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THE SYMMETRIC INVARIANTS OF THE CENTRALIZERS AND FINITE W-ALGEBRAS

JEAN-YVES CHARBONNEL AND ANNE MOREAU

ABsTRACT. Let g be a finite-dimensional simple Lie algebra of rank £ over an algebraically closed field k of
characteristic zero, and let e be a nilpotent element of g. Denote by g° the centralizer of e in g and by S(g°)
the algebra of symmetric invariants of g°. We say that e is good if the nullvariety of some £ homogeneous
elements of S(g°)* in (g°)* has codimension £. If e is good then S(g¢)*" is polynomial. The main result of this
paper stipulates that if for some homogeneous generators of S(g)?, the initial homogeneous component of their
restrictions to e + ¢/ are algebraically independent, with (e, &, f) an sl,-triple of g, then e is good. The proof
is strongly based on the theory of finite W-algebras. As applications, we pursue the investigations of [PPY07]
and we produce (new) examples of nilpotent elements that verify the above polynomiality condition in simple
Lie algebras of both classical and exceptional types. We also give a counter-example in type D;.
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1.1. Let g be a finite-dimensional simple Lie algebra of rank £ over an algebraically closed field k of
characteristic zero, let (., .) be the Killing form of g and let G be the adjoint group of g. If a is a subalgebra
of g, we denote by S(a) the symmetric algebra of a. Let x € g and denote by g* and G* the centralizer of
xin g and G respectively. Then Lie(G*) = Lie(G)) = ¢* where Gj denotes the identity component of G*.

Moreover, S(¢%) is a g*-module and S(g*)® = S(¢*)%. An interesting question, first raised by A. Premet, is

the following:

Question 1. Is the algebra S(g%)% polynomial algebra in € variables?

In order to answer this question, thanks to the Jordan decomposition, one can assume that x is nilpotent.
Besides, if S(g*)%" is polynomial for some x € g, then it is so for any element in the adjoint orbit G(x) of
x. If x = 0, it is well-known since Chevalley that S(g")% = S(g) is polynomial in £ variables. At the
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opposite extreme, if x is a regular nilpotent element of g, then g* is abelian of dimension £, [DV69], and
S(g%)%" = S(g") is polynomial in £ variables too.

For the introduction, let us say most simply that x € g verifies the polynomiality condition if S(g¥)% is a
polynomial algebra in € variables.

A positive answer to Question 1 was suggested in [PPY07, Conjecture 0.1] for any simple g and any
x € g. O. Yakimova has since discovered a counter-example in type Eg, [Y07], disconfirming the conjecture.
More precisely, the elements of the minimal nilpotent orbit in Eg do not verify the polynomiality condition.
The present paper contains another counter-example in type D7 (cf. Example 7.8). In particular, one cannot
expect a positive answer to [PPY (07, Conjecture 0.1] for the simple Lie algebras of classical type. Question 1
still remains interesting and is positive for a large number of nilpotent elements e € g as it is explained below.

1.2.  We briefly review in this paragraph what has been achieved so far about Question 1. Recall that the
index of a finite-dimensional Lie algebra q, denoted by ind g, is the minimal dimension of the stabilizers of
linear forms on q for the coadjoint representation, (cf. [Di74]):

ind q := min{dim ¢f ; £ €q"} where o ={xeq; &([x,q]) = 0}.

By [R63], if q is algebraic, i.e., q is the Lie algebra of some algebraic linear group Q, then the index of ¢ is
the transcendental degree of the fraction field of Q-invariant rational functions on q*. The following result
will be important for our purpose.

Theorem 1 ([CM10, Theorem 1.2]). The index of o* equals € for any x € q.

Theorem 1 was first conjectured by Elashvili in the 90" motivated by a result of Bolsinov, [B91, Theorem
2.1]. It was proven by O. Yakimova when g is a simple Lie algebra of classical type, [ Y06], and checked by
a computer programme by W. de Graaf when g is a simple Lie algebra of exceptional type, [DeGOS8]. Before
that, the result was established for some particular classes of nilpotent elements by D.Panyushev, [Pa03].

Theorem 1 is deeply related to Question 1. Indeed, thanks to Theorem 1, [PPY07, Theorem 0.3] applies
and by [PPYO07, Theorems 4.2 and 4.4], if g is simple of type A or C, then all nilpotent elements of g
verify the polynomiality condition. The result for the type A was independently obtained by Brundan and
Kleshchev, [BK06]. In [PPY07], the authors also provide some examples of nilpotent elements satisfying
the polynomiality condition in the simple Lie algebras of types B and D, and a few ones in the simple
exceptional Lie algebras.

More recently, the analogue question to Question 1 for the positive characteristic was dealt with by L.
Topley for the simple Lie algebras of types A and C, [T12].

1.3. The main goal of this paper is to continue the investigations of [PPY(07]. Let us describe the main
results. The following definition is central in our work (cf. Definition 3.1):

Definition 1. An element x € g is called a good element of g if for some homogeneous elements p;, ..., pe
ofS(gx)gl, the nullvariety of py,..., pe in (§%)" has codimension € in (¢*)*.

For example, by [PPY07, Theorem 5.4], all nilpotent elements of a simple Lie algebra of type A are good,
and by [Y09, Corollary 8.2], the even nilpotent elements of g are good if g is of type B or C or if g is of type
D with odd rank. We rediscover these results in a more general setting (cf. Theorem 5.1 and Corollary 5.8).
The good elements verify the polynomiality condition (cf. Proposition 3.2). Moreover, x is good if and only
if its nilpotent component in the Jordan decomposition is so (cf. Proposition 3.4).

Let e be a nilpotent element of g. By the Jacobson-Morosov Theorem, e is embedded into a sly-triple

(e, h, f) of g. Denote by 8, := e + o/ the Slodowy slice associated with e. Identify the dual of g with g, and
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the dual of g¢ with g/, through the Killing form (., .). For p in S(g) ~ k[g*] =~ k[g], denote by °p the initial
homogeneous component of its restriction to 8,. According to [PPY(07, Proposition 0.1], if p is in S(g)9,
then “p is in S(g°)¥. The main result of the paper is the following (cf. Theorem 4.1):

Theorem 2. Suppose that for some homogeneous generators qi,...,qe of S(8)%, the polynomial functions
q1>- - -» °qp are algebraically independent. Then e is a good element of g. In particular, S(g9)%" is a poly-
nomial algebra and S(g°) is a free extension of S(a¢)*. Moreover, qy.-- .. %qp is a regular sequence in

S(g°).

Theorem 2 applies to a great number of nilpotent orbits in the simple classical Lie algebras (cf. Section 5),
and for some nilpotent orbits in the exceptional Lie algebras (cf. Section 6).

To state our results for the simple Lie algebras of types B and D, let us introduce some more notations.
Assume that g = so(V) c gl(V) for some vector space V of dimension 2¢ + 1 or 2. For x an endomorphism
of V and for i € {1,...,dimV}, denote by Q;(x) the coeflicient of degree dimV — i of the characteristic
polynomial of x. Then for any x in g, Q;(x) = 0 whenever i is odd. Define a generating family ¢y, ..., g,
of the algebra S(g)? as follows. Fori = 1,...,f — 1, set ¢; := Qy;. If dimV = 2€ + 1, set ¢ = Qy¢ and if
dimV = 2¢, let g¢ be a homogeneous element of degree £ of S(g)? such that Q,, = q?. Denote by 61, ...,0¢
the degrees of “%;, ..., %, respectively. By [PPY07, Theorem 2.1], if

dimg® + € —2(81+---+6¢) =0,

then the polynomials ‘g, ..., %, are algebraically independent. In that event, by Theorem 2, e is good and
we will say that e is very good (cf. Corollary 5.8 and Definition 5.10). The very good nilpotent elements
of g can be characterized in term of their associated partitions of dimV (cf. Lemma 5.11). Theorem 2 also
enables to obtain examples of good, but not very good, nilpotent elements of g; for them, there are a few
more work to do (cf. Subsection 5.3).

Thus, we obtain a large number of good nilpotent elements, including all even nilpotent elements in type
B, or in type D with odd rank (cf. Corollary 5.8). For the type D with even rank, we obtain the statement for
some particular cases (cf. Theorem 5.23).

On the other hand, there are examples of elements that verify the polynomiality condition but that are not
good; see Examples 7.5 and 7.6. To deal with them, we use different techniques, more similar to those used
in [PPY07]; see Section 7.

As a result of all this, we observe for example that all nilpotent elements of so(k’) are good and that all
nilpotent elements of so(k"), with n < 13, verify the polynomiality condition (cf. Table 5). In particular, by
[PPYO07, §3.9], this provides examples of good nilpotent elements for which the codimension of (g°)*  in

sing
(g°)* is 1 (cf. Remark 7.7). Here, (ge);‘ing stands for the set of nonregular linear forms x € (g°)*, i.e.,

@)E = {xe ()" ; dim(g°)* > indg° = ¢}.

sing *
For such nilpotent elements, note that [PPY(07, Theorem 0.3] does not apply.

Our results do not cover all nilpotent orbits in type B and D. As a matter of fact, we obtain a counter-
example in type D to Premet’s conjecture (cf. Example 7.8):

Proposition 1. The nilpotent elements of so(k'*) associated with the partition (3,3,2,2,2,2) of 14 do not
satisfy the polynomiality condition.

1.4. The main ingredient to prove Theorem 4.1 is the finite W-algebra associated with the nilpotent orbit

G(e) which we emphasize the construction below. Our basic reference for the theory of finite W-algebras
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is [Pr02]. In the present paper, we refer the reader to Section 4. For i in Z, let g(i) be the i-eigenspace of adh

and set:
Py = @ 8(0).
>0
Then p, is a parabolic subalgebra of g containing g¢. Let g(~1)° be a totally isotropic subspace of g(—1) of
maximal dimension with respect to the nondegenerate bilinear form

g(_l) X g(_l) — k’ (x’ y) — <ea [x’ y])

and set:
m = o(-1)° @ 5 a0,
<=2
Then m is a nilpotent subalgebra of g with a derived subalgebra orthogonal to e. Denote by k, the one
dimensional U(m)-module defined by the character x — (e, x) of m, denote by 0, the induced module

Qe = U(Q) ®U(m) ke
and denote by H, the associative algebra
ﬁe = Endg(Qe)Opa

known as the finite W-algebra associated with e. If e = 0, then H, is isomorphic to the enveloping algebra
U(g) of g. If e is a regular nilpotent element, then H, identifies with the center of U(g). More generally,
by [Pr02, §6.1], the representation U(g) — End(Q,) is injective on the center Z(g) of U(g). The algebra A,
is endowed with an increasing filtration, sometimes referred as the Kazhdan filtration, and one of the main
theorems of [Pr02] states that the corresponding graded algebra is isomorphic to the graded algebra S(g°).
Here, S(g°) is graded by the Slodowy grading (see Subsection 4.1 for more details).

Our idea is to reduce the problem modulo p for a sufficiently big prime integer p, and prove the analogue
statement to Theorem 2 in characteristic p. More precisely, we construct in Subsection 4.2 a Lie algebra gg
from g over an algebraically closed field K of characteristic p > 0. The key advantage is essentially that the
analogue H, of the finite W-algebra H, in this setting is of finite dimension.

1.5. The idea of appealing to the theory of finite W-algebras in this context was initiated in [PPY07, §2].
What is new is to come down to the positive characteristic. More recently, T. Arakawa and A. Premet
used affine W-algebras to study an analogue question to Question 1 in the context of jet scheme (private
communication). In more detail, assume that g is simple of type A and let e be a nilpotent element of g. If
8 denotes the arc space of g, then Arakawa and Premet show that k[(g:)m](gf)“ is a polynomial algebra with
infinitely many variables. The case where e = 0 was already known by Beilinson-Drinfeld, [BD]. Since
g is of type A, all nilpotent elements of g verify the polynomiality condition. Moreover, for any nilpotent
element e € g, (ge);‘ing has codimension > 3 in (g°)* (cf. [Y09, Theorem 5.4]). These two properties are
crucial in the proof of Arakawa and Premet.

1.6. The remainder of the paper will be organized as follows.

Section 2 is about general facts on commutative algebra, useful for the Section 3. In Section 3, the notions
of good elements and good orbits are introduced, and some properties of good elements are described.
Proposition 3.2 asserts that the good elements verify the polynomiality condition. Moreover, Proposition
3.7 gives a sufficient condition for guaranteeing that a given nilpotent element is good. It will be important
in Section 4. The main theorem (Theorem 4.1) is stated and proven in Section 4. The proof is based on the
theory of finite W-algebras over k and over fields of positive characteristic. The section starts with some

reminders about this theory following [Pr02]. In Section 5, we give applications of Theorem 4.1 to the
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simple classical Lie algebras. In Section 6, we give applications to the exceptional Lie algebras of types Eg,
F4 and G,. This enables us to exhibit a great number of good nilpotent orbits. Other examples, counter-
examples, remarks and a conjecture are discussed in Section 7. In this latter section, different techniques are
used.

Ackowledgments. We thank Lewis Topley for stimulating discussions, Tomoyuki Arakawa and Alexander
Premet for their interest in this work. This work was partially supported by the ANR-project 10-BLAN-
0110.

2. GENERAL FACTS ON COMMUTATIVE ALGEBRA

We state in this section preliminary results on commutative algebra. Theorem 2.7 will be particularly
important in Section 3.

As arule, for A a homogeneous algebra, A, denotes the ideal of A generated by its homogeneous elements
of positive degree. Let E be a finite dimensional vector space and let A be a finitely generated homogeneous
subalgebra of S(E). Denote by Ny the nullvariety of A, in E* and set N := dim E — dim A.

2.1. Let X be the affine variety Specm(A) and let 7 be the morphism from E* to X whose comorphism is
the canonical injection from A into S(E).

Lemma 2.1. (i) The irreducible components of the fibers of m have dimension at least N.
(i) If Ny has dimension N, the fibers of © are equidimensional of dimension N.
(iii) If No has dimension N, for some x1,. .., xy in E, the nullvariety of xi, ..., xy in No equals {0}.

Proof. (i) Let F be a fiber of 7 and let U be an open subset of E* whose intersection with F is not empty and
irreducible. The restriction of 7 to U is a dominant morphism from U to X. So, N is the minimal dimension
of the fibers of the restriction of 7 to U, whence the assertion.

(ii) Denote by xj the element A, of X. Since A is a homogeneous algebra, there exists a regular action
of the one dimensional multiplicative group G, on X. Furthermore, for all x in X, xy is in the closure of
Gp.x. Hence the dimension of the fiber of 7 at x is at most dim Ny. As a result, when dim Ny is the minimal
dimension of the fibers of x, all fiber of 7 is equidimensional of dimension N by (i).

(iii) For x = (x;, i € I) a family of elements of E, denote by A[x] the subalgebra of S(E) generated by A
and x, and denote by Ny(x) its nullvariety in Ny. Since Ny is a cone, Ny(x) equals {0} if it has dimension

0. So it suffices to find N elements xi, ..., xy of E such that Nyo(xy, ..., xy) has dimension 0. Let us prove
by induction on i that for i = 1,..., N, there exist i elements xi,..., x; of E such that Ny(xy,..., x;) has
dimension N — i. By induction on i, with A[xy, ..., x;] instead of A, it suffices to find x in E such that Ny(x)

has dimension N — 1.

Let Zy,...,Z, be the irreducible components of Ny and let I; be the ideal of definition of Z; in S(E). By
(1), fori = 1,...,m, Z; has dimension N. In particular, /; does not contain E. So, there exists x in £ not in
the union of Iy,...,1I,. Then, fori = 1,...,m, the nullvariety of x in Z; is equidimensional of dimension
N—-1. As aresult, the nullvariety of the ideal of S(E) generated by A, and x is equidimensional of dimension
N — 1, whence the assertion. O

For M a graded A-module, set M, := A, M.

Lemma2.2. Let M be a graded A-module and let V be a homogeneous subspace of M such that M = V&M,
Denote by 1 the canonical map A ® V — M. Then T is surjective. Moreover, T is bijective if and only if M
is a flat A-module.



Proof. Let M’ be the image of 7. Then by induction on %,
Mc M +A M.

