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Let g be a finite-dimensional simple Lie algebra of rank ℓ over an algebraically closed field k of characteristic zero, and let e be a nilpotent element of g. Denote by g e the centralizer of e in g and by S(g e ) g e the algebra of symmetric invariants of g e . We say that e is good if the nullvariety of some ℓ homogeneous elements of S(g e ) g e in (g e ) * has codimension ℓ. If e is good then S(g e ) g e is polynomial. The main result of this paper stipulates that if for some homogeneous generators of S(g) g , the initial homogeneous component of their restrictions to e + g f are algebraically independent, with (e, h, f ) an sl 2 -triple of g, then e is good. The proof is strongly based on the theory of finite W-algebras. As applications, we pursue the investigations of [PPY07] and we produce (new) examples of nilpotent elements that verify the above polynomiality condition in simple Lie algebras of both classical and exceptional types. We also give a counter-example in type D 7 . Contents 1. Introduction 2. General facts on commutative algebra 3. Good elements and good orbits 4. Proof of Theorem 2 and finite W-algebras 5. Consequences of Theorem 2 for the simple classical Lie algebras 6. Examples in simple exceptional Lie algebras 7. Other examples, remarks and a conjecture References

1. Introduction 1.1. Let g be a finite-dimensional simple Lie algebra of rank ℓ over an algebraically closed field k of characteristic zero, let . , . be the Killing form of g and let G be the adjoint group of g. If a is a subalgebra of g, we denote by S(a) the symmetric algebra of a. Let x ∈ g and denote by g x and G x the centralizer of x in g and G respectively. Then Lie(G x ) = Lie(G x 0 ) = g x where G x 0 denotes the identity component of G x . Moreover, S(g x ) is a g x -module and S(g x ) g x = S(g x ) G x 0 . An interesting question, first raised by A. Premet, is the following: Question 1. Is the algebra S(g x ) g x polynomial algebra in ℓ variables?

In order to answer this question, thanks to the Jordan decomposition, one can assume that x is nilpotent. Besides, if S(g x ) g x is polynomial for some x ∈ g, then it is so for any element in the adjoint orbit G(x) of x. If x = 0, it is well-known since Chevalley that S(g x ) g x = S(g) g is polynomial in ℓ variables. At the opposite extreme, if x is a regular nilpotent element of g, then g x is abelian of dimension ℓ, [START_REF] Duflo | Une propriété de la représentation coadjointe d'une algèbre de Lie[END_REF], and S(g x ) g x = S(g x ) is polynomial in ℓ variables too.

For the introduction, let us say most simply that x ∈ g verifies the polynomiality condition if S(g x ) g x is a polynomial algebra in ℓ variables.

A positive answer to Question 1 was suggested in [PPY07, Conjecture 0.1] for any simple g and any x ∈ g. O. Yakimova has since discovered a counter-example in type E 8 , [Y07], disconfirming the conjecture. More precisely, the elements of the minimal nilpotent orbit in E 8 do not verify the polynomiality condition. The present paper contains another counter-example in type D 7 (cf. Example 7.8). In particular, one cannot expect a positive answer to [PPY07, Conjecture 0.1] for the simple Lie algebras of classical type. Question 1 still remains interesting and is positive for a large number of nilpotent elements e ∈ g as it is explained below. 1.2. We briefly review in this paragraph what has been achieved so far about Question 1. Recall that the index of a finite-dimensional Lie algebra q, denoted by ind q, is the minimal dimension of the stabilizers of linear forms on q for the coadjoint representation, (cf. [START_REF] Dixmier | Algèbres enveloppantes[END_REF]): ind q := min{dim q ξ ; ξ ∈ q * } where q ξ := {x ∈ q ; ξ([x, q]) = 0}.

By [R63], if q is algebraic, i.e., q is the Lie algebra of some algebraic linear group Q, then the index of q is the transcendental degree of the fraction field of Q-invariant rational functions on q * . The following result will be important for our purpose.

Theorem 1 ([CM10, Theorem 1.2]). The index of g x equals ℓ for any x ∈ g.

Theorem 1 was first conjectured by Elashvili in the 90' motivated by a result of Bolsinov, [B91, Theorem 2.1]. It was proven by O. Yakimova when g is a simple Lie algebra of classical type, [Y06], and checked by a computer programme by W. de Graaf when g is a simple Lie algebra of exceptional type, [START_REF] Degraaf | Computing with nilpotent orbits in simple Lie algebras of exceptional type[END_REF]. Before that, the result was established for some particular classes of nilpotent elements by D.Panyushev, [START_REF] Panyushev | The index of a Lie algebra, the centralizer of a nilpotent element, and the normaliser of the centralizer[END_REF].

Theorem 1 is deeply related to Question 1. Indeed, thanks to Theorem 1, [PPY07, Theorem 0.3] applies and by [PPY07, Theorems 4.2 and 4.4], if g is simple of type A or C, then all nilpotent elements of g verify the polynomiality condition. The result for the type A was independently obtained by Brundan and Kleshchev, [START_REF] Brundan | Shifted Yangians and finite W-algebras[END_REF]. In [START_REF] Panyushev | On symmetric invariants of centralizers in reductive Lie algebras[END_REF], the authors also provide some examples of nilpotent elements satisfying the polynomiality condition in the simple Lie algebras of types B and D, and a few ones in the simple exceptional Lie algebras.

More recently, the analogue question to Question 1 for the positive characteristic was dealt with by L. Topley for the simple Lie algebras of types A and C, [T12].

1.3. The main goal of this paper is to continue the investigations of [START_REF] Panyushev | On symmetric invariants of centralizers in reductive Lie algebras[END_REF]. Let us describe the main results. The following definition is central in our work (cf. Definition 3.1): Definition 1. An element x ∈ g is called a good element of g if for some homogeneous elements p 1 , . . . , p ℓ of S(g x ) g x , the nullvariety of p 1 , . . . , p ℓ in (g x ) * has codimension ℓ in (g x ) * .

For example, by [START_REF] Panyushev | On symmetric invariants of centralizers in reductive Lie algebras[END_REF]Theorem 5.4], all nilpotent elements of a simple Lie algebra of type A are good, and by [Y09, Corollary 8.2], the even nilpotent elements of g are good if g is of type B or C or if g is of type D with odd rank. We rediscover these results in a more general setting (cf. Theorem 5.1 and Corollary 5.8). The good elements verify the polynomiality condition (cf. Proposition 3.2). Moreover, x is good if and only if its nilpotent component in the Jordan decomposition is so (cf. Proposition 3.4).

Let e be a nilpotent element of g. By the Jacobson-Morosov Theorem, e is embedded into a sl 2 -triple (e, h, f ) of g. Denote by S e := e + g f the Slodowy slice associated with e. Identify the dual of g with g, and the dual of g e with g f , through the Killing form . , . . For p in S(g) ≃ k[g * ] ≃ k[g], denote by e p the initial homogeneous component of its restriction to S e . According to [PPY07, Proposition 0.1], if p is in S(g) g , then e p is in S(g e ) g e . The main result of the paper is the following (cf. Theorem 4.1):

Theorem 2. Suppose that for some homogeneous generators q 1 , . . . , q ℓ of S(g) g , the polynomial functions e q 1 , . . . , e q ℓ are algebraically independent. Then e is a good element of g. In particular, S(g e ) g e is a polynomial algebra and S(g e ) is a free extension of S(g e ) g e . Moreover, e q 1 , . . . , e q ℓ is a regular sequence in S(g e ).

Theorem 2 applies to a great number of nilpotent orbits in the simple classical Lie algebras (cf. Section 5), and for some nilpotent orbits in the exceptional Lie algebras (cf. Section 6).

To state our results for the simple Lie algebras of types B and D, let us introduce some more notations. Assume that g = so(V) ⊂ gl(V) for some vector space V of dimension 2ℓ + 1 or 2ℓ. For x an endomorphism of V and for i ∈ {1, . . . , dim V}, denote by Q i (x) the coefficient of degree dim Vi of the characteristic polynomial of x. Then for any x in g, Q i (x) = 0 whenever i is odd. Define a generating family q 1 , . . . , q ℓ of the algebra S(g) g as follows. For i = 1, . . . , ℓ -1, set q i := Q 2i . If dim V = 2ℓ + 1, set q ℓ = Q 2ℓ and if dim V = 2ℓ, let q ℓ be a homogeneous element of degree ℓ of S(g) g such that Q 2ℓ = q 2 ℓ . Denote by δ 1 , . . . , δ ℓ the degrees of e q 1 , . . . , e q ℓ respectively. By [PPY07, Theorem 2.1], if dim g e + ℓ -2(δ 1 + • • • + δ ℓ ) = 0, then the polynomials e q 1 , . . . , e q ℓ are algebraically independent. In that event, by Theorem 2, e is good and we will say that e is very good (cf. Corollary 5.8 and Definition 5.10). The very good nilpotent elements of g can be characterized in term of their associated partitions of dim V (cf. Lemma 5.11). Theorem 2 also enables to obtain examples of good, but not very good, nilpotent elements of g; for them, there are a few more work to do (cf. Subsection 5.3).

Thus, we obtain a large number of good nilpotent elements, including all even nilpotent elements in type B, or in type D with odd rank (cf. Corollary 5.8). For the type D with even rank, we obtain the statement for some particular cases (cf. Theorem 5.23).

On the other hand, there are examples of elements that verify the polynomiality condition but that are not good; see Examples 7.5 and 7.6. To deal with them, we use different techniques, more similar to those used in [START_REF] Panyushev | On symmetric invariants of centralizers in reductive Lie algebras[END_REF]; see Section 7.

As a result of all this, we observe for example that all nilpotent elements of so(k 7 ) are good and that all nilpotent elements of so(k n ), with n 13, verify the polynomiality condition (cf. Table 5). In particular, by [PPY07, §3.9], this provides examples of good nilpotent elements for which the codimension of (g e ) * sing in (g e ) * is 1 (cf. Remark 7.7). Here, (g e ) * sing stands for the set of nonregular linear forms x ∈ (g e ) * , i.e., (g e ) * sing := {x ∈ (g e ) * ; dim (g e ) x > ind g e = ℓ}.

For such nilpotent elements, note that [PPY07, Theorem 0.3] does not apply. Our results do not cover all nilpotent orbits in type B and D. As a matter of fact, we obtain a counterexample in type D to Premet's conjecture (cf. Example 7.8):

Proposition 1. The nilpotent elements of so(k 14 ) associated with the partition (3, 3, 2, 2, 2, 2) of 14 do not satisfy the polynomiality condition.

1.4. The main ingredient to prove Theorem 4.1 is the finite W-algebra associated with the nilpotent orbit G(e) which we emphasize the construction below. Our basic reference for the theory of finite W-algebras is [START_REF] Premet | Special transverse slices and their enveloping algebras[END_REF]. In the present paper, we refer the reader to Section 4. For i in Z, let g(i) be the i-eigenspace of ad h and set:

p + := i 0 g(i).

Then p + is a parabolic subalgebra of g containing g e . Let g(-1) 0 be a totally isotropic subspace of g(-1) of maximal dimension with respect to the nondegenerate bilinear form g(-1) × g(-1) -→ k, (x, y) -→ e , [x, y] and set: m := g(-1)

0 ⊕ i -2 g(i).
Then m is a nilpotent subalgebra of g with a derived subalgebra orthogonal to e. Denote by k e the one dimensional U(m)-module defined by the character x → e , x of m, denote by Qe the induced module Qe := U(g) ⊗ U(m) k e and denote by He the associative algebra He := End g ( Qe ) op , known as the finite W-algebra associated with e. If e = 0, then He is isomorphic to the enveloping algebra U(g) of g. If e is a regular nilpotent element, then He identifies with the center of U(g). More generally, by [Pr02, §6.1], the representation U(g) → End( Qe ) is injective on the center Z(g) of U(g). The algebra He is endowed with an increasing filtration, sometimes referred as the Kazhdan filtration, and one of the main theorems of [START_REF] Premet | Special transverse slices and their enveloping algebras[END_REF] states that the corresponding graded algebra is isomorphic to the graded algebra S(g e ).

Here, S(g e ) is graded by the Slodowy grading (see Subsection 4.1 for more details).

Our idea is to reduce the problem modulo p for a sufficiently big prime integer p, and prove the analogue statement to Theorem 2 in characteristic p. More precisely, we construct in Subsection 4.2 a Lie algebra g K from g over an algebraically closed field K of characteristic p > 0. The key advantage is essentially that the analogue H e of the finite W-algebra He in this setting is of finite dimension.

1.5. The idea of appealing to the theory of finite W-algebras in this context was initiated in [START_REF] Panyushev | On symmetric invariants of centralizers in reductive Lie algebras[END_REF]§2]. What is new is to come down to the positive characteristic. More recently, T. Arakawa and A. Premet used affine W-algebras to study an analogue question to Question 1 in the context of jet scheme (private communication). In more detail, assume that g is simple of type A and let e be a nilpotent element of g. If g ∞ denotes the arc space of g, then Arakawa and Premet show that k[(g * e ) ∞ ] (g e ) ∞ is a polynomial algebra with infinitely many variables. The case where e = 0 was already known by Beilinson-Drinfeld, [BD]. Since g is of type A, all nilpotent elements of g verify the polynomiality condition. Moreover, for any nilpotent element e ∈ g, (g e ) *

sing has codimension 3 in (g e ) * (cf. [Y09, Theorem 5.4]). These two properties are crucial in the proof of Arakawa and Premet.

1.6. The remainder of the paper will be organized as follows.

Section 2 is about general facts on commutative algebra, useful for the Section 3. In Section 3, the notions of good elements and good orbits are introduced, and some properties of good elements are described. Proposition 3.2 asserts that the good elements verify the polynomiality condition. Moreover, Proposition 3.7 gives a sufficient condition for guaranteeing that a given nilpotent element is good. It will be important in Section 4. The main theorem (Theorem 4.1) is stated and proven in Section 4. The proof is based on the theory of finite W-algebras over k and over fields of positive characteristic. The section starts with some reminders about this theory following [START_REF] Premet | Special transverse slices and their enveloping algebras[END_REF]. In Section 5, we give applications of Theorem 4.1 to the simple classical Lie algebras. In Section 6, we give applications to the exceptional Lie algebras of types E 6 , F 4 and G 2 . This enables us to exhibit a great number of good nilpotent orbits. Other examples, counterexamples, remarks and a conjecture are discussed in Section 7. In this latter section, different techniques are used.

Ackowledgments. We thank Lewis Topley for stimulating discussions, Tomoyuki Arakawa and Alexander Premet for their interest in this work. This work was partially supported by the ANR-project 10-BLAN-0110.

General facts on commutative algebra

We state in this section preliminary results on commutative algebra. Theorem 2.7 will be particularly important in Section 3.

As a rule, for A a homogeneous algebra, A + denotes the ideal of A generated by its homogeneous elements of positive degree. Let E be a finite dimensional vector space and let A be a finitely generated homogeneous subalgebra of S(E). Denote by N 0 the nullvariety of A + in E * and set N := dim Edim A.

2.1. Let X be the affine variety Specm(A) and let π be the morphism from E * to X whose comorphism is the canonical injection from A into S(E).

Lemma 2.1. (i) The irreducible components of the fibers of π have dimension at least N.

(ii) If N 0 has dimension N, the fibers of π are equidimensional of dimension N.

(iii) If N 0 has dimension N, for some x 1 , . . . , x N in E, the nullvariety of x 1 , . . . , x N in N 0 equals {0}.

Proof. (i) Let F be a fiber of π and let U be an open subset of E * whose intersection with F is not empty and irreducible. The restriction of π to U is a dominant morphism from U to X. So, N is the minimal dimension of the fibers of the restriction of π to U, whence the assertion.

(ii) Denote by x 0 the element A + of X. Since A is a homogeneous algebra, there exists a regular action of the one dimensional multiplicative group G m on X. Furthermore, for all x in X, x 0 is in the closure of G m .x. Hence the dimension of the fiber of π at x is at most dim N 0 . As a result, when dim N 0 is the minimal dimension of the fibers of π, all fiber of π is equidimensional of dimension N by (i).

(iii) For x = (x i , i ∈ I) a family of elements of E, denote by A[x] the subalgebra of S(E) generated by A and x, and denote by N 0 (x) its nullvariety in N 0 . Since N 0 is a cone, N 0 (x) equals {0} if it has dimension 0. So it suffices to find N elements x 1 , . . . , x N of E such that N 0 (x 1 , . . . , x N ) has dimension 0. Let us prove by induction on i that for i = 1, . . . , N, there exist i elements x 1 , . . . ,

x i of E such that N 0 (x 1 , . . . , x i ) has dimension N -i. By induction on i, with A[x 1 , . . . , x i ] instead of A, it suffices to find x in E such that N 0 (x) has dimension N -1.
Let Z 1 , . . . , Z m be the irreducible components of N 0 and let I i be the ideal of definition of Z i in S(E). By (i), for i = 1, . . . , m, Z i has dimension N. In particular, I i does not contain E. So, there exists x in E not in the union of I 1 , . . . , I m . Then, for i = 1, . . . , m, the nullvariety of x in Z i is equidimensional of dimension N -1. As a result, the nullvariety of the ideal of S(E) generated by A + and x is equidimensional of dimension N -1, whence the assertion.

For M a graded A-module, set M + := A + M. Lemma 2.2. Let M be a graded A-module and let V be a homogeneous subspace of M such that M = V⊕M + . Denote by τ the canonical map A ⊗ k V -→ M. Then τ is surjective. Moreover, τ is bijective if and only if M is a flat A-module.

Proof. Let M ′ be the image of τ. Then by induction on k,

M ⊂ M ′ + A k + M. Since V is homogeneous, M ′ is homogeneous. So M is contained in M ′ .
If τ is bijective, then all basis of V is a basis of the A-module M. In particular, it is a flat A-module. Conversely, let us suppose that M is a flat A-module. So, from the exact sequence

0 -→ A + -→ A -→ k -→ 0 one deduces the exact sequence 0 -→ M ⊗ A A + -→ M -→ M ⊗ A k -→ 0.
In particular, the canonical map

M ⊗ A A + -→ M
is injective. Hence all basis of V is free over A, whence the lemma.

Proposition 2.3. Let us consider the following conditions on A:

1) A is a polynomial algebra, 2) A is a regular algebra, 3) A is a polynomial algebra generated by dim A homogeneous elements, 4) the A-module S(E) is faithfully flat, 5) the A-module S(E) is flat, 6) the A-module S(E) is free. (i)
The conditions (1), (2), (3) are equivalent.

(ii) The conditions (4), ( 5), (6) are equivalent. Moreover, Condition (4) implies Condition (2) and, in that event, N 0 is equidimensional of dimension N.

(iii) If N 0 is equidimensional of dimension N, then the conditions (1), (2), (3), (4), (5), ( 6) are all equivalent.

