
HAL Id: hal-00866362
https://hal.science/hal-00866362v1

Submitted on 8 Oct 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Preserving Partial Solutions while Relaxing Constraint
Networks

Éric Grégoire, Jean-Marie Lagniez, Bertrand Mazure

To cite this version:
Éric Grégoire, Jean-Marie Lagniez, Bertrand Mazure. Preserving Partial Solutions while Relaxing
Constraint Networks. 23th International Joint Conference on Artificial Intelligence (IJCAI’13), 2013,
Beijing, China. pp.552-558. �hal-00866362�

https://hal.science/hal-00866362v1
https://hal.archives-ouvertes.fr

Preserving Partial Solutions while Relaxing Constraint Networks∗

Éric Grégoire1 and Jean-Marie Lagniez2 and Bertrand Mazure1
1CRIL, Université d’Artois & CNRS, Lens, France
2FMV, Johannes Kepler University, Linz, Austria

{gregoire,mazure}@cril.fr Jean-Marie.Lagniez@jku.at

Abstract
This paper is about transforming constraint net-
works to accommodate additional constraints in
specific ways. The focus is on two intertwined is-
sues. First, we investigate how partial solutions to
an initial network can be preserved from the poten-
tial impact of additional constraints. Second, we
study how more permissive constraints, which are
intended to enlarge the set of solutions, can be ac-
commodated in a constraint network. These two
problems are studied in the general case and the
light is shed on their relationship. A case study
is then investigated where a more permissive ad-
ditional constraint is taken into account through a
form of network relaxation, while some previous
partial solutions are preserved at the same time.

1 Introduction
The study of CSPs (Constraint Satisfaction Problems) has
long been a fertile research domain in Artificial Intelligence
(see for example [Milano, 2012; Beldiceanu et al., 2012;
Pesant, 2012; Rossi et al., 2006] as major current confer-
ences, journals and handbooks). In this paper, we are con-
cerned with CSPs about constraint networks that model prob-
lems through a set of constraints linking various variables
where each variable is provided with a finite instantiation do-
main. A solution to a constraint network P is an assignment
of values to all variables occurring in P such that all con-
straints of P are satisfied. A CSP is an NP-hard problem that
consists in checking whether P exhibits solutions or not, and
in computing one solution in the positive case.

In this paper, we are not directly concerned with the prob-
lems of finding out a solution to a constraint network or show-
ing that no solution exists. Instead, we are concerned with
how a network must be transformed in order to accommo-
date an additional constraint in such a way that some specific
objectives can be met.

The usual, simplest and most direct way to accommodate
an additional constraint c consists in inserting c inside the

∗This work has been partially supported by FWF, NFN Grant
S11408-N23 (RiSE), an EC FEDER grant and the Conseil Régional
du Nord/Pas-de-Calais.

network, which is enlarged to include possible additional
variables occurring in c, and then in checking previous so-
lutions or re-starting the search for solution(s) while reusing
previous computations as much as possible. Although such
a direct insertion and treatment of c often matches the user’s
intended goal, there exist however circumstances where this
approach is not the right one. In this paper, several such
situations are investigated.

Preserving some partial solutions.
Assume that a manager needs to take decisions based on all
solutions provided by a network P that models constraints
guiding the allocation of resources among several tasks. She
has to investigate how an additional task of less importance
could also be performed under the constraint that this would
not restrict the range of current solutions for the most impor-
tant tasks. At the extreme, she might want to consider the
case where all current solutions about all variables are to be
preserved when the possible additional task is taken into ac-
count.

A solution to P being an assignment of values to all the
variables occurring in P and satisfying all constraints of P ,
she thus wants to preserve some partial solutions, namely
the tuples of values assigned by global solutions to some
given variables of P . These variables express the allocation
of resources for the most important tasks. Assume that c
represents the constraints about the additional task. Clearly,
inserting c inside P would not always provide the intended
result as some previous solutions to P and partial solutions
about the most important tasks might be lost in this way.
Indeed, inserting an additional constraint c can decrease the
set of solutions. Note that rank ordering constraints and
assigning a lower priority to c would not solve the issue
in the general case: previous solutions to P that conflict
with c would still be dismissed. Introducing one or several
additional constraints to represent and handle the partial
solutions to be preserved must make sure that each one (vs.
at least one) of these solutions which are mutually incom-
patible takes part in at least one solution of the resulting
network that will include c. In decision-support systems,
the structure and form of the CSP must often be modified
as less as possible when an additional constraint is handled:
for example, transforming the CSP into a set of tuples that
solve the new problem would be a conceptually simple

-but inappropriate- approach. Indeed, the specifications of
the CSP might further evolve and the constraints must be
available for possible additional subsequent evolutions of the
system, which must be well-understood and explainable in
terms of the constraints, which can be written in intentional
form.