Since V is homogeneous, M’ is homogeneous. So M is contained in M’.
If 7 is bijective, then all basis of V is a basis of the A-module M. In particular, it is a flat A-module.
Conversely, let us suppose that M is a flat A-module. So, from the exact sequence

0—A, —A—>k—0
one deduces the exact sequence
00— MRUA, —m M — M4 k— 0.

In particular, the canonical map

is injective. Hence all basis of V is free over A, whence the lemma. O

Proposition 2.3. Let us consider the following conditions on A:
1) A is a polynomial algebra,
2) A is a regular algebra,
3) A is a polynomial algebra generated by dim A homogeneous elements,
4) the A-module S(E) is faithfully flat,
5) the A-module S(E) is flat,
6) the A-module S(E) is free.
(1) The conditions (1), (2), (3) are equivalent.
(1) The conditions (4), (5), (6) are equivalent. Moreover, Condition (4) implies Condition (2) and, in that
event, Ny is equidimensional of dimension N.
(iii) If Ny is equidimensional of dimension N, then the conditions (1), (2), (3), (4), (5), (6) are all equiva-
lent.

Proof. Let d be the dimension of A.
(i) The implications (1) = (2), (3) = (1) are straigthforward. Let us suppose that A is a regular algebra.

Since A is homogeneous and finitely generated, there exists a homogeneous sequence xi,...,x; in Ay
representing a basis of A, /A2. Let A’ be the subalgebra of A generated by xi, ..., xs. Then
A, CA + A2

So by induction on m,

Ay c A"+ AT
for all positive integer m. Since A is homogeneous, A = A’ and A is a polynomial algebra generated by d
homogeneous elements.

(i) The implications (4) = (5), (6) = (5) are straightforward and (5) = (6) is a consequence of
Lemma 2.2.

(5) = (4): Recall that xo = A,. Let us suppose that S(F) is a flat A-module. Then 7 is an open morphism
whose image contains xg. Moreover, m(E™) is stable under the action of Gy,. So 7« is surjective. Hence by
[Ma86, Ch. 3, Thm.7.2], S(E) is a faithfully flat extension of A.

(4) = (2): Since S(E) is regular and since S(E) is a faithfully flat extension of A, all finitely generated
A-module has finite projective dimension. So by [Ma86, Ch.7,§19,Lemma 2], the global dimension of A is

finite. Hence by [Ma86, Ch. 7, Thm. 19.2], A is regular.
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If Condition (4) holds, by [Ma86, Ch. 5,Thm. 15.1], the fibers of 7 are equidimensional of dimension N.
So Ny is equidimensional of dimension N.

(iii) Let us suppose that Ny is equidimensional of dimension N. By (i) and (ii), it suffices to prove
(2) = (5). By Lemma 2.1,(ii) the fibers of 7 are equidimensional of dimension N. Hence by [Ma86, Ch. 8,
Thm. 23.1], S(E) is a flat extension of A since S(E) and A are regular. O

2.2. Let A be the algebraic closure of A in S(E).
Lemma 2.4. Suppose that dimNy = N. Then Ny is the nullvariety of A, in E*.

Proof. Let p be ahomogeneous element of A of positive degree and set B := A[p]. Then B is a homogenous
algebra having the dimension of A. Denoting by mp the morphism E* — Specm(B) whose comorphism is
the canonical injection from B into S(E), the irreducible components of the fibers of 75 have dimension at
least N by Lemma 2.1,(i). Since the fiber of 7y at the ideal of augmentation of B is the the nullvariety of p
in Ny and since Ny has dimension N, Nj is contained in the nullvariety of p in E*, whence the lemma. O

Corollary 2.5. Suppose that dimNy = N. Then A is the integral closure of A in S(E). In particular, A is
finitely generated.

Proof. Since A is a finitely generated homogeneous subalgebra of S(E), the integral closure of A in S(E) is
so by [Mag6, §33, Lem. 1]. So, one can suppose that A is integrally closed in S(E). Let p be a homogeneous
element of positive degree of A and set B := A[p]. Denote by 73 and v the morphisms whose comorphisms
are the canonical injections

B— S(E)andA — B

respectively, whence a commutative diagram

A

Since B is a homogeneous subalgebra of S(E), there exists an action of G, on Specm(B) such that v is
Gpy-equivariant. According to Lemma 2.4, the fiber of v at xy = A, equals B,. As a result, the fibers of v are
finite. Since B and A have the same fraction field, v is birational. Hence by Zariski’s main theorem [Mu88],
y is an open immersion from Specm(B) into X. So, v is surjective since x is in the image of v and since it
is in the closure of all Gy,-orbit in X. As a result, v is an isomorphism and p is in A, whence the corollary
since A is homogeneous. O

o L R— Specm(B) .
Ve
X

2.3. Denote by K and K(F) the fraction fields of A and S(E) respectively.

Lemma 2.6. Suppose that dimNy = N and suppose that A is a polynomial algebra. Let vy,...,vy be a
sequence of elements of E such that its nullvariety in Ny equals {0}. Set C := Alvi, ..., on].

(1) The algebra C is integrally closed and S(E) is the integral closure of C in K(E).

(ii) The algebra A is Cohen-Macaulay.

(iii) The A-module A is free and finitely generated.

Proof. The sequence vy, ...,vy does exist by Lemma 2.1,(iii).
(i) Since A has dimension dim E — N and since the nullvariety of vy,...,vy in Ny is {0}, vy,...,vy are
algebraically independent over A and A. By Serre’s normality criterion [Ma86, Ch.7, Thm. 19.2], any

polynomial algebra over a normal ring is normal. So C is integrally closed since A is so by definition.
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Moreover, C is a finitely generated homogeneous subalgebra of S(E) since A is too by Corollary 2.5. Since
C has dimension dim E, S(E) is algebraic over C. Then, by Corollary 2.5, S(E) is the integral closure of C
in K(E) since S(E) is integrally closed as a polynomial algebra and since {0} is the nullvariety of C in E*.

(i1) According to Proposition 2.3, A is generated by homogeneous polynomials py,...,ps with d :=
dimA. Then Ny is the nullvariety of py,...,ps in E* so that py,..., ps is a regular sequence in S(E) by
[Ma86, Ch. 6, Thm. 17.4]. Denoting by K; the fraction field of C, the trace map of K over K, induces a
projection of the C-module S(E) onto C since S(E) is the integral closure of C in K(FE) by (i). Denote by
a — a" this projection. Fori = 1,...,d — 1 and for a in A such that ap;,; is in the ideal of A generated by
P1,--.,Di, there exist by, ..., b; in S(E) such that

a=bipy+---+bip;

whence
azbﬁpl +-~+bfp,~.

Since the nullvariety of vy,...,vy in Ny equals {0}, vy,...,vy are algebraically independent over A and
b’f, e, bf are polynomials in vy, ..., vy with coefficients in A. Hence,

a=bt0)p; +---+ b 0)p;

since a, pi, ..., p; are in A. As aresult, D1,--.,Pq is aregular sequence in Aand A is Cohen-Macaulay.

(iii) The algebras A and A are graded and A/A,A has dimension 0. Moreover, A is regular since it is
polynomial. Hence by (ii) and by [Ma86, Ch. 8, Thm. 23.1], A is a flat extension of A. So, by Lemma 2.2,
A is a free extension of A. O

Theorem 2.7. Suppose that dimNy = N and that A is a polynomial algebra. Then A is a polynomial
algebra. Moreover, S(E) is a free extension of A.

Proof. By Corollary 2.5, A is the integral closure of A in S(E). Let vy, . ..,vy, C be as in Lemma 2.6. Let
V be a homogeneous complement of S(E)C. in S(E) and let W be a homogeneous complement of AA, in
A. Denote by {x;, i € I} and {y j» J € J} some homogeneous basis of V and W respectively. By Lemma 2.2,
V generates the C-module S(E). Hence there exists a subset L of I such that {x;,i € L} is a basis of the K-
space K(E) with K; the fraction field of C. By Lemma 2.2 and Lemma 2.6,(iii), {y;, j € J} is a basis of the
free A-module A. Hence {y;, j € J} is a basis of the free A[vy,...,vy]-module C. So {x;y;, (i, j) € LX J}is
linearly free over A[vy,...,vy] since the elements x;, i € L are linearly free over C. By Proposition 2.3,(iii),
S(E) is a free extension of A[vy,...,vy]. So by Lemma 2.2, there exists a homogeneous subspace V’ of S(E)
containing x;y; for all (i, j) in L X J such that the canonical map

v’ Qx Alvy, ..., o] — S(E)

is an isomorphism. Moreover, dim V’ is the degree of the algebraic extension K(E) of K(vy,...,vy). The
degree of the algebraic extension K(E) of K; equals |L| and K| is an algebraic extension of K(vy,...,vy)
whose degree is the degree of the algebraic extension K’ of K with K’ the fraction field of A. This degree
equals |J| since {y;, j € J} is a basis of the A-module A. Hence dimV’ = |L|||. So {xiyj,(i,j) e Lx J}isa
basis of V’. Hence S(E) is a free C-module and {x;,i € L} is a basis. As a result, C is a polynomial algebra
by Proposition 2.3 since it is homogeneous. Since C is a faithfully flat extension of A, A is a polynomial
algebra by Proposition 2.3 since it is homogeneous. According to Lemma 2.6, Nj is the nullvariety of A, in
E*. So, by Proposition 2.3,(iii), S(E) is a free A-module. |
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3. GOOD ELEMENTS AND GOOD ORBITS

Recall that k is an algebraically closed field of characteristic zero. As in the introduction, g is a simple
Lie algebra over k of rank ¢, (., .) denotes the Killing form of g, and G its adjoint group.

3.1. The notions of good element and good orbit in g are introduced in this paragraph.

Definition 3.1. Anelement x € g is called a good element of g if for some homogeneous elements py, ..., py
of S(g*)%", the nullvariety of pi,..., p¢ in (¢%)* has codimension ¢ in (g%)*. A G-orbit in g is called good if
it is the orbit of a good element.

Since the nullvariety of S(g)?r in g is the nilpotent cone of g, 0 is a good element of g. For (g, x) in G X g
and for a in S(g%)%, g(a) is in S(gg(x))gg(x). So, an orbit is good if and only if all its elements are good.

Denote by K, the fraction field of S(g*).

Proposition 3.2. Let x be a good element of . Then S(g°)° is a polynomial algebra and S(g%) is a free
S(g%)" -module. Moreover, K;‘fc is the fraction field of S(g%)%".

Proof. Let py,..., pr be homogeneous elements of S(g¥)%" such that the nullvariety of p1,..., pe in (¢%)"
has codimension £. Denote by A the subalgebra of S(g*)% generated by pi,...,pe. Then A is a graded
subalgebra of S(g) and the nullvariety of A, in (g*)* has codimension ¢. So, by Lemma 2.1,(ii), A has
dimension €. Hence p, ..., p; are algebraically independent and A is a polynomial algebra. According to
[CM10, Thm. 1.2], the index of g* equals €. So, by [R63], the transcendance degree of K;?x over k equals £.
Then, since A has dimension ¢, K )%X is an algebraic extension of the fraction field of A. As a result, S(gx)gx is
the algebraic closure of A in S(g¥). So, by Theorem 2.7, S(g%)%" is a polynomial algebra and S(g¥) is a free
S(g*)%" -module. Since KEX is an algebraic extension of the fraction field of A, for p in K;?x, ap verifies an
integral dependence equation over S(g*)%" for some a in S(g*)9". Then, since S(g*)" is integrally closed in
Ky, K% is the fraction field of S(g*)". o

Remark 3.3. The algebra S(g*)%" may be polynomial with x not good. Indeed, let us consider a nilpotent el-
ement e of g = so(k!?) associated with the partition (3, 3,2, 2). The algebra S(g® ) is polynomial, generated
by elements of degrees 1, 1,2,2,5. But the nullcone has an irreducible component of codimension at most
4. So, e is not good; see Example 7.5 in Section 7 for more details.

For x € g, denote by x; and x, the semisimple and the nilpotent components of x respectively.

Proposition 3.4. Let x be in g. Then x is good if and only if x, is a good element of the derived algebra of
g*.

Proof. Let 3 be the center of g™ and let a be the derived algebra of g*. Then
g*=3@a",  S(g)* =SE3) & S(a™)"".

By the first equality, (a™)* identifies with the orthogonal complement of 3 in (g*)*. Set d := dim3. Suppose

that x, is a good element of a. Let py, ..., p,—s be homogeneous elements of S(a®™)®™ whose nullvariety in
(a*)* has codimension ¢ — d. Denoting by vy, ..., vy a basis of 3, the nullvariety of vy,...,v4, p1,..., Pe—g in
(¢%)* is the nullvariety of py,..., pr—q in (a™)*. Hence, x is a good element of g.

Conversely, let us suppose that x is a good element of g. By Proposition 3.2, S(g*)*" is a polynomial
algebra generated by homogeneous polynomials py, ..., pe. Since 3 is contained in S(g¥)%', pi,..., pe can
be chosen so that py,..., pg are in 3 and pg.1,..., pg are in S(ax")“x". Then the nullvariety of pyi1, ..., pa
in (a™)* has codimension ¢ — d. Hence, x, is a good element of a. O

9



3.2. Let e be a nilpotent element of g, embedded into an sl,-triple (e, &, f) of g. Identify the dual of g
with g, and the dual of ¢ with ¢/ through the Killing form (.,.). For p in S(g) ~ k[g], denote by «(p)
the restriction to g/ of the polynomial function x — p(e + x) and denote by °p its initial homogeneous
component. According to [PPY07, Prop. 0.1], for p in S(g)?, ¢p is in S(g®)*".

Let / be the ideal of S(g°) generated by the elements «(p), for p running through S,(g)?, and set N :=
dimg® — ¢.

Lemma 3.5. The nullvariety of I in o is equidimensional of dimension N.
Proof. Let 8, be the Slodowy slice e + g/ associated with e, and let 6, be the map
GX8e— 0, (9,0 P g(x).

Then 6, is a smooth G-equivariant morphism onto a G-invariant open subset containing G(e). In particular,
it is equidimensional of dimension dim §,. Denoting by X the nullvariety of / in ¢/, G X (¢ + X) is the inverse
image by 6, of the nipotent cone of g. Hence, G X (e + X) is equidimensional of dimension

dimg - ¢ +dimS, = N + dimg
since the nilpotent cone is irreducible of codimension ¢ and contains G(e). The lemma follows. O

The symmetric algebra S(g) is naturally graded by the degree of elements. For m a nonnegative integer,
denote by S"(g°) the homogeneous component of degree m and set:

Sm(a) := EP $"(e").
izm
Then S,,(¢°),m = 0,1,... is a decreasing filtration of S(g®) and its associated graded algebra is the usual

graded algebra S(g°). For J a subquotient of S(g®), the filtration of S(g®) induces a filtration of J and its
associated graded space is denoted by gr(J).

Lemma 3.6. The nullvariety of gr(I) in ¢/ has dimension N.

Proof. By definition,
gr(S(e)/1) = @ Si@)/(S1(8°) + 10 Si(g%))

leN
so that gr(S(g®)/I) is the quotient of S(g°) by gr(). According to [Ma86, Thm. 13.4], gr(S(g®)/I) and S(g°)/1
have the same dimension, whence the corollary by Lemma 3.5. O

The following proposition will be useful to prove Theorem 4.1 in the next Section. It gives a sufficient
condition for guaranteeing that a given nilpotent element is good.

Proposition 3.7. Let qy,. .., q; be homogeneous generators of S(a)° and let J be the ideal of S(g°) generated
by q,...%q,. Suppose that for ay, . ..,ae in S(g°), the following implication holds:

(a1(cqn) +-+a(’q) =0 = Vie{l,...,0), a;€J).
Then gr(I) = J. In particular, e is a good element of g.