Proof. Let d be the dimension of A.

(i) The implications (1) ⇒ (2), (3) ⇒ (1) are straigthforward. Let us suppose that A is a regular algebra. Since A is homogeneous and finitely generated, there exists a homogeneous sequence x 1 , . . . , x d in A + representing a basis of A + /A 2 + . Let A ′ be the subalgebra of A generated by x 1 , . . . , x d . Then (iii) Let us suppose that N 0 is equidimensional of dimension N. By (i) and (ii), it suffices to prove (2) ⇒ (5). By Lemma 2.1,(ii) the fibers of π are equidimensional of dimension N. Hence by [START_REF] Matsumura | Commutative ring theory Cambridge studies in advanced mathematics[END_REF]Ch. 8,Thm. 23.1], S(E) is a flat extension of A since S(E) and A are regular. / / π @ @ @ @ @ @ @ @ Specm(B)

A + ⊂ A ′ + A 2 + .

So by induction on m, A

+ ⊂ A ′ + A m + for all positive integer m. Since A is homogeneous, A = A ′

Let

ν z z u u u u u u u u u X .
Since B is a homogeneous subalgebra of S(E), there exists an action of G m on Specm(B) such that ν is G m -equivariant. According to Lemma 2.4, the fiber of ν at x 0 = A + equals B + . As a result, the fibers of ν are finite. Since B and A have the same fraction field, ν is birational. Hence by Zariski's main theorem [START_REF] Mumford | The Red Book of Varieties and Schemes[END_REF],

ν is an open immersion from Specm(B) into X. So, ν is surjective since x 0 is in the image of ν and since it is in the closure of all G m -orbit in X. As a result, ν is an isomorphism and p is in A, whence the corollary since A is homogeneous.

2.3. Denote by K and K(E) the fraction fields of A and S(E) respectively.

Lemma 2.6. Suppose that dim N 0 = N and suppose that A is a polynomial algebra. Let v 1 , . . . , v N be a sequence of elements of E such that its nullvariety in N 0 equals {0}. [START_REF] Matsumura | Commutative ring theory Cambridge studies in advanced mathematics[END_REF]Ch. 6,Thm. 17.4]. Denoting by K 1 the fraction field of C, the trace map of K over K 1 induces a projection of the C-module S(E) onto C since S(E) is the integral closure of C in K(E) by (i). Denote by a → a # this projection. For i = 1, . . . , d -1 and for a in A such that ap i+1 is in the ideal of A generated by p 1 , . . . , p i , there exist b 1 , . . . , b i in S(E) such that Theorem 2.7. Suppose that dim N 0 = N and that A is a polynomial algebra. Then A is a polynomial algebra. Moreover, S(E) is a free extension of A.

Set C := A[v 1 , . . . , v N ]. (i)
a = b 1 p 1 + • • • + b i p i whence a = b # 1 p 1 + • • • + b # i p i . Since the nullvariety of v 1 , . . . , v N in N 0 equals {0}, v 1 , . . . , v N are algebraically independent over A and b # 1 , . . . , b # i are polynomials in v 1 , . . . , v N with coefficients in A. Hence, a = b # 1 (0)p 1 + • • • + b # i (0)p i since a,
Proof. By Corollary 2.5, A is the integral closure of A in S(E). Let v 1 , . . . , v N , C be as in Lemma 2.6. Let V be a homogeneous complement of S(E)C + in S(E) and let W be a homogeneous complement of AA + in A. Denote by {x i , i ∈ I} and {y j , j ∈ J} some homogeneous basis of V and W respectively. By Lemma 2.2, V generates the C-module S(E). Hence there exists a subset L of I such that {x i , i ∈ L} is a basis of the K 1space K(E) with K 1 the fraction field of C. By Lemma 2.2 and Lemma 2.6,(iii), {y j , j ∈ J} is a basis of the free A-module A. Hence {y j , j ∈ J} is a basis of the free A[v 1 , . . . , v N ]-module C. So {x i y j , (i, j) ∈ L × J} is linearly free over A[v 1 , . . . , v N ] since the elements x i , i ∈ L are linearly free over C. By Proposition 2.3,(iii), S(E) is a free extension of A[v 1 , . . . , v N ]. So by Lemma 2.2, there exists a homogeneous subspace V ′ of S(E) containing x i y j for all (i, j) in L × J such that the canonical map

V ′ ⊗ k A[v 1 , . . . , v N ] -→ S(E)
is an isomorphism. Moreover, dim V ′ is the degree of the algebraic extension K(E) of K(v 1 , . . . , v N ). The degree of the algebraic extension K(E) of K 1 equals |L| and K 1 is an algebraic extension of K(v 1 , . . . , v N ) whose degree is the degree of the algebraic extension K ′ of K with K ′ the fraction field of A. This degree equals |J| since {y j , j ∈ J} is a basis of the A-module A. Hence dim V ′ = |L||I|. So {x i y j , (i, j) ∈ L × J} is a basis of V ′ . Hence S(E) is a free C-module and {x i , i ∈ L} is a basis. As a result, C is a polynomial algebra by Proposition 2.3 since it is homogeneous. Since C is a faithfully flat extension of A, A is a polynomial algebra by Proposition 2.3 since it is homogeneous. According to Lemma 2.6, N 0 is the nullvariety of A + in E * . So, by Proposition 2.3,(iii), S(E) is a free A-module.

Good elements and good orbits

Recall that k is an algebraically closed field of characteristic zero. As in the introduction, g is a simple Lie algebra over k of rank ℓ, . , . denotes the Killing form of g, and G its adjoint group.

3.1. The notions of good element and good orbit in g are introduced in this paragraph. Definition 3.1. An element x ∈ g is called a good element of g if for some homogeneous elements p 1 , . . . , p ℓ of S(g x ) g x , the nullvariety of p 1 , . . . , p ℓ in (g x ) * has codimension ℓ in (g x ) * . A G-orbit in g is called good if it is the orbit of a good element.

Since the nullvariety of S(g) g + in g is the nilpotent cone of g, 0 is a good element of g. For (g, x) in G × g and for a in S(g x ) g x , g(a) is in S(g g(x) ) g g(x) . So, an orbit is good if and only if all its elements are good.

Denote by K x the fraction field of S(g x ).

Proposition 3.2. Let x be a good element of g. Then S(g x ) g x is a polynomial algebra and S(g x ) is a free S(g x ) g x -module. Moreover, K g x x is the fraction field of S(g x ) g x .

Proof. Let p 1 , . . . , p ℓ be homogeneous elements of S(g x ) g x such that the nullvariety of p 1 , . . . , p ℓ in (g x ) * has codimension ℓ. Denote by A the subalgebra of S(g x ) g x generated by p 1 , . . . , p ℓ . Then A is a graded subalgebra of S(g) and the nullvariety of A + in (g x ) * has codimension ℓ. So, by Lemma 2.1,(ii), A has dimension ℓ. Hence p 1 , . . . , p ℓ are algebraically independent and A is a polynomial algebra. According to [CM10, Thm. 1.2], the index of g x equals ℓ. So, by [R63], the transcendance degree of K g x x over k equals ℓ. Then, since A has dimension ℓ, K g x x is an algebraic extension of the fraction field of A. As a result, S(g x ) g x is the algebraic closure of A in S(g x ). So, by Theorem 2.7, S(g x ) g x is a polynomial algebra and S(g x ) is a free S(g x ) g x -module. Since K g x x is an algebraic extension of the fraction field of A, for p in K g x x , ap verifies an integral dependence equation over S(g x ) g x for some a in S(g x ) g x . Then, since S(g x ) g x is integrally closed in K x , K g x x is the fraction field of S(g x ) g x .

Remark 3.3. The algebra S(g x ) g x may be polynomial with x not good. Indeed, let us consider a nilpotent element e of g = so(k 10 ) associated with the partition (3, 3, 2, 2). The algebra S(g e ) g e is polynomial, generated by elements of degrees 1, 1, 2, 2, 5. But the nullcone has an irreducible component of codimension at most 4. So, e is not good; see Example 7.5 in Section 7 for more details.

For x ∈ g, denote by x s and x n the semisimple and the nilpotent components of x respectively.

Proposition 3.4. Let x be in g. Then x is good if and only if x n is a good element of the derived algebra of g x s .

Proof. Let z be the center of g x s and let a be the derived algebra of g x s . Then

g x = z ⊕ a x n , S(g x ) g x = S(z) ⊗ k S(a x n ) a xn .
By the first equality, (a x n ) * identifies with the orthogonal complement of z in (g Conversely, let us suppose that x is a good element of g. By Proposition 3.2, S(g x ) g x is a polynomial algebra generated by homogeneous polynomials p 1 , . . . , p ℓ . Since z is contained in S(g x ) g x , p 1 , . . . , p ℓ can be chosen so that p 1 , . . . , p d are in z and p d+1 , . . . , p d are in S(a x n ) a xn . Then the nullvariety of p d+1 , . . . , p d in (a x n ) * has codimension ℓd. Hence, x n is a good element of a.

3.2. Let e be a nilpotent element of g, embedded into an sl 2 -triple (e, h, f ) of g. Identify the dual of g with g, and the dual of g e with g f through the Killing form . , . . For p in S(g) ≃ k[g], denote by κ(p) the restriction to g f of the polynomial function x → p(e + x) and denote by e p its initial homogeneous component. According to [PPY07, Prop. 0.1], for p in S(g) g , e p is in S(g e ) g e .

Let I be the ideal of S(g e ) generated by the elements κ(p), for p running through S + (g) g , and set N := dim g eℓ.

Lemma 3.5. The nullvariety of I in g f is equidimensional of dimension N.

Proof. Let S e be the Slodowy slice e + g f associated with e, and let θ e be the map

G × S e -→ g, (g, x) → g(x).
Then θ e is a smooth G-equivariant morphism onto a G-invariant open subset containing G(e). In particular, it is equidimensional of dimension dim S e . Denoting by X the nullvariety of

I in g f , G × (e + X) is the inverse image by θ e of the nipotent cone of g. Hence, G × (e + X) is equidimensional of dimension dim g -ℓ + dim S e = N + dim g
since the nilpotent cone is irreducible of codimension ℓ and contains G(e). The lemma follows.

The symmetric algebra S(g e ) is naturally graded by the degree of elements. For m a nonnegative integer, denote by S m (g e ) the homogeneous component of degree m and set:

S m (g e ) := i m S m (g e ).
Then S m (g e ), m = 0, 1, . . . is a decreasing filtration of S(g e ) and its associated graded algebra is the usual graded algebra S(g e ). For J a subquotient of S(g e ), the filtration of S(g e ) induces a filtration of J and its associated graded space is denoted by gr(J). so that gr(S(g e )/I) is the quotient of S(g e ) by gr(I). According to [Ma86, Thm. 13.4], gr(S(g e )/I) and S(g e )/I have the same dimension, whence the corollary by Lemma 3.5.

The following proposition will be useful to prove Theorem 4.1 in the next Section. It gives a sufficient condition for guaranteeing that a given nilpotent element is good.

Proposition 3.7. Let q 1 , . . . , q ℓ be homogeneous generators of S(g) g and let J be the ideal of S(g e ) generated by e q 1 . . . e q ℓ . Suppose that for a 1 , . . . , a ℓ in S(g e ), the following implication holds:

a 1 ( e q 1 ) + • • • + a ℓ ( e q ℓ ) = 0 =⇒ ∀i ∈ {1, . . . , ℓ}, a i ∈ J .
Then gr(I) = J. In particular, e is a good element of g.

Proof.

By definition, J is contained in gr(I). Let us suppose that J is strictly contained in gr(I). A contradiction is expected. For a in S(g e ), let ν(a) be the biggest integer such that a is in S ν(a) (g e ) and let a be the image of a in gr(S(g e )). For i = 1, . . . , ℓ, let d i be the degree of e q i . For a := (a 1 , . . . , a ℓ ) in S(g e ) ℓ , set:

ν(a) := inf{ν(a 1 ) + d 1 , . . . , ν(a ℓ ) + d ℓ }, σ(a) := a 1 κ(q 1 ) + • • • + a ℓ κ(q ℓ ).
Since J is strictly contained in gr(I), there is a = (a 1 , . . . , a ℓ ) in S(g e ) ℓ such that σ(a) is not in J. Let d be the degree of σ(a). Choose such a in S(g e ) ℓ such that ν(a) is maximal.

For i = 1, . . . , ℓ, write a i = a i,0 + a i,+
with a i,0 homogeneous of degree ν(a i ) and ν(a i,+ ) > ν(a i ). Let L be the set of indices i such that ν(a) = ν(a i )

+ d i . Since σ(a) is not in J, i∈L a i,0 ( e q i ) = 0.
So, by hypothesis, a 1,0 , . . . , a ℓ,0 are in J so that i∈L a i,0 κ(q i ) ∈ J.

Moreover,

σ(a) = i∈L a i,0 κ(q i ) + σ(b) with b i := a i,+ if i ∈ L a i if i L and b = (b 1 , . . . , b ℓ ).
Since σ(a) has degree d and is not in J, σ(b) is an element of degree d which is not in J. We have obtained the expected contradiction since ν(b) > ν(a).

As a consequence, gr(I) = J and the last assertion of the proposition is a straightforward consequence of Lemma 3.6.

Proof of Theorem 2 and finite W-algebras

As in the previous section, g is a simple Lie algebra over k and (e, h, f ) is an sl 2 -triple of g. The goal of this section is to prove the following theorem (see also Theorem 2).

Theorem 4.1. Suppose that for some homogeneous generators q 1 , . . . , q ℓ of S(g) g , the polynomial functions e q 1 , . . . , e q ℓ are algebraically independent. Then e is a good element of g. In particular, S(g e ) g e is a polynomial algebra and S(g e ) is a free extension of S(g e ) g e . Moreover, e q 1 , . . . , e q ℓ is a regular sequence in S(g e ).

To that end, the theory of finite W-algebras will be strongly used. Our main reference for this topic is [START_REF] Premet | Special transverse slices and their enveloping algebras[END_REF] and the section starts with some notations and results of [START_REF] Premet | Special transverse slices and their enveloping algebras[END_REF]. The heart of the proof of Theorem 4.1 is presented in Subsection 4.6. 4.1. For i in Z, let g(i) be the eigenspace of eigenvalue i of ad h and set:

p + := i 0 g(i).
Then p + is a parabolic subalgebra of g containing g e . So, the bilinear form

g(-1) × g(-1) -→ k, (x, y) -→ e , [x, y]
is nondegenerate. Let g(-1) 0 be a totally isotropic subspace of g(-1) of maximal dimension and set:

m := g(-1) 0 ⊕ i -2 g(i)
so that m is an ad -nilpotent subalgebra of g with the derived subalgebra orthogonal to e. Denote by k e the one dimensional U(m)-module defined by the character x → e , x of m, denote by Qe the induced module

Qe := U(g) ⊗ U(m) k e
and denote by He the associative algebra He := End g ( Qe ) op .

By [Pr02, §6.1], the representation ρe : U(g) → End( Qe ) is injective on the center Z(g) of U(g).

Let {x 1 , . . . , x m } be a basis of p + such that x i is an eigenvector of eigenvalue n i of ad h, and let z 1 , . . . , z s be a basis of a totally isotropic complement to g(-1) 0 in g(-1). For (i, j) = (i 1 , . . . , i m , j 1 , . . . , j s ) in N m × N s , set:

x i z j := x i 1 1 • • • x i m m z j 1 1 • • • z j s s |(i, j)| e := m k=1 i k (n k + 2) + s k=1 j k By the PBW theorem, {x i z j ⊗1, (i j) ∈ N m × N s } is a basis of Qe . For k in N, let Hk
e be the subspace of elements h of He such that ρe (h)(1⊗1) is a linear combination of the x i z j ⊗1, |(i, j)| e k. Then the sequence Hk e , k = 0, 1, . . . is an increasing filtration of the algebra He .

Recall that S e is the Slodowy slice e + g f associated with e. Since g f identifies with the dual of g e , the algebra k[S e ] identifies with S(g e ). Denoting by t → h(t) the one parameter subgroup of G generated by ad h, S e is invariant by the one parameter subgroup t → t -2 h(t). Hence, this group induces a gradation on the algebra S(g e ). One of the main theorems of [START_REF] Premet | Special transverse slices and their enveloping algebras[END_REF] says that the graded algebra associated with the filtration of He is isomorphic to the so defined graded algebra S(g e ) (see also [START_REF] Gan | Quantization of Slodowy slices[END_REF] for the case where k = C).

4.2.

Let h be the Coxeter number of the root system of g. According to the Bala-Carter theory [C85, Ch. 5], there exists a Z-form g Z of g such that (e, h, f

) is an sl 2 -triple of the Q-form g Q := Q ⊗ Z g Z of g. Let d Z be
the determinant of the Killing form of g Z in a basis of g Z and let N be a sufficiently big integer such that e, h, f are in g N := Z[1/N!] ⊗ Z g Z , and such that

g(i) = k ⊗ Z[1/N!] (g(i) ∩ g N ), g(-1) 0 = k ⊗ Z[1/N!] (g(-1) 0 ∩ g N ), N > d Z N > h, N > e , f , N > max{i + 2 ; g(i) {0}},
Then, one can choose the elements x 1 , . . . , x m , z 1 , . . . , z s of g in g N . Let p be a prime number bigger than N.

Since p is not invertible in Z[1/N!], p is contained in a maximal ideal M p of Z[1/N!]. Then Z[1/N!]/M p is
an algebraic extension of F p . Let K be an algebraic closure of Z[1/N!]/M p and set:

g K := K ⊗ Z[1/N!] g N Denote by G K a simple, simply connected, algebraic K-group such that g K = Lie(G K ). Since N > d Z , the
Killing form of g N induces a nondegenerate bilinear form on g K , that we will also denote by . , . . As a Lie algebra of an algebraic group over a field of positive characteristic, g K is a restricted Lie algebra whose p-operation is denoted by x → x [p] . For x semi-simple, x [p] = x and for x nilpotent, x [p] = 0 since p > h; see for instance [V72, §1]. For χ in g * K , denote by U χ (g K ) the quotient of U(g K ) by the ideal generated by the elements x px [p] -χ(x) p , with x ∈ g K . More generally, if a is a restricted subalgebra of g K , we denote by U χ (a) the quotient of U(a) by the ideal generated by the elements

x p -x [p] -χ(x) p , with x ∈ a. Then set U e (g K ) := U χ e (g K ) and U e (a) := U χ e (a),
where χ e is the linear form

χ e : g K → K, x → x , e .
For all χ ∈ g * K , the restriction to g K of the quotient map U(g K ) → U χ (g K ) is an embedding and U χ (g K ) is a finite dimensional algebra of dimension p dim g by the PBW Theorem. Moreover, for any restricted subalgebra a of g K , the canonical map U(a) → U χ (g K ) defines through the quotient map an embedding from U χ (a) into U χ (g K ).

