift of 
the climate system, like the shutdown of the thermohaline circulation in the North 
Atlantic, is dangerous per se) or whether climate change entails impacts on a regional 
scale that are considered critical (for instance, the extinction of vulnerable ecosystems 
such as coral reefs or mountain vegetation, a disruption in monsoon cycles on the 
Indian subcontinent, warming over the Arctic, an increase in the risk of storm surges 
for Small Islands States). Numerous impact studies will provide who wishes to stick to 
such an absolute security approach with relevant clues. For instance, results from the 

                                                 
7 See the Appendix. A presentation  of RESPONSE as well as its code (GAMS language) is given in Ambrosi 
(2004), downloadable at www.centre-cired.fr 
8 Making an explicit reference to preindustrial times implies in fact a tighter constraint (1,5 °C  since 1990) 
given the observed global warming in the past centuries. 
9 Which does not mean, precisely, that a +2°C target could be regarded as safe. Warren’s review (2005) suggests 
indeed many impacts are not totally benign on a local scale, even for lower warming, but the elicitation of a 
target involves value judgments reflecting our concerns for different categories of impacts, our solidarity with 
vulnerable regions and with our descendants and our attitude towards risk. 
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Global Fast Track Assessment (Parry et al., 2001) suggest a comparable dangerous 
threshold, with a sharp increase in the number of people at risk of water shortage once 
global mean temperature rise gets close to +2 °C. Besides, a recent report concludes to 
similar recommendations after an exhaustive review of impact studies, with multiple 
risks were global warming to venture beyond +2 or 3 °C (ECF, 2004).  

 
− one constraint on the decadal rate of warming, ∆θRYT (3). Introducing such a constraint 

puts the issue of impacts back in a dynamic perspective, with transient risks linked to 
the pace of climate change and of the deployment of its impacts. Very few information 
on this topic are available. Global disruptions of the climate system (such as the 
thermohaline circulation – Rahmstorf (2002)) are known to be sensitive to the rate of 
climate change beside its absolute magnitude. The risks which are characterised at best 
relate to ecosystems (Leemans and Eickhout, 2004; WWF, 2000). By analysing the 
ability of trees to migrate in response to climate fluctuations during the recent 
Quaternary, Krause et al. (1989) have recommended + 0.1 °C per decade as a 
maximum tolerable rate of warming. Leemans and van Vliet (2005) advocate even for 
0.05 °C per decade safe guardrail! Those are very stringent constraints, especially with 
regard to the latest IPCC projection for the rate of warming: likely (probability 
between 0.66 and 0.9) between +0.1 and +0.2  °C  per decade for the coming years 
(Houghton et al.(2001), SPM, p. 13). 

 
The abatement cost function is taken from STARTS (Lecocq, 2000). Following these 
specifications, emissions reduction costs are represented as a backstop technology (initial 
value: 1,100 US$.tC-1) with convex (quadratic) marginal costs. They incorporate an 
autonomous technical change factor (costs decrease at a yearly constant rate of 1% but cannot 
decrease beyond 25% of their initial values) and the influence of socio-economic inertia as a 
cost-multiplier, through a multiplicative index which increases with the degree of socio-
economic inertia (related to the average capital stocks turnover).  
 
Baseline emissions (amount of CO2 emissions, both from fossil fuel use and land-use) come 
from the marker scenario for the A1 SRES family, A1m (Nakicenovic, 2000). It corresponds 
to rather optimistic beliefs about the future. A1m is indeed the picture of a prosperous and 
generous world where economic growth is high with a considerable catch-up of developing 
countries, continuous structural change and rapid diffusion of more efficient technologies, 
three factors yielding to decreasing GHGs emissions as soon as 2050. A1m hypotheses could 
thus typically support beliefs which could justify a belated action since such a stance 
frequently appeals to 

− either the argument of technical change: “it is better to invest in R&D in the energy 
sector and/or research in climate change-related fields than to deep-cut fossil fuel 
emissions at once while alternative technologies are expensive and climate change 
consequences might prove ultimately benign”  

− or the argument of development10: “developing countries are likely to be the main 
victims of climate change, which is almost in pipe for the next fifty years. Rather than 
curbing down GHGs emissions in industrialised countries whatever the costs, one 
should instead help LDCs in planning robust adaptation strategies and investing in 
the energy sector to lop their emissions peaks in the years to come. Even if climate 
change finally proves benign, it’s a no-regret option since it favours sustainable 
development”. 

                                                 
10 A view for instance held by Schelling (1992) (p. 6) or Lomborg  (2001).  
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It is therefore relevant to examine how statements like “one should delay GHGs emissions 
reduction efforts” are to be revised when using a proper precautionary approach based on the 
same data. 
 
We use the C-Cycle from DICE and RICE (Nordhaus and Boyer, 2000), a linear three-
reservoir model (atmosphere, biosphere + surface ocean and deep ocean). Each reservoir is 
assumed to be homogenous (well-mixed in the short run) and is characterised by a residence 
time inside the box and corresponding diffusion rates towards the two other reservoirs (longer 
timescales). Carbon flows between reservoirs depend on constant transfer coefficients. GHGs 
emissions (CO2 solely) accumulate in the atmosphere and they are slowly removed by 
biospheric and oceanic sinks. Note however that the model accounts for the irreversible 
accumulation of part of the GHGs into the atmosphere: in 1000 years, there still remain, under 
contemporary climatic conditions, some 13% of one ton CO2 emitted today (Siegenthaler and 
Sarmiento, 1993). 
 