Accommodating more permissive constraints.
We also consider circumstances where an additional con-
straint is intended to be more permissive and allow for more
solutions. Obviously, inserting an additional constraint inside
a network P to form a new network P ′ cannot enlarge the
set of possible solutions from P that will take part in the
solutions to P ′. In the above resource allocation problem,
this coincided with relaxing some resource availability.
When it is easy to locate the constraints or domain variables
that forbid the additional solutions, the problem is straight-
forward. However, it happens that this relaxation of the
problem specifications is to be performed among dispersed
constraints and variable domains in interaction that are not
easy to pinpoint. Let us illustrate the issue through a simpler
example from another CSP application domain. Consider
a complex constraint network P in the legal domain that
models, among other things, under which circumstances
some specific parental benefits can be claimed. For this issue,
it delivers as solutions all situations where the applicant is the
parent of at least 3 children. This constraint is not necessarily
explicit in P but can result from the interaction of several
other ones. Now assume that the legislation changes and that
a more permissive rule is adopted allowing these benefits to
be claimed by parents of at least two children. If this new
constraint is merely inserted as an additional one within P
then it will be preempted by the constraints requiring at least
three children. Being the parent of two children would still
not allow the aforementioned benefits. Indeed, since solving
P ′ will try to satisfy all constraints together, the additional
solution translated by the new more permissive rule will
be subsumed in the process by the more restrictive ones:
having at least two children is satisfied whenever having at
least three children is satisfied. More generally, whenever
a new constraint c is intended to enlarge a set of solutions
of a given constraint network, it cannot be merely inserted
within the network. A form of network relaxation should
take place instead. Locating constraints and domain variables
to be relaxed is not always a straightforward issue: specific
methods and tools are required to that end. Investigating this
second issue is another goal of the paper.

Combining both issues.
In the resource allocation problem, we can also be faced with
situations were both problems are intertwined and in mutual
influence. Especially, we can be asked to enforce all addi-
tional solutions encoded by a new constraint that are more
permissive than the current network. Locating where this re-
laxation can be done in the network is not always straight-
forward. At the same time, the process can be required to
have a limited impact on the current model of the problem.
Especially, this can occur when the model is a large-scale in-
complete one and when we do not want to lose any of all its

current possible solutions. More precisely, we might not want
the new constraint to impact solutions outside some variables
(in particular, variables not mentioned in the additional con-
straint). A similar issue can be raised in the legal domain
example. As the CSP can only be a rough and incomplete
approximation of the existing huge set of fiscal rules, the re-
laxation process (e.g., about the parental benefits) can then
required to be local in the sense that it has to be circumscribed
to a given set variables and have no impact on solution values
for other variables about other fiscal issues implemented in
the system.

In the paper, we investigate the three issues successively
and propose several methods and algorithms. Experimental
results for the last two issues are also provided. As CSP
emerge as a technology in the real-word for large-scale ap-
plications, we believe that these problems that concern the
transformation of constraint networks in order to take evolv-
ing specifications into account can only become of increasing
interest.

2 Constraint Networks and MUCs
Definition 1 (Constraint network) A constraint network P
is a pair 〈X , C〉 where
(1) X = {x1, . . . , xn} is a finite set of variables s.t. any
variable xi is given a finite domain written dom(xi)
(2) C = {c1, . . . , cm} is a finite set of constraints s.t. every
ci ∈ C is defined by a pair (var(ci), rel(ci)) where
• var(ci) is the set of variables {xi1 , . . . , xini

} ⊆ X oc-
curring in ci,
• rel(ci) is a subset of the cartesian product∏ni

j=1 dom(xij) of the domains of the variables of
var(ci) representing the tuples of values allowed for ci
(i.e., satisfying ci).

Without loss of generality, we will often interpret sets of
variables or constraints as tuples of variables or constraints.
Note that rel(ci) is sometimes given in intentional form.
Also, for(ci) represents the set of forbidden tuples by ci,
which is defined by rel(ci) ∪ for(ci) =

∏ni

j=1 dom(xij).

Definition 2 (Instantiation of a constraint network) Let
P = 〈X , C〉 be a constraint network. An instantiation A of
P assigns to each variable xi of X a value from dom(xi). A
partial instantiationA of P w.r.t. a set Y of variables assigns
to each variable yi of Y a value from dom(yi).

Y ⊆ X is not required: we allow a partial instantiation to
instantiate variables not occurring in the network. The tuple
of values assigned by A to the variables of Y (resp. to the
variables occurring in c) is noted A(Y) (resp. A(c)).

Definition 3 (Solution to a constraint network) A solution
A to a constraint network P = 〈X , C〉 is an instantiation A
of P such that for all c in C we have A(c) belongs to rel(c).
We say thatA satisfies P and thatA is a model of P . When P
possesses at least one model, P is said satisfiable. Otherwise
P is said unsatisfiable.