Denote by e, h, f, x 1 , . . . , x m , z 1 , . . . , z s the elements 1⊗e, 1⊗h, 1⊗ f , 1⊗x 1 , . . . , 1⊗x m , 1⊗z 1 , . . . , 1⊗z s of g K respectively. Because of the choice of N, for i in Z, the i-eigenspace g K (i) of ad h in g K verifies

g K (i) = K ⊗ Z[1/N!] (g(i) ∩ g N ) Set: g K (-1) 0 := K ⊗ Z[1/N!] (g(-1) 0 ∩ g N ), m K := g K (-1) 0 ⊕ i -2 g K (i), p +,K := i 0 g K (i), g K (-1) 1 := span({z 1 , . . . , z s }).
Then m K is an ad -nilpotent Lie algebra with a derived algebra orthogonal to e. Moreover, it is a restricted subalgebra of g K whose p-operation equals 0 since m K is ad-nilpotent. Let K e be the one dimensional m K -module defined by the character χ e of m K . Then K e is a U e (m K )-module. Denote by Q the induced module

Q := U e (g K ) ⊗ U e (m K ) K e ,
and set

H := End g K (Q) op .
Then Q and H are finite dimensional. For k in N, set

Λ k := {(l 1 , . . . , l k ), l i ∈ N, 0 l i p -1}.
By the PBW Theorem,

{x i z j ⊗1, (i, j) ∈ Λ m × Λ s } is a basis of Q. For h in H, h is determined by its value at 1⊗1, h(1⊗1) = (i,j)∈Λ m ×Λ s a i,j x i z j ⊗1,
with the a i,j 's in K. Denote by n(h) the biggest integers |(i, j)| e with (i, j) ∈ Λ m × Λ s such that a i,j 0. For k in N, denote by H k the linear vector space spanned by the elements h of H such that n(h) k. By [Pr02, 3.3], the sequence H 0 , H 1 , . . . is an increasing filtration of the algebra H.

4.3.

According to [V72, Prop. 2.1], the algebra U(g K ) G K of the invariant elements of the adjoint action of G K in U(g K ) is a polynomial algebra generated by some elements T 1 , . . . , T ℓ of the augmentation ideal of U(g K ).

Let Z K be the center of U(g K ) and let Z 0 be the subalgebra of U(g K ) generated by the elements x px [p] , with x in g K . Then Z 0 is a polynomial algebra contained in Z K and, by [V72, Thm. 3.1],

Z K = Z 0 [T 1 , . . . , T ℓ ]. (1) For i = (i 1 , . . . , i ℓ ) in N ℓ , set |i| := i 1 + • • • + i ℓ , T i := T i 1 1 • • • T i ℓ ℓ . By [V72, Thm. 3.1], Z K is a free Z 0 -module with basis {T i , i ∈ Λ ℓ }.
Let χ be in g * K . Denote by Z K,χ the image of Z K by the quotient morphism U(g K ) → U χ (g K ), and by I χ the ideal of Z K,χ generated by the images of T 1 , . . . ,

T ℓ in Z K,χ . Lemma 4.2. Let χ be in g * K . (i) The ideal I χ of Z K,χ is strictly contained in Z K,χ . Moreover, {T i ; i ∈ Λ ℓ , |i| m} is a basis of I m
χ . (ii) For m nonnegative integer, the dimensions of the K-spaces I m χ and U χ (g K )I m χ do not depend on χ.

Proof. (i) Let E be the K-subspace of Z K generated by the elements T i , i ∈ Λ ℓ . Since p > h, the restriction to E of the quotient map U(g K ) → U χ (g K ) is an embedding and its image is Z K,χ . Identifying E with Z K,χ , I χ is the subspace of Z K,χ generated by the elements T i , i ∈ Λ ℓ {0}. So, it is strictly contained in Z K,χ . Moreover, {T i ; i ∈ Λ ℓ , |i| m} is a basis of I m χ . (ii) Let {y 1 , . . . , y n } be a basis of g K . For i = (i 1 , . . . , i n ) in N n , set:

y i := y i 1 1 • • • y i n n .
The Z 0 -module U(g K ) is free with basis {y i , i ∈ Λ n }. Let F be the subspace of U(g K ) generated by the elements y i T j with (i, j) ∈ Λ n ×Λ ℓ and |j| m. Then the restriction to F of the quotient map U(g

K ) → U χ (g K ) is a surjective morphism onto U χ (g K )I m χ . Let d be the dimension of U 0 (g K )I m 0 . Choose (i 1 , j 1 ), . . . , (i d , j d ) such that the elements y i 1 T j 1 , . . . , y i d T j d of F induce a basis of U 0 (g K )I m 0 .
The usual filtration on U(g K ) induces filtrations on U 0 (g K ) and U χ (g K ) having the same associated graded spaces. Indeed, for x ∈ g K , the images of the elements x px [p] and x px [p] -χ(x) p are the same in the associated graded spaces gr(U 0 (g K )) and gr(U χ (g K )). The images of y i 1 T j 1 , . . . , y i d T j d in the graded space gr(U 0 (g K )) are linearly free. Hence, the images of y i 1 T j 1 , . . . , y i d T j d in gr(U χ (g K )) are linearly free too. As a result, U χ (g K )I m χ has dimension at least d. Exchanging the roles of U χ (g K )I m χ and U 0 (g K )I m 0 in the above lines of arguments, we obtain that U χ (g K )I m χ has dimension at most d, whence the assertion.

For z in g K , let χ z be the linear form x → z , x and let Îz be the ideal of Z K generated by T 1 , . . . , T ℓ and the elements

x p -x [p] -χ z (x) p , for x ∈ g K . Thus, I χ z is the image of Îz in U χ z (g K ) by the quotient map U(g K ) → U χ z (g K ).
Consider on N ℓ the lexicographic order induced by the usual order of N and denote it by . For m a positive integer and for i in N ℓ , denote by Îz,m,i the ideal of Z K generated by Îm+1 z and the elements T j with j in N ℓ {i} such that |j| = m and j i, j i.

Set:

Λ ℓ,m := {i ∈ Λ ℓ ; |i| = m}.
In particular, Λ ℓ,m is empty if m > ℓ(p -1).

Our basic reference concerning Azymaya algebras is [McR01, Chap. 13, §7]. What will be important for us is the following result, [START_REF] Mcconnell | Noncommutative Noetherian Rings[END_REF]Prop. 13.7.9]: if A is an Azumaya algebra with center Z, then there is a one-to-one correspondence between the twosided ideals of A and the ideals of Z given by the maps I → I∩Z, J → JA.

Lemma 4.3. Let z be a regular nilpotent element of g K and let m be a positive integer smaller than ℓ(p -1).

(i) The ideal Îz of Z K is maximal and the localization at Îz of U(g K ) is an Azumaya algebra with center the localization of Z K at Îz .

(ii) The ideal U(g K ) Îz of U(g K ) is maximal. (iii) Let i be in Λ ℓ,m . Then T i is not in U(g K ) Îz,m,i . (iv) For a i , i ∈ Λ ℓ,m , in U(g K ),
the following equivalence holds:

i∈Λ ℓ,m a i T i ∈ U(g K ) Îm+1 z ⇐⇒ ∀ i ∈ Λ ℓ,m , a i ∈ U(g K ) Îz .
Proof. (i) To begin with, prove that Îz is the annihilator of χ z in Z K . Since z is nilpotent, χ z vanishes T 1 , . . . , T ℓ . Let {h i , x α , i = 1, . . . , ℓ, α ∈ R} be a basis of g K derived from a Chevalley basis of g, where R is a root system of g. Since z is nilpotent, we can assume that z lies in the subalgebra generated by the positive vectors x α of the above Chevalley basis. Hence, z, h i = 0 for i = 1, . . . , ℓ. On the other hand, for i ∈ {1, . . . , ℓ}, h

[p] i = h i and for any α ∈ R, x

[p] α = 0 since p > h. Let x ∈ g K and write it as

x = α∈R a α x α + ℓ i=1 a i h i , a i , a α ∈ K.
Then

x [p] = α a p α x [p] α + ℓ i=1 a p i h [p] i = ℓ i=1 a p i h i .
As a consequence, z , x px [p] -χ z (x) p = 0. This proves that Îz is contained in the annihilator of χ z in Z K . The other inclusion is clear from the equality (1). Hence Îz is a maximal ideal of Z K . Since z is regular and since p is bigger than the Coxeter number of the root system of g, the localization of U(g K ) at Îz is an Azumaya algebra with center the localization of Z K at Îz ; cf. [BG97, Thm. 4.10].

(ii) Denote by U(g K ) z and (Z K ) z the localizations of U(g K ) and Z K respectively at Îz . By (i), U(g K ) z is an Azumaya algebra with center (Z K ) z . So, by [START_REF] Mcconnell | Noncommutative Noetherian Rings[END_REF]Prop. 13.7.9], for any ideal P of U(g K ) z , P is the ideal generated by

P ∩ (Z K ) z . Then U(g K ) Îz is a maximal ideal of U(g K ) since K + Îz = Z K . (iii) Let i be in Λ ℓ,m and suppose that T i is in U(g K ) Îz,m,i . A contradiction is expected. By (i) and [McR01, Prop. 13.7.9], Îz,m,i = Z K ∩ U(g K ) Îz,m,i since K + Îz = Z K . Hence T i is in Îz,m,i . Then the contradiction follows from [V72, Thm. 3.1].
(iv) The converse implication is clear. Let us prove the direct implication. Let

a i , i ∈ Λ ℓ,m , be in U(g K ) such that i∈Λ ℓ,m a i T i ∈ U(g K ) Îm+1 z .
Suppose that the a i 's are not all in U(g K ) Îz . A contradiction is expected. Let i be the biggest element of Λ ℓ,m such that a i is not in U(g K ) Îz . Then a i T i is in U(g K ) Îz,m,i . Since T i is in the center of U(g K ), the subset of elements a of U(g K ) such that aT i is in U(g K ) Îz,m,i is an ideal containing U(g K ) Îz . By (iii), this ideal is strictly contained in U(g K ). So it equals U(g K ) Îz by (ii), whence the contradiction.

Proposition 4.4. Let χ be in g * K and let m be a positive integer. Then the canonical morphism

U χ (g K ) ⊗ K I m χ -→ U χ (g K )I m χ defines through the quotients an isomorphism U χ (g K )/U χ (g K )I χ ⊗ K I m χ /I m+1 χ -→ U χ (g K )I m χ /U χ (g K )I m+1 χ . Proof. Since U χ (g K )I m χ /U χ (g K )I m+1 χ is a quotient of U χ (g K )I m χ , there is a canonical morphism U χ (g K ) ⊗ K I m χ -→ U χ (g K )I m χ /U χ (g K )I m+1 χ .
Moreover, this morphism is surjective. Then it defines through the quotient a surjective morphism

U χ (g K ) ⊗ K I m χ /I m+1 χ -→ U χ (g K )I m χ /U χ (g K )I m+1
χ and this morphism defines through the quotient a surjective morphism

U χ (g K )/U χ (g K )I χ ⊗ K I m χ /I m+1 χ -→ U χ (g K )I m χ /U χ (g K )I m+1 χ
Since it is a morphism of finite dimensionnal K-vector spaces, it suffices to prove that these two spaces have the same dimension. By Lemma 4.2, it suffices to find some χ such that this morphism is an isomorphism. By Lemma 4.3,(iv), if z is a regular nilpotent element of g K , then the kernel of the morphism

U χ z (g K ) ⊗ K I m χ z -→ U χ z (g K )I m χ z /U χ z (g K )I m+1 χ z equals U χ z (g K )I χ z ⊗ K I m χ z so that the morphism U χ z (g K )/U χ z (g K )I χ z ⊗ K I m χ z /I m+1 χ z -→ U χ z (g K )I m χ z /U χ z (g K )I m+1 χ z
is an isomorphism, whence the proposition.

Recall that χ e is the linear form x → e , x . Set (ii) For some K-subspace E of H, the linear map 

E ⊗ K Z K,e -→ H, v⊗a -→ va is an isomorphism of K-spaces. Proof. (i)
E ⊗ K Z K,e -→ H, v⊗a -→ va.
By (i) with m = 0, Θ is injective and, again by (i), for all m,

H ⊂ Θ(E ⊗ K Z K,e ) + I m e .
The assertion follows since I m e = {0} for m > ℓ(p -1).

4.4.

Let S e (g e K ) be the quotient of the symmetric algebra S(g e K ) by the ideal generated by the elements x p , with x ∈ g e K , and let U e (g e K ) be the quotient of the enveloping algebra U(g e K ) by the ideal generated by the elements x px [p] , with x in g e K . Since e is orthogonal to g e K , the canonical injection from U(g e K ) into U(g K ) induces an embedding of U e (g e K ) into U e (g K ). Let h be a Cartan subalgebra of g, let R be the root system of (g, h) and let W(R) be the corresponding Weyl group. Let h Z be the sub-Z-module of h generated by the coroots of R, and set:

h N := Z[1/N!] ⊗ Z h Z , h K := K ⊗ Z[1/N!] h N .
Since . , . is nondegenerate, the duals g * K and h * K of g K and h K respectively identify with g K and h K respectively so that S(g K ) and S(h K ) are the algebras of polynomial functions on g K and h K respectively. The Weyl group W(R) defines through the quotient an action on h K . Since p > h, W(R) is embedded in GL(h K ). By [V72, Prop. 2.1], there exists an isomorphism δ from U(g K ) G K onto S(h K ) W(R) . Moreover, U(g K ) G K is a polynomial algebra generated by T 1 , . . . , T ℓ . By [SS70, §3.17], the restriction map from g K to h K induces an isomorphism from S(g K ) G K onto S(h K ) W(R) . For i ∈ {1, . . . , ℓ}, let S i be the element of S(g K ) G K such that δ(T i ) is the restriction of S i to h K .

Since the restriction of . , . to g e K × g f K is nondegenerate, g f K identifies with the dual of g e K and k[e + g f K ] identifies with S(g e K ). For i = 1, . . . , ℓ, let S ′ i be the image in S e (g e K ) of the restriction of S i to e + g f K . Proposition 4.6. There is an isomorphism τ : H -→ S e (g e K ) from the K-space H onto the K-space S e (g e K ) such that τ(Z K,e ) is the subalgebra of S e (g e K ) generated by S ′ 1 , . . . , S ′ ℓ and such that τ(ab) = τ(a)τ(b) for all (a, b) in H × Z K,e . Proof. Recall that x 1 , . . . , x m is the basis of p K,+ introduced in Subsection 4.1. Order it so that x 1 , . . . , x r is a basis of g e K . For θ in H, denote by θ its image in gr(H) by the canonical map. By [Pr02, Thm. 3.4], there exist θ 1 , . . . , θ r in H such that the monomials θ

a 1 1 • • • θ a r r and θ a 1 1 • • • θ a r r
, with 0 a i p -1, form bases of gr(H) and H respectively. Moreover, there exists an isomorphism from the K-algebra gr(H) onto the K-algebra S e (g e K ) such that x 1 , . . . , x r is the image of θ 1 , . . . , θ r respectively. Let τ be the linear isomorphism from H onto S e (g e K ) such that τ(θ

a 1 1 • • • θ a r r ) = x a 1 1 • • • x a r r
for all (a 1 , . . . , a r ) ∈ Λ r . It remains to prove that for i ∈ {1, . . . , ℓ} and for a in H, τ(aT i ) = τ(a)S ′ i . Let A be the subspace of U(g K ) generated by the monomials x a r+1 r+1 • • • x a m m , with (a r+1 , . . . , a m ) ∈ N m-r {0}, and let m ′ K be the orthogonal complement to e in m K . By the PBW theorem, T i -

k∈N j∈N r c i,j,k x j f k ∈ A + U(g K )m ′ K (2) with the c i,j,k 's in K. By [Pr02, Thm. 3.4], τ(T i ) is the polynomial function on g f K , v -→ k∈N j∈N r c i,j,k v , x 1 j 1 • • • v , x r j r e , f k
By definition, S i is the G K -invariant polynomial function on g K such that its restriction to h K equals δ(T i ). Moreover, since p > h, S i is the image of T i in S(g K ); to see that, we follow the proof of [Di74, Thm. 7.4.5]. Hence

S i - k∈N j∈N r c i,j,k x j f k ∈ m l=r+1 S(g K )x l + S(g K )m ′ K As a result, for v in g f K , S i (e + v) = k∈N j∈N r c i,j,k v , x 1 j 1 • • • v , x r j r e , f k so that S ′ i = τ(T i ). Let a be in H. By [Pr02, Thm. 3.4], a - k∈N j∈N r γ a,j,k x j f k ∈ A + U(g K )m ′ K (3)
with the γ a,j,k 's in K, and τ(a) is the polynomial function on

g f , v -→ k∈N j∈N r γ a,j,k v , x 1 j 1 • • • v , x r j r e , f k .
From the equalities (2) and (3), it results that

aT i - k∈N j∈N r γ a,j,k x j T i f k ∈ AT i + U(g K )m ′ K AT i ⊂ k∈N c i,j,k Ax j f k + AA + U(g K )m ′ K x j T i f k - k ′ ∈N j ′ ∈N r c i,j ′ ,k ′ x j x j ′ f k+k ′ ⊂ x j A f k + U(g K )m ′ K .
For a 1 , a 2 in A of filtrations degree |a 1 | e and |a 2 | e respectively, a 1 a 2 ⊗1 = a 3 ⊗1 + a 4 ⊗1 where a 3 is in A and a 4 is a linear combination of the x i z j ⊗1's, with |(i, j)| e smaller than |a 1 | e + |a 2 | e . Moreover, for j in N r , a 1 x j ⊗1 = x j a 1 ⊗1 + a 5 ⊗1 where a 5 is a linear combination of the x i z k ⊗1's, with |(i, k)| e smaller than |a 1 | e + |(j, 0)| e . At last, (x j x j ′x j+j ′ ⊗1) is a linear combination of the x k ⊗1's with |(k, 0)| e smaller than |(j, 0)| e + |(j ′ , 0)| e . All this shows that τ(aT i ) is the polynomial function on

g f v -→ (k,k ′ )∈N 2 (j,j ′ )∈N r ×N r c i,j,k γ a,j ′ ,k ′ v , x 1 j 1 + j ′ 1 • • • v , x r j r + j ′ r e , f k+k ′ , whence τ(aT i ) = τ(a)τ(T i ).
Henceforth, E is a subspace of H such that the linear map E ⊗ K Z K,e -→ H, v⊗a -→ va is an isomorphism of K-spaces. The existence of such a subspace is provided by Corollary 4.5,(ii).