Proof. By definition, J is contained in gr(/). Let us suppose that J is strictly contained in gr(/). A contra-
diction is expected. For a in S(g°), let v(a) be the biggest integer such that a is in S,,)(g) and let a be the
image of a in gr(S(g%)). Fori = 1,...,¢, let d; be the degree of °;. For a := (aj,...,ae) in S(g°)¢, set:

v(a) := inf{v(a1) + dy, ..., v(ae) + dg}, o(@) = ayk(qy) + - - + aex(qe).
10



Since J is strictly contained in gr(/), there is a = (ay,...,ar) in S(g°)¢ such that @ is not in J. Let d be
the degree of o(a). Choose such a in S(g°)¢ such that v(a) is maximal.
Fori=1,...,¢, write
a; =ajo+a+
with a; o homogeneous of degree v(a;) and v(a;+) > v(a;). Let L be the set of indices i such that v(a) =

v(a;) + d;. Since o(a) is not in J,
Z aio(“qi) = 0.

ieL
So, by hypothesis, aj g, ..., aro are in J so that

D aio(a) € .
ieL
Moreover,

o(a) = Z aiok(g;) + o(b) with b; = and b=(,...,b).

ieL

di,+ lf l S L
a; if i¢L

Since o(a) has degree d and is not in J, o(b) is an element of degree d which is not in J. We have obtained
the expected contradiction since v(b) > v(a).

As a consequence, gr(/) = J and the last assertion of the proposition is a straightforward consequence of
Lemma 3.6. O

4. PrOOF OF THEOREM 2 AND FINITE W-ALGEBRAS

As in the previous section, g is a simple Lie algebra over k and (e, £, f) is an sl,-triple of g. The goal of
this section is to prove the following theorem (see also Theorem 2).

Theorem 4.1. Suppose that for some homogeneous generators qi, . . .,q¢ of S(8)%, the polynomial functions
q1>---» °qp are algebraically independent. Then e is a good element of §. In particular, S(g9)% is a poly-
nomial algebra and S(g°) is a free extension of S(a°)*. Moreover, qy. .- ., %qp is a regular sequence in

S(g%).

To that end, the theory of finite W-algebras will be strongly used. Our main reference for this topic is
[Pr02] and the section starts with some notations and results of [Pr02]. The heart of the proof of Theorem 4.1
is presented in Subsection 4.6.

4.1. ForiinZ, let g(i) be the eigenspace of eigenvalue i of ad 4 and set:

n = (D s

i>0
Then p, is a parabolic subalgebra of g containing g°. So, the bilinear form
gD xga(-1) =k  (xy r— (e, [xyl)
is nondegenerate. Let g(—1)° be a totally isotropic subspace of g(—1) of maximal dimension and set:
m = o1 & (P a0
i<-2

so that m is an ad-nilpotent subalgebra of g with the derived subalgebra orthogonal to e. Denote by k, the
one dimensional U(m)-module defined by the character x — (e, x) of m, denote by 0, the induced module

Qe = U(g) ®u(m) k.
11



and denote by H, the associative algebra
H, := Endy(0,).

By [Pr02, §6.1], the representation p, : U(g) — End(Q,) is injective on the center Z(g) of U(g).

Let {x1,...,x,} be a basis of p, such that x; is an eigenvector of eigenvalue n; of adh, and let zy, ...,z
be a basis of a totally isotropic complement to a(=1)1in g(=1). For (i,) = (i1s- .., bm, ji- - Js) in N X N¥,
set:

A= eanze @Dl = DLy i+ 2) + X0 i
By the PBW theorem, {(xidel, (ij) € N x N} is a basis of Q,. For k in N, let FI’E‘ be the subspace of
elements /s of H, such that p.(h)(1®1) is a linear combination of the xel, |(i, j)le < k. Then the sequence
I-Nli‘, k=0,1,...1s an increasing filtration of the algebra H,.

Recall that §, is the Slodowy slice e + g/ associated with e. Since ¢/ identifies with the dual of g¢, the
algebra k[S,] identifies with S(g¢). Denoting by ¢ — h(f) the one parameter subgroup of G generated by
adh, 8, is invariant by the one parameter subgroup ¢ — ¢~2h(f). Hence, this group induces a gradation on the
algebra S(g°). One of the main theorems of [Pr02] says that the graded algebra associated with the filtration
of H, is isomorphic to the so defined graded algebra S(g°) (see also [GG02] for the case where k = C).

4.2. Let h be the Coxeter number of the root system of g. According to the Bala-Carter theory [C85, Ch. 5],
there exists a Z-form gz of g such that (e, 4, f) is an slp-triple of the Q-form gg := Q ®z gz of g. Let dz be
the determinant of the Killing form of gz in a basis of gz and let N be a sufficiently big integer such that
e, h, f are in gy := Z[1/N!] ®z gz, and such that

9(i) = k®zny (8@ Nay),  a(=1)° =k ®z1;n1 (6(=1D° N gy),

N > dy N > h, N > e, ), N > max{i + 2 ; g(i) # {0}},

Then, one can choose the elements x, ..., Xy, 21,...,2s of gin gy. Let p be a prime number bigger than N.
Since p is not invertible in Z[1/N!], p is contained in a maximal ideal M, of Z[1/N!]. Then Z[1/N!]/M,, is
an algebraic extension of F,. Let K be an algebraic closure of Z[1/N!]/9, and set:

gk = K ®z1/n1 OGN

Denote by Gk a simple, simply connected, algebraic K-group such that gx = Lie(Gg). Since N > dz, the
Killing form of g, induces a nondegenerate bilinear form on g, that we will also denote by (., .).

As a Lie algebra of an algebraic group over a field of positive characteristic, g is a restricted Lie algebra
whose p-operation is denoted by x + x!”1. For x semi-simple, x!”! = x and for x nilpotent, x'”! = 0 since
p > h; see for instance [V72, §1]. For y in g}, denote by U, (gx) the quotient of U(gk) by the ideal generated
by the elements x” — x1P! — y(x)?, with x € gg. More generally, if a is a restricted subalgebra of g, we
denote by U, (a) the quotient of U(a) by the ideal generated by the elements x” — X7l — y(x)?, with x € a.
Then set

Ue(gk) := Uy, (ak) and Ue(a) := Uy, (a),
where y. is the linear form
Xe : ax = K, x—(x,e).
For all y € g, the restriction to gg of the quotient map U(gx) — U,(gg) is an embedding and U,(gx)
is a finite dimensional algebra of dimension p%™9 by the PBW Theorem. Moreover, for any restricted

subalgebra a of gk, the canonical map U(a) — U, (gxg) defines through the quotient map an embedding from

U, (a) into U, (gx).
12



Denote by e, h, f, x1,...,Xm,21,...,2s the elements 1ee, 1ok, 18f, 18x1,...,18x,, 18z7],..., 187, of gg
respectively. Because of the choice of N, for i in Z, the i-eigenspace gk (i) of ad/ in gk verifies

gk (D) = K ®zp1/nn (8() N aw)
Set:
oxk(—=1)% == K @zpvy a(-D° naw),  mg = gx(-D° & P,_, 9k (D),

prk = Dok,  gx(=D' = span({z1,....z}).

Then mg is an ad-nilpotent Lie algebra with a derived algebra orthogonal to e. Moreover, it is a restricted
subalgebra of gx whose p-operation equals O since mg is ad-nilpotent. Let K, be the one dimensional
mg-module defined by the character y. of mg. Then K, is a U,(mg)-module. Denote by Q the induced
module

0 = Ue(gk) AU, (mk) K.,
and set
H := End,, (Q)P.

Then Q and H are finite dimensional. For k in N, set
AN ={ly,.... ), [ eN, 0<; < p-1}.

By the PBW Theorem, (Adel, (i, J) € A X Ag}is abasis of Q. For hin H, h is determined by its value at
1®1,
hlel) = Y ajxdal,
(i’j)eAanAS
with the gj;’s in K. Denote by n(h) the biggest integers |(i, )|, with (i,j) € A, X A, such that a;; # 0. For
k in N, denote by H* the linear vector space spanned by the elements / of H such that n(h) < k. By [Pr02,
3.3], the sequence H°, H', ... is an increasing filtration of the algebra H.

4.3.  According to [V72, Prop. 2.1], the algebra U(ag)® of the invariant elements of the adjoint action of
Gk in U(gg) is a polynomial algebra generated by some elements 77, ..., T, of the augmentation ideal of

U(gk)-
Let Zk be the center of U(gx) and let Zj be the subalgebra of U(ax) generated by the elements x” — xtP,

with x in gg. Then Zj is a polynomial algebra contained in Zx and, by [V72, Thm. 3.1],
(D Zg = Zo[Ty, ..., Tl

Fori = (i,...,is) in N’, set

il =i+, TH=T0.. T
li| == ¢ ] p

By [V72, Thm. 3.1], Zk is a free Zyp-module with basis (Th, ie Ag).
Let y be in g.. Denote by Zg , the image of Zg by the quotient morphism U(gx) — U,(gk), and by I,
the ideal of Zg , generated by the images of T',...,T, in Zg .

Lemma 4.2. Let y be in gj.
() The ideal I, of Zk,, is strictly contained in Zg ,. Moreover, { TV ie Ay, li| = m)is a basis of I)’(".
(i1) For m nonnegative integer, the dimensions of the K-spaces I} and U, (gx)I}' do not depend on x.

13



Proof. (i) Let E be the K-subspace of Zx generated by the elements 7%, i € A;. Since p > h, the restriction
to E of the quotient map U(gx) — U,(gk) is an embedding and its image is Zg . Identifying E with Zg ,,
I, is the subspace of Zg, generated by the elements T', i € Ay~ {0}. So, it is strictly contained in Z , .
Moreover, {T'; i € Ay, [i| > m} is a basis of I)’(".

(i) Let {yy,...,y,} be a basis of gg. Fori = (i1, ...,i,) in N", set:

g o=yl
The Zp-module U(gg) is free with basis {yi, i € A,}. Let F be the subspace of U(gg) generated by the
elements yi T3 with (i, J) € AyXAgand [j| > m. Then the restriction to F of the quotient map U(gx) — U, (gk)

is a surjective morphism onto UX(gK)I)’?.
Let d be the dimension of Ug(gx)Ij'. Choose (ii, j1),- . -, (is, ja) such that the elements

yilTj‘,...,yided

of F induce a basis of Ug(ax)j’. The usual filtration on U(gg) induces filtrations on Up(gx) and U,(gx)
having the same associated graded spaces. Indeed, for x € g, the images of the elements x” — x!P! and
xP — xIP1 — y(x)? are the same in the associated graded spaces gr(Uop(gk)) and gr(U,(gg)). The images of
yiTh ..yl Tid in the graded space gr(Up(ax)) are linearly free. Hence, the images of y' 731, ...,y Tl in
gr(U,(gx)) are linearly free too. As a result, U)(((;;K)I)’;1 has dimension at least d.

Exchanging the roles of U, (g K)I)’(" and Up(g K)I(’)" in the above lines of arguments, we obtain that U, (g K)I)’("
has dimension at most d, whence the assertion. m]

For z in gk, let y, be the linear form x — (z, x) and let fz be the ideal of Zx generated by 71, ..., T, and
the elements x” — xIP! — y_(x)?, for x € gx. Thus, I, is the image of I in U,.(gk) by the quotient map
U(ax) — Uy (ak). Consider on N’ the lexicographic order induced by the usual order of N and denote it
by <. For m a positive integer and for i in N’, denote by I_,,; the ideal of Zx generated by IAZerl and the
elements 749 with j in N \ {i} such that |j| = m and j <i,j # i.

Set:

Nemi={i€ Ag; li| =m).

In particular, A¢,, is empty if m > {(p — 1).

Our basic reference concerning Azymaya algebras is [McRO1, Chap. 13, §7]. What will be important for
us is the following result, [McRO1, Prop. 13.7.9]: if A is an Azumaya algebra with center Z, then there is a
one-to-one correspondence between the twosided ideals of A and the ideals of Z given by the maps I — INZ,
J > JA.

Lemma 4.3. Let 7 be a regular nilpotent element of gx and let m be a positive integer smaller than {(p — 1).
(1) The ideal fz of Zx is maximal and the localization at fz of U(gk) is an Azumaya algebra with center
the localization of Zx at I.
(i1) The ideal U(gK)IAZ of U(ag) is maximal.
(iii) Let i be in A¢ . Then T' is not in U(gK)IAZ,m,i.
(iv) For aj, i € A¢m, in U(gk), the following equivalence holds:

D ar e U™ = Vie A, ae UGl

iEA[’m

Proof. (i) To begin with, prove that I, is the annihilator of y, in Zg. Since z is nilpotent, y, vanishes
Ty,...,Te. Let{hj,xo,i = 1,...,¢, @ € R} be a basis of gg derived from a Chevalley basis of g, where

R is a root system of g. Since z is nilpotent, we can assume that z lies in the subalgebra generated by the
14



positive vectors x, of the above Chevalley basis. Hence, (z,h;) = 0 fori = 1,...,£. On the other hand, for

iefl,..., ¢}, hl[.p] h; and for any @ € R, x[p] 0 since p > h. Let x € gg and write it as
x—Zaax(,—i-Zah,, a;, a, € K.
aeR
Then

Pl = Z p [p]+z ph[p] Z fhi-

i=1
As a consequence, (z,x” — x1P — y.(x)?) = 0. This proves that I is contained in the annihilator of y, in
Zx. The other inclusion is clear from the equality (1). Hence /. is a maximal ideal of Z. Since z is regular
and since p is bigger than the Coxeter number of the root system of g, the localization of U(ak) at I is an
Azumaya algebra with center the localization of Zg at I; cf. [BG97, Thm. 4.10].

(i1) Denote by U(gg), and (Zg), the localizations of U(gx) and Zg respectively at I;. By (i), U(gg); is an
Azumaya algebra with center (Zg),. So, by [McRO1, Prop. 13.7.9], for any ideal P of U(gg),, P is the ideal
generated by P N (Zk),. Then U(gK)IAZ is a maximal ideal of U(gg) since K + fz =Zk.

(ii1) Let i be in Ag,, and suppose that 7 is in U(gK)IAZ,m,i. A contradiction is expected. By (i) and [McRO1,
Prop. 13.7.9], I, i = Zg ﬁU(c;K)IZ mi since K +I Zk. Hence T'is in IAZ,m,i. Then the contradiction follows
from [V72, Thm. 3.1].

(iv) The converse implication is clear. Let us prove the direct implication. Let gj, 1 € A¢,,, be in U(gg)
such that

Z aT' € Ugg)l™!.

i€Asm
Suppose that the a;’s are not all in U(gx)L,. A contradiction is expected. Let i be the biggest element of
A¢,n such that g; is not in U(gK)fZ. Then ;7" is in U(gK)IAZ,m,i. Since T' is in the center of U(gg), the subset
of elements a of U(gk) such that a7 is in U(gK)IAZ,m,i is an ideal containing U(gK)fZ. By (iii), this ideal is
strictly contained in U(gg). So it equals U(g K)IAZ by (ii), whence the contradiction. m|

Proposition 4.4. Let y be in gy and let m be a positive integer. Then the canonical morphism

U, (sx) @k I}) — Uy(ax)ly

defines through the quotients an isomorphism

U (ax)/Uy(a)L, ®k I [ 17— U (eI /U (ax) I
Proof. Since UX(gK)I)’;’ / U)((gK)I)’(’“rl is a quotient of U, (gx)I}’, there is a canonical morphism

Uy (o) @k I — Uy(a) I /U eI
Moreover, this morphism is surjective. Then it defines through the quotient a surjective morphism
U, (ax) ® I /I — U (eI /U (s

and this morphism defines through the quotient a surjective morphism

U, (8x)/Uy @)1, ®k I 10— Upa) L) Uy ()
Since it is a morphism of finite dimensionnal K-vector spaces, it suffices to prove that these two spaces have
the same dimension. By Lemma 4.2, it suffices to find some y such that this morphism is an isomorphism.

By Lemma 4.3,(iv), if z is a regular nilpotent element of gk, then the kernel of the morphism

U,.(ax) ®k I} — Uy (ax)I /U, (ax) I
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equals U, _(ax)l,, ®k I)’(’i so that the morphism
U,.8x)/ Uy @)1y, ® I /1M — Uy (801 /Uy ()
is an isomorphism, whence the proposition. O
Recall that y, is the linear form x — (e, x). Set
Zie:=Zky, and [, :=1,.

By [V72, Theorem 3.1] and [Pr02, Theorem 2.3, (ii)], the restriction to Zg , of the representation U,(gx) —
H is an embedding. Identify Zg , with a subalgebra of H through this representation.