Unless explicitly indicated, the constraint network P in
which a new constraint c need be inserted is assumed satis-
fiable. However, so-called MUCs and MSSes concepts that

are related to unsatisfiable networks are of importance here.
Any unsatisfiable constraint network P = 〈X , C〉 involves at
least one MUC (Minimal Unsatisfiable Core), in short core.
A MUC is a subset of constraints of C that, at the same time,
is unsatisfiable and that is such that every one of its strict
subsets is satisfiable. In a dual way, a Maximal Satisfiable
Sub-network (MSS) of P = 〈X , C〉 is defined as any satisfi-
able P ′ = (X ′, C′) where X ′ (resp. C′) is a subset of X (resp.
C) and such that for all c in C \ C′, 〈X ′ ∪ var(c), C′ ∪ {c}〉
is unsatisfiable. Checking whether a constraint belongs to a
MUC or not belongs to ΣP

2 [Eiter and Gottlob, 1992]. In
the worst case, the number of MUCs can be exponential in
the number m of constraints (it is in O(C

m/2
m)). Despite

bad worst-case complexity results, in many real-life situa-
tions, the number of MUCs can remain of a manageable
size and both MUCs and MSSes can be computed in real-
istic time (see for example results in [Grégoire et al., 2007;
2008]). One specific well-studied problem about MSS is
called WCSP (as Weighted CSP) which consists in deliv-
ering one MSS of a constraint network obeying a priority
scale between constraints. Each constraint is given a nu-
merical value and constraints with the higher values are pre-
ferred candidates for belonging to the resulting MSS. More
on MUC and MSS can be found in e.g., [Bakker et al., 1993;
Han and Lee, 1999; Jussien and Barichard, 2000; Junker,
2001; Petit et al., 2003; Junker, 2004; Hémery et al., 2006;
Grégoire et al., 2008; Marques-Silva and Lynce, 2011; Belov
and Marques-Silva, 2011; Janota and Marques-Silva, 2011;
Belov and Marques-Silva, 2012].

3 Preserving Partial Solutions
Let us go back to the first issue raised in the introduction,
where some given partial solutions to a network P are to be
preserved while a new constraint c is to be added. First, let us
define a concept of partial solution to a constraint network.
Definition 4 (Partial solution to a constraint network) A
partial solution A to a constraint network P = 〈X , C〉 w.r.t.
a set of variables X ′ is a partial instantiation of P w.r.t. X ′

such that A can be extended into a model of P .
Let X be a set of variables. Consider a set S(P,X) of par-

tial solutions A to P with respect to X and assume that these
partial solutions must be preserved. In the example, the val-
ues assigned to variables of X express some possible alloca-
tions of resources to the most important tasks so that a global
solution involving all tasks could be reached. P should be
transformed into a network P ′ such that (1) any solution to
P ′ satisfies c, (2) any solution to P ′ extends at least one solu-
tion to P , and (3) any element of S(P,X) can be extended into
a solution to P ′.

Obviously, when c is incompatible with P = 〈X , C〉 in
the sense that 〈X ∪ var(c), C ∪ {c}〉 possesses no solution,
the above transformation problem exhibits no solution: in the
example, the new task cannot be accommodated together with
the other ones. Note that even when 〈X ∪ var(c), C ∪ {c}〉
possesses solutions, it might not be possible to handle c in
the above way: in the example, this coincides with situations
where the new task can only be accommodated in a way that
narrows the space of solutions for the most important tasks.

Algorithm 1: Insert-and-Preserve
input: P = 〈X , C〉: a constraint network ;

c: the additional constraint ;
S(P,X): a set of partial solutions of P
to preserve ;

output: 〈X ′, C′〉: a constraint network where S(P,X) is
preserved and c inserted ;

C′ ← C ∪ {c} ; X ′ ← X ∪ var(c) ;1
foreach A ∈ S(P,X) do2

Let cA be the constraint s.t. var(cA) = var(A) and3
rel(cA) = A ;
while (X ′, C′ ∪ {cA}) is unsat do4
〈X ′, C′′〉 ← MUC(X ′, C′ ∪ {cA}) ;5
if ∃c′′ ∈ C′′ s.t. c′′ 6= cA and c′′ 6= c then6
C′ ← C′ \ {c′′} ;7

else return 〈∅, ∅〉 ;8

return 〈X ′, C′〉;9

To some extent, partial solutions appear as a form of in-
tegrity constraints that must be taken into account when a
constraint network is enriched by some additional constraints.
They express sets of values for some given variables leading
to solutions that must be kept when the network evolves. In
the general case, there is no direct way to implement them
as a new constraint in the network so that the structure of the
network is preserved as much as possible. For example, a
constraint made of the disjunction of the partial solutions to
preserve would not ensure that any of its disjuncts remains a
partial solution.

Insert-and-Preserve is a direct algorithm to preserve a set
S(P,X) of partial solutions A while inserting c within P .
First, c is inserted within P to yield P ′ = 〈X ′ = X ∪
var(c), C′ = C ∪ {c}〉. If P ′ is unsatisfiable then no solu-
tion exists. Otherwise, each partial solution A from S(P,X)

is considered successively and rewritten as a constraint cA.
While 〈X ′, C ′∪{cA}〉 is unsatisfiable, one MUC is extracted
and some of its constraints (different from both c and cA) is
expelled from P ′. When a MUC just made of both c andA is
found then no solution exists. In parallel to the possible high
cost of computing enough MUCs to restore satisfiability, one
major factor influencing the time-efficiency of the algorithm
clearly depends on the number of partial solutions to be pre-
served. Note that a dual algorithm based on MSSes can be
proposed, too.