Corollary 4.7. The morphism

τ(E) ⊗ K τ(Z K,e ) -→ S e (g e K ), v⊗a -→ va is an isomorphism of K-spaces.
Proof. By Proposition 4.6, τ(E)τ(Z K,e ) = S e (g e K ). In particular, the K-linear map

τ(E) ⊗ K τ(Z K,e ) -→ S e (g e K ), v⊗a -→ va is surjective. Since the K-spaces E ⊗ K Z K,e , H, τ(E) ⊗ K τ(Z K,e
) and τ(H) are finite dimensional of the same dimension, this map is an isomorphism.

4.5. Let m be the image in S e (g e K ) of the augmentation ideal of S(g e K ) by the quotient map. Then the sequence m, m 2 , . . . is a decreasing filtration of S e (g e K ) such that the graded space associated with this filtration is the algebra S e (g e K ). This filtration induces a filtration on τ(Z K,e ) and the graded algebra associated with this filtration is a subalgebra of S e (g e K ) denoted by gr(τ(Z K,e )). Proposition 4.8. The linear map gr(τ(E)) ⊗ K gr(τ(Z K,e )) -→ S e (g e K ), v⊗a -→ va is an isomorphism.

Proof. By Corollary 4.7, the linear map

τ(E) ⊗ K τ(Z K,e ) -→ S e (g e K ), v⊗a -→ va
is an isomorphism. The filtration on S e (g e K ) induces a filtration on τ(E) and the graded space gr(τ(E)) associated with this filtration is a subspace of S e (g e K ) of the same dimension. For d nonnegative integer, denote by gr(τ(E)) d the subspace of degree d of gr(τ(E)) and set:

gr(τ(E)) (d) := i d gr(τ(E)) i .
Let gr(τ(Z K,e )) + be the augmentation ideal of gr(τ(Z K,e )) and prove by induction on d that S e (g e K ) ⊂ gr(τ(E)) + S e (g e K )gr(τ(Z K,e )) + + m d+1 . Since gr(τ(E)) (0) = K, the inclusion is clear for d = 0. Suppose that it is true for any integer smaller than d -1 and prove the inclusion for d. By induction hypothesis, it suffices to prove that for a homogeneous polynomial a of degree d in S e (g e K ), a ∈ gr(E) + S e (g e K )gr(τ(Z K,e )) + + m d+1 . Let a be a homogeneous polynomial of degree d in S e (g e K ), and let {v 1 , . . . , v m } be a basis of E such that its image in gr(E) is linearly free. Then

a = m i=1 v i a i
for some a 1 , . . . , a m in τ(Z K,e ) and, a ∈

i∈I d v i a i + m d+1
where I d is the subset of i ∈ {1, . . . , m} such that v i is in S e (g e K ) m d+1 . For i in I d such that v i is not in m d , a i is in m so that its image in gr(τ(Z K,e )) is in gr(τ(Z K,e )) + . As a result, a ∈ gr(E) + S e (g e K )gr(τ(Z K,e )) + + m d+1 . Since m d = {0} for d sufficiently big, one deduces that S e (g e K ) ⊂ gr(τ(E)) + S e (g e K )gr(τ(Z K,e )) + . Then, by induction on i, one gets S e (g e K ) ⊂ gr(τ(E))S e (g e K ) + S e (g e K )gr(τ(Z K,e )) i . For i sufficiently big, gr(τ(Z K,e )) i = {0}. Therefore, the linear map gr(τ(E)) ⊗ K gr(τ(Z K,e )) -→ S e (g e K ), v⊗a -→ va is surjective. As the K-spaces τ(E) ⊗ K gr(τ(Z K,e )), gr(τ(E)) ⊗ K gr(τ(Z K,e )) and S e (g e K ) are finite dimensional of the same dimension, this map is an isomorphism.

For q in S(g K ), denote by e q the initial component of the restriction of q to e + g f K .

Corollary 4.9. Let q 1 , . . . , q ℓ be homogeneous generators of S(g K ) G K such that e q 1 , . . . , e q ℓ are algebraically independent over K.

(i) The set

{ e q i 1 1 • • • e q i ℓ ℓ , i = (i 1 , . . . , i ℓ ) ∈ Λ ℓ } is a basis of the K-space gr(τ(Z k,e )).
(ii) For a 1 , . . . , a ℓ in S e (g e K ), if a 1 ( e q 1 ) + • • • + a ℓ ( e q ℓ ) = 0 then a 1 , . . . , a ℓ are linear combinations with coefficients in S e (g e K ) of e q 1 , . . . , e q ℓ .

Proof. (i) Since e q 1 , . . . , e q ℓ are algebraically independent over K, the jacobian matrix

( ∂( e q i ) ∂x j , 1 i ℓ, 1 j r)
has rank ℓ. This means that in K(x 1 , . . . , x r ), the quotient field of S(g e K ), the elements e q 1 , . . . , e q ℓ are pindependent. Hence the sequence

e q i 1 1 • • • e q i ℓ ℓ , i = (i 1 , . . . , i ℓ ) ∈ Λ ℓ , of elements of S e (g e K )
is linearly free over K. Since q 1 , . . . , q ℓ are homogeneous generators of S(g K ) G K , the algebra τ(Z K,e ) is generated by the restrictions of q 1 , . . . , q ℓ to e + g f K , [SS70, §3.17]. So, for a in τ(Z K,e ), a is the restriction to e + g f K of

i=(i 1 ,...,i ℓ )∈Λ ℓ c i q i 1 1 • • • q i ℓ ℓ
for some c i , i ∈ Λ ℓ in K so that the image a of a in gr(τ(Z K,e )) equals

i=(i 1 ,..., i ℓ )∈Λ ℓ c ′ i e q i 1 1 • • • e q i ℓ ℓ
where c ′ i = c i if a and e q i 1 1 • • • e q i ℓ ℓ have the same degree, and c ′ i = 0 otherwise. (ii) Let a 1 , . . . , a ℓ be in S e (g e K ) such that a 1 ( e q 1 ) + • • • + a ℓ ( e q ℓ ) = 0.

Let v 1 , . . . , v m be a basis of gr(τ(E)). By (i) and Proposition 4.8, for i = 1, . . . , ℓ,

a i = m j=1 k∈Λ ℓ c i, j,k v j e q k 1 1 • • • e q k ℓ ℓ with the c i, j,k 's in K. As a result, m j=1 v j ⊗( ℓ i=1 k∈Λ ℓ c i, j,k ( e q i e q k 1 1 • • • e q k ℓ ℓ ) = 0 so that ℓ i=1 k∈Λ ℓ c i, j,k ( e q i e q k 1 1 • • • e q k ℓ ℓ ) = 0
for j = 1, . . . , m. By (i), it follows that c i, j,0 = 0 for all (i, j), whence the statement.

4.6. Proof of Theorem 4.1. Let g Z be a Z-form of g such that (e, h, f ) is an sl 2 -triple of the Q-form of g Q := Q ⊗ Z g Z of g. Let us suppose that for some generators q 1 , . . . , q ℓ of S(g) g , e q 1 , . . . , e q ℓ are algebraically independent over k. We aim to prove that e is good. First of all, since g Q is a Q-form of g containing e, h, f , there exist homogeneous generators q ′ 1 , . . . , q ′ ℓ of S(g Q ) g Q such that e q ′ 1 , . . . , e q ′ ℓ are algebraically independent over Q. So, one can suppose that q 1 , . . . , q ℓ are in S(g Q ) g Q .

Let {y 1 , . . . , y r } be a basis of g f Q and let {x 1 , . . . , x n } be a basis of g Z . By the hypothesis, for some (v 1 , . . . , v r ) in Z r and (u 1 , . . . , u n ) in Z n , the value at v 1 y 1 + • • • + v r y r of a ℓ-order minor of the jacobian matrix

( ∂( e q i ) ∂y j , 1 i ℓ, 1 j r)
is a rational number c 0 different from 0, and the value at u 1 x 1 + • • • + u n x n of a ℓ-order minor of the jacobian matrix

( ∂q i ∂x j , 1 i ℓ, 1 j n)
is a rational number c 0,0 different from 0. Let d 1 , . . . , d ℓ be the degrees of e q 1 , . . . , e q ℓ respectively, and denote by J the ideal of S(g e Q ) generated by e q 1 , . . . , e q ℓ . For d positive integer, denote by S d (g e Q ) and J d the subspace of homogeneous elements of degree d of S(g e Q ) and J respectively. Suppose that for some positive integer d there exist homogeneous elements a 1 , . . . , a ℓ of degrees dd 1 , . . . , dd ℓ respectively, not all in J, such that

a 1 ( e q 1 ) + • • • + a ℓ ( e q ℓ ) = 0.
A contradiction is expected. Then for some µ in the orthogonal complement of

J d-d 1 × • • • × J d-d ℓ in the dual of S d-d 1 (g e Q ) × • • • × S d-d ℓ (g e Q )
, c 1 := µ(a 1 , . . . , a ℓ ) is a rational number different from zero. Let N be a sufficiently big positive integer verifying the conditions of Subsection 4.2 and the following conditions, where g N := Z[1/N!] ⊗ Z g Z : 1) c 0 , c 0,0 , c 1 are invertible elements of Z[1/N!], 2) q 1 , . . . , q ℓ are in S(g N ), 3) y 1 , . . . , y r are in g f N , 4) a 1 , . . . , a ℓ are in S(g e N ), 5) µ is the extension to

S d-d 1 (g e Q )ו • •×S d-d ℓ (g e Q ) of a linear form µ 0 on the Z[1/N!]-module S d-d 1 (g e N )× • • • × S d-d ℓ (g e N )
. Let p be a positive integer bigger than N and d. Let M p be a maximal ideal of Z[1/N!] containing p, let K be an algebraic closure of Z[1/N!]/M p and set:

g K := K ⊗ Z[N!] g N .
Let G K be a simple, simply connected algebraic K-group such that g K = Lie(G K ). Because of the above conditions, the above data reduce modulo M p . For a in S(g N ), denote again by a the element 1⊗a of S(g K ). Since c 0,0 is an invertible element of K, q 1 , . . . , q ℓ are algebraically independent elements of S(g K ) G K so that q 1 , . . . , q ℓ are homogeneous generators of S(g K ) G K because of their degrees. Since c 0 is an invertible element of K, e q 1 , . . . , e q ℓ are algebraically independent over K. Moreover, (a 1 , . . . , a ℓ ) is an element of

S d-d 1 (g e K ) × • • • × S d-d ℓ (g e K ) such that a 1 ( e q 1 ) + • • • + a ℓ ( e q ℓ ) = 0.
Denote again by J the ideal of S(g K ) generated by e q 1 , . . . , e q ℓ and denote by J i its intersection with S i (g K ) for all nonnegative integer i. Then (a 1 , . . . , a ℓ ) is not in

J d-d 1 × • • • × J d-d ℓ since c 1 is invertible in K. As p is bigger than d the restriction to S d-d 1 (g e K ) × • • • × S d-d ℓ (g e K )
of the quotient map (S(g e K )) ℓ → (S e (g e K )) ℓ is injective, whence a contradiction by Corollary 4.9,(ii). As a result, for a 1 , . . . , a ℓ in S(g e ) such that a 1 ( e q 1 ) + • • • + a ℓ ( e q ℓ ) = 0, a 1 , . . . , a ℓ are all in J. So by Proposition 3.7, the nullvariety of e q 1 , . . . , e q ℓ in g f has codimension ℓ. Then e q 1 , . . . , e q ℓ is a regular sequence in S(g e ), e is a good element of g and S(g e ) is a free extension of the polynomial algebra S(g e ) g e by Proposition 3.2. Proof. This follows from [PPY07, Thm. 4.2 and 4.4], Theorem 4.1 and Proposition 3.4. 5.2. In this subsection and the next one, g is assumed to be simple of type B or D. More precisely, we assume that g is the simple Lie algebra so(V) for some vector space V of dimension 2ℓ + 1 or 2ℓ. Then g is embedded into g := gl(V) = End(V). For x an endomorphism of V and for i ∈ {1, . . . , dim V}, denote by Q i (x) the coefficient of degree dim Vi of the characteristic polynomial of x. Then, for any x in g, Q i (x) = 0 whenever i is odd. Define a generating family (q 1 , . . . , q ℓ ) of the algebra S(g) g as follows. For i = 1, . . . , ℓ -1, set q i := Q 2i . If dim V = 2ℓ + 1, set q ℓ = Q 2ℓ and if dim V = 2ℓ, let q ℓ be a homogeneous element of degree ℓ of S(g) g such that Q 2ℓ = q 2 ℓ . Let (e, h, f ) be an sl 2 -triple of g. Following the notations of Subsection 3.2, for i ∈ {1, . . . , ℓ}, denote by e q i the initial homogeneous component of the restriction to g f of the polynomial function x → q i (e + x), and by δ i the degree of e q i . According to [PPY07, Thm. 2.1], e q 1 , . . . , e q ℓ are algebraically independent if and only if

dim g e + ℓ -2(δ 1 + • • • + δ ℓ ) = 0.
Our first aim in this subsection is to describe the sum dim g e + ℓ -2(δ 1 + • • • + δ ℓ ) in term of the partition of dim V associated with e.

Remark 5.2. The sequence of the degrees (δ 1 , . . . , δ ℓ ) is described by [PPY07, Rem. 4.2].

For λ = (λ 1 , . . . , λ k ) a sequence of positive integers, with λ 1 • • • λ k , set:

|λ| := k, r(λ) := λ 1 + • • • + λ k .
Assume that the partition λ of r(λ) is associated with a nilpotent orbit of so(k r(λ) ). Then the even integers of λ have an even multiplicity, [CMc93, §5.1]. Thus k and r(λ) have the same parity. Moreover, there is an involution i → i ′ of {1, . . . , k} such that i = i ′ if λ i is odd, and i ′ ∈ {i -1, i + 1} if λ i is even. Set:

S (λ) := i=i ′ , i odd i - i=i ′ , i even i
and denote by n λ the number of even integers in the sequence λ.

From now on, assume that λ is the partition of dim V associated with the nilpotent orbit G(e).

Lemma 5.3. (i) If dim V is odd, i.e., k is odd, then

dim g e + ℓ -2(δ 1 + • • • + δ ℓ ) = n λ -k -1 2 + S (λ).
(ii) If dim V is even, i.e., k is even, then 

dim g e + ℓ -2(δ 1 + • • • + δ ℓ ) = n λ + k 2 + S (λ). Proof. (i) If dim V is odd, then by [PPY07, §4.4, (14)], 2(δ 1 + • • • + δ ℓ ) = dim g e + dim V 2 + k -n λ 2 -S (λ), whence dim g e + ℓ -2(δ 1 + • • • + δ ℓ ) = n λ -k -1 2 + S (λ) since dim V = 2ℓ + 1. (ii) If dim V is even, then δ ℓ = k/2
2(δ 1 + • • • + δ ℓ ) + k = dim g e + dim V 2 + k -n λ 2 -S (λ) whence dim g e + ℓ -2(δ 1 + • • • + δ ℓ ) = n λ + k 2 + S (λ) since dim V = 2ℓ.
The sequence λ = (λ 1 , . . . , λ k ) verifies one of the following five conditions:

1) λ k and λ k-1 are odd, 2) λ k and λ k-1 are even, 3) k > 3, λ k and λ 1 are odd and λ i is even for any i ∈ {2, . . . , k -1}, 4) k > 4, λ k is odd and there is k ′ ∈ {2, . . . , k -2} such that λ k ′ is odd and λ i is even for any i ∈ {k ′ + 1, . . . , k -1}, 5) k = 1 or λ k is odd and λ i is even for any i < k.

For example, (4, 4, 3, 1) verifies Condition (1); (6, 6, 5, 4, 4) verifies Condition (2); (7, 6, 6, 4, 4, 4, 4, 3) verifies Condition (3); (8, 8, 7, 5, 4, 4, 2, 2, 3) verifies Condition (4) with k ′ = 4; (9) and (6, 6, 4, 4, 3) verify Condition (5). If k = 2, then one of the conditions (1) or (2) is satisfied. -if k = 2 or if Condition (3) or (5) is verified, then set λ * = λ, -if Condition (1) or (2) is verified, then set:

λ * := (λ 1 , . . . , λ k-2 ),
-if k > 3 and if the Condition (4) is verified, then set λ * := (λ 1 , . . . , λ k ′ -1 ).

In any case, the partition of r(λ * ) corresponding to λ * is associated with a nilpotent orbit of so(k r(λ * ) ). Recall that n λ is the number of even integers in the sequence λ.

Definition 5.5. Denote by d λ the integer defined by:

-if k = 2, then d λ := n λ , -if k > 2 and if Condition (1) or (4) is verified, then d λ := d λ * , -if k > 2 and if Condition (2) is verified, then d λ := d λ * + 2, -if k > 2 and if Condition (3) is verified, then d λ := 0, -if Condition (5) is verified, then d λ := 0. Lemma 5.6. (i) Assume that k is odd. If Condition (1), (2) or (5) is verified, then n λ -k -1 2 + S (λ) = n λ * -|λ * | -1 2 + S (λ * ). Otherwise, n λ -k -1 2 + S (λ) = n λ * -|λ * | -1 2 + S (λ * ) + k -|λ * | -2. (ii) If k is even, then n λ + k 2 + S (λ) = n λ * + |λ * | 2 + S (λ * ) + d λ -d λ * .
Proof. (i) If Condition (3) or ( 5) is verified, there is nothing to prove. If Condition (1) is verified,

n λ = n λ * , S (λ) = S (λ * ) + 1. Then n λ -k -1 2 + S (λ) = n λ * -|λ * | -1 2 -1 + S (λ * ) + 1 whence the assertion. If Condition (2) is verified, n λ = n λ * + 2, S (λ) = S (λ * ). Then, n λ -k -1 2 + S (λ) = n λ * -|λ * | -1 2 + S (λ * )
whence the assertion. If Condition (4) is verified,

n λ = n λ * + k -|λ * | -2, S (λ) = S (λ * ) + k -|λ * | -1. Then, n λ -k -1 2 + S (λ) = n λ * -|λ * | -1 2 -1 + S (λ * ) + k -|λ * | -1
whence the assertion.