To represent the evolution of global mean temperature, a set of two equations is used to 
describe its variation since pre-industrial times in response to additional human-induced 
forcing: it is a perturbation model. CO2 is the only GHG modelled. Since the main issue is the 
timing of abatement over the short run, we prioritise the description of the interaction between 
the atmosphere and the surface ocean neglecting the interactions with the deep ocean: the 
model describes the modification of the thermal equilibrium between atmosphere and surface 
ocean in response to anthropogenic greenhouse effect. Long-term climate dynamics is 
constrained by climate sensitivity. Three mechanisms are represented: the additional radiative 
forcing in the atmosphere due to CO2 accumulation above its pre-industrial value, an 
amplification/buffering of this perturbation through atmospheric feedbacks and a progressive 
thermal equilibrium atmosphere/surface ocean. We consider the uncertainty about climate 
sensitivity, the major contributor to the uncertainty in global warming projections for a given 
concentration pathway (other sources of uncertainty relate to, in order of importance, radiative 
forcing (esp. aerosols), ocean heat uptake and carbon cycle dynamics). The uncertainty 
regarding climate sensitivity is large, more than 3 °C, and persists since the second IPCC 
report: “The equilibrium climate sensitivity (…) was estimated to be between +1.5 °C  and 
+4.5 °C  in the SAR. This range still encompasses the estimates from the current models in 
active use” (see Houghton et al. (2001), chp. IX, p. 561). At this time, Wigley and Raper 
(2001) have proposed an ad hoc lognormal distribution, with a 90% confidence range from 
1.5°C to 4.5°C. Since then, significant researches have been led to better characterise climate 
sensitivity and quantify its accompanying uncertainty11 but this parameter is hard to constrain, 
either from observations (because historical radiative forcing and ocean heat uptake data are 
fragile) (Andronova and Schlesinger, 2001; Forest et al., ; Gregory et al., 2002; Knutti et al., 
2003, 2002; Frame et al., 2005) or from atmosphere-ocean global circulation models (because 
the parametrisations of some key processes such as cloud effects need improving) (Murphy et 
al., 2004; Stainforth et al., 2005). These studies have produced new estimates which remain 
concentrated over the +1.5 °C +4.5 °C range with a mean close to +3.5 °C but they indicate 
that one can not exclude much higher values, admittedly with low probabilities. To account 
for this uncertainty, we explore three values, centred around the mean estimate, {+2.5 °C  ; 
+3.5 °C  ; +4.5 °C } with the following probabilities {1/6; 2/3; 1/6} (close to the distribution 
obtained by Murphy et al. (2004)). To convey an idea of the consequences of this distribution 
for decision, it means that to achieve a +2°C target with at least 80% confidence CO2 
concentration must be stabilised at 450 ppm or below. To account for the uncertainty about 
                                                 
11 For a review of these studies, the methodologies followed, their limits and their results, see the National 
Academies (2003) or IPCC WGI (2004). 
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climate sensitivity (esp. the tail of the distribution for high values) and also for the various 
attitudes towards risk people will adopt in front of such fragile information given their 
personal concerns and their degree of risk aversion, we will test alternative distributions (see 
below), which convey a different weight to bad news (ie high climate sensitivity). 
 
 
To conclude this presentation of RESPONSE_Θ, let us examine its results for a warming 
threshold set at +2 °C (with no rate constraint for the moment). The uncertainty about climate 
sensitivity leads to very different optimal emissions trajectories (see Figure 2). It is therefore a 
crucial uncertainty for decision, notably for the decades to come: in 2010, mitigation efforts 
amount to 2, 9 or 17% of baseline emissions as climate sensitivity is low (+ 2.5 °C), medium 
(+ 3.5 °C) or high (+ 4.5 °C). Opting for a +2 °C temperature ceiling implies in fact to 
stabilise long-term CO2 atmospheric concentration at a level all the more stringent as climate 
sensitivity is high, respectively 591 ppm, 494 ppm and 442 ppm. 
 
Let us now analyse the relative influence of both climate constraints, which approximate 
climate risks. To this aim, we have a look at baseline temperature trajectories for different 
values of climate sensitivity to detect at what time these constraints can bite and how their 
respective importance varies (Figure 3). 
 
The diagram is to be read as follows: since global mean temperature is always increasing, we 
move with time along each curve from the left-hand side to the right-hand side; some dates 
have been written down to ease reading. The early kink is due to the fact that baseline 
emissions increase sharply as soon as 2000. The increase in global mean temperature is 
related to the magnitude and duration of forcing, that is to say to the atmospheric stock of 
CO2. Given that this stock is ever-increasing (at least up to 2150), temperature is increasing as 
well. Its rate however (look at the y-axis) depends on the increase in the forcing between two 
periods of time. The latter is directly related to the increment of the atmospheric stock of CO2, 
that is to say, apart from carbon cycle, to the time profile of emissions. As for the magnitude 
of the curves, it depends on the value of climate sensitivity. 
 
Beyond 2050 global mean temperature is increasing at a much smaller rate than in the first 
half of the 21st century because GHGs emissions begin to curb down as soon as 2050 in the 
baseline scenario. From now on to 2050 thus, the rate constraint bites at most, all the more as 
it is stringent and climate sensitivity is high. To slow down this acceleration, one must 
intensify mitigation efforts during the first part of the century. Results from the sensitivity 
analysis for short-term abatement are given in Table 1. These are close to the conclusions of 
Tolerable Windows Approach et Safe landing Analysis (Metz et al. (2001), chap. X): 
controlling the rate of climate change sets a significant constraint on GHGs emissions during 
the first half of the 21st century, especially as this constraint is set at 0.1 or 0.2 °C per decade. 
 
Sensitivity analyses provide useful information (above all, concerning extreme situations) but 
do not represent decision-making under uncertainty unless the decision criterion adopted is 
Maximin or miniMax Regret (that is to say, criteria which do not use probability distributions 
on the occurrence of future states of the world). For instance, using our former results, which 
short-term decision is optimal given that the uncertainty about climate sensitivity leads to 
recommendations varying from 2% to 17% in 2010? Furthermore, sensitivity analyses do not 
take into account learning, which introduces through sequential decision-making process 
flexibility over the very long time span of climate policies. Two important limits we now 
propose to overcome. 
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3. Optimal climate policy in the presence of uncertainty concerning climate sensitivity 

To represent decision-making under uncertainty about climate sensitivity with learning, we 
have altered RESPONSE_Θ  in the following manner (Figure 4). Uncertainty about climate 
sensitivity is discrete: we consider three possible states of the world (s) in which climate 
sensitivity may be equal to {+2.5 °C ; +3.5 °C ; +4.5 °C } with the corresponding ex ante 
subjective probabilities or priors (pS) {1/6; 2/3 ; 1/6}. Learning is autonomous. Information 
arrives at a fixed point in time ( tinfo ) : it can be available at the beginning of each decade in 
the 21st century, with two polar cases, perfect information (tinfo =1990)  and complete 
uncertainty (tinfo =2300, the horizon of RESPONSE_Θ ). 
 