4 Handling more Permissive Constraints
A formal definition of more permissive constraints is:

Definition 5 (More permissive constraint) Let P be a con-
straint network. A constraint c is more permissive than P iff
(1) there exists a partial instantiation of P that satisfies c and
cannot be extended into a model of P , and (2) every model of
P satisfies c.

In the parental benefits issue, a more permissive constraint
need to prevail in the network. Formally:

Definition 6 (Prevailing constraint) A constraint c prevails
in a constraint network P = 〈X , C〉 iff any partial instanti-
ation of P with respect to var(c) that satisfies c can be ex-
tended into a model of P .

Thus, relaxing P by a more permissive constraint c must lead
to a network P ′ such that any solution to c has been extended
into a solution to P ′.

Definition 7 (Relaxed constraint network) A network
P ′ = 〈X ′, C′〉 is a relaxed network of P = 〈X , C〉 by c iff
any solution to c can be extended into a solution to P ′.

Note that requiring all solutions of c to be solutions of P ′ can
lead to the existence of additional solutions related to vari-
ables outside the scope of c through a domino effect about re-
laxation within P . Hence, P ′ can exhibit new solutions about
variables not occurring in c in addition to those provided by
P . For a similar reason, we cannot require in the general case
that any solution of P is a solution of P ′.

Several constraints in P can prevent solutions to c from
prevailing in P . A first approach provides the user will a full-
fledged explanation of the reasons for this, under the form of
the minimal sets of constraints that cause the problem. It is
based on MUC-finding algorithms. The idea is as follows.

Whenever a single element of rel(c) is introduced as a new
constraint in P and when this leads P ′ to be unsatisfiable,
this means that P does not authorize rel(c). Accordingly, we
compute and exhibit MUCs in P ′. A least one constraint per
MUC is expelled (or relaxed) from P . This is iterated until
P ′ becomes satisfiable. The whole process is then iterated
for all elements of rel(c). Thereafter, c is just safely added
since we are sure that all its solutions can be now accommo-
dated. When we know which elements of rel(c) cannot be
extended into solutions to P , it is sufficient for the procedure
to consider these elements, only.

Accordingly, any detected MUC provides a minimal set
of constraints preventing an additional solution given by c
from prevailing in P . The algorithm Relax-MUC describes
the skeleton of an iterative approach finding out and “break-
ing” in an automatic way MUCs iteratively, until no MUC
remains. Note that the depicted algorithm does not return the
set of detected MUCs but expels one constraint per MUC and
simply delivers the final resulting relaxed constraint network.

A dual algorithm relying on the computation of MSSes was
also experimented. However, it often proved less efficient
than Relax-MUC, since search does not stop when a falsified
constraint is found but only when a given number of falsified
constraints is reached.

5 Combining both Situations
We consider now situations where more permissive con-
straints must be introduced in P , while some previous partial
solutions must be preserved at the same time. Relax-MUC
does this job: it enlarges the set of solutions of P and thus
preserves all of them, including thus all partial ones.

By expelling constraints Relax-MUC can enlarge the sets
of partial solutions related to the variables occurring in the
additional constraint c. Note that it can also enlarge sets of
partial solutions related to variables not occurring in c. In

Algorithm 2: Relax-MUC
input: P = 〈X , C〉: a constraint network ;

c: the additional constraint ;
output: 〈X ′, C′〉: a relaxed network of P by c ;

C′ ← C ; X ′ ← X ∪ var(c) ;1

foreach ~t ∈ rel(c) do2

Let ct s.t. rel(ct) = {~t} and var(ct) = var(c) ;3
while 〈X ′, C′ ∪ {ct}〉 is unsat do4
〈X ′, C′′〉 ← MUC(X ′, C′ ∪ {Ct});5
select one constraint c′′ in C′′ s.t. c′′ 6= ct ;6
C′ ← C′ \ {c′′} ;7

C′ ← C′ ∪ {c} ;8
return 〈X ′, C′〉 ;9

some situations this is acceptable, provided that the user is
given the full explanation of this phenomenon. In the resource
allocation problem, the manager might need to approve the
choice of constraints that are to be expelled or amended to
enforce all partial solutions of c. She has to be made aware
that by relaxing P in this way, the problem is transformed
into a new one that possibly could give rise to new solutions
about variables outside var(c).

In other situations, the user might require the more permis-
sive constraint c to have a more limited impact on P: specif-
ically, it must not enlarge the sets of partial solutions that are
not directly related to variables occurring in c. Let us go back
to the parental benefits issue. As explained in the introduc-
tion, P there translates complex fiscal rules. Enforcing a new
legal rule relaxing the conditions allowing for the parental
benefits could also have an impact on other variables of P ,
linked to other fiscal issues. However, it might be the case
that the new rule has been envisioned as having no impact
on any other fiscal issue. In these circumstances, it is not
acceptable to allow the possibility of enlarging sets of par-
tial solutions (e.g., increase other possible benefits) outside
the relaxed rule. In other words, in some situations, we only
want to extend the range of partial solutions for some given
variables. Specifically, in the example, these partial solutions
must only concern the values for the variable expressing the
number of children and the variable expressing whether or not
the person is entitled to get the parental benefits. On the con-
trary, we do not want any other aspects of P to be changed.
In technical words, this amounts to enforce a more permis-
sive constraint c, while safely keeping the set of all partial
solutions to variables not occurring in c and not enlarging it.