(ii) If k = 2 or if k > 2 and Condition (3) or (5) is verified, there is nothing to prove. Let us suppose that k > 3. If Condition (1) is verified,

n λ = n λ * , S (λ) = S (λ * ) -1.
Then

n λ + k 2 + S (λ) = n λ * + |λ * | 2 + 1 + S (λ * ) -1 whence the assertion since d λ = d λ * . If Condition (2) is verified, n λ = n λ * + 2, S (λ) = S (λ * ).
Then,

n λ + k 2 + S (λ) = n λ * + |λ * | 2 + 2 + S (λ * )
whence the assertion since d λd λ * = 2. If Condition (4) is verified,

n λ = n λ * + k -|λ * | -2, S (λ) = S (λ * ) + |λ * | + 1 -k.
Then,

n λ + k 2 + S (λ) = n λ * + |λ * | 2 + k -|λ * | -1 + S (λ * ) + |λ * | -k + 1 whence the assertion since d λ = d λ * . Lemma 5.7. (i) If λ 1 is odd and if λ i is even for i 2, then dim g e + ℓ -2(δ 1 + • • • + δ ℓ ) = 0. (ii) If k is odd, then dim g e + ℓ -2(δ 1 + • • • + δ ℓ ) = n λ -d λ . (iii) If k is even, then dim g e + ℓ -2(δ 1 + • • • + δ ℓ ) = d λ .
Proof. (i) By the hypothesis, n λ = k -1 and S (λ) = 1, whence the assertion by Lemma 5.3,(i).

(ii) Let us prove the assertion by induction on k. For k = 3, if λ 1 and λ 2 are even, n λ = 2, d λ = 0 and S (λ) = 3, whence the equality by Lemma 5.3,(i). Assume that k > 3 and suppose that the equality holds for the integers smaller than k. If Condition (1) or ( 2) is verified, then by Lemma 5.3,(i), Lemma 5.6,(i) and by induction hypothesis, dim g e + ℓ -2(δ 1

+ • • • + δ ℓ ) = n λ * -d λ * . But if Condition (1) or (2) is verified, then n λ -d λ = n λ * -d λ * . If Condition (5) is verified, then n λ = k -1, S (λ) = k, d λ = 0,
whence the equality by Lemma 5.3,(i). Let us suppose that Condition (4) is verified. By Lemma 5.3,(i), Lemma 5.6,(i) and by induction hypothesis,

dim g e + ℓ -2(δ 1 + • • • + δ ℓ ) = n λ * -d λ * + k -|λ * | -2 = n λ -d λ
whence the assertion since Condition (3) is never verified when k is odd.

(iii) The statement is clear for k = 2 by Lemma 5.3,(ii). Indeed, if Condition (1) is verified, then

d λ = n λ = 0 and S (λ) = -1 and if Condition (2) is verified, then d λ = n λ = 2 and S (λ) = 0. If Condition (3) is verified, n λ = k -2 and S (λ) = 1 -k,
whence the statement by Lemma 5.3,(ii). When Condition (4) is verified, by induction on |λ|, the statement results from Lemma 5.3,(ii) and Lemma 5.6,(ii), whence the assertion since Condition (5) is never verified when k is even.

Corollary 5.8. (i) If λ 1 is odd and if λ i is even for all i 2, then e is good.

(ii) If k odd and if n λ = d λ , then e is good. In particular, if g is of type B, then the even nilpotent elements of g are good.

(iii) If k even and if d λ = 0, then e is good. In particular, if g is of type D and of odd rank, then the even nilpotent elements of g are good.

Proof. As it has been already noticed, by [PPY07, Thm. 2.1], the polynomials e q 1 , . . . , e q ℓ are algebraically independent if and only if dim

g e + ℓ -2(δ 1 + • • • + δ ℓ ) = 0.
So, by Theorem 4.1 and Lemma 5.7, if either λ 1 is odd and λ i is even for all i 2, or if k is odd and n λ = d λ , or if k is even and d λ = 0, then e is good.

Suppose that e is even. Then the integers λ 1 , . . . , λ k have the same parity, cf. e.g. [C85, §1.3.1]. Moreover, n λ = d λ = 0 whenever λ 1 , . . . , λ k are all odd (cf. Definition 5.5). This in particular occurs if either g is of type B, or if g is of type D with odd rank.

Remark 5.9. The fact that even nilpotent elements of g are good if either g is of type B, or is g is of type D with odd rank, was already observed by O. Yakimova in [Y09, Cor. 8.2] with a different formulation.

Definition 5.10. A sequence λ = (λ 1 , . . . , λ k ) is said to be very good if n λ = d λ whenever k is odd and if d λ = 0 whenever k is even. A nilpotent element of g is said to be very good if it is associated with a very good partition of dim V.

According to Corollary 5.8, if e is very good then e is good. The following lemma characterizes the very good sequences. For example, the partitions (5, 3, 3, 2, 2) and (7, 5, 5, 4, 4, 3, 1, 1) of 15 and 30 respectively are very good.

Proof. (i) Assume that λ 1 is odd and that (λ 2 , . . . , λ k ) is a concatenation of sequences verifying Conditions (1) or (2 For some k ′ ∈ {2, . . . , k}, λ i is even for all i k ′ , and (λ k ′ +1 , . . . , λ k ) is very good.

) with k = 2. So, if k > 1, then n λ -d λ = n λ * -d λ * . Then, a quick induction shows that n λ -d λ = n (λ 1 ) -d (λ 1 ) = 0 since λ 1 is
In particular, k ′ is even and λ is not very good by Lemma 5.11. For example, the sequences λ = (6, 6, 4, 4, 3, 2, 2) and (6, 6, 4, 4, 3, 3, 3, 2, 2, 1) satisfy the condition ( * ) with k ′ = 4. Define a sequence ν = (ν 1 , . . . , ν k ) of integers of {1, . . . , ℓ} by

∀ i ∈ {1, . . . , k ′ }, ν i := λ 1 + • • • + λ i 2 . If k ′ = k, then ν k = (λ 1 + • • • + λ k )/2 = r(λ)/2 = ℓ.
Define elements p 1 , . . . , p k ′ of S(g e ) as follows:

-if k ′ < k, set for i ∈ {1, . . . , k ′ }, p i := e q ν i , -if k ′ = k, set for i ∈ {1, .
. . , k ′ -1}, p i := e q ν i and set p k := ( e q ν k ) 2 . In this case, set also pk := e q ν k .

Remind that δ i is the degree of e q i for i = 1, . . . , ℓ. The following lemma is a straightforward consequence of [PPY07, Rem. 4.2]: Lemma 5.12. (i) For all i ∈ {1, . . . , k ′ }, deg p i = i.

(ii) Set ν 0 := 0. Then for i ∈ {1, . . . , k ′ } and r ∈ {1, . . . , ν k ′ -1},

δ r = i ⇐⇒ ν i-1 < r ν i ,
and δ ℓ = k/2. In particular, for r ∈ {1, . . . , ν k ′ -2}, δ r < δ r+1 if and only if r is a value of the sequence ν.

Example 5.13. Consider the partition λ = (8, 8, 4, 4, 4, 4, 2, 2, 1, 1) of 38. Then k = 10, k ′ = 8 and ν = (4, 8, 10, 12, 14, 16, 17, 18). We represent in Table 1 the degrees of the polynomials p 1 , . . . , p 8 and e q 4 = p 1 e q 8 = p 2 e q 3 e q 7 e q 2 e q 6 e q 10 = p 3 e q 12 = p 4 e q 14 = p 5 e q 16 = p 6 e q 1 e q 5 e q 9 e q 11 e q 13 e q 15 e q 17 = p 7 e q 18 = p 8 degrees 1 2 3 4 5 6 7 8

Table 1.

e q 1 , . . . , e q 18 . Note that deg e q 19 = 5. In the table, the common degree of the polynomials appearing on the ith column is i.

Let s be the subalgebra of g generated by e, h, f and decompose V into simple s-modules V 1 , . . . , V k of dimension λ 1 , . . . , λ k respectively. One can order them so that for i ∈ {1, . . . , k ′ /2}, V (2(i-1)+1) ′ = V 2i . For i ∈ {1, . . . , k}, denote by e i the restriction to V i of e and set ε i := e λ i -1 i . Then e i is a regular nilpotent element of gl(V i ) and (ad h)ε i = 2(λ i -1)ε i .

For i ∈ {1, . . . , k ′ /2}, set

V[i] := V 2(i-1)+1 + V 2i
and set

V[0] := V k ′ +1 ⊕ • • • ⊕ V k .
Then for i ∈ {0, 1, . . . , k ′ /2}, denote by g i the simple Lie algebra so(V[i]). The elements of g e and g f stabilize

V[i].
In particular, for i ∈ {1, . . . , k ′ /2}, e 2(i-1)+1 + e 2i is an even nilpotent element of g i with Jordan blocks of size (λ 2(i-1)+1 , λ 2i ). Let i ∈ {1, . . . , k ′ /2} and set,

z i := ε 2(i-1)+1 + ε 2i .
Then z i lies in the center of g e and (ad h

)z i = 2(λ 2(i-1)+1 -1)z i = 2(λ 2i -1)z i .
Moreover, 2(λ 2i -1) is the highest weight of adh acting on g e i := g i ∩g e , and the intersection of the 2(λ 2i -1)eigenspace of ad h with g e i is spanned by

z i , see for instance [Y09, §1]. Set g := g 0 ⊕ g 1 ⊕ • • • ⊕ g k ′ /2 = so(V[0]) ⊕ so(V[1]) ⊕ • • • ⊕ so(V[k ′ /2])
and denote by g e (resp. g f ) the centralizer of e (resp. f ) in g. For p ∈ S(g e ), denote by p its restriction to g f ≃ (g e ) * ; it is an element of S(g e ). Our goal is to describe the elements p 1 , . . . , p k ′ (see Proposition 5.18). The motivation comes from Lemma 5.14.

Let G e be the centralizer of e in the adjoint group G of g, and G e 0 its identity component. Let g f reg (resp. g f reg ) be the set of elements x ∈ g f (resp. g f ) such that x is a regular linear form on g e (resp. g e ).

Lemma 5.14. (i) The intersection g

f reg ∩ g f is a dense open subset of g f reg . (ii) The morphism θ : G e 0 × g f -→ g f , (g, x) -→ g.x is a dominant morphism from G e 0 × g f to g f .
Proof. (i) Since λ verifies the condition ( * ), it verifies the condition (1) of the proof of [Y06, §4, Lem. 3] and so, g f reg ∩ g f is a dense open subset of g f . Moreover, since g e and g e have the same index by [Y06, Thm. 3], g f reg ∩ g f is contained in g f reg . (ii) Let m be the orthogonal complement to g in g with respect to the Killing form . , . . Since the restriction to g × g of . , . is nondegenerate, g = g ⊕ m and [g, m] ⊂ m. Set m e := m ∩ g e . Since the restriction to g f × g e of . , . is nondegenerate, we get the decomposition

g e = g e ⊕ m e
and m e is the orthogonal complement to g f in g e . Moreover, [g e , m e ] ⊂ m e . By (i), g

f reg ∩ g f ∅. Let x ∈ g f reg ∩ g f .
The tangent map at (1 g , x) of θ is the linear map

g e × g f -→ g f , (u, y) -→ u.x + y,
where u. denotes the coadjoint action of u on g f ≃ (g e ) * . The index of g e is equal to the index of g e and [g e , m e ] ⊂ m e . So, the stabilizer of x in g e coincides with the stabilizer of x in g e . In particular, dim m e .x = dim m e . As a result, θ is a submersion at (1 g , x) since dim g f = dim m e + dim g f . In conclusion, θ is a dominant morphism from G e 0 × g f to g f . Let µ 1 , . . . , µ m be the strictly decreasing sequence of the values of the sequence λ 1 , . . . , λ k ′ and let k 1 , . . . , k m be the multiplicity of µ 1 , . . . , µ m respectively in this sequence. By our assumption, the integers µ 1 , . . . , µ m , k 1 , . . . , k m are all even. Notice that

k 1 + • • • + k m = k ′ . The set {1, . . . , k ′ } decomposes into parts K 1 , . . . , K m of cardinality k 1 , .
. . , k m respectively given by:

∀ s ∈ {1, . . . , m}, K s := {k 0 + • • • + k s-1 + 1, . . . , k 0 + • • • + k s }.
Here, the convention is that k 0 := 0.

Remark 5.15. For s ∈ {1, . . . , m} and i ∈ K s ,

ν i := k 0 ( µ 0 2 ) + • • • + k s-1 ( µ s-1 2 ) + j( µ s 2 ),
where

j = i -(k 0 + • • • + k s-1
) and µ 0 = 0.

Decompose also the set {1, . . . , k ′ /2} into parts I 1 , . . . , I m of cardinality k 1 /2, . . . , k m /2 respectively, with

∀ s ∈ {1, . . . , m}, I s := { k 0 + • • • + k s-1 2 + 1, . . . , k 0 + • • • + k s 2 }.
For p ∈ S(g e ) an eigenvector of ad h, denote by wt(p) its adh-weight.

Lemma 5.16. Let s ∈ {1, . . . , m} and i ∈ K s .

(i) Set j = i -(k 0 + • • • + k s-1 ). Then, wt(p i ) = 2(2ν i -i) = s-1 l=1 2k l (µ l -1) + 2 j(µ s -1).
Moreover, if p ∈ { e q 1 , . . . , e q ℓ-1 , ( e q ℓ ) 2 } is of degree i, then wt(p) = wt(p) 2(2ν ii) and the equality holds if and only if p = p i .

(ii) The polynomial p i is in k[z l , l ∈ I 1 ∪ . . . ∪ I s ].
Proof. (i) This is a consequence of [PPY07, Lem. 4.3] (or [Y09, Thm. 6.1]), Lemma 5.12 and Remark 5.15.

(ii) Let g f be the centralizer of f in g = gl(V), and let e Q 2ν i be the initial homogeneous component of the restriction to

gl(V[0]) ⊕ gl(V[1]) ⊕ • • • ⊕ gl(V[k ′ /2]) ∩ g f of the polynomial function x → Q 2ν i (e + x). Since p i 0, p i is the restriction to g f of e Q 2ν i and one has wt( e Q 2ν i ) = wt(p i ) = 2(2ν i -i), deg e Q 2ν i = deg p i = i.
Then, by (i) and [PPY07, Lem. 4.3], e Q 2ν i is a sum of monomials whose restriction to g f is zero and of monomials of the form

(ε ς (1) 1 . . . ε ς (1) k 1 ) • • • (ε ς (s-1) 1 . . . ε ς (s-1) k s-1 )(ε ς (s) j 1 . . . ε ς (s) j i )
where j 1 < • • • < j i are integers of K s , and ς (1) , . . . , ς (s-1) , ς (s) are permutations of K 1 , . . . , K s-1 , { j 1 , . . . , j i } respectively. Hence, p i is in k[z l , l ∈ I 1 ∪ . . . ∪ I s ]. More precisely, for l ∈ I 1 ∪ . . . , ∪I s , the element z l appears in p i with a multiplicity at most 2 since z l = ε 2(l-1)+1 + ε 2l .

Let s ∈ {1, . . . , m} and i ∈ K s . In view of Lemma 5.16,(ii), we aim to give an explicit formula for p i in term of the elements z 1 , . . . , z k ′ /2 . Besides, according to Lemma 5.16,(ii), we can assume that s = m. As a first step, we state inductive formulae. If k ′ > 2, set

g ′ := so(V[1]) ⊕ • • • ⊕ so(V[k ′ /2 -1]), and let p ′ 1 , . . . , p ′ k ′ be the restrictions to (g ′ ) f := g ′ ∩ g f of p 1 , . . . , p k ′ respectively. Note that p ′ k ′ -1 = p ′ k ′ = 0.
Set by convention k 0 := 0, p 0 := 1, p ′ 0 := 1 and p -1 := 0. It will be also convenient to set

k * := k 0 + • • • + k m-1 . Lemma 5.17. (i) If k m = 2, then p k * +1 = -2 p ′ k * z k ′ /2 and p k * +2 = p ′ k * (z k ′ /2 ) 2 . (ii) If k m > 2, then p k * +1 = p ′ k * +1 -2 p ′ k * z k ′ /2 and for j = 2, . . . , k m , p k * + j = p ′ k * + j -2 p ′ k * + j-1 z k ′ /2 + p ′ k * + j-2 (z k ′ /2 ) 2 .
Proof. For i = 1, . . . , k ′ /2, let w i be the element of g

f i := g i ∩ g f such that (ad h)w i = -2(λ 2i -1)w i and det (e i + w i ) = 1.
Remind that p i (y), for y ∈ g f , is the initial homogeneous component of the coefficient of the term T dim V-2ν i in the expression det (Te -y). By Lemma 5.16,(ii), in order to describe p i , it suffices to compute det

(T - e -s 1 w 1 -• • • -s k ′ /2 w k ′ /2 ), with s 1 , . . . , s k ′ /2 in k.
1) To start with, consider the case k ′ = k m = 2. By Lemma 5.16, p 1 = az 1 and

p 2 = bz 2 1 for some a, b ∈ k. One has, det (T -e -s 1 w 1 ) = T 2µ 1 -2s 1 T µ 1 + s 2 1 .
As a result, a = -2 and b = 1. This proves (i) in this case.

2) Assume from now that k

′ > 2. Setting e ′ := e 1 + • • • + e k ′ /2-1 , observe that det (T -e -s 1 w 1 -• • • -s k ′ /2 w k ′ /2 ) (4) = det (T -e ′ -s 1 w 1 -• • • -s k ′ /2-1 w k ′ /2-1 ) det (T -e k ′ /2 -s k ′ /2 w k ′ /2 ) = det (T -e ′ -s 1 w 1 -• • • -s k ′ /2-1 w k ′ /2-1 ) (T 2µ m -2s k ′ /2 T µ m + s 2 k ′ /2
) where the latter equality results from Step (1).

(i) If k m = 2, then k * = k ′ -2 and the constant term in det (T -e ′ -s 1 w 1 -• • • -s k ′ /2-1 w k ′ /2-1 ) is p ′ k * . By Lemma 5.16,(i), wt(p k * +1 ) = wt(p ′ k * ) + wt(z k ′ /2 ) and p ′ k * is the only element appearing in the coefficients of det (T -e ′ -s 1 w 1 -• • • -s k ′ /2-1 w k ′ /2-1 ) of this weight. Similarly, wt(p k * +2 ) = wt(p ′ k * ) + wt((z k ′ /2 ) 2 ) and p ′ k * is the only element appearing in the coefficients of det (T -e ′ -s 1 w 1 -• • • -s k ′ /2-1 w k ′ /2-1
) of this weight. As a consequence, the equalities follow.

(ii) Suppose k m > 2. Then by Lemma 5.16,(i),

wt(p k * +1 ) = wt(p ′ k * +1 ) = wt(p ′ k * ) + wt(z k ′ /2 ). Moreover, p ′ k * +1 and p ′ k * are the only elements appearing in the coefficients of det (T -e ′ -s 1 w 1 -• • • - s k ′ /2-1 w k ′ /2-1
) of this weight with degree k * + 1 and k * respectively. Similarly, by Lemma 5.16,(i), for j ∈ {2, . . . , k m },

wt(p k * + j ) = wt(p ′ k * + j ) = wt(p ′ k * + j-1 ) + wt(z k ′ /2 ) = wt(p ′ k * + j-2 ) + wt((z k ′ /2 ) 2 ). Moreover, p ′ k * + j , p ′ k * + j-1 and p ′ k * + j-2 are the only elements appearing in the coefficients of det (T -e ′ - s 1 w 1 -• • • -s k ′ /2-1 w k ′ /2-1
) of this weight with degree k * + j, k * + j -1 and k * + j -2 respectively.