Corollary 4.5. (i) For m positive integer, the canonical morphism
HQgI' — HI)
defines through the quotients an isomorphism
H/HI, &k I™ /1™ — HI"/HI™!.
(i1) For some K-subspace E of H, the linear map
E®xZg, — H, vea — va
is an isomorphism of K-spaces.
Proof. (i) By [Pr02, Thm. 2.3, Thm. 2.4 and Prop. 2.6],
U,(ok) = Maty(H) with d = p2dimGre,

Moreover, since p > h, Zk . is the center of U,.(ax) so that Zg . is the center of H. Let g, i € Ay, be in H
such that

> art e HI.
iEA["m

It results from Proposition 4.4 with y = y,. that the g;’s are all in U,(gg)/,. Then, since
Mat,(H)I, " H = HI,,
the g;’s are all in HI,. Therefore, the canonical morphism
H/HI, ® I"/I™" — HI"/HI™!

is injective. But this morphism is surjective by definition. This concludes the proof.
(i1) Let E be a K-subspace of H such that the restriction to E of the quotient morphism H — H/HI, is an
isomorphism and denote by ® the linear map

E®kZk, — H, v®a —> va.
By (i) with m = 0, O is injective and, again by (i), for all m,
HC O(E ®k Zke) + 1.

The assertion follows since I} = {0} for m > £(p — 1). O
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4.4. Let S.(g%) be the quotient of the symmetric algebra S(g%) by the ideal generated by the elements x”,
with x € g%, and let U.(g%) be the quotient of the enveloping algebra U(gj ) by the ideal generated by the
elements x” — xIP1, with x in g%- Since e is orthogonal to g%, the canonical injection from U(g% ) into U(gx)
induces an embedding of U,(g%) into U.(gk).

Let b be a Cartan subalgebra of g, let R be the root system of (g, ) and let W(R) be the corresponding
Weyl group. Let bz be the sub-Z-module of Iy generated by the coroots of R, and set:

by :=Z[1/N'] ®z bz, bk := K ®z;1/5) by

Since (.,.) is nondegenerate, the duals g and by of gx and g respectively identify with gx and g re-
spectively so that S(gg) and S(hg) are the algebras of polynomial functions on gx and hg respectively. The
Weyl group W(R) defines through the quotient an action on bhg. Since p > h, W(R) is embedded in GL(bk).
By [V72, Prop. 2.1], there exists an isomorphism ¢ from U(gg)®% onto SHx)V® . Moreover, U(ag)°¥ is a
polynomial algebra generated by T1,...,T,. By [SS70, §3.17], the restriction map from gg to hg induces
an isomorphism from S(gx)°¥ onto S(bK)W(R). Forie{l,...,¢}, let S; be the element of S(gx)~ such that
o(T;) is the restriction of S; to hg.

Since the restriction of (., .) to g% X gf is nondegenerate, g{( identifies with the dual of g% and k[e + gﬁ]

K
identifies with S(g%). Fori=1,...,¢1etS l’ be the image in Se(g%) of the restriction of S; to e + gf .
Proposition 4.6. There is an isomorphism
T H — S.(g%)

Jfrom the K-space H onto the K-space S.(g%) such that ©(Z ) is the subalgebra of S.(g%) generated by
S1,....8} and such that T(ab) = t(a)v(b) for all (a,b) in H X Zk.

Proof. Recall that x1, ..., x,, is the basis of pk , introduced in Subsection 4.1. Order it so that xj, ..., x, is a
basis of g% . For § in H, denote by @ its image in gr(H) by the canonical map. By [Pr02, Thm. 3.4], there exist
61, ...,0, in H such that the monomials 561” . -éfr and 6" --- 67", with 0 < @; < p — 1, form bases of gr(H)
and H respectively. Moreover, there exists an isomorphism from the K-algebra gr(H) onto the K-algebra
S.(g%) such that xi, ..., x, is the image of 6y,. .., 6, respectively. Let 7 be the linear isomorphism from H
onto S,(g%) such that

T(GTI 9‘:’):)(61“ xl’l_r

for all (ay,...,a,) € A,. It remains to prove that fori € {1,...,¢} and for a in H, 7(aT;) = 7(a)S .
Let A be the subspace of U(gx) generated by the monomials xfj:f o X with (@t - .., am) € N7 {0),
and let m}, be the orthogonal complement to e in mg. By the PBW theorem,
@) ;=3 > cijrdd f e A+ Ulgromy
keN jeN”"

¥

with the ¢;j4’s in K. By [Pr02, Thm. 3.4], 7(T;) is the polynomial function on g

v DT cijadv, 2 (0, x5 e, PF
keN jeN"
By definition, S; is the Gg-invariant polynomial function on gx such that its restriction to hx equals 6(77;).
Moreover, since p > h, S; is the image of 7; in S(gk); to see that, we follow the proof of [Di74, Thm. 7.4.5].

Hence
m

Si— Z Z cijad f e Z S(ax)x; + S(gx)my
keN jeN”" I=r+1
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f

As aresult, forvin g X

Sie+v)= D> cijulv, x) -0, 1), F

keN jeN”"
so that §7 = 7(T).
Let a be in H. By [Pr02, Thm. 3.4],
(3) a= "> vajurlf € A+ Ugromy
keN jeNr

with the y,j«’s in K, and 7(a) is the polynomial function on o,
0 DT Yajulo, 1) (0, x) e, PF.
keN jeN"
From the equalities (2) and (3), it results that
ali= "> YagudTif* € AT+ Ugromy
keN jeN”

AT; < ) cijuAx ff+ AA + UGgromy
keN

DT 5= cigaendad < WAFR 4 Ugomy.

k’eN j’eN"

For ay, a in A of filtrations degree |a;|. and |ay|. respectively, ajar,®1 = az®l + as®1 where a3 is in A
and a4 is a linear combination of the xize1’s, with |(i, J)l. smaller than |ai|, + |az|.. Moreover, for j in
N, a;del = xa;®l + asel where as is a linear combination of the xiz¥e1’s, with |(i, k)|, smaller than
laile + 1G,0)].. At last, (¥xd” — ©¥*'e1) is a linear combination of the x¥e1’s with |(k, 0)|, smaller than
G, 0)le +1(’, 0)|. All this shows that 7(aT;) is the polynomial function on g

Ly sy k+k
UV H—> Z Z Ci,j,k')’a,j/,k’@, x1>}1+]1 . <U, _xr>]r+]r<e ,f> + ,

(k,k")EN? (J.j' )EN"XN'

whence t(aT;) = t(a)v(T;). |

Henceforth, E is a subspace of H such that the linear map E®k Zgx, — H, v®a — va is an isomorphism
of K-spaces. The existence of such a subspace is provided by Corollary 4.5,(ii).

Corollary 4.7. The morphism
T(E) ®k T(Zg.e) — Se(8%), vea > va

is an isomorphism of K-spaces.

Proof. By Proposition 4.6, 7(E)7(Zk.) = S.(g%). In particular, the K-linear map
T(E) ®k 7(Zk.e) — Se(8%) vea — va

is surjective. Since the K-spaces E ®g Zk ., H, 7(E) ® 7(Zk,) and 7(H) are finite dimensional of the same
dimension, this map is an isomorphism. O
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4.5. Let m be the image in S.(g%) of the augmentation ideal of S(g%) by the quotient map. Then the se-

quence m, m?, . .. is a decreasing filtration of S.(g%) such that the graded space associated with this filtration

is the algebra S.(g%). This filtration induces a filtration on 7(Zk,) and the graded algebra associated with
this filtration is a subalgebra of S.(a%) denoted by gr(t(Zk.)).

Proposition 4.8. The linear map
gr(7(E)) ®k gr(t(Zk.e)) — Se(gy),  voa — va
is an isomorphism.
Proof. By Corollary 4.7, the linear map
T(E) ®k 7(Zk.e) — Se(8%) vea — va

is an isomorphism. The filtration on S.(g%) induces a filtration on 7(E) and the graded space gr(7(E))
associated with this filtration is a subspace of S.(g%) of the same dimension. For d nonnegative integer,
denote by gr(7(E)), the subspace of degree d of gr(r(E)) and set:
er(@(E) = () grx(E)).
i<d

Let gr(1(Zk..))+ be the augmentation ideal of gr(7(Zk,.)) and prove by induction on d that
Se(8%) C gr(r(E) + Se(af)gr(t(Zx o))+ + m**!,

Since gr(r(E))? = K, the inclusion is clear for d = 0. Suppose that it is true for any integer smaller than
d — 1 and prove the inclusion for d. By induction hypothesis, it suffices to prove that for a homogeneous
polynomial a of degree d in S.(g%),

a € gr(E) + Se(85)gr(t(Zk ¢))+ + me*1.

Let a be a homogeneous polynomial of degree d in S.(g%), and let {vy, ..., v,} be a basis of E such that

its image in gr(E) is linearly free. Then
m

a = Z v;a;
i=1

for some ay,...,a, in 7(Zg,) and,
ae Z via; + m**!
i€l
where 1, is the subset of i € {1,...,m} such that v; is in S,(g%) \ m“*!. For i in I, such that v; is not in m¢,

a; is in m so that its image in gr(t(Zg,.)) is in gr(t(Zk.))+. As a result,

a € gi(E) + S.(af)gr(t(Zg.o))+ + m**.
Since m? = {0} for d sufficiently big, one deduces that

Se(gk) € gr(t(E)) + Se(a)er(t(Zg )+
Then, by induction on i, one gets

Se(8%) C gr(T(E))Se(af) + Se(85)gr(t(Zk.0))'-
For i sufficiently big, gr(T(ZK’e))" = {0}. Therefore, the linear map
gr(7(E)) ®k gr(t1(Zk.e)) — Se(gy),  voa r— va

is surjective. As the K-spaces 7(E) ®k gr(r(Zk..)), gr(r(E)) ®k gr(r(Zk,.)) and S.(g% ) are finite dimensional
of the same dimension, this map is an isomorphism. O
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For g in S(gk), denote by “g the initial component of the restriction of g to e + g{(.

Corollary 4.9. Let qy, .. .,qe be homogeneous generators of S(ax)°X such that °q,, . .., °q, are algebraically
independent over K.
(1) The set
(gl gl i= (i, i) € Ag)
is a basis of the K-space gr(t(Z..)).
(i) For ay, . ..,ac in Se(a%), if
ar(‘qr) +---+a(‘qe) =0

then ai, ... ,ag are linear combinations with coefficients in S.(8%) of “qy, ..., “qe
Proof. (i) Since “q, ..., %q, are algebraically independent over K, the jacobian matrix

0(%q;

G cicoi<i<n
(9xj
has rank €. This means that in K(xy,..., x,), the quotient field of S(g%), the elements %,..., %, are p-
independent. Hence the sequence
Gl gl i= (.. € Ay

of elements of S.(g%) is linearly free over K. Since gy, ..., g, are homogeneous generators of S(gx)C*, the

algebra 7(Zg ) is generated by the restrictions of gj,...,q¢ to e + g{(, [SS70, §3.17]. So, for a in 7(Zk,). a

Y add

i=(iy,....Ie)EA¢

is the restriction to e + g{( of

for some cj, 1 € A¢ in K so that the image a of a in gr(1(Zg,)) equals
2, A
i=(i1 yeeny i[)EA[

where ¢ = ¢; if a and % ” . eqi,’ have the same degree, and ¢; = 0 otherwise.
(i1) Let ai, ...,ae be in S,(g%) such that

ar(‘qr) + -+ a(‘qer) =

Letvy,...,v, be a basis of gr(r(E)). By (i) and Proposition 4.8, fori = 1,...,¢,

m
_ e ki e ke
a; = Z Z Ci,jkVj gy 4,

Jj=1 keA;
with the ¢; jx’s in K. As a result,
m
Zw@(Z D ciinai ‘) qfH =0
j=1 i=1 keA;
so that
Z Z ciix(‘qi 4y q) =0
i=1 keA;
for j=1,...,m. By (i), it follows that c; jo = O for all (i, j), whence the statement. O
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4.6. Proof of Theorem 4.1. Let gz be a Z-form of g such that (e, &, f) is an sl,-triple of the Q-form of
a0 := Q®z gz of g. Let us suppose that for some generators g1, . ..,q¢ of S(9)%, gy, ..., °q, are algebraically
independent over k. We aim to prove that e is good. First of all, since gg is a Q-form of g containing e, h, f,
there exist homogeneous generators ¢}, . .., g, of S(gg)®? such that g}, ..., % are algebraically independent
over Q. So, one can suppose that gy, ..., g, are in S(gg)*?.

Let {yi,...,y,} be a basis of gé and let {x,...,x,} be a basis of gz. By the hypothesis, for some
(v1,...,v,) in Z" and (uy,...,u,) in Z", the value at vjy; + --- + vy, of a £-order minor of the jacobian
matrix

9(“q:)
(9y j
is a rational number ¢ different from 0, and the value at u; x| + - - - + u,x, of a £-order minor of the jacobian
matrix

(

,1<i<6,1<j<r)

a.
(8—3’_, 1<i<t1<j<n)

J
is a rational number ¢ different from O.

Let dy,....dr be the degrees of “,..., %, respectively, and denote by J the ideal of S(ga) generated
by g, ..., “q,. For d positive integer, denote by Sd(ng) and J, the subspace of homogeneous elements of
degree d of S(ng) and J respectively. Suppose that for some positive integer d there exist homogeneous
elements ay,...,a, of degrees d — dy,...,d — dp respectively, not all in J, such that

ar(‘q1) + - +ar(‘qr) = 0.

A contradiction is expected. Then for some y in the orthogonal complement of J;_4, X - - - X J4_4, in the dual
of Sy_qg, (ng) X - X Sd_d[(gé), ¢y = u(ay,...,ap) is a rational number different from zero.
Let N be a sufficiently big positive integer verifying the conditions of Subsection 4.2 and the following

conditions, where gy := Z[1/N!] ®z gz:

1) co, cop, c1 are invertible elements of Z[1/N],

2) q1,...,q¢ are in S(gy),

3) y1,...,yrarein gﬁ,

4) ay,...,ac are in S(g5),

5) pis the extension to Sy, (ng)x- . -XSd_d,(gé) of a linear form y( on the Z[1/N!]-module S;_4, (gf\,)x

o X Sg-a,(8y)-

Let p be a positive integer bigger than N and d. Let M, be a maximal ideal of Z[1/N'!] containing p, let
K be an algebraic closure of Z[1/N!]/9M,, and set:

gk = K ®zn1 on.

Let Gk be a simple, simply connected algebraic K-group such that gx = Lie(Gg). Because of the above
conditions, the above data reduce modulo 9,,. For a in S(gx), denote again by a the element 1®a of S(gx).
Since cp is an invertible element of K, ¢i,..., g, are algebraically independent elements of S(gx)°* so
that ¢y, ..., g, are homogeneous generators of S(gx)®% because of their degrees. Since cq is an invertible
element of K, “%;,..., %, are algebraically independent over K. Moreover, (aj,...,ar) is an element of
Sa-a,(8%) X -+ X S4-4,(8%) such that

ar(‘qr) + - +ar(‘qr) = 0.

Denote again by J the ideal of S(gx) generated by ¢, ..., °g, and denote by J; its intersection with S;(gx)

for all nonnegative integer i. Then (ay,...,ar) is not in Jg_g, X - -+ X J4—q, since c is invertible in K. As p
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is bigger than d the restriction to Sy—g,(g%) X - -+ X S4_q,(a%) of the quotient map (S(g;))f — (Se(g%)){ is
injective, whence a contradiction by Corollary 4.9,(ii). As a result, for ay, ..., a, in S(g°) such that

ai(‘q1) + -+ +a(“qr) = 0,

ay,...,ae are all in J. So by Proposition 3.7, the nullvariety of “%;,..., ‘g, in g/ has codimension ¢. Then
qy,- -, °qp s a regular sequence in S(g°), e is a good element of g and S(g°) is a free extension of the
polynomial algebra S(g¢)*" by Proposition 3.2.

5. CONSEQUENCES OF THEOREM 2 FOR THE SIMPLE CLASSICAL LLIE ALGEBRAS

This section concerns applications of Theorem 2 (or Theorem 4.1) to the simple classical Lie algebras.

5.1. The first consequence of Theorem 4.1 is the following.
Theorem 5.1. Assume that g is simple of type A or C. Then all the elements of § are good.