Relax-and-Preserve performs that task. For each variable
xi occurring in var(c), all its occurrences in P are renamed
by a new additional variable yi (l. 1-7). The idea is then
to enforce all partial solutions related to the variables xi’s
of var(c) through an additional constraint cnew (l. 8). cnew
also ensures adequate connections between values of xi’s and
yi’s. Whenever a partial solution (i.e., a tuple of rel(c)) can
be extended into a solution of P , xi’s and yi’s are pairwise
assigned identically using this partial solution, and the result-
ing tuple is added within rel(cnew) (l. 10-12). Whenever the
partial solution cannot be extended into a solution to P , a se-

ries of correspondences are created between the tuple of val-
ues for the variables xi’s that forms the partial solution, and
all the tuples of solution values for the variables yi’s in P .
The resulting tuples of values for (x1, . . . , xm, y1, . . . , ym)
are added as new tuples within rel(cnew) (l. 13-15). Note
that although the algorithm is depicted as manipulating tu-
ples, cnew can be recorded and inserted in intentional form
within C′ (l.16). Accordingly, the additional partial solutions
introduced by c do not alter the behavior of the network with
respect to any variable occurring in P , except those occurring
in c. Let us give an example.

Example 1 Let P = 〈X , C〉 a constraint network such
that X = {x1, x2, x3} with dom(x1) = dom(x2) =
dom(x3) = {1, 2} and C = {(x1 = x2), (x1 =
x3), (x2 = x3)} and a more permissive constraint c =
(x1 ≤ x2). The transformed network is P ′ = 〈X ′, C′〉
where X = {x1, x2, x3, y1, y2}, dom(y1) = dom(y2) =
{1, 2} and C = {(y1 = y2), (y1 = x3), (y2 = x3), cnew}
with var(cnew) = {x1, x2, y1, y2} and rel(cnew) =
{(1, 1, 1, 1), (2, 2, 2, 2), (1, 2, 1, 1), (1, 2, 2, 2)}.

Algorithm 3: Relax-and-Preserve
input: P = 〈X , C〉 a constraint network ;

a constraint c with var(c) = {x1, . . . , xm} ;
output: P ′ = 〈X ′, C′〉 a constraint network s.t. the

partial solutions to P w.r.t. X \ var(c) are
preserved and P ′ extends any solution of c ;

X ′ ← X ∪ {y1, . . . , ym} where dom(yi) = dom(xi);1
C′ ← ∅;2
foreach cj ∈ C do3

if var(cj) ∩ {x1, . . . , xm} = ∅ then4
C′ ← C′ ∪ {cj};5

else6
C′ ← C′ ∪ {c′j} where c′j is obtained from cj by7
replacing every occurrence of the variable xi by
yi for all xi in var(cj) ∩ {x1, . . . , xm};

Let cnew s.t. var(cnew) = {x1, . . . , xm, y1, . . . , ym} ;8
rel(cnew)← ∅;9

foreach ~t ∈ rel(c) do10

if ~t can be extended into a model of P then11

rel(cnew)← rel(cnew) ∪ {(~t,~t)};12
else13

foreach ~t1 ∈ S(P,X) do14

rel(cnew)← rel(cnew) ∪ {(~t,~t1)};15

C′ ← C′ ∪ {cnew};16
return P ′ ← 〈X ′, C′〉 ;17

Interestingly, the concept of partial solution allows forms
of subsumption and equivalence modulo a set of variables
between networks to be defined.

Definition 8 (Subsumption between constraint networks)
Let P ′ = 〈X ′, C′〉, P” = 〈X”, C”〉 and X a set of variables.
P ′ subsumes P” modulo X (noted P ′ |=X P”) iff for all

Algorithm 4: Relax-and-Preserve-Naive
input: P = 〈X , C〉: a constraint network, c a constraint

output: 〈X ′, C′〉: a constraint network s.t. the partial
solutions to P w.r.t. X \ var(c) are preserved
and c inserted

S ← AllSolutions (P) ;1
Let S(P,X) be the set of partial solutions obtained from2

S w.r.t. X \ var(c) ;
Let cS(P,X)

be the constraint s.t.3

var(cS(P,X)
) = var(S(P,X)) and

rel(cS(P,X)
) = {A|A ∈ S(P,X)} ;

C′ ← {cS(P,X)
, c} ; X ′ ← X ∪ var(c) ;4

return 〈X ′, C′〉;5

models A1 of P ′ there exists a model A2 of P” such that
A1(X ∩ X ′ ∩ X”) ⊆ A2(X ∩ X”).

Definition 9 (Equivalence between constraint networks)
Let P ′ = 〈X ′, C′〉, P” = 〈X”, C”〉 and X a set of variables.
P ′ is equivalent to P” modulo X (noted P ′ ≡X P”) iff
P ′ |=X P” and P” |=X P ′.

Accordingly, we have that:

Property 1 When Relax-and-Preserve is run on P = 〈X , C〉
with c being the more permissive constraint to enforce, it
delivers P ′ = 〈X ′, C′〉 s.t. P ′ ≡(X∩X ′)\var(c) P and
〈var(c), {c}〉 ≡var(c) P ′.