In both cases, this forces the inductive formula (ii) through the factorization (4).

For a subset I = {i 1 , . . . , i l } ⊆ {1, . . . , k ′ /2} of cardinality l, denote by σ I,1 , . . . , σ I,l the elementary symmetric functions of z i 1 , . . . , z i l :

∀ j ∈ {1, . . . , l}, σ I, j = 1 a 1 <a 2 <•••<a j l z i a 1 z i a 2 . . . z i a j .
Set also σ I,0 := 1 and σ I, j := 0 if j > l so that σ I, j is well defined for any nonnegative integer j. Set at last σ I, j := 1 for any j if I = ∅. If I = I s , with s ∈ {1, . . . , m}, denote by σ (s) j , for j 0, the elementary symmetric function σ I s , j .

Proposition 5.18. Let s ∈ {1, . . . , m} and j ∈ {1, . . . , k s }. Then

p k 0 +•••+k s-1 + j = (-1) j p k 0 +•••+k s-1 j r=0 σ (s) j-r σ (s) r = (-1) j (σ (1) k 0 /2 . . . σ (s-1) k s-1 /2 ) 2 j r=0 σ (s) j-r σ (s) r . Example 5.19. If m = 1, then k ′ = k 1 and p 1 = -σ (1) 1 σ (1) 0 -σ (1) 0 σ (1) 1 = -2σ (1) 1 = -2(z 1 + • • • + z k ′ /2 ), p 2 = σ (1) 2 σ (1) 0 + (σ (1) 1 ) 2 + σ (1) 0 σ (1) 2 = 2σ (1) 2 + (σ (1) 1 ) 2 , • • • , p k ′ = (σ (1) k ′ /2 ) 2 = (z 1 z 2 . . . z k ′ /2
) 2 . Proof. By Lemma 5.16(ii), one can assume that s = m. Assume m > 1 and prove the statement by induction on j ∈ {1, . . . , k m }.

-If k m = 2, the statement follows from Lemma 5.17,(i).

-Assume k m > 2 and retain the notations of Lemma 5.17. In particular, set again

k * := k 0 + • • • + k m-1 .
For any r 0, we set σ ′ r := σ I ′ ,r where

I ′ = { k * 2 + 1, . . . , k ′ 2 -1} ⊂ I m .
In particular, σ ′ 0 = 1 by convention. Observe that for any r 1,

σ (m) r = σ ′ r + σ ′ r-1 z k ′ /2 . Setting σ ′
-1 := 0, the above equality remains true for r = 0. Our induction hypothesis says that the formula holds for the polynomials p ′ 1 , . . . , p ′ k ′ -1 . So, by Lemma 5.17,(ii), for j ∈ {2, . . . , k m },

p k * + j = p ′ k * + j -2 p ′ k * + j-1 z k ′ /2 + p ′ k * + j-2 (z k ′ /2 ) 2 = p k * (-1) j j r=0 σ ′ j-r σ ′ r -2(-1) j-1 j-1 r=0 σ ′ j-r-1 σ ′ r z k ′ /2 + (-1) j-2 j-2 r=0 σ ′ j-r-2 σ ′ r z 2 k ′ /2 . = (-1) j p k * j r=0 σ ′ j-r σ ′ r + 2 ( j-1 r=0 σ ′ j-r-1 σ ′ r ) z k ′ /2 + ( j-2 r=0 σ ′ j-r-2 σ ′ r ) z 2 k ′ /2 since p ′ k * = p k * .
On the other hand, one has

j r=0 σ (m) j-r σ (m) r = j r=0 (σ ′ j-r + σ ′ j-r-1 z k ′ /2 )(σ ′ r + σ ′ r-1 z k ′ /2 ) = j r=0 σ ′ j-r σ ′ r + ( j r=0 σ ′ j-r-1 σ ′ r + j r=0 σ ′ j-r σ ′ r-1 ) z k ′ /2 + ( j r=0 σ ′ j-r-1 σ ′ r-1 ) z 2 k ′ /2 = j r=0 σ ′ j-r σ ′ r + 2 ( j-1 r=0 σ ′ j-r-1 σ ′ r ) z k ′ /2 + ( j-2 r=0 σ ′ j-r-2 σ ′ r ) z 2 k ′ /2 .
Thereby, for any j ∈ {2, . . . , k m }, we get

p k * + j = (-1) j p k * j r=0 σ (m) j-r σ (m) r .
For j = 1, since p ′ k * = p k * , by Lemma 5.17,(ii), and our induction hypothesis,

p k * +1 = p ′ k * +1 -2 p ′ k * z k ′ /2 = p k * (-2σ ′ 1 ) -2 p k * z k ′ /2 = p k * (-2σ (m) 1
). This proves the first equality of the proposition.

For the second one, it suffices to prove by induction on s ∈ {1, . . . , m} that

p k 0 +•••+k s-1 = (σ (1) k 0 /2 . . . σ (s-1) k s-1 /2 ) 2 . For s = 1, then p k 0 +•••+k s-1 = p 0 = 1
and σ ∅,0 = 1 by convention. Assume s > 2 and the statement true for 1, . . . , s -1. By the first equality with j = k s ,

p k 0 +•••+k s = (-1) k s p k 0 +•••+k s-1 (σ (s)
k s /2 ) 2 , whence the statement by induction hypothesis since k s is even.

Remark 5.20. As a by product of the previous formula, whenever k ′ = k, one obtains pk = σ (1) k 0 /2 . . . σ (m) k m /2 . For s ∈ {1, . . . , m} and j ∈ {1, . . . , k s }, set

ρ k 0 +•••+k s-1 + j := p k 0 +•••+k s-1 + j p k 0 +•••+k s-1 .
Proposition 5.18 says that ρ k 0 +•••+k s-1 + j is an element of Frac(S(g e ) g e ) ∩ S(g e ) = S(g e ) g e .

Lemma 5.21. Let s ∈ {1, . . . , m} and j ∈ {k s /2 + 1, . . . , k s }. There is a polynomial R (s) j of degree j such that

ρ k 0 +•••+k s-1 + j = R (s) j (ρ k 0 +•••+k s-1 +1 , . . . , ρ k 0 +•••+k s-1 +k s /2
). In particular, for any j ∈ {k 1 /2 + 1, . . . , k 1 }, one has p j = R (1) j (p 1 , . . . , p k 1 /2 ).

Proof. 1) Prove by induction on j ∈ {1, . . . , k s /2} that for some polynomial T (s) j of degree j,

σ (s) j = T (s) j (ρ k 0 +•••+k s-1 +1 , . . . , ρ k 0 +•••+k s-1 + j ).
By Proposition 5.18,

ρ k 0 +•••+k s-1 +1 = -(σ (s) 1 σ (s) 0 + σ (s) 0 σ (s) 1 ) = -2σ (s) 1 .
Hence, the statement is true for j = 1. Suppose j ∈ {2, . . . , k s /2} and the statement true for σ (s) 1 , . . . , σ (s) j-1 . Since j k s /2, σ (s) j 0, and by Proposition 5.18,

ρ k 0 +•••+k s-1 + j = (-1) j (σ (s) j σ (s) 0 + σ 0 σ (s) j ) + (-1) j j-1 r=1 σ (s) j-r σ (s) r = 2(-1) j σ (s) j + (-1) j j-1 r=1 σ (s) j-r σ (s) r .
So, the statement for j follows from our induction hypothesis.

2) Let j ∈ {k s /2 + 1, . . . , k s }. Proposition 5.18 shows that ρ k 0 +•••+k s-1 + j is a polynomial in σ (s) 1 , . . . , σ (s) k s /2 . Hence, by Step 1),

ρ k 0 +•••+k s-1 + j is a polynomial in ρ k 0 +•••+k s-1 +1 , . . . , ρ k 0 +•••+k s-1 +k s /2 .
Furthermore, by Proposition 5.18 and Step (1), this polynomial has degree j. Remark 5.22. By Remark 5.20 and the above proof, if k ′ = k then for some polynomial R of degree k m /2, pk σ (1) k 0 /2 . . . σ (m-1)

k m-1 /2 = σ (m) k m /2 = R(ρ k 0 +•••+k m-1 +1 , . . . , ρ k 0 +•••+k m-1 +k m /2 ).
Let g f sing be the set of nonregular elements of the dual g f of g e . Theorem 5.23. (i) Assume that λ verifies the condition ( * ) and that λ 1 = • • • = λ k ′ . Then e is good.

(ii) Assume that k = 4 and that λ 1 , λ 2 , λ 3 , λ 4 are even. Then e is good.

For example, (6, 6, 6, 6, 5, 3) satisfies the hypothesis of (i) and (6, 6, 4, 4) satisfies the hypothesis of (ii).

Remark 5.24. If λ verifies the condition ( * ) then by Lemma 5.7,

dim g e + ℓ -2(δ 1 + • • • + δ ℓ ) = k ′ . Indeed, if k is odd, then n λ -d λ = n λ ′ -d λ ′ where λ ′ = (λ 1 , . . . , λ k ′ , λ k ′ +1 ) so that n λ -d λ = n λ ′ -d λ ′ = n λ ′ = k ′ since λ k ′ +1 is odd. If k is even, then d λ = n λ ′ = k ′ where λ ′ = (λ 1 , . . . , λ k ′ ).
Proof. (i) In the previous notations, the hypothesis means that m = 1 and k ′ = k m . According to Lemma 5.21 and Lemma 5.14, for j ∈ {k ′ /2 + 1, . . . , k ′ -1},

p j = R (1) j (p 1 , . . . , p k ′ /2 ),
where R (1) j is a polynomial of degree j. Moreover, if k ′ = k, then by Remark 5.22 and Lemma 5.14, pk = R(p 1 , . . . , p k/2 ), where R is a polynomial of degree k/2.

-If k ′ < k, set for any j ∈ {k ′ /2 + 1, . . . , k ′ }, r j := q ν j -R (1) j (q ν 1 , . . . , q ν k ′ /2 ). Then by Lemma 5.12, ∀ j ∈ {k ′ /2 + 1, . . . , k ′ }, deg e r j j + 1.

-If k ′ = k, set for j ∈ {k/2 + 1, . . . , k ′ -1}, r j := q ν j -R (1) j (q ν 1 , . . . , q ν k ′ /2 ) and r k := q ν k -R(q ν 1 , . . . , q ν k/2 ). Then by Lemma 5.12, ∀ j ∈ {k/2 + 1, . . . , k -1}, deg e r j j + 1 and deg e r k k/2 + 1.

In both cases, {q j ; j ∈ {1, . . . , ℓ} {ν k ′ /2+1 , . . . , ν k ′ }} ∪ {r k ′ /2+1 , . . . , r k ′ } is a homogeneous generating system of S(g) g . Denote by δ the sum of the degrees of the polynomials e q j , j ∈ {1, . . . , ℓ} {ν k ′ /2+1 , . . . , ν k ′ }, e r k ′ /2+1 , . . . , e r k ′ .

The above discussion shows that δ δ 1 + • • • + δ ℓ + k ′ /2. By Remarks 5.24, one obtains dim g e + ℓ -2 δ 0.

In conclusion, by [PPY07, Thm. 2.1] and Theorem 4.1, e is good.

(ii) In the previous notations, the hypothesis means that k ′ = k = 4. If m = 1 the statement is a consequence of (i). Assume that m = 2. Then by Proposition 5.18, p 1 = -2z 1 , p 2 = z 2 1 , p 3 = -2z 2 1 z 2 and p 4 = (z 1 z 2 ) 2 . Moreover, p4 = z 1 z 2 . Hence, by Lemma 5.14, p 2 = 1 4 p 2 1 and p 3 = p 1 p4 . Set r 2 := q ν 2 -1 4 q 2 ν 1 and r 3 := q ν 3q ν 1 q ν 4 . Then deg e r 2 3 and deg e r 3 4. Moreover, {q 1 , . . . , q ℓ } {q ν 2 , q ν 3 } ∪ {r 2 , r 3 } is a homogeneous generating system of S(g) g . Denoting by δ the sum of the degrees of the polynomials { e q 1 , . . . , e q ℓ } { e q ν 2 , e q ν 3 } ∪ { e r 2 , e r 3 },

one obtains that δ δ 1 + • • • + δ ℓ + 2. But dim g e + ℓ -2(δ 1 + • • • + δ ℓ ) = k ′ =
4 by Remark 5.24. So, dim g e + ℓ -2 δ 0. In conclusion, by [PPY07, Thm. 2.1] and Theorem 4.1, e is good.

Examples in simple exceptional Lie algebras

We give in this section examples of good nilpotent elements in simple exceptional Lie algebras (of type E 6 , F 4 or G 2 ) which are not covered by [START_REF] Panyushev | On symmetric invariants of centralizers in reductive Lie algebras[END_REF]. These examples are all obtained through Theorem 4.1.

Example 6.1. Suppose that g has type E 6 . Let V be the module of highest weight the fundamental weight ̟ 1 with the notation of Bourbaki. Then V has dimension 27 and g identifies with a subalgebra of sl 27 (k). For x in sl 27 (k) and for i = 2, . . . , 27, let p i (x) be the coefficient of T 27-i in det (Tx) and denote by q i the restriction of p i to g. Then (q 2 , q 5 , q 6 , q 8 , q 9 , q 12 ) is a generating family of S(g) g since these polynomials are algebraically independent, [START_REF] Mehta | Basic sets of invariant polynomials for finite reflection groups[END_REF]. Let (e, h, f ) be an sl 2 -triple of g. Then (e, h, f ) is an sl 2 -triple of sl 27 (k). We denote by e p i the initial homogeneous component of the restriction to e + g f of p i where g f is the centralizer of f in sl 27 (k). As usual, e q i denotes the initial homogeneous component of the restriction to e + g f of q i . For i = 2, 5, 6, 8, 9, 12, deg e p i deg e q i .

In some cases, from the knowledge of the maximal eigenvalue of the restriction of ad h to g and the ad hweight of e p i , it is possible to deduce that deg e p i < deg e q i . On the other hand, deg e q 2 + deg e q 5 + deg e q 6 + deg e q 8 + deg e q 9 + deg e q 12 1 2 (dim g e + 6), with equality if and only if e q 2 , e q 5 , e q 6 , e q 8 , e q 9 , e q 12 are algebraically independent. From this, it is possible to deduce in some cases that e is good. These cases are listed in Table 2 where the nine columns are indexed in the following way:

1: the label of the orbit G(e) in the Bala- 2.

E 6 (a 1 ) 2 2 0 2 2 2 8 (13,9,5) 1,1,1,1,1,1 2,8,10,14,16,22 16 7

3.

D 5 2 0 2 0 2 2 10 (11,9,5,1,1) 1,1,1,1,1,1 2,8,10,14,16,22 14 8

4.

A 5 + A 1 2 0 2 0 2 0 12 (9, 7, 5 2 , 1) 1,1,1,1,1,2 2,8,10,14,16,20 10 9

5.

D 5 (a 1 ) 1 1 0 1 1 2 14 (8,7,6,3,2,1) 1,1,1,1,2,2 2,8,10,14,14,20 10 10

6.

A 5 2 1 0 1 2 1 14 (9, 6 2 , 5, 1) 1,1,1,1,1,2 2,8,10,14,16,20 10 10

7.

A 4 + A 1 1 1 0 1 1 1 16 (7, 6, 5, 4, 3, 2) 1,1,1,2,2,2 2,8,10,12,14,20 8 11

8.

D 4 0 0 2 0 0 2 18 (7 3 , 1 6 ) 1,1,1,2,2,2 2,8,10,12,14,20 10 12

9.

A 3 + 2A 1 0 0 2 0 0 0 20 (5 3 , 3 3 , 1 3 ) 1,1,2,2,2,3 2,8,8,12,14,18 6 11 13 10. For the orbit 1, Σ = Σ ′ . Hence, e q 2 , e q 5 , e q 6 , e q 8 , e q 9 , e q 12 are algebraically independent and by Theorem 4.1, e is good. For the orbits 2,3,. So, we need some more arguments that we give below.

A 1 + 2A 2 1 0 1 0 1 0 24 (5, 4 2 , 3 3 , 2 2 , 1) 1,
2. Since 16 < 22, deg e p 12 < deg e q 12 . 3. Since 14 < 16, deg e p i < deg e q i for i = 9, 12. 4. Since 10 < 14, deg e p i < deg e q i for i = 8, 9. 5. Since 10 < 14, deg e p 8 < deg e q 8 . Moreover, the multiplicity of the weight 10 equals 1. So, either deg e q 6 > 1, or deg e q 12 > 2, or e q 12 ∈ k e q 2 6 . 6. Since 10 < 14, deg e p i < deg e q i for i = 8, 9. Moreover, the multiplicity of the weight 10 equals 1.

So, either deg e q 6 > 1, or deg e q 12 > 2, or e q 12 ∈ k e q 2 6 . 7. Since 8 < 10 and 2 × 8 < 20, deg e p i < deg e q i for i = 6, 12. 8. Since the center of g e has dimension 2 and the weights of h in the center are 2 and 10, deg e p 5 < deg e q 5 . Moreover, since the weights of h in g e are 0, 2, 6, 10, deg e p 9 < deg e q 9 and since the multiplicity of the weight 10 equals 1, either deg e q 6 > 1, or deg e q 12 > 2, or e q 12 ∈ k e q 2 6 . 9. Since 6 < 8 and 2 × 6 < 14, deg e p i < deg e q i for i = 5, 9. 10. Since 5 < 8, 2 × 5 < 12 and 3 × 5 < 18, deg e p i < deg e q i for i = 5, 8, 9, 12.

In cases 2, 3, 4, 7, 9, 10, the discussion shows that deg e q 2 + deg e q 5 + deg e q 6 + deg e q 8 + deg e q 9 + deg e q 12 = 1 2 (dim g e + 6).

Hence, e q 2 , e q 5 , e q 6 , e q 8 , e q 9 , e q 12 are algebraically independent and by Theorem 4.1, e is good. In cases 5, 6, 8, if the above equality does not hold, then for some a in k * , deg e q 2 + deg e q 5 + deg e q 6 + deg e q 8 + deg e q 9 + deg e (q 12aq 2 6 ) = 1 2 (dim g e + 6).