The decision-maker adopts the best12 sequence of actions given that information on the ‘true’ 
state of the world will be available at tinfo : beyond this date, he can adapt the optimal 
abatement profile to that information (three states of the world so three possible abatement 
trajectories); before this date, he has to adopt one common decision given subjective 
probabilities on the likelihood of the future states of the world and the date of disclosure of 
information. In numerical terms, the objective function (1a) is re-specified as the 
minimization of expected costs of abatement trajectories across the three states of the world, 
with respect to one constraint on the magnitude of warming (2) and one constraint on the 
decadal rate of warming (3). Sequential decision-making is captured through an additional 
constraint (1b) which imposes that, before the disclosure of information, decision variables be 
the same across all states of the world. 

3.1 Under complete uncertainty, an attraction by the worst-case hypothesis with significant 
economic regrets 

Let us first examine RESPONSE_Θ recommendations in the never learn case (tinfo =2300)13. 
We can notice (Figure 5) that optimal emissions path totally sticks to the worst case 
hypothesis (climate sensitivity equal to +4.5 °C), generating thus significant economic regrets 
(i.e. investments in abatement technologies finally non necessary and often non-retrievable) if 
climate sensitivity ultimately turns out to have a lower value. In other words, results are 
similar to those obtained with a Maximin decision criterion which focuses only on the worst 
case. In a cost-effectiveness framework indeed, environmental constraints must be satisfied 
whatever the cost: as a consequence, one observes a complete attraction by the worst-case 
hypothesis, which corresponds to the lowest concentration ceiling (442 ppm). 

3.2 The key role of learning: flexibility in short-term abatement efforts 

However, if one takes into account an eventual learning in the future, short-term mitigation 
efforts may be relaxed, which reduces economic regrets. This effect is all the more 
pronounced as learning occurs early. For instance, abatement efforts in 2010 amount to 17% 
of baseline emissions in the never learn case and they gradually decrease to respectively 16, 
12 and 11% (very close to the central case, climate sensitivity equal to +3.5 °C) as the 
information is available respectively in 2050, 2040 and 2020. These results are similar to the 
                                                 
12 Meaning here “the least expensive abatement trajectory which satisfies the environmental constraints”. 
13 Or, similarly, a situation where the decision-maker neglects the eventuality of future learning and takes his/her 
decision once for all. 
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conclusions reached by Ha Duong et al. (1997) in the context of the stabilisation of GHGs 
atmospheric concentrations: there exists indeed almost an equivalence between aiming at a 
temperature threshold in the presence of uncertainty on climate sensitivity and stabilising 
GHGs atmospheric concentrations at ceilings not known yet. 
 
One must nonetheless notice one can not take for granted such information be soon available 
(Kelly et al., 2000; Leach, 2004): at least fifty years could be necessary to acquire from 
observation a reliable estimate of the value of climate sensitivity, which finally forces one to 
follow relatively stringent emissions pathways. 

3.3 Significant short-term regrets with the rate constraint 

But the rate constraint, even when not stringent, almost neutralises short-term benefits from 
learning. It implies indeed significant short-term mitigation efforts and deprives us from the 
flexibility allowed for by future learning (see Figure 6, with the rate constraint set at 0.3 °C 
per decade). In other words, in a context of uncertainty about climate sensitivity, the influence 
of the rate constraint on short-term decision is magnified because one must take into account 
the eventuality that climate sensitivity may be equal to + 4.5 °C, leading to a more intense and 
faster warming. 
 
These conclusions are robust to the beliefs of the decision-maker, i.e. his/her subjective 
distribution of probabilities linked with the uncertainty on climate sensitivity. Beside a central 
belief, we have also tested a neutral one, as an interpretation of the Principle of insufficient 
reason (equiprobable distribution, mean equal to +3.5 °C: {1/3 ; 1/3 ; 1/3}), an optimistic one 
(left-skewed distribution, mean equal to +3 °C :{2/3 ; 1/6 ; 1/6}) and lastly, a pessimistic one 
(right-skewed distribution, mean equal to +4 °C : {1/6 ; 1/6 ; 2/3}). Whatever the prior of the 
decision-maker, the optimal abatement rate in 2020 (learning occurring in 2020) amounts to 
about 22.0 % of baseline emissions, which is very close to the worst-case hypothesis under 
certainty at the same time (23.6 %) and almost twice the optimal abatement effort in the 
central case at the same time (12.8 %). 
 
These results are also robust to discounting, which is – in the certainty case – the most 
decisive socio-economic parameter for decision, with the effect to pass on emissions 
reduction efforts from the present generation to future generations (see Table 2, left column). 
In the certainty case, the optimal abatement rate differs widely depending on the value of the 
discount rate (from 6 to 27% as the discount rate decreases from 10 to 1% a year): recall that 
in a cost-efficiency framework, a high discount rates reduces the discounted value of future 
costs, which favours postponing for some decades the bulk of mitigation efforts. In the 
learning case (see Table 2, right column), the optimal abatement rate is systematically greater 
than the optimal rate in the certainty case. Above all, the influence of the discount rate is 
much less important than before: it still favours a belated action (the mitigation effort 
decreases as the discount rate increases) but for 3, 5 and 10% a year the optimal abatement 
rates are almost comparable and only the optimal response for a 1% a year discount rate 
singles out . 
 
So, the results from this analysis demonstrate that, in the presence of uncertainty, the relative 
influences established through the sensitivity study of RESPONSE_Θ  are still valid even if 
they are no longer as pronounced. Whereas in the certainty case sharp controversies may arise 
over the choice of a correct value for the discount rate since the optimal abatement rate may 
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accordingly vary by a factor of 4, conflicting views concerning this parameter are not 
anymore as decisive when following a sequential decision approach, especially if the debate 
focuses around values such as 3-5 % a year (a plausible range given the baseline scenario 
growth rate and standard assumptions regarding the economic agent preferences), which 
unanimously leads to a mitigation rate of 22%. 
 