Proof. This follows from [PPY(07, Thm. 4.2 and 4.4], Theorem 4.1 and Proposition 3.4. |

5.2. In this subsection and the next one, g is assumed to be simple of type B or D. More precisely, we
assume that g is the simple Lie algebra so(V) for some vector space V of dimension 2¢ + 1 or 2¢. Then g
is embedded into § := gl(V) = End(V). For x an endomorphism of V and for i € {1,...,dimV}, denote
by Q;(x) the coefficient of degree dimV — i of the characteristic polynomial of x. Then, for any x in g,
Qi(x) = 0 whenever i is odd. Define a generating family (gi,. .., g¢) of the algebra S(g)® as follows. For
i=1,...,6—1,setq; ;= Q. fdimV =2£ + 1, set gr = Oy and if dimV = 2¢, let g, be a homogeneous
element of degree ¢ of S(g)? such that Oy, = q%.

Let (e, h, f) be an sl-triple of g. Following the notations of Subsection 3.2, for i € {1,..., ¢}, denote by
¢g; the initial homogeneous component of the restriction to g/ of the polynomial function x — g;(e + x), and
by ¢; the degree of “g;. According to [PPY07, Thm.2.1], ¢g,,..., °q, are algebraically independent if and
only if

dimg® + € —2(61+---+6¢) = 0.

Our first aim in this subsection is to describe the sum dimg® + £ — 2(6;+ - - - + d¢) in term of the partition of
dimV associated with e.

Remark 5.2. The sequence of the degrees (01, . ..,0¢) is described by [PPY07, Rem. 4.2].
For A = (44,..., ;) a sequence of positive integers, with 4;> --- > Ay, set:
|4 =k, r(A) := 4+ + A.

Assume that the partition A of r(2) is associated with a nilpotent orbit of so(k’Y). Then the even integers
of A have an even multiplicity, [CMc93, §5.1]. Thus k and (1) have the same parity. Moreover, there is an

involution i — i’ of {1,...,k} such thati =7 if A;is odd, and i’ € {i — 1,i + 1} if A; is even. Set:
S() = Z i— Z i
i=i’,iodd i=i’,ieven

and denote by n, the number of even integers in the sequence A.

From now on, assume that A is the partition of dimV associated with the nilpotent orbit G(e).
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Lemma 5.3. (i) IfdimV is odd, i.e., k is odd, then

dime® + € — 2614 - +6¢) = % + 5.
(ii) If dimV is even, i.e., k is even, then
dime + € — 261+ +6) = K L s,
Proof. (i) If dimV is odd, then by [PPY07, §4.4, (14)],
26+ +67) = dimg® + dir;V + k_z’” ~ S,
whence
dimg® + € — 2(51+- - +6¢) = % + S

since dimV = 2¢ + 1.
(1) If dim 'V is even, then 6, = k/2 by [PPY07, Rem. 4.2] and by [PPY07, §4.4, (14)],

261+ +6¢) + k = dimg® + dirgv X _2'” — S
whence
dima + £ — 26,4+ = K s
since dimV = 2¢. ]
The sequence A = (44, ..., Ax) verifies one of the following five conditions:

1) A and A;_; are odd,

2) Ay and A;_; are even,

3) k>3, Ay and A; are odd and 4; is even forany i € {2,...,k— 1},

4) k > 4, A is odd and there is k' € {2,...,k — 2} such that Ay is odd and 4; is even for any i €

(k' +1,...,k—1},

5) k=1 or A is odd and 4; is even for any i < k.
For example, (4,4, 3, 1) verifies Condition (1); (6,6, 5,4, 4) verifies Condition (2); (7,6,6,4,4,4,4,3) ver-
ifies Condition (3); (8,8,7,5,4,4,2,2,3) verifies Condition (4) with ¥ = 4; (9) and (6, 6,4, 4, 3) verify
Condition (5). If k = 2, then one of the conditions (1) or (2) is satisfied.

Definition 5.4. Define a sequence A* of positive integers, with [1*| < |4], as follows:
- if k = 2 or if Condition (3) or (5) is verified, then set A* = A,
- if Condition (1) or (2) is verified, then set:
A=A, ., Ak2),
- if k > 3 and if the Condition (4) is verified, then set
A" = (/11, e ,/1k/_1).

In any case, the partition of r(1*) corresponding to A* is associated with a nilpotent orbit of so(k”").
Recall that n, is the number of even integers in the sequence A.

Definition 5.5. Denote by d, the integer defined by:
- ifk =2, thend, :=ny,
- if k > 2 and if Condition (1) or (4) is verified, then d; := d-,

- if k > 2 and if Condition (2) is verified, then d, := dj- + 2,
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- if k > 2 and if Condition (3) is verified, then d; := 0,
- if Condition (5) is verified, then d, := 0.

Lemma 5.6. (i) Assume that k is odd. If Condition (1), (2) or (5) is verified, then

m=zr= _2k_ ! +SW) = A |;*| -1 + S (A%).
Otherwise, .
@l§11+su)=ﬂil%ill+suﬂ+k—uﬂ—z
(i) If k is even, then
'”;k+su):ﬁigﬁﬂ+suw+dﬁ—@ﬁ

Proof. (i) If Condition (3) or (5) is verified, there is nothing to prove. If Condition (1) is verified,
ny = ny, S =8SUA")+1.

Then b1 1
W_T_+S(/1)=%—I+S(/l*)+l

whence the assertion. If Condition (2) is verified,
ny=ny +2, S =S).

Then,
ny—k-1 ny — A% -1

whence the assertion. If Condition (4) is verified,
ny=ny +k—|1% -2, S =SU)+k—-|17-1.
Then,
@l§11+sg):ﬁil%111—1+suﬂ+k—uﬂ—1

whence the assertion.
(i) If k = 2 or if k£ > 2 and Condition (3) or (5) is verified, there is nothing to prove. Let us suppose that
k > 3. If Condition (1) is verified,

ny = ny, SA)=85@A)-1.

Then i e
mr +S@):Z£§LJ+1+SQU—1

whence the assertion since d, = d,-. If Condition (2) is verified,
ny=ny +2, S =S).

Then,

k s
M +Su):ﬂL§LJ+2+Suw

whence the assertion since d; — dj- = 2. If Condition (4) is verified,

ny=ny +k— |1 -2, SA=SA)+[|+1-k

Then,

+k
mz k= =1+ S + |1 —k+1

whence the assertion since d; = d . |
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Lemma 5.7. (i) If A1 is odd and if A; is even for i > 2, then dimg® + £ — 2(61 + - -+ + d¢) = 0.
(ii) If k is odd, then dimg® + € — 2(61+ -+ -+ 6¢) = ny — d,.
(iii) If k is even, then dimg® + € — 2(01+ - - -+ 6¢) = d,.

Proof. (i) By the hypothesis, ny = k — 1 and S (1) = 1, whence the assertion by Lemma 5.3,(i).

(i1) Let us prove the assertion by induction on k. For k = 3, if 4; and A, are even, n; = 2, d; = 0 and
S (1) = 3, whence the equality by Lemma 5.3,(i). Assume that k > 3 and suppose that the equality holds for
the integers smaller than k. If Condition (1) or (2) is verified, then by Lemma 5.3,(i), Lemma 5.6,(i) and by
induction hypothesis,

dimg® + € —2(51+ -+ 6p) = nyp — dy-.
But if Condition (1) or (2) is verified, then n; — dy = ny — d+. If Condition (5) is verified, then
ny=k—-1, S) =k, dy =0,

whence the equality by Lemma 5.3,(i). Let us suppose that Condition (4) is verified. By Lemma 5.3,(i),
Lemma 5.6,(i) and by induction hypothesis,

dimge+€—2(61+---+65)=m»«—dﬂ»« +k—|/l*|—2=n,1—d/1

whence the assertion since Condition (3) is never verified when % is odd.

(iii) The statement is clear for k = 2 by Lemma 5.3,(ii). Indeed, if Condition (1) is verified, then d; =
ny, = 0 and S(1) = —1 and if Condition (2) is verified, then d; = n) = 2 and S(1) = 0. If Condition (3)
is verified, ny = k— 2 and S(1) = 1 — k, whence the statement by Lemma 5.3,(ii). When Condition (4)
is verified, by induction on |4], the statement results from Lemma 5.3,(ii) and Lemma 5.6,(ii), whence the
assertion since Condition (5) is never verified when k is even. O

Corollary 5.8. (i) If A, is odd and if A; is even for all i > 2, then e is good.

(1) If k odd and if ny = d,, then e is good. In particular, if g is of type B, then the even nilpotent elements
of g are good.

(iii) If k even and if d) = 0, then e is good. In particular, if g is of type D and of odd rank, then the even
nilpotent elements of g are good.

Proof. As it has been already noticed, by [PPY07, Thm. 2.1], the polynomials “g, ..., %, are algebraically
independent if and only if
dimg® + € - 2(61+---+6¢) = 0.

So, by Theorem 4.1 and Lemma 5.7, if either A; is odd and A; is even for all i > 2, or if k is odd and n,; = d,,
orif kis even and d, = 0, then e is good.

Suppose that e is even. Then the integers Ay, . . ., 4; have the same parity, cf. e.g. [C85, §1.3.1]. Moreover,
ny = d, = 0 whenever Ay, ..., A; are all odd (cf. Definition 5.5). This in particular occurs if either g is of
type B, or if g is of type D with odd rank. O

Remark 5.9. The fact that even nilpotent elements of g are good if either g is of type B, or is g is of type D
with odd rank, was already observed by O. Yakimova in [Y09, Cor. 8.2] with a different formulation.

Definition 5.10. A sequence A = (4;,..., ) is said to be very good if n, = d, whenever k is odd and if
d, = 0 whenever k is even. A nilpotent element of g is said to be very good if it is associated with a very
good partition of dim V.

According to Corollary 5.8, if e is very good then e is good. The following lemma characterizes the very

good sequences.
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Lemma 5.11. (i) If k is odd then A is very good if and only if A1 is odd and if (A, ..., A) is a concatenation
of sequences verifying Conditions (1) or (2) with k = 2.

(i1) If k is even then A is very good if and only if A is a concatenation of sequences verifying Condition (3)
or Condition (1) with k = 2.

For example, the partitions (5, 3,3,2,2) and (7,5, 5,4,4,3,1,1) of 15 and 30 respectively are very good.

Proof. (i) Assume that A; is odd and that (4, ..., ;) is a concatenation of sequences verifying Condi-
tions (1) or (2) with k = 2. So, if k > 1, then ny, — d, = ny)- — dy-. Then, a quick induction shows that
ny—dy =nq,) —d,) = 0since A is odd. The statement is clear for k = 1.

Conversely, assume that n; — d, = 0. If A verifies Conditions (1) or (2), then ny — d, = njy» — dy- and
|[4¥] < |4]. So, one can assume that A does not verify Conditions (1) or (2). Since k is odd, A cannot verify
Condition (3). If A verifies Condition (4), then ny, —d, = ny — dy» > ny — dy- = 0. This is impossible since
ny —d, = 0. If A verifies Condition (5), then ny — d) = n,. So, ny —d, = 0if and only if k = 1. Thereby, the
direct implication is proven.

(i1) Assume that A is a concatenation of sequences verifying Condition (3) or Condition (1) with & = 2.
In particular, 4 does not verify Condition (2). Moreover, Condition (5) is not verified since k is even. Then
d, = 0 by induction on |1|, whence e is very good.

Conversely, suppose that d; = 0. If kK = 2, Condition (1) is verified and if k = 4, then either Condition (3)
is verified, or Ay, ..., A4 are all odd. Suppose k > 4. Condition (2) is not verified since d; = d,, + 2 in this
case. If Condition (1) is verified then d;, = 0 and A is a concatenation of A* and (Ai—1, A). If Condition (4)
is verified, then d;, = 0 and A is a concatenation of A, and a sequence verifying Condition (3), whence the
assertion by induction on |A| since Condition (5) is not verified when & is even. O

5.3. Assume in this subsection that A = (A4, ..., Ag) verifies the following condition:

(*) For some k' € {2,...,k}, A;is even for all i < k', and (A 41, ..., Ak)
is very good.

In particular, £’ is even and A is not very good by Lemma 5.11. For example, the sequences A = (6,6,4,4,3,2,2)
and (6,6,4,4,3,3,3,2,2, 1) satisfy the condition (x) with k* = 4. Define a sequence v = (vy,...,v) of inte-
gers of {1,...,{} by
A+ -+ 4
—
Ifk’ =k, then v = (A41+ - -+ A;)/2 = r(1)/2 = {. Define elements p1, ..., pp of S(g°) as follows:

- if k" <k,setforie{l,....k'}, pi :== %y,

- itk =k,setforie{l,...,k' =1}, pi := g, and set py := (eqvk)z. In this case, set also py := “g,,.

Viefl,...,k'}, Vi =

Remind that §; is the degree of “g; fori = 1,...,{. The following lemma is a straightforward consequence
of [PPY07, Rem. 4.2]:

Lemma 5.12. (i) Foralli € {1,...,k’}, deg p; = i.
(ii) Set vo := 0. Thenforie {l,...,kK'}andre{l,...,vp — 1},

0, =1 & vi.1 <r<yv,
and 6¢ = k/2. In particular, for r € {1,...,vp — 2}, 6, < 8,41 if and only if r is a value of the sequence v.

Example 5.13. Consider the partition 4 = (8,8,4,4,4,4,2,2,1,1) of 38. Then &k = 10, ¥ = 8 and
v = (4,8,10,12,14,16,17,18). We represent in Table 1 the degrees of the polynomials py,..., pg and
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‘Ga=p1  ‘qs=p>

‘3 ‘7
‘p2 ‘4s ‘Qu=p3  ‘Qu=ps Qu=ps  ‘Qi6=Ps
‘q1 ‘qs “qo ‘qu ‘q13 ‘qis ‘qur=p1  ‘Qi3=ps
degrees 1 2 3 4 5 6 7 8
TaBLE 1.
q1,- - -, ‘q13- Note that deg °gj9 = 5. In the table, the common degree of the polynomials appearing on the

ith column is i.

Let s be the subalgebra of g generated by e, A, f and decompose V into simple s-modules V1, ...,V of
dimension Ay, ..., A respectively. One can order them so that for i € {1,...,k"/2}, Vai-1)+1y = Vo;. For
i e{l,...,k}, denote by e; the restriction to V; of e and set g; := el’.l"_l. Then ¢; is a regular nilpotent element
of gl(V;) and (adh)g; = 2(A; — 1)g;.

Forie{l,...,k'/2}, set

VIi] := Voi1)41 + Vo
and set
V0] :=Vp @& -0V,

Then fori € {0, 1,...,k’/2}, denote by g; the simple Lie algebra so(V[i]). The elements of g¢ and g/ stabilize
V[i]. In particular, for i € {1,...,k"/2}, exi-1)+1 + €; is an even nilpotent element of g; with Jordan blocks
of size (Aa(i-1y+1, A2i). Leti € {1,...,k’/2} and set,

Zi ‘= &23i-1)+1 T &2i.
Then z; lies in the center of g¢ and
(adh)z; = 2(Axi-1)+1 — Dzi = 2(A2; — Dz;.

Moreover, 2(42; — 1) is the highest weight of adz acting on g7 := g;Ng°, and the intersection of the 2(A2; —1)-
eigenspace of adh with g is spanned by z;, see for instance [Y09, §1]. Set

g = @@ B = s0(V[0]) @so(V[1])®--- @ so(V[k'/2])

and denote by g° (resp. §f ) the centralizer of e (resp. f) in g. For p € S(g°), denote by p its restriction to
§f ~ (g°)*; it is an element of S(g°). Our goal is to describe the elements P, . .., Py (see Proposition 5.18).
The motivation comes from Lemma 5.14.

Let G be the centralizer of e in the adjoint group G of g, and Gy its identity component. Let g{;g

(resp. §f;g) be the set of elements x € g/ (resp. §f ) such that x is a regular linear form on g¢ (resp. §°).

Lemma 5.14. (i) The intersection gley NG

(ii) The morphism

I is a dense open subset of §{eg.