We also provide a naive algorithm Relax-and-Preserve-
Naive that computes solutions in extension and delivers them
as forming P ′. As explained earlier, it does not meet our goal
since a set of tuples is delivered and the structure of the prob-
lem under the form of constraints is lost for further explana-
tions or possible evolutions of the network. Besides, it proved
intractable on many instances, as it requires all complete so-
lutions of P to be computed. Note that in its depicted form,
Relax-and-Preserve creates a constraint in extension within
P ′: however, this is a local phenomenon within P ′ and it can
be rewritten in intention.

6 Experimental Computational Results
All results below have been obtained on a Quad-core In-
tel XEON X5550 32Gb. Relax-MUC, Relax-and-Preserve
and Relax-and-Preserve-Naive are available from http://www.

cril.univ-artois.fr/publications/relax.zip together will the
experimental data. They have been run on 986 instances taken
from the satisfiable benchmarks of the CSP competitions
repository http://cpai.ucc.ie/08/ and http://cpai.ucc.ie/

09/. In Table 1, a sample of typical results is provided. Time-
out (“TO”) was set to 30 mins. The full table is also available
from http://www.cril.univ-artois.fr/publications/fulltab.

pdf. Although Relax-MUC has a slightly different general
scope, we compared the three algorithms on the same in-
stances. Columns of Table 1 provide the name of the in-
stances P and their numbers of constraints and variables, suc-
cessively. Then, it lists the number of variables and tuples
of the additional constraint c. c was generated as follows:

Instance constraint c Relax-MUC Relax-and-Preserve Relax-and-Preserve-Naive
name #C #X #var(c) #rel(c) time (secs.) #rm time (secs.) #var(cnew) #rel(cnew) time (secs.)
aim-200-2-0-sat-2-ext 382 200 4 4 104.74 2 0.97 8 4 3.86
air04 1646 8904 3 8 483.51 0 487.9 6 8 TO
bdd-21-133-18-78-9-ext 133 21 4 5 TO — 30.09 8 8 12.82
bf-0432-007-ext 1943 970 4 10 8.01 3 0.07 8 24 TO
bmc-ibm-02-08 14493 2810 4 1028 712.09 10 25.01 8 7154 TO
bqwh-15-106-53-ext 596 106 3 14 29.74 2 0.72 6 56 2.25
bqwh-15-106-82-ext 600 106 3 35 TO — 2.35 6 243 11.83
circ-4-3 764 144 4 13 TO — 0.23 8 24 5.77
composed-25-10-20-6-ext 620 105 4 5630 40.97 10 40.45 8 6726920 TO
crossword-m1c-lex-vg4-7-ext 11 28 3 4459 7.1 4 56.61 6 380451 23.21
crossword-m1-lex-15-02 944 191 2 187 488.01 6 71.63 4 4075 TO
david-11 406 87 3 1331 2.32 0 2.07 6 1331 TO
domino-800-100 800 800 2 2504 32.53 1 28.11 4 194000 1.15
driverlogw-05c-sat-ext 6173 351 3 21 TO — 0.67 6 120 TO
e0ddr2-10-by-5-6 265 50 2 15654 62.95 2 151.37 4 1168500 TO
fapp01-0200-8 2053 200 2 5019 TO — TO — — TO
frb30-15-1-ext 284 30 2 57 TO — 1.2 4 112 1.89
games120-9 638 120 4 6014 18.1 1 19.04 8 1067256 TO
geo50-20-d4-75-47-ext 383 50 4 159481 TO — 376.31 8 37264032 TO
geo50-20-d4-75-88-ext 354 50 4 158878 TO — 598.69 8 135424854 TO
graceful–K4-P2 164 24 2 198 107.89 6 17.4 4 5208 72.96
graph2-f24 2245 400 3 1555 39.46 1 25.38 6 586240 TO
hanoi-3-ext 5 6 2 14 0 2 0 4 14 0.34
ii-32e1 1408 444 4 13 3.78 1 12.63 8 24 TO
jean-10 254 80 4 10000 9.27 0 8.87 8 10000 TO
jnh210-ext 799 100 4 5 90.85 1 0.12 8 8 188.30
jnh213-ext 797 100 4 7 1782.02 4 0.04 8 16 3.10
langford-2-8 128 16 3 1084 0.82 5 0.71 6 80400 1.07
lard-88-88 3828 88 2 7854 648.9 85 117.41 4 15422176 TO
mknap-1-0 11 6 4 4 0 7 0 8 4 0.35
mps-p0033 15 33 4 13 0.62 1 0.15 8 24 3.83
mps-p0033 15 33 4 13 0.62 1 0.15 8 24 3.83
myciel5-6 236 47 4 1134 0.63 1 0.71 8 59400 TO
os-taillard-4-100-6 48 16 2 6289 10.57 4 8.95 4 447696 436.64
par-16-1-c 1581 634 3 2 TO — 4.78 6 2 55.39
primes-10-80-2-7 80 100 2 196 TO — 27.57 4 196 1.37
qcp-10-67-5-ext 822 100 2 1 0 0 0.01 4 1 TO
queens-5-5-5-ext 160 25 4 261 29.02 34 0.13 8 17080 0.91
qwh-15-106-4-ext 607 106 4 22 TO — 0.19 8 60 2.54
qwh-15-106-4-ext 2324 225 4 63 29.97 7 3.25 8 495 3.90
radar-30-70-4.5-0.95-98 12471 10990 4 16 136.59 0 110.08 8 16 TO
radar-8-30-3-0-32 64 180 4 199 67.51 2 29.56 8 3600 TO
ramsey-25-4 2300 300 3 64 1.84 0 1.73 6 64 TO
rand-2-40-16-250-350-36-ext 250 40 3 2907 1156.32 3 736.78 6 1825747 17.51
rand-2-30-15-306-230-23-ext 221 30 2 57 1412.45 12 0.76 4 57 3.23
renault-mod-36-ext 154 111 3 12 2.37 2 0.82 6 40 TO
route 24492 72 2 51 TO — 254.35 4 420 TO
ruler-34-8-a4 350 8 2 307 1741.85 17 6.46 4 612 9.13
s3-3-3-4 616 228 3 3 TO — 43.45 6 4 107.92
scen2-f24 1235 200 3 7084 43.17 1 43.07 6 134254 TO
scen5 2598 400 2 326 TO — 20.36 4 972 TO
series-9 72 17 4 1063 1.14 14 0.56 8 53583 2.54
ssa-7552-158-ext 1985 1363 3 3 56.42 1 0.04 6 4 TO
super-jobShop-enddr1-10 845 100 2 6904 123.17 3 401.68 4 7889700 TO
tsp-20-2-ext 230 61 2 5010 113.07 3 36.67 4 35028 3.23
will199GPIA-7 7065 701 4 2401 205.43 0 196.62 8 2401 TO