The uncertainty concerning climate sensitivity is thus crucial: it leads to significant short-term 
mitigation efforts all the more as the arrival of information regarding this parameter is belated 
or under the influence of the rate constraint (be it stringent or not). In this context, a +2 °C 
objective could lead to rather stringent policy recommendations for the coming decades and 
might prove unacceptable. These results are insensitive to the distribution of climate 
sensitivity and to the choice of the discount rate. The date of learning and the rate constraint 
are on the other hand key-parameters for short-term decision.  
 
Alike the constraint on the magnitude of warming, the rate constraint is notably unknown yet: 
some will argue for a very tight constraint but others will advocate much looser a constraint, 
be they quite optimistic about our future adaptive capacities or less concerned by endangered 
ecosystems. Some time might therefore be needed before a social consensus be reached or 
major breakthroughs in climate or impacts science help in defining unambiguously a 
“dangerous interference with the climate system” or in better quantifying climate sensitivity. 
In view to rank out the relative influence of these three uncertainties on short-term decision, 
we next compute the value of information associated with each of these three parameters. 

4. A ranking of uncertainties using the value of information 

The value of information, Expected Value of Perfect Information (EVPI), measures the 
opportunity to possess a piece of information when making a decision. Since we place 
ourselves in a dynamic perspective, we compute EVPI as the maximal willingness to pay to 
obtain today this piece of information rather than waiting a later time. EVPI is classically 
defined as the difference between the expected value of the objective function in the “Act then 
Learn” case (a policy must be adopted before the disclosure of information) and in the “Learn 
then Act” case (the value of the parameter is known from the outset and a policy is adopted 
accordingly). Following RESPONSE_Θ  notations, we have : 
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with AbS
ATL(t_info),t optimal course of abatement, the state of the world, s, being disclosed 

at time tinfo. 
AbS

LTA,t optimal course of abatement in the certainty case, the state of the world 
being s. 

 
EVPI allows today’s decision-maker to rank out the relative importance of a set of uncertain 
parameters. For instance, EVPI ad infinitum, EVPI(2300), reveals the magnitude of the regrets 
at never possessing a definitive information to incorporate it in the decision process. 
EVPI(2300) measures the costs of complete uncertainty and the amount one is willing to pay 
today to obtain immediately (as opposed to never) the needed knowledge and fine tune 
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precautionary climate policies. Moreover, the time profile of EVPI shows the opportunity to 
accelerate the reduction of uncertainties: if EVPI increases sharply between two points in 
time, it is then vital for today’s decision-maker to get the information at the beginning of this 
period. 
 
We explore the following sets for climate sensitivity {+2.5 °C ; +3.5 °C ; +4.5 °C}, the 
magnitude constraint {+1 °C ;+2 °C ;+3 °C } and the rate constraint {0.1 °C per decade ; 
0.2 °C per decade ; 0.3 °C per decade }. The accompanying subjective probability distribution 
is the following: {1/6 ; 2/3 ; 1/6}. 
 
Once again, the prominent influence of the rate constraint is confirmed (Figure 7). 
Unquestionably, it exhibits the highest value of information: the fastest increase (in 2020, 
more than 60% of its value ad infinitum ; almost 90% in 2040, 20 years later) and the highest 
value ad infinitum (2.8 times greater than EVPI for climate sensitivity and 1.5 times greater 
than EVPI for the magnitude constraint). The respective dominances of the other two 
parameters vary with time: EVPI for climate sensitivity is greater than EVPI for the 
magnitude constraint until 2035 and the situation then reverses (in 2100, EVPI for the 
magnitude constraint is greater than EVPI for climate sensitivity by a factor of 1.8). With 
respect to their value ad infinitum, the value of information attached to climate sensitivity 
increases faster (in 2020, more than 50% of its value ad infinitum, almost 70% 10 years later, 
in 2030) whereas the value of information for the magnitude constraint increases sharply from 
2020 onwards (in 40 years, from 2020 to 2060, it grows by more than 80%). 
 
There exists thus a high opportunity cost to know before 2040 the scientific-objective or 
socially acceptable values for the rate constraint, climate sensitivity and the magnitude 
constraint, and on a closer horizon (between now and 2020) to know the first two parameters. 
Beyond this opportunity window, there still exists of course a benefit to discover the values 
for these parameters but with regard to short-term flexibility in the abatement effort, the late 
acquisition of information is not that decisive (one must indeed follow a very stringent 
emissions pathway, if not stick to the worst case hypothesis). 
 
These results qualitatively hold for alternative values of the discount rate (Figure 8): 
prominent role of the rate constraint (highest value and fastest increase at least for the next 40 
years), climate sensitivity (second highest value for the next 30 years) and magnitude 
constraint (sharp increase from 2020 onwards). Interestingly, EVPI makes clear the balance of 
short- and long-term induced by the choice of discount rate. In a world with high discounting, 
mitigation efforts tend to be postponed at the most. The uncertainty regarding the rate 
constraint or climate sensitivity (through its synergy with the rate constraint on short-term) is 
thus particularly crucial on short-term since it implies significant abatement rates in the 
coming decades one would prefer to delay. Conversely, in a world with low discounting, 
mitigation efforts are spread evenly across time and long-term horizon is conveyed more 
weight. As a result, uncertainties that are more pregnant on long-term are also given 
consideration seen from today: the value of information associated with the magnitude 
constraint (related to the atmospheric stock of carbon and to climate sensitivity) increases 
gradually with time and on long-term becomes the highest EVPI.  
 
These results qualitatively hold for priors of the decision-maker (Figure 9). The relative 
importance of the three uncertainties remains unaltered but the scale of the EVPIs decreases 
as the decision-maker becomes more pessimistic. This is due to the fact that in an optimistic 
view, the decision-maker must accept significant abatement efforts as long as the uncertainties 
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are not reduced even if the worst-case is conveyed a low weight: any information is therefore 
valuable since it makes possible to escape from the attraction by the (less likely) worst-case. 
 
As for defining proxies of climate risks based on the global mean temperature, the most 
crucial informations relate first, to the critical rate of climate change socially acceptable – that 
is to say a transient characteristic of risks – and second,  to the critical magnitude of climate 
change – that is to say a long-term constraint. 