Hence e q 2 , e q 5 , e q 6 , e q 8 , e q 9 , e (q 12aq 2 6 ) are algebraically independent and by Theorem 4.1, e is good. In addition, according to [PPY07, Thm. 0.4] and Theorem 4.1, the elements of the minimal orbit of E 6 , labelled A 1 , are good. In conclusion, it remains nine unsolved nilpotent orbits in type E 6 . Example 6.2. Suppose that g is simple of type F 4 . Let V be the module of highest weight the fundamental weight ̟ 4 with the notation of Bourbaki. Then V has dimension 26 and g identifies with a subalgebra of sl 26 (k). For x in sl 26 (k) and for i = 2, . . . , 26, let p i (x) be the coefficient of T 26-i in det (Tx) and denote by q i the restriction of p i to g. Then (q 2 , q 6 , q 8 , q 12 ) is a generating family of S(g) g since these polynomials are algebraically independent, [START_REF] Mehta | Basic sets of invariant polynomials for finite reflection groups[END_REF]. Let (e, h, f ) be an sl 2 -triple of g. Then (e, h, f ) is an sl 2 -triple of sl 26 (k). As in Example 6.1, in some cases, it is possible to deduce that e is good. These cases are listed in 2.

B 4 2 2 0 2 6 (11,9,5,1) 1,1,1,1 2,10,14,22 14 4 5

3.

C 3 + A 1 0 2 0 2 8 (9, 7, 5 2 ) 1,1,1,2 2,10,14,20 10 5 6

4.

C 3 1 0 1 2 10 (9, 6 2 , 5) 1,1,1,2 2,10,14,20 10 5 7

5.

B 3 2 2 0 0 10 (7 3 , 1 5 ) 1,1,2,2 2,10,12,20 10 6 7

6.

Ã2 + A 2 0 2 0 0 12 (5 3 , 3 3 , 1 2 ) 1,2,2,3 2,8,12,18 6 8 8

7. For the orbits 2, 3, 4, 5, 7,8, we observe that Σ < Σ ′ . So, we need some more arguments to conclude as in Example 6.1.

B 2 + A 1 1 0 1 0 14 (5 2 , 4 2 , 3, 2 2 ,
2. Since 14 < 22, deg e p 12 < deg e q 12 . 3. Since 10 < 14, deg e p 8 < deg e q 8 . 4. Since 10 < 14, deg e p 8 < deg e q 8 . Moreover, the multiplicity of the weight 10 equals 1 so that deg e q 6 > 1 or deg e q 12 > 2 or e q 12 ∈ k e q 2 6 . 5. The multiplicity of the weight 10 equals 1. So, either deg e q 6 > 1, or deg e q 12 > 2, or e q 12 ∈ k e q 2 6 . 7. Suppose that e q 2 , e q 6 , e q 8 , e q 12 have degree 1, 2, 2, 3. We expect a contradiction. Since the center has dimension 2 and since the multiplicity of the weight 6 equals 1, for z of weight 6 in the center, e q 6 ∈ kez, e q 8 ∈ kz 2 , e q 12 ∈ kz 3 . So, for some a and b in k * , e q 2 2 e q 8a e q 2 6 = 0, e q 2 12b e q 3 8 = 0 Hence, q 2 , q 6 , q 2 2 q 8aq 2 6 , q 2 12bq 3 8 are algebraically independent element of S(g) g such that deg e q 2 + deg e q 6 + deg e (q 2 2 q 8aq 2 6 ) + deg e (q 2 12bq 3 8 ) 1 + 2 + 5 + 7 > 2 + 3 + 9 whence a contradiction by [PPY07, Thm. 2.1]. 8. Since 2 × 5 < 12 and 3 × 5 < 18, deg e q 8 > deg e p 8 and deg e q 12 > deg e p 12 .

In addition, according to [PPY07, Thm. 0.4] and Theorem 4.1, the elements of the minimal orbit of F 4 , labelled A 1 , are good. In conclusion, it remains six unsolved nilpotent orbits in type F 4 . Example 6.3. Suppose that g is simple of type G 2 . Let V be the module of highest weight the fundamental weight ̟ 1 with the notation of Bourbaki. Then V has dimension 7 and g identifies with a subalgebra of sl 7 (k). For x in sl 7 (k) and for i = 2, . . . , 7, let p i (x) be the coefficient of T 7-i in det (Tx) and denote by q i the restriction of p i to g. Then q 2 , q 6 is a generating family of S(g) g since these polynomials are algebraically independent, [START_REF] Mehta | Basic sets of invariant polynomials for finite reflection groups[END_REF]. Let (e, h, f ) be an sl 2 -triple of g. Then (e, h, f ) is an sl 2 -triple of sl 7 (k). In all cases, we deduce that e is good from This section provides examples of nilpotent elements which verify the polynomiality condition but that are not good. We also obtain an example of nilpotent element in type D 7 which does not verify the polynomiality condition (cf. Example 7.8). Then we conclude with some remarks and a conjecture. 7.1. Some general results. In this subsection, g is a simple Lie algebra over k and (e, h, f ) is an sl 2 -triple of g. For p in S(g), e p is the initial homogeneous component of the restriction of p to the Slodowy slice e + g f . Recall that k[e + g f ] identifies with S(g e ) by the Killing form . , . of g.

Let η 0 be in g e ⊗ k 2 g f the bivector defining the Poisson bracket on S(g e ). According to the main theorem of [START_REF] Premet | Special transverse slices and their enveloping algebras[END_REF], S(g e ) is the graded algebra associated to the Kazhdan filtration of the W-algebra He so that S(g e ) inherits a Poisson structure. Let η be in S(g e ) ⊗ k 2 g f the bivector defining this other Poisson structure.

According to [Pr02, Prop. 6.3], η 0 is the initial homogeneous component of η. Denote by r the dimension of g e and set:

ω := η (r-ℓ)/2 ∈ S(g e ) ⊗ k r-ℓ g f , ω 0 := η (r-ℓ)/2 0 ∈ S(g e ) ⊗ k r-ℓ g f .
Then ω 0 is the initial homogeneous component of ω.

Let v 1 , . . . , v r be a basis of g f . For µ in S(g e ) ⊗ k i g e , denote by j(µ) the image of v 1 ∧ • • • ∧ v r by the right interior product of µ so that

j(µ) ∈ S(g e ) ⊗ k r-i g f .
Lemma 7.1. Let q 1 , . . . , q ℓ be some homogeneous generators of S(g) g and let r 1 , . . . , r ℓ be algebraically independent homogeneous elements of S(g) g .

(i) For some homogeneous element p of S(g) g ,

dr 1 ∧ • • • ∧ dr ℓ = p dq 1 ∧ • • • ∧ dq ℓ .
(ii) The following inequality holds: Proof. (i) Since q 1 , . . . , q ℓ are generators of S(g) g , for i ∈ {1, . . . , ℓ}, r i = R i (q 1 , . . . , q ℓ ) where R i is a polynomial in ℓ indeterminates, whence the assertion with p = det ( ∂R i ∂q j , 1 i, j ℓ).

(ii) Remind that for p in S(g), κ(p) denotes the restriction to g f of the polynomial function x → p(e + x). According to [PPY07, Thm. 1.2], j(dκ(q 1 ) ∧

• • • ∧ dκ(q ℓ )) = aω for some a in k * . Hence by (i), j(dκ(r 1 ) ∧ • • • ∧ dκ(r ℓ )) = aκ(p)ω.
The initial homogeneous component of the right-hand side is a e pω 0 and the degree of the initial homogeneous component of the left-hand side is at least

deg e r 1 + • • • + deg e r ℓ -ℓ.
The assertion follows since ω 0 has degree 1 2 (dim g eℓ).

(iii) If e r 1 , . . . , e r ℓ are algebraically independent, then the degree of the initial homogeneous component of j(dr

1 ∧ • • • ∧ dr ℓ ) equals deg e r 1 + • • • + deg e r ℓ -ℓ whence deg e r 1 + • • • + deg e r ℓ = deg e p + 1 2 (dim g e + ℓ)
by the proof of (ii). Conversely, if the equality holds, then

j(d e r 1 ∧ • • • ∧ d e r ℓ )
= a e pω 0 (5) by the proof of (ii). In particular, e r 1 , . . . , e r ℓ are algebraically independent.

Corollary 7.2. For i = 1, . . . , ℓ, let r i := R i (q 1 , . . . , q i ) be a homogeneous element of S(g) g such that ∂R i ∂q i 0.

Then e r 1 , . . . , e r ℓ are algebraically independent if and only if

deg e r 1 + • • • + deg e r ℓ = ℓ i=1 deg e p i + 1 2 (dim g e + ℓ)
with p i = ∂R i ∂q i for i = 1, . . . , ℓ.

Proof. Since ∂R i ∂q i 0 for all i, r 1 , . . . , r ℓ are algebraically independent and

dr 1 ∧ • • • ∧ dr ℓ = ℓ i=1 ∂R i ∂q i dq 1 ∧ • • • ∧ dq ℓ
whence the corollary by Lemma 7.1,(iii).

Remind that g f sing is the set of nonregular elements of the dual g f of g e . If g f sing has codimension at least 2 in g f , we will say that g e is nonsingular.

Corollary 7.3. Let q 1 , . . . , q ℓ , r 1 , . . . , r ℓ , p be as in Lemma 7.1 and such that e r 1 , . . . , e r ℓ are algebraically independent.

(i) If e p is a greatest common divisor of d e r 1 ∧ • • • ∧ d e r ℓ in S(g e ) ⊗ k ℓ g e , then g e is nonsingular.

(ii) Assume that there are homogeneous polynomials p 1 , . . . , p ℓ in S(g e ) g e verifying the following conditions:

1) e r 1 , . . . , e r ℓ are in k[p 1 , . . . , p ℓ ], 2) if d is the degree of a greatest common divisor of dp 1 ∧ • • • ∧ dp ℓ in S(g e ), then

deg p 1 + • • • + deg p ℓ = d + 1 2 (dim g e + ℓ).
Then g e is nonsingular.

Proof. (i) Suppose that e p is a greatest common divisor of d e r 1 ∧ • • • ∧ d e r ℓ in S(g e ) ⊗ k ℓ g e . Then for some ω 1 in S(g e ) ⊗ k ℓ g e whose nullvariety in g f has codimension at least 2,

d e r 1 ∧ • • • ∧ d e r ℓ = e p ω 1 .
Therefore j(ω 1 ) = aω 0 by the equality (5). Since x is in g f sing if and only if ω 0 (x) = 0, we get (i). (ii) By Condition (1),

d e r 1 ∧ • • • ∧ d e r ℓ = q dp 1 ∧ • • • ∧ dp ℓ
for some q in S(g) g , and for some greatest common divisor q ′ of dp

1 ∧ • • • ∧ dp ℓ in S(g e ) ⊗ k ℓ g e , dp 1 ∧ • • • ∧ dp ℓ = q ′ ω 1 .
So, by the equality (5), qq ′ j(ω 1 ) = a e p ω 0 , (6) so that e p divides qq ′ in S(g e ). By Condition (2) and the equality (6), ω 0 and ω 1 have the same degree. Then qq ′ is in k * e p, and for some a ′ in k * , j(ω 1 ) = a ′ ω 0 , whence (ii), again since x is in g f sing if and only if ω 0 (x) = 0.

The following proposition is a particular case of [JS10, 5.7].

Proposition 7.4. Suppose that g e is nonsingular.

(i) If there exist algebraically independent homogeneous polynomials p 1 , . . . , p ℓ in S(g e ) g e such that

deg p 1 + • • • + deg p ℓ = 1 2 (dim g e + ℓ)
then S(g e ) g e is a polynomial algebra generated by p 1 , . . . , p ℓ .

(ii) Suppose that the semiinvariant elements of S(g e ) are invariant. If S(g e ) g e is a polynomial algebra then it is generated by homogeneous polynomials p 1 , . . . , p ℓ such that

deg p 1 + • • • + deg p ℓ =
1 2 (dim g e + ℓ).

New examples.

To produce new examples, our general strategy is to apply Proposition 7.4,(i). To that end, we first apply Corollary 7.3 in order to show that g e is nonsingular. Then, we search for independent homogeneous polynomials p 1 , . . . , p ℓ in S(g e ) g e satisfying the condition (ii) of Corollary 7.3 with d = 0.

Example 7.5. Let e be a nilpotent element of so(k 10 ) associated with the partition (3, 3, 2, 2). Then S(g e ) g e is a polynomial algebra but e is not good. In this case, ℓ = 5 and let q 1 , . . . , q 5 be as in Subsection 5.2. The degrees of e q 1 , . . . , e q 5 are 1, 2, 2, 3, 2 respectively. By a computation performed by Maple, e q 1 , . . . , e q 5 verify the algebraic relation: e q 2 4 -4 e q 3 e q 2 5 . Set:

r i := q i if i = 1, 2, 3, 5 q 2 4 -4q 3 q 2 5 if i = 4
The polynomials r 1 , . . . , r 5 are algebraically independent over k and

dr 1 ∧ • • • ∧ dr 5 = 2 q 4 dq 1 ∧ • • • ∧ dq 5
Moreover, e r 4 has degree at least 7. Then, by Corollary 7.2, e r 1 , . . . , e r 5 are algebraically independent since 1 2 (dim g e + 5) + 3 = 14 = 1 + 2 + 2 + 2 + 7, and by Lemma 7.1,(ii) and (iii), e r 4 has degree 7. A precise computation performed by Maple shows that e r 3 = p 2 3 for some p 3 in the center of g e , and that e r 4 = p 4 e r 5 for some polynomial p 4 of degree 5 in S(g e ) g e . Setting p i := e r i for i = 1, 2, 5, the polynomials p 1 , . . . , p 5 are algebraically independent homogeneous polynomials of degree 1, 2, 1, 5, 2 respectively. Furthermore, a computation performed by Maple proves that the greatest common divisors of dp 1 ∧ • • • ∧ dp 5 in S(g e ) have degree 0, and that p 4 is in the ideal of S(g e ) generated by p 3 and p 5 . So, by Corollary 7.3,(ii), g e is nonsingular, and by Proposition 7.4,(i), S(g e ) g e is a polynomial algebra generated by p 1 , . . . , p 5 . Moreover, e is not good since the nullvariety of p 1 , . . . , p 5 in (g e ) * has codimension at most 4.

Example 7.6. In the same way, for the nilpotent element e of so(k 11 ) associated with the partition (3, 3, 2, 2, 1), one can show that S(g e ) g e is a polynomial algebra generated by polynomials of degree 1, 1, 2, 2, 7, g e is nonsingular but e is not good.

We also obtain that for the nilpotent element e of so(k 12 ) (resp. so(k 13 )) associated with the partition (5,3,2,2) or (3,3,2,2,1,1) (resp. (5,3,2,2,1), (4,4,2,2,1), or (3,3,2,2,1,1,1)), S(g e ) g e is a polynomial algebra, g e is nonsingular but e is not good.

We can summarize our conclusions for the small ranks. Assume that g = so(V) for some vector space V of dimension 2ℓ + 1 or 2ℓ and let e ∈ g be a nilpotent element of g associated with the partition λ = (λ 1 , . . . , λ k ) of dim V. If ℓ 6, our previous results (Corollary 5.8, Lemma 5.11, Theorem 5.23, Examples 7.5 and 7.6) show that either e is good, or e is not good but S(g e ) g e is nevertheless a polynomial algebra and g e is nonsingular. We describe in Table 5 the partitions λ corresponding to good e, and those corresponding to the case where e is not good. The third column of the table gives the degrees of the generators in the latter case.

Remark 7.7. The above discussion shows that there are good nilpotent elements for which the codimension of (g e ) * sing in (g e ) * is 1. Indeed, by [PPY07, §3.9], for some nilpotent element e ′ in B 3 , the codimension of (g e ′ ) * sing in (g e ′ ) * is 1 but, in B 3 , all nilpotent elements are good (cf. λ {(5, 3, 2, 2, 1), (4, 4, 2, 2, 1), λ ∈ {(5, 3, 2, 2, 1), (4, 4, 2, 2, 1), {1, 1, 1, 2, 2, 7; 1, 1, 2, 2, 3, 6; (3, 3, 2, 2, 1, 1, 1)} (3, 3, 2, 2, 1, 1, 1)} 1, 1, 2, 2, 6, 7} D 6 λ {(5, 3, 2, 2), (3, 3, 2, 2, 1, 1)} λ ∈ {(5, 3, 2, 2), (3, 3, 2, 2, 1, 1)} {1,1,1,2,2,5; 1,1,2,2,3,7} 7.3. A counter-example. From the rank 7, there are elements that do no satisfy the polynomial condition.

The following example disconfirms a conjecture of Premet that any nilpotent element of a simple Lie algebra of classical type satisfies the polynomiality condition.

Example 7.8. Let e be a nilpotent element of so(k 14 ) associated with the partition (3, 3, 2, 2, 2, 2). Then e does not satisfy the polynomiality condition. In this case, ℓ = 7 and let q 1 , . . . , q 7 be as in Subsection 5.2. The degrees of e q 1 , . . . , e q 7 are 1, 2, 2, 3, 4, 5, 3 respectively. By a computation performed by Maple, one can show that e q 1 , . . . , e q 7 verify the two following algebraic relations: 16 e q 2 3 e q 5 2 + e q 4 4 -8 e q 3 e q 5 e q 2 4 -64 e q 3 3 e q 7 2 = 0, e q 3 e q 2 6 -e q 2 7 e q 4 2 = 0 Set:

r i :=           
q i if i = 1, 2, 3, 4, 7 16 q 2 3 q 5 2 + q 4 4 -8 q 3 q 5 q 2 4 -64 q 3 3 q 7 2 if i = 5 q 3 q 2 6q 2 7 q 2 4 if i = 6 The polynomials r 1 , . . . , r 7 are algebraically independent over k and dr 1 ∧ • • • ∧ dr 7 = 2q 3 q 6 (32q 2 3 q 5 -8q 3 q 2 4 ) dq 1 ∧ • • • ∧ dq 7 Moreover, e r 5 and e r 6 have degree at least 13 and e (2q 3 q 6 (32q 2 3 q 5 -8q 3 q 2 4 )) has degree 15. Then, by Corollary 7.2, e r 1 , . . . , e r 7 are algebraically independent since 1 2 (dim g e + 7) + 15 = 37 = 1 + 2 + 2 + 3 + 3 + 26 and by Lemma 7.1,(ii) and (iii), e r 5 and e r 6 have degree 13. A precise computation performed by Maple shows that e r 3 = p 2 3 for some p 3 in the center of g e , e r 4 = p 3 p 4 for some polynomial p 4 of degree 2 in S(g e ) g e , e r 5 = p 3 3 e q 7 p 5 for some polynomial p 5 of degree 7 in S(g e ) g e , and e r 6 = p 4 e r 7 p 6 for some polynomial p 6 of degree 8 in S(g e ) g e . Setting p i := e r i for i = 1, 2, 7, the polynomials p 1 , . . . , p 7 are algebraically independent homogeneous polynomials of degree 1, 2, 1, 2, 7, 8, 3 respectively. Let l be a reductive factor of g e . According to [C85, Ch.13], l ≃ so 2 (k) × sp 4 (k) ≃ k × sp 4 (k).