Table 1: Relax-MUC, Relax-and-Preserve, Relax-and-Preserve-Naive results

var(c) was randomly selected as a subset of the variables
X from P . The cardinality of this subset ranged from 2 to
4. rel(c) contained all tuples from the cartesian product of
the domain of the variables of var(c) that can be extended
into solutions of P , together with an additionally 25% of tu-
ples selected randomly amongst the tuples from that cartesian
product that cannot be extended into solutions of P . When
less than 4 tuples from the cartesian product were already
satisfied, no new tuple was added and Relax-MUC did not
remove any constraint (an interesting conclusion could how-
ever be drawn about the benchmark when all tuples in the
cartesian product were satisfied: no variable in any pair of
concerned variables does restrict the range of solutions for the
other one). Finally, the computing time to deliver P is listed
for each method, as well as the number of constraints dropped
(#rm) by Relax-MUC and the number of variables and tu-
ples of cnew introduced by Relax-and-Preserve. Again, let
us stress that the algorithms address different problems and
the computational results are just intended to illustrate the
actual viability of the approaches. Not surprisingly, Relax-
and-Preserve-Naive appears often intractable from a practi-

cal point of view. Relax-and-Preserve is more efficient than
Relax-MUC for most instances. In this respect, let us stress
that Relax-MUC has been built in a way that it should be
used in a step-by-step and interactive mode, giving the user
the full-fledged knowledge and freedom of decision about the
choice of constraints that will be dropped or weakened.

Conclusion
In the CSP-related literature, relaxation is a transforma-
tion paradigm to recover satisfiability for unsatisfiable net-
works [Jussien and Boizumault, 1996; Georget et al., 1999;
Amilhastre et al., 2002; Nordlander et al., 2003]. To the best
of our knowledge, relaxation and preserving partial solutions
have not been studied so far in the context of evolving sat-
isfiable networks. This contribution is an attempt to fill this
gap. More generally, we believe that the dynamics of con-
straint networks is an issue of importance that needs further
practical and theoretical studies. As a promising perspective,
we also believe that many concepts introduced in this paper
could be reused for addressing the problem of merging con-
straint networks.

References
[Amilhastre et al., 2002] Jérôme Amilhastre, Hélène

Fargier, and Pierre Marquis. Consistency restoration
and explanations in dynamic CSPs—application to
configuration. Artificial Intelligence, 135(1-2):199–234,
2002.

[Bakker et al., 1993] René R. Bakker, F. Dikker, Frank Tem-
pelman, and Petronella Maria Wognum. Diagnosing and
solving over-determined constraint satisfaction problems.
In Proceedings of the 13th International Joint Confer-
ence on Artificial Intelligence (IJCAI’93), volume 1, pages
276–281, 1993.

[Beldiceanu et al., 2012] Nicolas Beldiceanu, Narendra
Jussien, and Eric Pinson, editors. Proceedings of the Ninth
International Conference on Integration of AI and OR
Techniques in Constraint Programming for Combinatorial
Optimization Problems (CPAIOR 2012), volume 7298 of
Lecture Notes in Computer Science. Springer, 2012.

[Belov and Marques-Silva, 2011] Anton Belov and João
Marques-Silva. Accelerating MUS extraction with recur-
sive model rotation. In Per Bjesse and Anna Slobodová,
editors, Proceedings of the International Conference on
Formal Methods in Computer-Aided Design, FMCAD ’11,
Austin, TX, USA, pages 37–40, 2011.