5. Conclusion 

Our results demonstrate that there exists a high opportunity cost to know before 2030 the 
value of climate sensitivity in view to mitigate to some extent the significant economic regrets 
that are concomitant with a precautionary policy in the presence of uncertainty about this 
parameter. One can not take for granted such information be soon available (at least fifty 
years could be necessary), which finally forces one to follow relatively stringent emissions 
pathways. In this context, a +2 °C might thus be considered unacceptable. 
 
Furthermore, we find that when stepping from an abstract definition of climate risks based on 
desirable concentration ceilings to a more palpable definition based on long-term global 
protection (magnitude of climate change) and transient protection (rate of climate change), a 
precautionary climate policy – even if both long-term objectives, concentration ceiling or 
warming threshold, are equivalent -  implies more short-term abatement efforts as rate 
constraint bites, which is the case in the presence of uncertainty regarding climate sensitivity 
for values as high as 0.3 °C per decade. We besides show that the uncertainty about the rate 
constraint is even more important for short-term decision than the uncertainty about climate 
sensitivity or magnitude of warming. This means that the critical rate of climate change, i.e. a 
transient characteristic of climate risks, matters much more than the long-term objective of 
climate policy, i.e. the critical magnitude of climate change. Therefore, research should be 
aimed at better characterising climate change risks in view to help decision-makers to agree 
on a safe guardrail to limit the rate of global warming. 
 
Further perspectives of this research involve the improvement of the carbon-climate sub-
models (multigas, ocean-heat uptake, climate-carbon feedback) in view to assess in the same 
framework and following a similar approach, the relative importance for decision of these 
mechanisms which are uncertain yet. 
 
 
 
 
6. Bibliographical references 
 
 
Alcamo, J. and E. Kreileman. 1996. "Emissions scenarios and global climate protection." Global Environmental 
Change, 6:4, pp. 305-34. 
 
Ambrosi, Ph. 2004. "Amplitude et calendrier des politiques de réduction des émissions en réponse aux risques 
climatiques: leçons des modèles intégrés." Economie de l'environnement. Ecole des Hautes Etudes en Sciences 
Sociales (EHESS): Paris. 
 

 16



Ambrosi, Ph., J.C. Hourcade, S. Hallegatte, F. Lecocq, P. Dumas, and M. Ha Duong. 2003. "Optimal control 
models and elicitation of attitudes towards climate damages." Environmental Modeling and Assessment, 8:3, pp. 
133-47. 
 
Andronova, N.G. and M. E. Schlesinger. 2001. "Objective estimation of the probability density function for 
climate sensitivity." Journal of Geophysical Research, 106:D19, pp. 22605-11. 
 
Böhringer, C., A. Löschel, and T.F. Rutherford. 2005. "Efficiency Gains from “What”-Flexibility in Climate 
Policy - An Integrated CGE Assessment." The Energy Journal, forthcoming. 
 
Caldeira, K., A.K. Jain, and M.I. Hoffert. 2003. "Climate sensitivity uncertainty and the need for energy without 
CO2 emission." Science, 299:5615:28 March 2003, pp. 2052-54. 
 
Council of the European Union. 2004. "Press Release: 2632nd Council Meeting." Council of the European 
Union: Brussels (Belgium). 
 
ECF. 2004. "What is dangerous climate change?-Initial Results of a Symposium on Key Vulnerable Regions, 
Climate Change and Article 2 of the UNFCCC." ECF and PIK. 
 
den Elzen, M.G.J. and M. Meinshausen. 2005a. "Emission implications of long-term climate targets." Avoiding 
Dangerous Climate Change: Exeter (UK). 
 
den Elzen, M.G.J. and M. Meinshausen. 2005b. "Meeting the EU 2°C climate target: global and regional 
emission implications." 44. Netherlands Environemental Assessment Agency (MNP associated the RIVM): 
Bilthoven (the Netherlands). 
 
Frame, D. J., B.B.B. Booth, J.A. Kettleborough, D. A. Stainforth, J. M. Gregory, M. Collins, and M. R. Allen. 
2005. "Constraining climate forecasts: The role of prior assumptions." Geophysical Research Letters, 
32:L09702, pp. doi:10.1029/2004GL022241. 
 
Forest, C. E., P. H. Stone, A. P. Sokolov, M. R. Allen, and M. D. Webster. 2002. "Quantifying uncertainties in 
climate system properties with the use of recent climate observations." Science, 295:5552, pp. 113-17. 
 
Gregory, J. M. , R. J.  Stouffer, S. C. B.  Raper, P. A. Stott, and N. A. Rayner. 2002. "An Observationally Based 
Estimate of the Climate Sensitivity." Journal of Climate, 15:22, pp. 3117–21. 
 
Ha Duong, M., M. Grubb, and J.C. Hourcade. 1997. "Influence of socioeconomic inertia and uncertainty on 
optimal CO2-emission abatement." Nature, 390, pp. 270-74. 
 
Hammitt, J.K., R. J. Lempert, and M. E. Schlesinger. 1992. "A sequential-decision strategy for abating climate 
change." Nature, 357, pp. 315-18. 
 
Hare, B. and M. Meinshausen. 2004. "How much warming are we committed to and how much can be avoided?" 
45. Potsdam Institute for Climate Impact Research (PIK): Potsdam (Germany). 
 
Hitz, S. and J. Smith. 2004. "Estimating global impacts from climate change," in The benefits of climate change 
policies: analytical and framework issues. J. Corfee-Morlot and S. Agrawala eds. Paris: OCDE/OECD, pp. 31-
82. 
 
Houghton, J. T., Y. Ding, D.J. Griggs, P.J. Noguer, P.J. van der Linden, X. Dai, K. Maskell, and C.A. Johnson 
eds. 2001. Climate change 2001: the scientific basis. Contribution of Working Group I to the Third Assessment 
Report of the Intergovernmental Panel on Climate Change. Cambridge (UK&US): Cambridge University Press. 
 
International Climate Change Taskforce. 2005. "Meeting the Climate Challenge: Recommendations of the 
International Climate Change Taskforce." 
 
IPCC WGI. 2004. "Workshop on Climate Sensitivity." 177. IPCC: Paris (France). 
 
Kelly, D., C. D. Kolstad, M. E. Schlesinger, and N.G. Andronova. 2000. "Learning About Climate Sensitivity 
From the Instrumental Temperature Record." 