In particular, the center of l has dimension 1. Let {x 1 , . . . , x 37 } be a basis of g e such that x 37 lies in the center of l and such that x 1 , . . . , x 36 are in [l, l] + g e u with g e u the nilpotent radical of g e . Then p 2 is a polynomial in k[x 1 , . . . , x 37 ] depending on x 37 . As a result, by [DDV74, Thm. 3.3 and 4.5], the semiinvariant polynomials of S(g e ) are invariant.

Claim 7.9. The algebra g e is nonsingular.

Proof. The space k 14 is the ortogonal direct sum of two subspaces V 1 and V 2 of dimension 6 and 8 respectively and such that e, h, f are in g := so(V 1 ) ⊕ so(V 2 ). Then g e = g ∩ g e is a subalgebra of dimension 21 containing the center of g e . For p in S(g e ), denote by p its restriction to g f . The partition (3, 3, 2, 2, 2, 2) verifies the condition (1) of the proof of [Y06, §4, Lem. 3]. So, the proof of Lemma 5.14 remains valid, and the morphism G e 0 × g f -→ g f , (g, x) -→ g(x)

is dominant. As a result, for p in S(g e ) g e , the differential of p is the restriction to g f of the differential of p. A computation performed by Maple proves that p 3 10 is a great common divisor of dp 1 ∧ • • • ∧ dp 7 in S(g e ). If q is a greatest common divisor of dp 1 ∧ • • • ∧ dp 7 in S(g e ), then q is in S(g e ) g e since the semiinvaiant polynomials are invariant. So q = p d 3 for some nonnegative integer d. One can suppose that {x 1 , . . . , x 16 } is a basis of the orthogonal complement of g f in g e . Then the Pfaffian of the matrix [x i , x j ], 1 i, j 16 is in k * p 8 3 so that p 2 8 is a greatest common divisor of dp 1 ∧ • • • ∧ dp 7 in S(g e ). Since

deg p 1 + • • • + deg p 7 = 2 + 22 = 2 + 1 2 (dim g e + ℓ),
we conclude that g e is nonsingular by Corollary 7.3,(ii).

Claim 7.10. Suppose that S(g e ) g e is a polynomial algebra. Then for some homogeneous polynomials p ′ 5 and p ′ 6 of degrees at least 5 and at most 8 respectively, S(g e ) g e is generated by p 1 , p 2 , p 3 , p 4 , p ′ 5 , p ′ 6 , p 7 . Furthermore, the possible values for (deg p ′ 5 , deg p ′ 6 ) are (5, 8) or (6, 7).

Proof. Since the semiinvariants are invariants, by Claim 7.9 and Proposition 7.4,(ii), there are homogeneous generators ϕ 1 , . . . , ϕ ℓ of S(g e ) g e such that According to [Mo06c, Thm. 1.1.8] or [Y06b], the center of g e has dimension 2. Hence, ϕ 1 and ϕ 2 has degree 1. Thereby, we can suppose that ϕ 1 = p 1 and ϕ 2 = p 3 since p 1 and p 3 are linearly independent elements of the center of g e . Since p 2 and p 4 are homogneous elements of degree 2 such that p 1 , . . . , p 4 are algebraically indepent, ϕ 3 and ϕ 4 have degree 2 and we can suppose that ϕ 3 = p 2 and ϕ 4 = p 4 . Since p 7 has degree 3, ϕ 5 has degree at most 3 and at least 2 since the center of g e has dimension 2. Suppose that ϕ 5 has degree 2. A contradiction is expected. Then

deg ϕ 6 + deg ϕ 7 = 22 -(1 + 1 + 2 + 2 + 2) = 14.
Moreover, since p 1 , . . . , p 7 are algebraically independent, ϕ 7 has degree at most 8 and ϕ 6 has degree at least 6. Hence p 7 is in the ideal of k[p 1 , p 3 , ϕ 3 , ϕ 4 , ϕ 5 ] generated by p 1 and p 3 . But a computation shows that the restriction of p 7 to the nullvariety of p 1 and p 3 in g f is different from 0, whence the expected contradiction. As a result, ϕ 5 has degree 3 and deg ϕ 6 + deg ϕ 7 = 13.

One can suppose ϕ 5 = p 7 and the possible values for (deg ϕ 6 , deg ϕ 7 ) are (5, 8) and (6, 7) since ϕ 7 has degree at most 8.

  and A is a polynomial algebra generated by d homogeneous elements.(ii) The implications (4) ⇒ (5), (6) ⇒ (5) are straightforward and (5) ⇒ (6) is a consequence of Lemma 2.2.(5) ⇒ (4): Recall that x 0 = A + . Let us suppose that S(E) is a flat A-module. Then π is an open morphism whose image contains x 0 . Moreover, π(E * ) is stable under the action of G m . So π is surjective. Hence by [Ma86, Ch. 3, Thm. 7.2], S(E) is a faithfully flat extension of A. (4) ⇒ (2): Since S(E) is regular and since S(E) is a faithfully flat extension of A, all finitely generated A-module has finite projective dimension. So by [Ma86, Ch. 7, §19,Lemma 2], the global dimension of A is finite. Hence by [Ma86, Ch. 7, Thm. 19.2], A is regular. If Condition (4) holds, by [Ma86, Ch. 5,Thm. 15.1], the fibers of π are equidimensional of dimension N. So N 0 is equidimensional of dimension N.

  A be the algebraic closure of A in S(E).Lemma 2.4. Suppose that dim N 0 = N. Then N 0 is the nullvariety of A + in E * .Proof. Let p be a homogeneous element of A of positive degree and set B := A[p]. Then B is a homogenous algebra having the dimension of A. Denoting by π B the morphism E * → Specm(B) whose comorphism is the canonical injection from B into S(E), the irreducible components of the fibers of π B have dimension at least N by Lemma 2.1,(i). Since the fiber of π B at the ideal of augmentation of B is the the nullvariety of p in N 0 and since N 0 has dimension N, N 0 is contained in the nullvariety of p in E * , whence the lemma.Corollary 2.5. Suppose that dim N 0 = N. Then A is the integral closure of A in S(E). In particular, A is finitely generated. Proof. Since A is a finitely generated homogeneous subalgebra of S(E), the integral closure of A in S(E) is so by [Ma86, §33, Lem. 1]. So, one can suppose that A is integrally closed in S(E). Let p be a homogeneous element of positive degree of A and set B := A[p]. Denote by π B and ν the morphisms whose comorphisms are the canonical injections B -→ S(E) and A -→ B respectively, whence a commutative diagram E * π B

Lemma 3. 6 .

 6 The nullvariety of gr(I) in g f has dimension N. Proof. By definition, gr(S(g e )/I) = l∈N S l (g e )/(S l+1 (g e ) + I ∩ S l (g e ))

  Z K,e := Z K,χ e and I e := I χ e .By [V72, Theorem 3.1] and [Pr02, Theorem 2.3, (ii)], the restriction to Z K,e of the representation U e (g K ) → H is an embedding. Identify Z K,e with a subalgebra of H through this representation. Corollary 4.5. (i) For m positive integer, the canonical morphism H ⊗ K I m e -→ HI m e defines through the quotients an isomorphism H/HI e ⊗ K I m e /I m+1 e -→ HI m e /HI m+1 e .

5.

  Consequences of Theorem 2 for the simple classical Lie algebras This section concerns applications of Theorem 2 (or Theorem 4.1) to the simple classical Lie algebras. 5.1. The first consequence of Theorem 4.1 is the following. Theorem 5.1. Assume that g is simple of type A or C. Then all the elements of g are good.

Definition 5. 4 .

 4 Define a sequence λ * of positive integers, with |λ * | |λ|, as follows:

  odd. The statement is clear for k = 1. Conversely, assume that n λd λ = 0. If λ verifies Conditions (1) or (2), then n λd λ = n λ *d λ * and |λ * | < |λ|. So, one can assume that λ does not verify Conditions (1) or (2). Since k is odd, λ cannot verify Condition (3). If λ verifies Condition (4), then n λd λ = n λd λ * > n λ *d λ * 0. This is impossible since n λd λ = 0. If λ verifies Condition (5), then n λd λ = n λ . So, n λd λ = 0 if and only if k = 1.Thereby, the direct implication is proven.(ii) Assume that λ is a concatenation of sequences verifying Condition (3) or Condition (1) with k = 2. In particular, λ does not verify Condition (2). Moreover, Condition (5) is not verified since k is even. Then d λ = 0 by induction on |λ|, whence e is very good. Conversely, suppose that d λ = 0. If k = 2, Condition (1) is verified and if k = 4, then either Condition (3) is verified, or λ 1 , . . . , λ 4 are all odd. Suppose k > 4. Condition (2) is not verified since d λ = d λ * + 2 in this case. If Condition (1) is verified then d λ * = 0 and λ is a concatenation of λ * and (λ k-1 , λ k ). If Condition (4) is verified, then d λ * = 0 and λ is a concatenation of λ * and a sequence verifying Condition (3), whence the assertion by induction on |λ| since Condition (5) is not verified when k is even. 5.3. Assume in this subsection that λ = (λ 1 , . . . , λ k ) verifies the following condition: ( * )

deg ϕ 1

 1 • • • deg ϕ ℓ , and deg ϕ 1+ • • • + deg ϕ ℓ = 1 2 (dim g e + ℓ) = 22.

  Since A has dimension dim E -N and since the nullvariety of v 1 , . . . , v N in N 0 is {0}, v 1 , . . . , v N are algebraically independent over A and A. By Serre's normality criterion [Ma86, Ch. 7, Thm. 19.2], any polynomial algebra over a normal ring is normal. So C is integrally closed since A is so by definition. Moreover, C is a finitely generated homogeneous subalgebra of S(E) since A is too by Corollary 2.5. Since C has dimension dim E, S(E) is algebraic over C. Then, by Corollary 2.5, S(E) is the integral closure of C in K(E) since S(E) is integrally closed as a polynomial algebra and since {0} is the nullvariety of C + in E * .(ii) According to Proposition 2.3, A is generated by homogeneous polynomials p 1 , . . . , p d with d := dim A. Then N 0 is the nullvariety of p 1 , . . . , p d in E * so that p 1 , . . . , p d is a regular sequence in S(E) by

	The algebra C is integrally closed and S(E) is the integral closure of C in K(E).
	(ii) The algebra A is Cohen-Macaulay.
	(iii) The A-module A is free and finitely generated.
	Proof. The sequence v 1 , . . . , v N does exist by Lemma 2.1,(iii).
	(i)

  p 1 , . . . , p i are in A. As a result, p 1 , . . . , p d is a regular sequence in A and A is Cohen-Macaulay. (iii) The algebras A and A are graded and A/A + A has dimension 0. Moreover, A is regular since it is polynomial. Hence by (ii) and by [Ma86, Ch. 8, Thm. 23.1], A is a flat extension of A. So, by Lemma 2.2, A is a free extension of A.

  x ) * . Set d := dim z. Suppose that x n is a good element of a. Let p 1 , . . . , p ℓ-d be homogeneous elements of S(a x n ) a xn whose nullvariety in (a x n ) * has codimension ℓd. Denoting by v 1 , . . . , v d a basis of z, the nullvariety of v 1 , . . . , v d , p 1 , . . . , p ℓ-d in (g x ) * is the nullvariety of p 1 , . . . , p ℓ-d in (a x n ) * . Hence, x is a good element of g.

  Lemma 5.11. (i) If k is odd then λ is very good if and only if λ 1 is odd and if (λ 2 , . . . , λ k ) is a concatenation of sequences verifying Conditions (1) or (2) with k = 2. (ii) If k is even then λ is very good if and only if λ is a concatenation of sequences verifying Condition (3) or Condition (1) with k = 2.

  Carter classification, 2: the weighted Dynkin diagram of G(e), 3: the dimension of g e , 4: the partition of 27 corresponding to the nilpotent element e of sl 27 (k), 5: the degrees of e p 2 , e p 5 , e p 6 , e p 8 , e p 9 , e p 12 , 6: their ad h-weights, 7: the maximal eigenvalue ν of the restriction of ad h to g, 8: the sum Σ of the degrees of e p 2 , e p 5 , e p 6 , e p 8 , e p 9 , e p 12 , 9: the sum Σ ′ = 1 2 (dim g e + ℓ).

		Label	c c c c c	dim g e	partition	deg e p i	weights	ν	Σ	Σ ′
			c						
	1.	E 6	2 2 2 2 2	6	(17,9,1)	1,1,1,1,1,1 2,8,10,14,16,22 16		6
			2						

Table 2 .

 2 Data for E 6

	1,2,2,2,3	2,8,8,12,14,18	5	11 15

  . . ,10, we observe that Σ < Σ ′ , i.e., deg e p 2 + deg e p 5 + deg e p 6 + deg e p 8 + deg e p 9 + deg e p 12 < 1 2 (dim g e + 6).

Table 3 ,

 3 indexed as in Example 6.1.

		Label	c c c c >	dim g e	partition	deg e p i	weights	ν	Σ Σ ′
	1.	F 4	2 2 2 2	4	(17,9)	1,1,1,1 2,10,14,22 22 4	4

Table 3 .

 3 Data for F 4

	1) 1,2,2,3	2,8,12,18	6	8	9

  Table 4, indexed as in Example 6.1.

		Label	c c <	dim g e	partition deg e p i	weights	ν	Σ Σ
	1.	G 2	2 2	2	(7)	1,1	2,10	10 2	2
	2.	A 1 + Ã1	0 2	4	(3 2 , 1)	1,2	2,8	4	3	3
	3.	Ã1	1 0	6	(3, 2 2 )	1,3	2,6	3	4	4
	4.	A 1	0 1	8	(2 2 , 1 3 )	1,4	2,4	2	5	5
				Table 4. Data for G 2				
		7. Other examples, remarks and a conjecture		

  The polynomials e r 1 , . . . , e r ℓ are algebraically independent if and only if

	ℓ i=1	deg e r i = deg e p +	1 2	(dim g

ℓ i=1 deg e r i deg e p + 1 2 (dim g e + ℓ).

(iii) e + ℓ).

  Table 5). ) g e is polynomial, g e is nonsingular degrees of the generators but e is not good B n , D n , n 4

	Type	e is good S(g any λ ∅	
	B 5	λ (3, 3, 2, 2, 1)	λ = (3, 3, 2, 2, 1)	1, 1, 2, 2, 7
	D 5	λ (3, 3, 2, 2)	λ = (3, 3, 2, 2)	1,1,2,2,5
	B 6			

e 

Table 5 .

 5 Conclusions for g of type B ℓ or D ℓ with ℓ 6

Suppose that S(g) g is a polynomial algebra. A contradiction is expected. Let p ′ 5 and p ′ 6 be as in Claim 7.10 and such that deg p ′ 5 < deg p ′ 6 . Then (deg p ′ 5 , deg p ′ 6 ) equals (5, 8) or (6, 7). A computation shows that one can choose a basis {x 1 , . . . , x 37 } of g e with x 37 = p 3 , with p 1 , p 2 , p 3 , p 4 , p 7 in k[x 3 , . . . , x 37 ] and with p 5 , p 6 of degree 1 in x 1 . Moreover, the coefficient of x 1 in p 5 is a prime element of k[x 3 , . . . , x 37 ], the coefficient of x 1 in p 6 is a prime element of k[x 2 , . . . , x 37 ] having degree 1 in x 2 , and the coefficient of x 1 x 2 in p 6 equals a 2 p 2 3 with a a prime homogeneous polynomial of degree 2 such that a, p 1 , p 2 , p 3 , p 4 are algebraically independent. In particular, a is not invariant. If p ′ 5 has degree 5, then p 5 = p ′ 5 r 0 + r 1 with r 0 in k[p 1 , p 2 , p 3 , p 4 ] and r 1 in k[p 1 , p 2 , p 3 , p 4 , p 7 ] so that p ′ 5 has degree 1 in x 1 , and the coefficient of x 1 in p 5 is the product of r 0 and the coefficient of x 1 in p ′ 5 . But this is impossible. So, p ′ 5 has degree 6 and p ′ 6 has degree 7. We can suppose that p ′ 6 = p 5 . Then p 6 = p 5 r 0 + p ′ 6 r 1 + r 2 with r 0 homogeneous of degree 1 in k[p 1 , p 3 ], r 1 homogeneous of degree 2 in k[p 1 , p 2 , p 3 , p 4 ], and r 2 homogeneous of degree 8 in k[p 1 , p 2 , p 3 , p 4 , p 7 ]. According to the above remarks on p 5 and the coefficient of x 1 x 2 in p 6 , r 1 is in k * p 2 3 since r 1 has degree 2. For p in S(g e ), denote by p its image in S(g e )/p 3 S(g e ). A computation shows that for some u in S(g e )/p 3 S(g e ), p 5 = p 4 2 u, p 6 = -p 4 p 7 u.

Furthermore, p 4 and p 7 are different prime elements of S(g e )/p 3 S(g e ) and the coefficient u 1 of x 1 in u is the product of two different polynomials of degree 1. The coefficient of x 1 in p 6 is u 1 p 4 2 r 0 since

On the other hand, the coefficient of x 1 in p 6 is -u 1 p 4 p 7 , whence the contradiction since r 0 has degree 1.

7.4. Another result. We are not able so far to deal with all even nilpotent elements of a Lie algebra of type D with odd rank. We can however state the following result. In what follows, we retain the notations of Subsection 5.3.

Theorem 7.11. Let g = so(V) and let e be a nilpotent element of g associated with the sequence λ = (λ 1 , . . . , λ k ). Assume that λ verifies the condition ( * ) and that

Then there are algebraically independent elements r 1 , . . . , r ℓ in S(g) g such that e r 1 , . . . , e r ℓ are algebraically independent.

Proof. Let s ∈ {1, . . . , m} and i ∈ K s written as

j be as in Lemma 5.21. Since R (s) j has degree j, for some polynomial R(s) j ,

Then by Lemma 5.14 and Lemma 5.21,

). Define polynomials r 1 , . . . , r ℓ of S(g) g as follows.

-

Then

Let δ * be the sum of the degrees of the polynomials e r 1 , . . . , e r ℓ . By construction, one has

On the other hand, by Remark 5.24, one has dim g e + ℓ -2 ℓ i=1 deg e q i = k ′ . As a result, Conjecture 7.12. Let g be a simple Lie algebra and let e be a good nilpotent of g. Then for some homogeneous generators q 1 , . . . , q ℓ of S(g) g , the polynomial functions e q 1 , . . . , e q ℓ are algebraically independent. In other words, the converse implication of Theorem 4.1 holds.