0: Gixy —of, (g0 gx

is a dominant morphism from G{ X §f to o

27



Proof. (i) Since A verifies the condition (x), it verifies the condition (1) of the proof of [Y06, §4, Lem. 3]
and so, gég N gf is a dense open subset of gf Moreover, since g° and g° have the same index by [Y06,
Thm. 3], greg N gf is contained in gég

(ii) Let m be the orthogonal complement to g in g with respect to the Killing form (.,.). Since the
restriction to §f>< g of {.,.) is nondegenerate, g = g & m and [g,m] € m. Set m¢ := m N g°. Since the

restriction to ¢’ X g° of {.,.) is nondegenerate, we get the decomposition

¢ =g"em’
and m® is the orthogonal complement to qf

By (i), g N T

in g°. Moreover, [g°, m¢] € m°.
+o. Letx € g{eg NG . The tangent map at (14, x) of 6 is the linear map

<f

g xg — g, (U, y) — ux+y,

where u. denotes the coadjoint action of u on o/ =~ (¢©)*. The index of §° is equal to the index of g°
and [g°,m¢] c m¢. So, the stabilizer of x in §° coincides with the stabilizer of x in g¢. In particular,
dimm®.x = dimm®. As aresult, 6 is a submersion at (1,4, x) since dim g/ = dimme + dimﬁf . In conclusion,

6 is a dominant morphism from G§ X §f to o O

Let uy,...,uy, be the strictly decreasing sequence of the values of the sequence Ai,..., Ay and let
ki,...,ky be the multiplicity of u,...,u, respectively in this sequence. By our assumption, the integers
UiseosMm>k1,. .., Kk, are all even. Notice that kj+---+k,, = k’. The set {1,...,k"} decomposes into parts
Ki,..., K, of cardinality ki, ..., k,, respectively given by:

Vsell,...,m}, K, ={ko+---+ke_1 +1,...,ko+ -+ Kk}
Here, the convention is that ky := 0.

Remark 5.15. Forse {l,...,m}andi € K§,

Ms—1

v,-:=ko(*§)+ kg (L )+j<‘§>,

where j=i—- (kg +---+ks_1)and gy = 0.

Decompose also the set {1,...,k"/2} into parts Iy, ..., I,, of cardinality k;/2,.. ., k,/2 respectively, with
ko + -+ ks ko +---+k
Vsellm, L=t ook

For p € S(g°) an eigenvector of ad &, denote by wt(p) its ad h-weight.

Lemma 5.16. Let s€{l,...,m}andi € K;.
() Set j=i—(kg+ -+ kg_1). Then,
s—1

W) = 2Q2vi =) = ) 2l = 1) + 2 = 1),
=1

Moreover, if p € {°q1, ..., Ge-1, (eqtv)z} is of degree i, then wt(p) = wt(p) < 2(2v; — i) and the equality holds
if and only if p = p;.
(ii) The polynomial p; is ink[z;, € [ U ... U L].

Proof. (i) This is a consequence of [PPY07, Lem. 4.3] (or [Y09, Thm. 6.1]), Lemma 5.12 and Remark 5.15.
(ii) Let & be the centralizer of fin § = gl(V), and let eézw be the initial homogeneous component of the
restriction to

(gl(VOD) @ gU(V[1]) @ - -- @ gl(V[K'/2])) N &
28



of the polynomial function x — Q»,,(e + x). Since p; # 0, p; is the restriction to 7 of ‘@ZW and one has

wi(‘0,,) = wi(p) = 2Q2v; — i),  deg‘Q,,, =degp; = i.
Then, by (i) and [PPY07, Lem.4.3], eézw is a sum of monomials whose restriction to 3’ is zero and of
monomials of the form
(Sg(l)l e Sg(l)kl) s (gg(s—l)l . Sg(x—l)ks_l )(sg(s)jl e sg(s)ji)

where ji< --- < j; are integers of Ky, and ¢V, ..., ¢"™ D ¢ are permutations of K1, ..., K1, {ji,..., ji}
respectively. Hence, p; is in k[z;, [ € I} U ... U I;]. More precisely, for [ € I) U ..., UI, the element z
appears in p; with a multiplicity at most 2 since z; = &x¢-1)+1 + &2 |

Let s € {1,...,m} and i € K;. In view of Lemma 5.16,(ii), we aim to give an explicit formula for p; in
term of the elements zj, ..., zx;2. Besides, according to Lemma 5.16,(ii), we can assume that s = m. As a
first step, we state inductive formulae. If k&’ > 2, set

g = so(V[1]) ®--- @ so(V[K' /2 - 1]),
and let 7}, . .., Py, be the restrictions to (@) := 3" Ng/ of py,..., Py respectively. Note that p,,_, = p}, = 0.
Set by convention ko := 0, po := 1, p, := 1 and p_; := 0. It will be also convenient to set
K i=ky+- +kyoq.
Lemma 5.17. (i) If k,, = 2, then
Pt = 2P 2wy and  Preys = e (@)’
(i) If k,, > 2, then
Piest = Plest = 2P 2
and for j=2,...,ky,
Piesj = ﬁl/c*+j - 25/;*+j—1 Wt ﬁ/’mj—z (Zk//2)2«
Proof. Fori=1,...,k'/2, let w; be the element of g{ = g; N g/ such that
(adh)w; = =2(Ay; — Dw; and  det(e; + w;) = 1.

Remind that p;(y), for y € ¢/, is the initial homogeneous component of the coefficient of the term 7™ V-2
in the expression det (T — e — y). By Lemma 5.16,(ii), in order to describe p;, it suffices to compute det (T —
e— sy —---— Sk//zwk//z), with sq,..., Sk /2 in k.

1) To start with, consider the case k¥’ = k,, = 2. By Lemma 5.16, p; = az; and p; = bz% for some a,b € k.
One has,

det(T — e — sywy) = T?M = 25 TH + s%.
As aresult,a = —2 and b = 1. This proves (i) in this case.

2) Assume from now that K’ > 2. Setting e’ := ej + - - - + exj2—1, observe that

4) det(T — e — sjwy — -+ — S Wk 2)
=det(T — € — sjwy — - = spp-1wr 2-1) det (T — e 2 — sp pWe /2)
=det(T — ¢ — sywy — -+ — spjp_1wp ja—1) (TH" = Dy TH? + S/%//z)

where the latter equality results from Step (1).
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(i) If k,, = 2, then k* = k’ — 2 and the constant term in det(7 — ¢’ — syw; — - - - — g jp—1Wk' j2-1) 1S P By

Lemma 5.16,(1),
WP 1) = WUPL) + Wiz 12)
and ﬁ,;* is the only element appearing in the coefficients of det(7 — e’ — sjw; — - -+ — Sgj2—1 Wk j2—1) of this
weight. Similarly,
WU(Ppe42) = W) + Wi((zi 12)°)

and ﬁ,;* is the only element appearing in the coefficients of det(7 — e’ — sjw; — - -+ — Sgj2—1 Wk j2—1) of this
weight. As a consequence, the equalities follow.

(i1) Suppose k;, > 2. Then by Lemma 5.16,(i),

WD 1) = WPy y) = WD) + Wiz 2).

Moreover, p;.,; and p;. are the only elements appearing in the coefficients of det(7 — ¢ — sjw; — «+- —
Sk j2—1Wir 2—1) of this weight with degree k* + 1 and k* respectively. Similarly, by Lemma 5.16,(i), for
JEA2, kb,

WPy ) = WDy ) = WP, ) + WHER 2) = WE Doy 10) + WH(E1 2)°).

Moreover, P, i Dy j-1 and Dis j—2 are the only elements appearing in the coeflicients of det(7 — ¢’ —

+j>
Sjwy = - -+ = S 2—1Wy /2—1) of this weight with degree k* + j, k* + j— 1 and k" + j — 2 respectively.
In both cases, this forces the inductive formula (ii) through the factorization (4). O
For a subset I = {iy,...,i} € {1,...,k’/2} of cardinality /, denote by o7 1,...,0y; the elementary sym-
metric functions of z;,, ..., z;:
VjE{l,...,l}, o= Z z,-alz,-az...ziuj.

1<a1<a2<-~-<aj<l

Set also o7 := 1 and oy := 0if j > [ so that o ; is well defined for any nonnegative integer j. Set at
last oy := 1 forany jif I = @. If I = Iy, with s € {1,...,m}, denote by O'(S) for j > 0, the elementary
symmetric function o7 ;.

Proposition 5.18. Let s € {1,...,m}and je{1,...,ks}. Then

- ® o _ M 502 N 6 0
Prgsthrvj = 1 Prgrost Z‘TY V= GO0 ) Z‘TS .

Example 5.19. If m = 1, then k’ = k; and
1 (1) (1) 1 _ 20_(1)

pP1==0,0y =04 0, =-2z1 + -+ w2
Py = O_(l) (1) + (0.(1))2 + 0_(1)0.(1) 20_(1) + (‘7(11))2’

(O’k,/z) = (a1z2... 2w 2)

Proof. By Lemma 5.16(ii), one can assume that s = m. Assume m > 1 and prove the statement by induction
onje{l,... ky}

- If k,, = 2, the statement follows from Lemma 5.17,(1).

- Assume k;, > 2 and retain the notations of Lemma 5.17. In particular, set again

kK= k0+"'+km_1.
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For any r > 0, we set 0. := o, where I’ = {% +1,..., - 1} c I,. In particular, 0'6 = 1 by convention.
Observe that for any r > 1,
o™ =0 +0_z
gy r r—1%K /2
Setting o, := 0, the above equality remains true for = 0.
Our induction hypothesis says that the formula holds for the polynomials p, ..., pi,_;. So, by Lemma 5.17,(ii),

for je{2,...,ky},

— —
Prvj = DPiegj— 2Pk*+j 1Zk//2+17k*+j 2(Zk//2)

= pk*(( l)jZO' O- - 2(- l)j IZO-] r— 10- Zk’/2+( 1)] 220-] =207 Zk’/l)

r=0 r=0 r=0
J J-1 Jj=2
_ 1 j= / ’ 2 / ’ ’ 7N 2
= (D) oo +20) o, o)+ () 0, 2,000 ))
r=0 r=0 r=0

since pr. = py. On the other hand, one has

J J

m m
E 0'( )0'( ) = E (a}_r + 0';-_,_1zk//2)(0'; +0_ 2K 2)
r=0 r=0

J J J J
’ ’ ’ ’ ’ ’ ’ ’ 2
Z Tj 0t (Z Ojr-19r+ Z OO ) W2t (Z Tir 1T D) %o 2
r=0 r=0 r=0 r=0
J J-1 Jj=2
’ ’ ’ ’ ’ N 2
Z 0+ 2 (Z i1 02 + (Z T i p20) T
r=0 r=0 r=0

Thereby, for any j € {2,...,k,}, we get

Presj= (=1 ppe er(m) o).

For j =1, since ﬁ;(* = P, by Lemma 5.17,(ii), and our induction hypothesis,
Prest = Doyt = 2D 22 = Ppo(=201) = 2P w02 = ﬁk*(—ZO'(lm)).
This proves the first equality of the proposition.

For the second one, it suffices to prove by induction on s € {1,...,m} that
= — (D oD
Prorotkiy = O+ O 1/2)
For s = 1, then py ,...k , = Pp = 1 and o5 = 1 by convention. Assume s > 2 and the statement true for

1,...,s— 1. By the first equality with j = kg, Py 1..sk, = (= Ds Dyt (O'](:)/z)z, whence the statement by
induction hypothesis since k; is even. O

Remark 5.20. As a by product of the previous formula, whenever k¥’ = k, one obtains

= o) (m)
P =02 Ok, 20

Forse{l,...,m}and je€{l,...,k}, set
ﬁk0+---+kx,1+j
Photethy_+j = — .
pk0+-~-+k3_1

Proposition 5.18 says that pj...4x,_,+; i an element of Frac(S(a©)*) N S(g%) = S(g°)%".
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Lemma 5.21. Let s € {l,...,m}and j € {ky/2 + 1,...,ks}. There is a polynomial RE.‘Y) of degree j such that

Phkot-tho_i+j = RES)(Pk0+-~-+kS_1+1, e e s Phottky kg /2)-
In particular, for any j € {k1/2+1,...,k}, one has

_ D — _
Pj=R5- )(Pl,---,Pkl/z)-

Proof. 1) Prove by induction on j € {1, ..., k,/2} that for some polynomial Tﬁ.‘v) of degree j,

O-ES) T( )(pk0+ Ahkg_g 1o apk0+---+ks,1+j)'
By Proposition 5.18, py+-tk,_,+1 = —(O'(IS)O'E)S) + O’E)S)O'(ls)) = —20'(15). Hence, the statement is true for j = 1.
Suppose j € {2,...,k;/2} and the statement true for O'(ls),...,O'B.S_)l. Since j < ks/2, 0'5) # 0, and by

Proposition 5.18,

Proresterry = Do +oor?) + (- 1)/20(” P = 2o + (- 1)/20(” .

So, the statement for j follows from our induction hypothesis.
(s) (s)

2) Let j € {kg/2 + 1,...,kg}. Proposition 5.18 shows that o 4...+x,_,+; 1S @ polynomial in Ty aee s Op e
Hence, by Step 1), pxy+-..+k,_,+; 1S @ polynomial in

pk0+---+kx,1+l5 e apk0+---+kx,1+kx/2'
Furthermore, by Proposition 5.18 and Step (1), this polynomial has degree ;. O

Remark 5.22. By Remark 5.20 and the above proof, if kX’ = k then for some polynomial R of degree k,,/2,

Pk 5
W = O',Em)/z R(Okg -ty +15 + - + 5 Pkt 4 /2)-
Thor2 " Tk /2
Let qf be the set of nonregular elements of the dual g of g°.
sing

Theorem 5.23. (i) Assume that A verifies the condition (x) and that A1 = --- = Ap. Then e is good.
(ii) Assume that k = 4 and that A1, A3, A3, A4 are even. Then e is good.

For example, (6, 6, 6, 6, 5, 3) satisfies the hypothesis of (i) and (6, 6,4, 4) satisfies the hypothesis of (ii).
Remark 5.24. If A verifies the condition (*) then by Lemma 5.7,
dimg® + € —2(6 + -+ 6¢) = k.

Indeed, if kis odd, then ny—d, = ny —dy where A’ = (A4, ..., A, A1) sothat ny—dy = ny—dy =ny =k
since Ay, is odd. If kis even, then d; = ny = k' where I’ = (A4, ..., Ap).

Proof. (i) In the previous notations, the hypothesis means that m = 1 and k¥’ = k,,,. According to Lemma 5.21
and Lemma 5.14, for je {k’/2+ 1,...,k' = 1},

pj= Rﬂl)(m, <5 DI J2)s
where RB.D is a polynomial of degree j. Moreover, if k' = k, then by Remark 5.22 and Lemma 5.14,

P =R(pr1,- .., pip),

where R is a polynomial of degree k/2.
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- Ifk <k,setforany je{k’/2+1,...,k'},

1
rj = qy, —R;. )(qvl,...,qvk,/z).
Then by Lemma 5.12,
Vjelk'/2+1,...,k'}, degrj>j+1.
- Ifk =k, setfor jef{k/2+1,....k — 1},

rii= Gy = R @ ye,) a0d 1= Gy = Ry G-
Then by Lemma 5.12,
Vjetk/2+1,...,k=1}, deg’;j>j+1 and degr >k/2+1.

In both cases,

{gj: jell,....00 N wpprts vt U drepens e
is a homogeneous generating system of S(g)°. Denote by & the sum of the degrees of the polynomials

qj» Jel, ..., 00N Vieppats - vl Tejaets ... T
The above discussion shows that & > &1 + - - - + 6, + k/2. By Remarks 5.24, one obtains

dimg® + ¢ - 26 <0.

In conclusion, by [PPY07, Thm. 2.1] and Theorem 4.1, e is good.
(ii) In the previous notations, the hypothesis means that &' = k
consequence of (i). Assume that m = 2. Then by Proposition 5.18, p; = —2z1, p, = Z%, P3 = —2Z%22 and

+and p3 = p1jjs. Setry = gqy, — iq,z,l

= 4. If m = 1 the statement is a

P4 = (z122)*. Moreover, p, = z1z>. Hence, by Lemma 5.14, p, = ip
and 3 := gy, — ¢y,qy,. Then deg “r, > 3 and deg r3 > 4. Moreover,

{q1,-..,qe} NMavy, gy} U, 13}

is a homogeneous generating system of S(g)°. Denoting by & the sum of the degrees of the polynomials

{6419---, e‘]f} N {quZ’ qu3} U {erZa er3}a

one obtains that § > &; + --- + 6, + 2. But dimg® + € =26, + ---+ ) = k' = 4 by Remark 5.24. So,
dimg° + ¢ — 26 < 0. In conclusion, by [PPY07, Thm. 2.1] and Theorem 4.1, e is good. |

6. EXAMPLES IN SIMPLE EXCEPTIONAL LIE ALGEBRAS

We give in this section examples of good nilpotent elements in simple exceptional Lie algebras (of type
Eg¢, F4 or G;) which are not covered by [PPY07]. These examples are all obtained through Theorem 4.1.