 17



 
Knutti, R., T.F. Stocker, F. Joos, and G.-K. Plattner. 2003. "Probabilistic climate change projections using neural 
networks." Climate Dynamics, 21, pp. 257-72. 
 
Knutti, R., T.F. Stocker, F. Joos, and G.-K. Plattner. 2002. "Constraints on radiative forcing and future climate 
change from observations and climate model ensembles." Nature, 416:6882, pp. 719 - 23. 
 
Krause, F., W. Bach, and J. Koomey. 1989. "Energy policy in the greenhouse (Final report)." Vol. volume 1: 
From warming fate to warming limit: benchmarks for a global climate convention. International Project for 
Sustainable Energy Paths (IPSEP): El Cerrito (CA). 
 
Kriegler, E. and T. Bruckner. 2004. "Sensitivity Analysis of Emissions Corridors for the 21st Century." Climatic 
Change, 66:3, pp. 345-87. 
 
Leach, A. 2005. "The Climate Change Learning Curve." 33. HEC Montreal: Montreal (Canada). 
 
Leemans, R. and A. van Vliet. 2005. "Responses of Species to Changes in Climate Determine Climate Protection 
Targets." Avoiding Dangerous Climate Change: Exeter (UK). 
 
Leemans, R. and B. Eickhout. 2004. "Another reason for concern: regional and global impacts on ecosystems for 
different levels of climate change." Global Environmental Change, 14, pp. 219-28. 
 
Lecocq, F. 2000. "Distribution spatiale et temporelle des coûts des politiques publiques sous incertitudes: théorie 
et pratique dans le cas de l'effet de serre." Sciences de l'environnement. Ecole Nationale du Génie Rural, des 
Eaux et Forêts (ENGREF): Paris. 
 
Lempert, R. J. 2002. "A New Decision Sciences for Complex Systems." Proceedings of the National Academy of 
Sciences (PNAS), 99:suppl. 3, pp. 7309-13. 
 
Lempert, R. J. and M.E. Schlesinger. 2001. "Climate-Change Strategy Needs to be Robust." Nature, 412:26 July 
2001, pp. 375. 
 
Lempert, R. J., M. E. Schlesinger, and J.K. Hammitt. 1994. "The impact of potential abrupt climate changes on 
near-term policy choices." Climatic Change, 24, pp. 351-76. 
 
Lomborg, B. 2001. The Skeptical Environmentalist: measuring the real state of the world. Cambridge 
(UK&US): Cambridge University Press. 
 
McCarthy, J. J., O. F. Canziani, N. A. Leary, D. J. Dokken, and K. S. White eds. 2001. Climate Change 2001: 
Impacts, adaptation and vulnerability. Contribution of Working Group II to the Third Assessment Report of the 
Intergovernmental Panel on Climate Change. Cambridge (UK & US): Cambridge University Press. 
 
Manne, A.S. and R. Richels. 2005. "Global Climate Decisions under Uncertainty." International Energy 
Workshop 2005 (IEW 2005): Kyoto (Japan). 
 
Mastrandea, M.D. and S.H. Schneider. 2004. "Probabilistic Integrated Assessment of ‘Dangerous’ Climate 
Change." Science, 304:23 April, pp. 571-75. 
 
Meehl, G. A., M.A. Washington, W.D. Collins, J.M. Arblaster, A. Hu, L.E. Buja, W.G. Strand, and H. Teng. 
2005. "How Much More Global Warming and Sea level Rise?" Science, 307:5716, pp. 1769-72. 
 
Meinshausen, M. 2005. "On the risk of overshooting +2°C." Avoiding Dangerous Climate Change: Exeter (UK). 
 
Metz, B., D. Ogunlade, R. Swart, and J. Pan eds. 2001. Climate Change 2001: Mitigation. Contribution of 
Working Group III to the Third Assessment Report of the Intergovernmental Panel on Climate Change. 
Cambridge (UK & US): Cambridge University Press. 
 
Murphy, J. M. , D. M. H. Sexton, D N. Barnett, G. S. Jones, M. J. Webb, M. Collins, and D. A. Stainforth. 2004. 
"Quantification of modelling uncertainties in a large ensemble of climate change simulations." Nature, 
430:7001, pp. 768-72. 

 18



 
Nakicenovic, N. ed. 2000. Special Report on Emissions Scenarios: a special report of Working Group III of the 
Intergovernmental Panel on Climate change. Cambridge (UK&US): Cambridge University Press. 
 
the National Academies. 2003. "Estimating Climate Sensitivity: Report of a workshop." 41. Steering committee 
on Probabilistic Estimates of Climate Sensitivity, Board on Atmospheric Sciences and Climate, Division of 
Earth and Life Studies, the National Academies: Washington D.C. 
 
Nordhaus, W. and J. G. Boyer. 2000. Warming the world: Economics models of Climate Change. Cambridge 
(MA, USA): MIT Press. 
 
O'Neill, B. C. and M. Oppenheimer. 2004. "Climate change impacts are sensitive to the concentration 
stabilisation path." PNAS, 1001:47, pp. 16411-17. 
 
Parry, M., N. Arnell, McMichael T., R. Nicholls, P. Martens, S. Kovats, M. Livermore, C. Rosenzweig, A. 
Iglesias, and G. Fischer. 2001. "Millions at Risk: defining critical climate change threats and targets." Global 
Environmental Change, 11, pp. 181-83. 
 
Rahmstorf, S. 2002. "Ocean circulation and climate during the past 120,000 years." Nature, 419:12 September 
2002, pp. 207-14. 
 
Richels, R., A.S. Manne, and T.M.L. Wigley. 2004. "Moving Beyond Concentrations: the Challenge of Limiting 
Temperature Change." AEI-Brookings joint Center for Regulatory Studies. 
 
Schelling, T.C. 1992. "Some economics of global warming." American Economic Review, 82:1, pp. 1-14. 
 
Schneider, S.H. and S.L. Thompson. 1981. "Atmospheric CO2 and climate: importance of the transient 
response." Journal of Geophysical Research, 86, pp. 3135-47. 
 