[Belov and Marques-Silva, 2012] Anton Belov and João
Marques-Silva. MUSer2: An efficient MUS extractor.
JSAT, 8(1/2):123–128, 2012.

[Eiter and Gottlob, 1992] Thomas Eiter and Georg Gottlob.
On the complexity of propositional knowledge base revi-
sion, updates, and counterfactuals. Artificial Intelligence,
57(2-3):227–270, 1992.

[Georget et al., 1999] Yan Georget, Philippe Codognet, and
Francesca Rossi. Constraint retraction in CLP(FD): For-
mal framework and performance results. Constraints,
4(1):5–42, 1999.

[Grégoire et al., 2007] Éric Grégoire, Bertrand Mazure, and
Cédric Piette. MUST: Provide a finer-grained explanation
of unsatisfiability. In Christian Bessière, editor, Proceed-
ings of the 13th International Conference on Principles
and Practice of Constraint Programming (CP’07), pages
317–331. Springer, 2007.

[Grégoire et al., 2008] Éric Grégoire, Bertrand Mazure, and
Cédric Piette. On finding minimally unsatisfiable cores
of CSPs. International Journal on Artificial Intelligence
Tools (IJAIT), 17(4):745 – 763, 2008.

[Han and Lee, 1999] Benjamin Han and Shie-Jue Lee. De-
riving minimal conflict sets by CS-Trees with mark set in
diagnosis from first principles. IEEE Transactions on Sys-
tems, Man, and Cybernetics, 29(2):281–286, 1999.

[Hémery et al., 2006] Fred Hémery, Chirstophe Lecoutre,
Lakhdar Saı̈s, and Frédéric Boussemart. Extracting MUCs
from constraint networks. In Proceedings of the 17th Eu-
ropean Conference on Artificial Intelligence (ECAI’06),
pages 113–117, 2006.

[Janota and Marques-Silva, 2011] Mikolás Janota and João
Marques-Silva. cmMUS: A tool for circumscription-based
MUS membership testing. In James P. Delgrande and
Wolfgang Faber, editors, Proceedings of Logic Program-
ming and Nonmonotonic Reasoning - 11th International
Conference, LPNMR 2011, Vancouver, Canada, volume
6645 of Lecture Notes in Computer Science, pages 266–
271. Springer, 2011.

[Junker, 2001] Ulrich Junker. QuickXplain: Conflict detec-
tion for arbitrary constraint propagation algorithms. In
IJCAI’01 Workshop on Modelling and Solving problems
with constraints (CONS-1), 2001.

[Junker, 2004] Ulrich Junker. QuickXplain: Preferred expla-
nations and relaxations for over-constrained problems. In
Proceedings of the 19th National Conference on Artificial
Intelligence (AAAI’04), pages 167–172, 2004.

[Jussien and Barichard, 2000] Narendra Jussien and Vincent
Barichard. The PaLM system: explanation-based con-
straint programming. In Proceedings of TRICS: Tech-
niques foR Implementing Constraint programming Sys-
tems, a post-conference workshop of CP’00, pages 118–
133, 2000.

[Jussien and Boizumault, 1996] Narendra Jussien and
Patrice Boizumault. Maintien de déduction pour la
relaxation de contraintes. In Jean-Louis Imbert, editor,
Actes des Cinquièmes Journées Francophones de Pro-
grammation Logique et Programmation par Contraintes
(JFPLC’96), pages 239–254. Hermes, 1996.

[Marques-Silva and Lynce, 2011] João P. Marques-Silva and
Inês Lynce. On improving mus extraction algorithms. In
Karem A. Sakallah and Laurent Simon, editors, Proceed-
ings of Theory and Applications of Satisfiability Testing -
14th International Conference, SAT 2011, Ann Arbor, MI,
USA, volume 6695 of Lecture Notes in Computer Science,
pages 159–173. Springer, 2011.

[Milano, 2012] Michela Milano, editor. Proceedings of the
18th International Conference on Principles and Practice
of Constraint Programming (CP’2012), volume 7514 of
Lecture Notes in Computer Science. Springer, 2012.

[Nordlander et al., 2003] Tomas Nordlander, Ken Brown,
and Derek Sleeman. Constraint relaxation techniques to
aid the reuse of knowledge bases and problem solvers. In
Proceedings of the Twenty-third SGAI International Con-
ference on Innovative Techniques and Applications of Ar-
tificial Intelligence, pages 323–335, 2003.

[Pesant, 2012] Gilles Pesant, editor. Constraints (Journal),
volume 17. Springer, 2012.

[Petit et al., 2003] Thierry Petit, Christian Bessière, and
Jean-Charles Régin. A general conflict-set based frame-
work for partial constraint satisfaction. In Proceedings of
SOFT’03: Workshop on Soft Constraints held with CP’03,
2003.

[Rossi et al., 2006] Francesca Rossi, Peter van Beek, and
Toby Walsh, editors. Handbook of Constraint Program-
ming. Elsevier, 2006.