Example 6.1. Suppose that g has type E¢. Let V be the module of highest weight the fundamental weight
@ with the notation of Bourbaki. Then V has dimension 27 and g identifies with a subalgebra of sly7(k).
For x in sly;(k) and for i = 2,...,27, let p;j(x) be the coeflicient of 727~ in det(T — x) and denote by g;
the restriction of p; to g. Then (g2, g5, g6, g3, 49, ¢12) is a generating family of S(g)9 since these polynomials
are algebraically independent, [Me88]. Let (e, i, f) be an sl-triple of g. Then (e, &, f) is an slp-triple of
sly7(k). We denote by °p; the initial homogeneous component of the restriction to e + 3/ of p; where 3 is
the centralizer of f in sly7(k). As usual, “g; denotes the initial homogeneous component of the restriction to
e+ g/ of g;. Fori=2,5,6,8,9,12,
deg °p; < deg ;.
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In some cases, from the knowledge of the maximal eigenvalue of the restriction of ad/ to g and the ad A-
weight of “p;, it is possible to deduce that deg °p; < deg ¢g;. On the other hand,

1
deg g, + deg “gs + deg “ge + deg °gg + deg °go + deg ‘1o < E(dim g° +6),

with equality if and only if “gy, “gs, °qe, °qs, °q9, °q12 are algebraically independent. From this, it is possible
to deduce in some cases that e is good. These cases are listed in Table 2 where the nine columns are indexed
in the following way:

the label of the orbit G(e) in the Bala-Carter classification,

the weighted Dynkin diagram of G(e),

the dimension of g¢,

the partition of 27 corresponding to the nilpotent element e of sly;(k),
the degrees of “pa, °ps, “ps, Ps, Po ‘P12

their ad h-weights,

the maximal eigenvalue v of the restriction of ad/ to g,

the sum X of the degrees of °p, °ps, P, Ps, P9, P12,

the sum &’ = J(dimg® + ¢).

N A S e

Label O_O_I_O_O dim ¢° partition deg ‘p; weights v z )

1. Es 2 2 2 2 2 6 17,9,1) L1,1,1,1,1  28,10,14,1622 16 6 6
2

2. Eg(a)) 2 2 0 2 2 8 (13,9,5) LL1,1,1,1  2810,14,1622 16 6 17
2

3. Ds 2 0 2 0 2 10 (11,9,5,1,1) L1,1,1,1,1  28,10,14,1622 14 6 8
2

4. As + A, 2 0 2 0 2 12 9,7,5%,1) L1,1,1,1,2  28,10,141620 10 7 9
0

5. Ds(ay) 1 1 0 1 1 14 8,7,6,32,1)  1,1,1,1,22 28,10,14,1420 10 8 10
2

6. As 2 1 0 1 2 14 9,6%,5,1) 1L1,1,1,1,2  28,10,14,1620 10 7 10
1

7. Ay + A, 1 1 0 1 1 16 (7,6,5.4,3,2) 11,1222 28,10,12,1420 8 9 11
1

8. D, 0 0 2 0 0 18 (73,19 1,1,1,222 28,10,12,1420 10 9 12
2

9. Az + 24, 0 0 2 0 0 20 (5%,3%,1%) 1,1,2223 288121418 6 11 13
0

10. Ap + 24, 1 0 1 0 1 24 (5,4%,3%,22,1)  1,1,2223 288,12,1418 5 11 15
0

TaBLE 2. Data for Eq
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For the orbit 1, ¥ = ¥’. Hence, %2, g5, s, g3, 99, °q12 are algebraically independent and by Theorem 4.1,
e is good. For the orbits 2.3,...,10, we observe that £ < ¥’, i.e.,

1
deg °py + deg °ps + deg °pe + deg °pg + deg “po + deg ‘p12 < E(dim g° + 6).

So, we need some more arguments that we give below.

Since 16 < 22, deg “p1» < deg %q1».

Since 14 < 16, deg °p; < deg ¢, fori =9, 12.

Since 10 < 14, deg °p; < deg “g; fori = 8,9.

Since 10 < 14, deg °pg < deg ‘qs. Moreover, the multiplicity of the weight 10 equals 1. So, either
deg °ge > 1, or deg °q1» > 2, or q1» € keqé.

6. Since 10 < 14, deg °p; < deg ¢q; for i = 8,9. Moreover, the multiplicity of the weight 10 equals 1.
So, either deg °q¢ > 1, or deg “q12 > 2, or g2 € k"qé.

7. Since 8 < 10 and 2x8 < 20, deg ¢p; < deg g, fori = 6, 12.

8. Since the center of g° has dimension 2 and the weights of / in the center are 2 and 10, deg °ps <
deg °gs. Moreover, since the weights of & in g° are 0,2, 6, 10, deg °pg < deg °q9 and since the
multiplicity of the weight 10 equals 1, either deg °g¢ > 1, or deg °q1» > 2, or qy» € keqé.

9. Since 6 < 8 and 2x6 < 14, deg °p; < deg %q; fori =5, 9.

10. Since 5 < 8,2x5 < 12 and 3x5 < 18, deg °p; < deg %; fori =5,8,9,12.

In cases 2,3,4,7,9,10, the discussion shows that

A o O

1
deg %g» + deg g5 + deg “ge + deg °gg + deg °qo + deg °q1 = E(dim g° + 6).

Hence, ‘g2, “gs, “qe, “qs, °q9, °q12 are algebraically independent and by Theorem 4.1, e is good. In cases
5,6, 8, if the above equality does not hold, then for some a in k*,

1
deg %q> + deg gs + deg “ge + deg “gs + deg gy + deg “q12 — aqg) = z(dim g° +6).

Hence ‘g, °gs, “qs, °q3, “q9, (q12 — aqé) are algebraically independent and by Theorem 4.1, e is good.

In addition, according to [PPY07, Thm. 0.4] and Theorem 4.1, the elements of the minimal orbit of Eg,
labelled A, are good. In conclusion, it remains nine unsolved nilpotent orbits in type Eg.

Example 6.2. Suppose that g is simple of type F4. Let V be the module of highest weight the fundamental
weight @4 with the notation of Bourbaki. Then V has dimension 26 and g identifies with a subalgebra of
slye(k). For x in sk (k) and fori = 2, ..., 26, let p;(x) be the coefficient of 72~ in det (T — x) and denote by
g; the restriction of p; to g. Then (¢», g¢, g3, g12) is a generating family of S(g)? since these polynomials are
algebraically independent, [Me88]. Let (e, A, f) be an sl)-triple of g. Then (e, A, f) is an sl,-triple of slyg(k).
As in Example 6.1, in some cases, it is possible to deduce that e is good. These cases are listed in Table 3,
indexed as in Example 6.1.
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Label oO—C=0—>0 dimg° partition deg “p; weights v X X

1. F, 2 2 2 2 4 (17,9) L1,1,1 2,10,1422 22 4 4
2. B, 2 2 0 2 6 (11,9,5,1) L1,I,1  2,10,1422 14 4 5
3. Cs + A 0 2 0 2 8 9,7,5% 1L,L2  2,10,1420 10 5 6
4. C; 1 0o 1 2 10 9,6%,5) 1,1,1,2  2,10,1420 10 5 7
5. B3 2 2 0 0 10 (73, 1%) 1,1,22 2101220 10 6 7
6. Ay + Ay 0 2 0 0 12 (5%,33,1%) 1,223 281218 6 8 8
7. By + A, 1 0 1 0 14 (5%,42,3,2%,1) 1223 281218 6 8 9
8. Ay + Ay 0 1 0 1 16 (5,4%,3%,2% 1223 281218 5 8 10

TABLE 3. Data for F,

For the orbits 2, 3, 4, 5, 7,8, we observe that ¥ < ¥’. So, we need some more arguments to conclude as in
Example 6.1.

2. Since 14 < 22, deg “p12 < deg “q1».

3. Since 10 < 14, deg “pg < deg “gs.

4. Since 10 < 14, deg °pg < deg ‘gqs. Moreover, the multiplicity of the weight 10 equals 1 so that
deg °ge > 1 or deg “q12 > 2 or g2 € keqé.

5. The multiplicity of the weight 10 equals 1. So, either deg ‘g > 1, or deg °q1» > 2, or g2 € kqu.

7. Suppose that g2, °ge, “qs, ‘q12 have degree 1,2,2,3. We expect a contradiction. Since the center
has dimension 2 and since the multiplicity of the weight 6 equals 1, for z of weight 6 in the center,
gs € kez, ‘g3 € kz2, q12 € kz3. So, for some a and b in k*,

e2e

a3 —a‘qg =0, “qj,~bqg=0
Hence, ¢, g, q%qg - aqé, q%z - bqg are algebraically independent element of S(g)® such that
degeq2+deg"q6+dege(q§q8—aq§)+dege(q%2—bqg)> 1+42+54+7>2+34+9

whence a contradiction by [PPY07, Thm. 2.1].
8. Since 2x5 < 12 and 3x5 < 18, deg °gg > deg °pg and deg °q1» > deg °pi».

In addition, according to [PPY07, Thm. 0.4] and Theorem 4.1, the elements of the minimal orbit of Fy,
labelled A, are good. In conclusion, it remains six unsolved nilpotent orbits in type Fy.

Example 6.3. Suppose that g is simple of type G,. Let V be the module of highest weight the fundamental
weight @ with the notation of Bourbaki. Then V has dimension 7 and g identifies with a subalgebra of
sl;(k). For x in sly(k) and for i = 2,...,7, let p;(x) be the coefficient of 77~ in det (T — x) and denote by g;

the restriction of p; to g. Then ¢», g¢ is a generating family of S(g)? since these polynomials are algebraically
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independent, [Me88]. Let (e, i, f) be an sl-triple of g. Then (e, A, f) is an sl,-triple of sl;(k). In all cases,
we deduce that e is good from Table 4, indexed as in Example 6.1.

Label =0 dimg® partition deg‘p; weights v X X
1. G, 2 2 2 7 1.1 2,10 0 2 2
2. A +A4, 0 2 4 32,1 1.2 2.8 4 3 3
3. A, 1 o 6 (3,2%) 1,3 2,6 3 4 4
4. A 0 1 8 22,13 1.4 24 2 5 5

TaBLE 4. Data for G,

7. OTHER EXAMPLES, REMARKS AND A CONJECTURE

This section provides examples of nilpotent elements which verify the polynomiality condition but that
are not good. We also obtain an example of nilpotent element in type D7 which does not verify the polyno-
miality condition (cf. Example 7.8). Then we conclude with some remarks and a conjecture.

7.1. Some general results. In this subsection, g is a simple Lie algebra over k and (e, A, f) is an sl,-triple
of g. For p in S(g), p is the initial homogeneous component of the restriction of p to the Slodowy slice
e + o/ Recall that k[e + o/] identifies with S(g®) by the Killing form (., .) of g.

Let ng be in g° ®y /\2 g/ the bivector defining the Poisson bracket on S(g°). According to the main theorem
of [Pr02], S(g°) is the graded algebra associated to the Kazhdan filtration of the W-algebra H, so that S(g°)
inherits a Poisson structure. Let 1 be in S(g¢) ®x A2 g/ the bivector defining this other Poisson structure.
According to [Pr02, Prop. 6.3], g is the initial homogeneous component of 7. Denote by r the dimension
of g and set:

wi=n""0 e e AN/, wo =l e s e Nl

Then wy is the initial homogeneous component of w.
Letvy,...,u, be abasis of /. For u in S(g°) ® /\i g%, denote by j(u) the image of vj A - - - A v, by the right
interior product of y so that

jw e s@yex [\ o

Lemma 7.1. Let qy,...,q; be some homogeneous generators of S(¢)8 and let ry,...,rp be algebraically
independent homogeneous elements of S(g)°.
(i) For some homogeneous element p of S(g)%,

driA---Adrg = pdg;A--- Adg,.
(i) The following inequality holds:
: 1
Z deg r; < deg ’p + E(dim g°+0).

i=1
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(iii) The polynomials °ry, ..., ‘r¢ are algebraically independent if and only if
¢

1
Z deg r; = deg ’p + E(dim g+ 0).
i=1

Proof. (i) Since q,...,q¢ are generators of S(g)%, for i € {1,...,¢}, r; = Riqi,...,q¢) where R; is a
polynomial in £ indeterminates, whence the assertion with

OR;
p=det(—, 1<i,j<0).
dq;

(ii) Remind that for p in S(g), x(p) denotes the restriction to g/ of the polynomial function x — p(e + x).
According to [PPY07, Thm. 1.2],

J(dk(gr) A -+ A dk(ge)) = aw
for some a in k*. Hence by (i),
J(dk(ry) A -+ A di(re)) = ak(p)w.
The initial homogeneous component of the right-hand side is a“pwg and the degree of the initial homoge-
neous component of the left-hand side is at least

deg r+---+deg r, - ¢.

The assertion follows since w( has degree
1
—(dimg° - ¢).
> (dimg )

(iii) If °ry,..., °re are algebraically independent, then the degree of the initial homogeneous component
of j(driA--- Adrp) equals
deg ri+---+degrp— ¢
whence |
deg r;+---+deg r, = deg ‘p + E(dimge +0)
by the proof of (ii). Conversely, if the equality holds, then
5) JATIA - AdCrg) = apuy

by the proof of (ii). In particular, “ry, ..., °, are algebraically independent. O

OR;
Corollary 7.2. Fori=1,...,¢, letr; := Ri(q1, ..., q;) be a homogeneous element of S(g)® such that 8_l # 0.
i
Then °ry, ..., °r¢ are algebraically independent if and only if

¢
1
deg ri+---+degr, = Z deg ‘p;i + E(dimg" +£)
i=1

OR;
with pj = — fori=1,...,¢.
9q;

OR;
Proof. Since 8—l # Oforall i, rq,...,re are algebraically independent and
qi

L oR;
drin---Adre = 1—[ a—ldql/\---/\dqg

; qi

i=1

whence the corollary by Lemma 7.1,(iii). O
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Remind that g{ing is the set of nonregular elements of the dual g/ of g¢. If g'sfing has codimension at least 2

in g, we will say that ¢ is nonsingular.

Corollary 7.3. Let q1,...,q¢, F1,...,Fe, p be as in Lemma 7.1 and such that °ry, ..., °ry are algebraically
independent.

() If °p is a greatest common divisor of driA--- Ad%¢ in S(g%) Sk Ag g°, then o° is nonsingular.

(i) Assume that there are homogeneous polynomials pi, ..., pe in S(a¢)* verifying the following condi-
tions:

) °r,....rpareink[py,...,pel,
2) if d is the degree of a greatest common divisor of dp A --- Adp, in S(g°), then

1
degp+---+degp, =d + E(dimge + ).
Then g° is nonsingular.

Proof. (i) Suppose that °p is a greatest common divisor of drj A - -+ Ad“r in S(g°) R /\‘7 g¢. Then for some
w1 in S(g°) ®x /\f g whose nullvariety in g/ has codimension at least 2,

driA---Adrp = epwl.
f

sin,

Therefore j(w;) = awg by the equality (5). Since x is in g
(i1) By Condition (1),

o if and only if wy(x) = 0, we get (i).

driA---Adre =qdpA--- Adpy
for some ¢ in S(g)?, and for some greatest common divisor ¢’ of dp A --- Adp, in S(g¢) ® A o°,
dp,A---Adpy =4 wy.
So, by the equality (5),

(6) qq j(w1) = a‘p wo,
so that ¢p divides gq’ in S(g¢). By Condition (2) and the equality (6), wg and w; have the same degree. Then
qq’ is in k* °p, and for some a’ in k*,

J(w1) = d wo,
f

whence (ii), again since x is in Ssing if and only if wy(x) = 0. O

The following proposition is a particular case of [JS10, 5.7].