Siegenthaler, U. and J. L. Sarmiento. 1993. "Atmospheric carbon dioxide and the ocean." Nature, 365:6442, pp. 
119-25. 
 
Stainforth, D. A., T. Aina, C. Christensen, M. Collins, N. Faull, D. J. Frame, J. A. Kettleborough, S. Knight, A. 
Martin, J. M. Murphy, C. Piani, D.  Sexton, L. A. Smith, R. A. Spicer, A. J. Thorpe, and M. R. Allen. 2005. 
"Uncertainty in predictions of the climate response to rising levels of greenhouse gases." Nature, 433:7024. 
 
Swart, R., M.  Berk, M. Janssen, E. Kreileman, and R. Leemans. 1998. "The safe landing approach: risks and 
trade-offs in climate change," in Global change scenarios of the 21st century: results from the IMAGE 2.1 
Model. J. Alcamo, R. Leemans and E. Kreileman eds. Oxford (UK): Pergamon/Elsevier Science, pp. 193-218. 
 
Toth, F.L., T. Bruckner, H.-M. Füssel, M. Leimbach, and G. Petschel-Held. 2003 a. "Integrated Assessment of 
Long-term Climate Policies: Part 1 - Model Presentation." Climatic Change, 56:1-2, pp. 37-56. 
 
Toth, F.L., T. Bruckner, H.-M. Füssel, M. Leimbach, and G. Petschel-Held. 2003 b. "Integrated Assessment of 
Long-term Climate Policies: Part 2 - Model Results and Uncertainty Analysis." Climatic Change, 56:1-2, pp. 37-
56. 
 
UNFCCC. 1992. "United Nations Framework Convention on Climate Change (UNFCCC)." 
 
Warren, R. 2005. "Impacts of Global Climate Change at Different Annual Mean Global Temperature Increases." 
Avoiding Dangerous Climate Change. Cambridge  University Press (UK): Exeter (UK). 
 
Wigley, T.M.L. 2005. "The Climate Change Commitment." Science, 307:5716, pp. 1766-69. 
 
Wigley, T.M.L. and S. C. B. Raper. 2001. "Interpretation of high projection for global-mean warming." Science, 
293:5529, pp. 451-54. 
 
WWF. 2000. "Global Warming and Terrestrial Biodiversity Decline." World Wide Fund for Nature (WWF): 
Gland (Switzerland). 
 

 19



Yohe, G., N.G. Andronova, and M. E. Schlesinger. 2004. "To Hedge or Not Against an Uncertain Climate 
Future?" Science, 306:15 October 2004, pp. 416-17. 
 

 20



 
Appendix: RESPONSE, a stochastic climate policy optimisation integrated 
assessment model 
 
A.1 Baseline growth scenario and exogenous related data (income and population) 
 
All experiments are based on the SRES A1m scenario which has been computed by NIES 
(National Institute for Environmental Studies, Japan) with the AIM model (Asian Pacific 
Integrated Model) (Nakicenovic, 2000). Beyond 2100, emissions are computed on the basis of 
a simple relationship linking the decadal growth rate of emissions, the decadal growth rate of 
income, the autonomous improvement of energy efficiency and an autonomous trend in the 
decarbonisation of energy. In 2150, emissions are below 5 GtC a year and almost inexistent in 
2200. On the whole, the total amount of carbon emitted reaches 2077 GtC (more than 2.7 
times the atmospheric carbon content in 1980). 
 
A.2 Specification of abatement cost function 
 
We use the following abatement cost function: 

( ) ( 3
1 1

1( , , ) . . , . .
3t t t t t t t )f Ab Ab t BK PT Ab Ab em Abγ− −=  

with:    f(Abt,Abt-1,t) total cost of mitigation measures at time t (trillion US$) 
BK  initial marginal cost of backstop technology (thousand US$.tC-1) 

 PTt  technical change factor 
 γ(Abt,Abt-1) socio-economic inertia factor 
 emt  baseline CO2 emissions at time t (GtC) 
 Abt  abatement rate at time t (% of baseline emissions) 
 
Under these specifications, marginal costs of abatement are convex (quadratic). This is 
consistent with assumptions by experts and the results of technico-economic models. Note 
that f(.) does not allow for so-called no-regret potential. 
 
BK stands for the initial marginal cost of backstop technology, i.e. the carbon free-technology 
which would enable to completely reduce GHGs emissions were it to be substituted to current 
existing energy systems. Its value depends on a set of assumptions regarding its nature 
(windpower, nuclear …), its development date, its penetration rate and technical change. 
Given our own assumptions on technical change, we retain an initial 1,100 US$.tC-1 cost. 
 
PTt captures the influence of autonomous technical change on abatement costs. It translates 
the decrease of the costs of carbon-free technology over time, but the improvement of energy 
intensity which is already taken into account in the baseline. We assume that the costs of 
abatement technologies decrease at a constant 1% per year rate but we assume costs cannot 
decrease beyond 25% of their initial values. PTt thus take the form below (which leads to an 
ultimate cost of 275 US$.tC-1) 
 0.010.25 0.75 t

tPT e δ−= +  

where δ is the time step of the model (10 years) 
 
γ(Abt,Abt-1) captures the influence of socio-economic inertia as a cost-multiplier (transition 
costs between a more and a less carbon-intensive economic structure). γ(.) is a multiplicative 
index. It is equal to unity (no additional costs) if abatement increases at a rate lower than a 
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given threshold τ between two consecutive periods. But it increases linearly with the speed of 
variation of abatement rate when this rate is higher than τ, i.e. the annual turnover of 
productive capital below which mitigation policies do not lead to premature retirement of 
productive units. Here τ is set to 5% per year (average capital stocks turnover of 20 years). 

 ( )
1

1
1

1 1
,

t t

t t
t t

Ab Abif
Ab Ab

Ab Ab otherwise

δτγ

δτ

−

−
−

−⎧ ≤⎪⎪= ⎨ −⎪
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A.3 Three-reservoir linear carbon-cycle model 
 
We use the C-Cycle of Nordhaus and Boyer (2000), a linear three-reservoir model 
(atmosphere, biosphere + surface ocean and deep ocean). Each reservoir is assumed to be 
homogenous (well-mixed in the short run) and is characterised by a residence time inside the 
box and corresponding mixing rates with the two other reservoirs (longer timescales). Carbon 
flows between reservoirs depend on constant transfer coefficients. GHGs emissions (CO2 
solely) accumulate in the atmosphere and they are slowly removed by biospheric and oceanic 
sinks.  
 
The dynamics of carbon flows is given by is given by: 

1

1

1

. (1 )
t t

t trans t t

t t

A A
.tB C B Ab em

O O
δ

+

+

+

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= + −⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

u

⎟
⎟

 

with At carbon contents of atmosphere at time t (GtC) 
Bt carbon contents of upper ocean and biosphere at time t (GtC) 
Ot carbon contents of deep ocean at time t (GtC) 
Ctrans net transfert coefficients matrix 
u column vector (1,0,0) 
 

As such, the model has a built-in ten-year lag between CO2 emissions and CO2 accumulation 
in the atmosphere, which reflects the inertia in C-cycle dynamics. Nordhaus calibration on 
existing carbon-cycle models gives the following results (for a decadal time step): 

0.66616 0.27607 0
0.33384 0.60897 0.00422   

0 0.11496 0.99578
transC

⎛ ⎞
⎜= ⎜
⎜ ⎟
⎝ ⎠

 initial conditions (GtC):  1990

758
793

19230
C

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

 
The main criticism which may be addressed to this C-cycle model is that the transfer 
coefficients are constant. In particular, they do not depend on the carbon content of the 
reservoir (e.g. deforestation hindering biospheric sinks) nor are they influenced by ongoing 
climatic change (eg positive feedbacks between climate change and carbon cycle). 
 
A.4 The reduced-form climate model 
 
This model is very close to Schneider and Thompson’s two-box model (Schneider and 
Tompson, 1981). A set of two equations is used to describe global mean temperature variation 
(eq. 2) since pre-industrial times in response to additional human-induced forcing (eq. 1). 
More precisely, the model describes the modification of the thermal equilibrium between 
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atmosphere and surface ocean in response to anthropogenic greenhouse effect. Calibration 
was carried out with H. Le Treut (IPSL) from data kindly provided by P. Friedlingstein 
(IPSL). All specifications correspond to decadal values, which is the time step of the model. 

 

Radiative forcing equation: 

 2

log
( )

log 2

t

PI
X

M
M

F t F

⎛ ⎞
⎜ ⎟
⎝= ⎠        (1) 

with     Mt CO2 atmospheric concentration at time t (ppm) 
 F(t) radiative forcing at time t (W.m-2) 
 MPI  CO2 atmospheric concentration at pre-industrial times, set at 280 ppm. 
 F2X  instantaneous radiative forcing for 2x MPI, set at 3.71 W.m-2. 
 
Temperature increase equation: 
 

 1 2 1 2
1

3 3

( 1) 1 ( ) ( ) ( )
( 1) 1 ( ) 0

At At

Oc Oc

t t F t
t t

θ σ λ σ σ σ θ
σ

θ σ σ θ
⎧ + − +⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎪ = +⎨⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ −⎪ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎩

  (2) 

 
with θAt(t) global mean atmospheric temperature rise wrt pre-industrial times (°C)  
            θOc(t) global mean oceanic temperature rise wrt pre-industrial times (°C)  
 λ climate response parameter (C-1.W.m-2) 
 σ1 transfer coefficient (set at 0.479 C.W-1.m2)  
 σ2 transfer coefficient (set at 0.109 C-1.W.m-2)  
 σ3 transfer coefficient (set at 0.131). 
 
Climate sensitivity (T2x) is given by T2x= F2X / λ. We assume that uncertainty is mainly due to 
uncertainty on (atmospheric) climate feedbacks process (represented by λ) rather than 
uncertainty on F2X. A high climate response parameter will lead to low climate sensitivity. We 
explore three values for climate sensitivity and λ is set accordingly to F2x/T2X see following 
table: 
 

State of the World LOW CENTRAL HIGH 
Climate sensitivity (T2x) 2.5 °C 3.5 °C 4.5 °C 
Ex ante subjective probability (ps) 1/6 2/3 1/6 
λ 1.48 1.06 0.82 

 
 
A.5 Numerical resolution 
 
To avoid boundary effects, we do not specify terminal conditions in 2100 but set the time 
horizon of the model at 2300. The model is run under the GAMS-MINOS non-linear solver. 
Code is available from the author on request. 
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Figure 1.  RESPONSE_Θ − certainty case. 
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Figure 2.  Sensitivity of optimal emissions trajectories to climate 
sensitivity – results from RESPONSE_Θ. 
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Figure 3. Magnitude of warming (since 1990) vs. Decadal rate of warming in the 
baseline scenario for three values of climate sensitivity. 
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 ∆θMAX

      ∆RYT 1 °C  2 °C  3 °C  
0.1  °C .decade-1 > > > 
0.2  °C .decade-1 < > > 
0.3  °C .decade-1 < < > 
0.4  °C .decade-1 < < < 

 

To be read as follows : « > » means that the influence of the rate constraint dominates the influence of the 
magnitude constraint for short-term decision (up to 2050) and  « < », the opposite. 

 
Table 1. Relative influence of the climate constraints on the abatement rate 

during the 1st half of the 21st century. 
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Figure 4.  RESPONSE_Θ - in the presence of uncertainty about 

climate sensitivity with learning. 
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Figure 5.   Learning and short-term flexibility. 
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Figure 6.   Significant short-term regrets with the rate constraint. 
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Optimal abatement rate in 2020 (% of baseline emissions) 
Discount rate   (%.yr-1) 

Certainty case Learning in 2020 

1 27.3 28.0 

3 18.1 22.1 

5 12.8 21.9 

10 6.0 21.6 

Table 2.  Influence of the discount rate on optimal decision, certainty case and in the presence 
of uncertainty about climate sensitivity with learning. 
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Figure 7.   The value of information as a function of the date of learning 

for climate sensitivity, the rate and the magnitude constraints. 
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Figure 8.   Sensitivity of the value of information for climate sensitivity, 

the rate and the magnitude constraints to the value of discount rate. 
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Figure 9.   Sensitivity of the value of information for climate sensitivity, 

the rate and the magnitude constraints to the priors of the decision-maker. 
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