Proposition 7.4. Suppose that o° is nonsingular.
() If there exist algebraically independent homogeneous polynomials p, ..., pe in S(6°)% such that

1
degp,+---+degp, = E(dimge +0)

then S(a¢)* is a polynomial algebra generated by p1, ..., pe.
(i) Suppose that the semiinvariant elements of S(a¢) are invariant. If S(6°)% is a polynomial algebra then
it is generated by homogeneous polynomials py, ..., py such that
1
degp,+---+degp, = E(dimge +0).
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7.2. New examples. To produce new examples, our general strategy is to apply Proposition 7.4,(i). To that
end, we first apply Corollary 7.3 in order to show that g° is nonsingular. Then, we search for independent
homogeneous polynomials py, ..., p,in S(g°)* satisfying the condition (ii) of Corollary 7.3 with d = 0.

Example 7.5. Let e be a nilpotent element of so(k'”) associated with the partition (3, 3,2, 2). Then S(g°)% is
a polynomial algebra but e is not good.

In this case, £ = 5 and let g1, ..., g5 be as in Subsection 5.2. The degrees of %y, ..., %s are 1,2,2,3,2
respectively. By a computation performed by Maple, g, ..., ‘g5 verify the algebraic relation:

‘a5 — 4¢3 °g.

Set:
{ qgi if i=1,2,3,5
=9y 2 2 ;_
q; — 4q3q5 if i=4
The polynomials 7y, ..., rs are algebraically independent over k and
drin---Adrs =2q4dg A -+ Adgs
Moreover, ‘r4 has degree at least 7. Then, by Corollary 7.2, “ry, ..., %5 are algebraically independent since

1
E(dimge+5)+3:14:1+2+2+2+7,

and by Lemma 7.1,(ii) and (iii), r4 has degree 7.

A precise computation performed by Maple shows that %3 = p% for some ps in the center of g°, and that
°ry = p4°rs for some polynomial p4 of degree 5 in S(g°)%". Setting p; := ¢ for i = 1,2, 5, the polynomials
P1,--.,Ps are algebraically independent homogeneous polynomials of degree 1,2, 1,5, 2 respectively. Fur-
thermore, a computation performed by Maple proves that the greatest common divisors of dp;A --- Adps in
S(g®) have degree 0, and that py4 is in the ideal of S(g°) generated by p3 and ps. So, by Corollary 7.3,(ii), g° is
nonsingular, and by Proposition 7.4,(i), S(a¢)* is a polynomial algebra generated by py, ..., ps. Moreover,
e is not good since the nullvariety of py,..., ps in (¢°)* has codimension at most 4.

Example 7.6. In the same way, for the nilpotent element e of go(k1 1) associated with the partition (3, 3,2,2, 1),
one can show that S(g¢)* is a polynomial algebra generated by polynomials of degree 1, 1,2,2,7, ¢ is non-
singular but e is not good.

We also obtain that for the nilpotent element e of so(k!?) (resp. so(k!?)) associated with the partition
(5,3,2,2) or (3,3,2,2,1,1) (resp. (5,3,2,2,1), (4,4,2,2,1), or (3,3,2,2,1,1,1)), S(g9)% is a polynomial algebra, g¢
is nonsingular but e is not good.

We can summarize our conclusions for the small ranks. Assume that g = so(V) for some vector space V of
dimension 2¢ + 1 or 2¢ and let e € g be a nilpotent element of g associated with the partition A = (11,..., Ax)
of dimV. If £ < 6, our previous results (Corollary 5.8, Lemma 5.11, Theorem 5.23, Examples 7.5 and
7.6) show that either e is good, or e is not good but S(g¢)* is nevertheless a polynomial algebra and g° is
nonsingular. We describe in Table 5 the partitions A corresponding to good e, and those corresponding to
the case where e is not good. The third column of the table gives the degrees of the generators in the latter
case.

Remark 77.7. The above discussion shows that there are good nilpotent elements for which the codimension
of (ge):ing in (g°)* is 1. Indeed, by [PPY07, §3.9], for some nilpotent element ¢’ in B3, the codimension of

(ge’):ing in (g¢)* is 1 but, in B3, all nilpotent elements are good (cf. Table 5).
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Type e is good S(@)* is polynomial, g¢ is nonsingular degrees of the generators
but e is not good

B,,D,,n<4 any A (%]

Bs A+(3,3,2,2,1) 1=(3,3,2,2,1) 1,1,2,2,7

Ds A+#(3,3,2,2) A1=(3,3,2,2) 1,1,2,2,5

Bg 1¢1{(5,3,2,2,1),(4,4,2,2,1), 1€{(5,3,2,2,1),(4,4,2,2, 1), {1,1,1,2,2,7;1,1,2,2,3,6;
(3,3,2,2,1,1, 1)} (3,3,2,2,1, 1, 1)} 1,1,2,2,6,7)

D¢ 1¢1{(5,3,2,2),(3,3,2,2,1,1)} 1€{(5,3,2,2),(3,3,2,2,1, 1)} {1,1,1,2,2,5; 1,1,2,2,3,7}

TABLE 5. Conclusions for g of type B, or D, with £ < 6

7.3. A counter-example. From the rank 7, there are elements that do no satisfy the polynomial condition.
The following example disconfirms a conjecture of Premet that any nilpotent element of a simple Lie algebra
of classical type satisfies the polynomiality condition.

Example 7.8. Let e be a nilpotent element of so(k”) associated with the partition (3, 3,2,2,2,2). Then e
does not satisfy the polynomiality condition.

In this case, £ = 7and let gy, ..., g7 be as in Subsection 5.2. The degrees of %, ..., ‘¢;are 1,2,2,3,4,5,3
respectively. By a computation performed by Maple, one can show that g, ..., °g; verify the two following
algebraic relations:

e e e

16eq§ eq52 + eqi _ 8eq3 eq5 eqi _ 64qu eq72 =0, 7 eqé - g3 q42 =0

Set:
qi if i=1,2,3,4,7
ri=9 1643q5* + 43 — 8q3q5q; — 64 q3q7*  if i=5
a3dg — 4345 if i=6
The polynomials r, ..., r; are algebraically independent over k and

drin--- Adrr = 2g3q6 32395 — 8q3q3) dg A+~ Adgy

Moreover, “rs and “rg have degree at least 13 and e(2q3q6(32q§q5 - ngqﬁ)) has degree 15. Then, by Corol-
lary 7.2, °ry, ..., ‘7 are algebraically independent since

%(dimg"+7)+15:37:1+2+2+3+3+26

and by Lemma 7.1,(ii) and (iii), s and ‘¢ have degree 13.

A precise computation performed by Maple shows that %3 = p% for some p3 in the center of g, 74 = p3p4
for some polynomial p4 of degree 2 in S(a®)%", s = pg °q7ps for some polynomial ps of degree 7 in S(g°)*,
and “r¢ = p4°r1pe for some polynomial pg of degree 8 in S(g9)%. Setting p; := %; fori = 1,2,7, the
polynomials py, ..., p7 are algebraically independent homogeneous polynomials of degree 1,2,1,2,7,8,3
respectively. Let [ be a reductive factor of g°. According to [C85, Ch.13],

[ = s0y(k) X spa(k) = k X spy(k).

In particular, the center of [ has dimension 1. Let {xy, ..., x37} be a basis of g° such that x37 lies in the center
of [ and such that xi, ..., x36 are in [[, [] + g¢ with g¢ the nilpotent radical of g°. Then p; is a polynomial in
k[x1,...,x37] depending on x37. As a result, by [DDV74, Thm. 3.3 and 4.5], the semiinvariant polynomials
of S(g°) are invariant.

Claim 7.9. The algebra g is nonsingular.
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Proof. The space k'# is the ortogonal direct sum of two subspaces V| and V, of dimension 6 and 8 respec-
tively and such that e, &, f are in § := s0o(V) @ s0(V,). Then 3° = § N ¢° is a subalgebra of dimension 21
containing the center of g°. For p in S(g°), denote by p its restriction to §f . The partition (3,3,2,2,2,2)
verifies the condition (1) of the proof of [Y06, §4, Lem. 3]. So, the proof of Lemma 5.14 remains valid, and
the morphism

Goxd — o, (9.0 — 9
is dominant. As a result, for p in S(g°)¥, the differential of P is the restriction to §f of the differential of
p. A computation performed by Maple proves that Elo is a great common divisor of dp; A --- A dp7 in
S(g°). If g is a greatest common divisor of dp; A - - - Adp7 in S(g°), then g is in S(g°)% since the semiinvaiant
polynomials are invariant. So g = p‘; for some nonnegative integer d. One can suppose that {x, ..., xj¢} is
a basis of the orthogonal complement of §f in g°. Then the Pfaffian of the matrix

([xi,xj], 1<i,j< 16)

is in k*p§ so that pé is a greatest common divisor of dp A --- Adp; in S(g°). Since

1
degp; +---+degp; =2+22=2+ E(dimge +0),
we conclude that g° is nonsingular by Corollary 7.3,(ii). O

Claim 7.10. Suppose that S(g¢)* is a polynomial algebra. Then for some homogeneous polynomials Ps
and pg of degrees at least 5 and at most 8 respectively, S(g9)¥ is generated by p1, pa, p3, pa Pss Pgs P1-
Furthermore, the possible values for (deg p’s, deg p(’s) are (5,8) or (6,7).

Proof. Since the semiinvariants are invariants, by Claim 7.9 and Proposition 7.4,(ii), there are homogeneous
generators ¢y, ..., pp of S(g9)% such that

degp< .-+ <degyy,
and
1
degyp,+---+degy, = E(dimge + ) = 22.

According to [Mo0O6c, Thm. 1.1.8] or [ YO6b], the center of g° has dimension 2. Hence, ¢; and ¢; has degree
1. Thereby, we can suppose that ¢; = p; and ¢, = p3 since p; and ps are linearly independent elements of
the center of g°. Since p, and p4 are homogneous elements of degree 2 such that py,. .., p4 are algebraically
indepent, ¢3 and ¢4 have degree 2 and we can suppose that ¢3 = p, and ¢4 = p4. Since p; has degree 3, ¢5
has degree at most 3 and at least 2 since the center of g° has dimension 2. Suppose that @5 has degree 2. A
contradiction is expected. Then

degpe +degpr =22 —(1+1+2+2+2)=14.

Moreover, since py, ..., p7 are algebraically independent, ¢ has degree at most 8 and ¢ has degree at least
6. Hence p7 is in the ideal of k[p1, p3, @3, ¢4, ¢s] generated by p; and p3. But a computation shows that the
restriction of p7 to the nullvariety of p; and ps3 in g/ is different from 0, whence the expected contradiction.
As aresult, ¢s has degree 3 and

degps + degy7 = 13.

One can suppose ¢s = p7 and the possible values for (deg ¢, deg ¢7) are (5, 8) and (6, 7) since ¢ has degree

at most 8. ]
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Suppose that S(g)? is a polynomial algebra. A contradiction is expected. Let p% and py be as in Claim 7.10
and such that deg p; < deg p;. Then (deg p5, deg pg) equals (5, 8) or (6,7). A computation shows that one

can choose a basis {xy, ..., x37} of g¢ with x37 = p3, with py, p2, p3, pa, p7ink[x3,...,x37] and with ps, pg
of degree 1 in x;. Moreover, the coefficient of x| in ps is a prime element of k[x3, ..., x37], the coefficient
of x; in pg is a prime element of k[x», ..., x37] having degree 1 in x,, and the coefficient of x;x; in pg

equals a? p% with a a prime homogeneous polynomial of degree 2 such that a, py, p2, p3, p4 are algebraically
independent. In particular, a is not invariant. If p. has degree 5, then

ps = Pgro +71
with rg in k[ p1, p2, p3, p4] and ry in k[py, p2, p3, pa, p7] so that pg has degree 1 in x1, and the coefficient of

x1 in ps is the product of ry and the coefficient of x; in p;. But this is impossible. So, p; has degree 6 and
P has degree 7. We can suppose that p; = ps. Then

Pe6 = psro + P'6”1 +1n

with ryp homogeneous of degree 1 in k[p, p3], r1 homogeneous of degree 2 in k[p1, p», p3, p4], and 1
homogeneous of degree 8 in k[p1, p2, p3, p4, p7]. According to the above remarks on ps and the coefficient
of x1x, in pg, 1y is in k*p% since ri has degree 2.

For p in S(g%), denote by p its image in S(g°)/p3S(g°). A computation shows that for some u in
S(a)/p3S(g°),

Ps=Piu.  Po=—Pipi.

Furthermore, p4 and p7 are different prime elements of S(g°)/p3S(g°) and the coefficient u; of x; in u is the
product of two different polynomials of degree 1. The coefficient of x; in pg is u | Pa>To since

D6 = D57 + 72.

On the other hand, the coefficient of x; in pg is —u; p4p7, whence the contradiction since ry has degree 1.

7.4. Another result. We are not able so far to deal with all even nilpotent elements of a Lie algebra of type
D with odd rank. We can however state the following result. In what follows, we retain the notations of
Subsection 5.3.

Theorem 7.11. Let g = so(V) and let e be a nilpotent element of g associated with the sequence A =
(A1,..., ). Assume that A verifies the condition (x) and that 11 = --- = Ap. Then there are algebraically
independent elements ry, . .., re in S(g)% such that °ry, ..., °ry are algebraically independent.

Proof. Lets € {1,...,m}and i € K written as i = kj+---+ks_1 + j, with j € {1,...,k}. For the sake of
simplicity, set
k?:—l = kl-‘r v +ks_1.

Assume that j > k;/2 and let RES) be as in Lemma 5.21. Since RB.S) has degree j, for some polynomial Rj.s),

: Dk +1 Pk +ks/2 N
(pe:_,Y Ri-s)( Pk*l pl; ) = Ri-s)(pk;_l,l?k;_ln, e DR Ak 2)-
s—1 s—1

Then by Lemma 5.14 and Lemma 5.21,

(e Y pr_ v = R;”(pk;_l s DI 415+ -5 DIE_ 4k, 2)-
Define polynomials ry, ..., r, of S(g)% as follows.
- If ¥’ <k, then

* forlefl,...,0i\{v;, ie (K1 U...UK,))\N{U1 U...Uly,)}, setr :=q,
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x forie (KjU---UK,)) N\ ([1U---UL,), set

— j-1 _ p

i " k* K+ j k0 ISR A K +ks/27"

7= Qe ) gy Ry > qy @ )
s—1 s—1 s—1 s—1 s—1

- If ¥’ =k, then
« forlefl,...,0i\{v;, ie(KjU...UK, )N {1 U...Ul,)}, setr :=q,
x forie (KjU---UK,)\ ([1U---Ul,), set
o i—1 A (5)
I”y,- o (QV,{;_I )J QVk;_lJrj - Rj (QVk:_l ) Qth_IH R qvk:_l+ks/2)
if v; # €, thatis i # k, and set
. km—1 2 5
rvk = (‘Ivk;lil) (‘Ivk) - R](:Z)(qkan,l > qvk’*"ilﬂ P ‘Ivk:ni +km/2)
otherwise.

Then
m
drl/\ el A drg — p (dql/\ e A dqg) Whel‘e p — ]‘_[(qVk*il )ks/2+"'+ kx_l‘

s=1
Hence,

deg p = D (ki -+ ks 1)ksppt -+ ks = 1),

s=1
Let 6™ be the sum of the degrees of the polynomials 1, ..., “¢. By construction, one has

m
5 > o degqi+ Y (it ko)t +ky = 1)+ card(KyU - UKy) \ (U

¢
i=1 s=1

’

- k
= Zdeg ‘i +degp + 3
i=1

On the other hand, by Remark 5.24, one has dimg® + £ — 2 Zfz  deg %g; = k’. As aresult,

¢
1
Z deg ri > deg‘p+ E(dimge + ),
i=1

whence the theorem by Lemma 7.1,(ii) and (iii).

<UL

O

7.5. A conjecture. All examples of good elements we achieved satisfy the hypothesis of Theorem 4.1. This

leads us to formulate a conjecture.

Conjecture 7.12. Let g be a simple Lie algebra and let e be a good nilpotent of g. Then for some homo-
geneous generators qi, . . . ,q¢ of S(a)%, the polynomial functions °q,, ..., °q, are algebraically independent.

In other words, the converse implication of Theorem 4.1 holds.
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