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Abstract. WCSP is an optimization problem for which many forms of soft local

(arc) consistencies have been proposed such as, for example, existential direc-

tional arc consistency (EDAC) and virtual arc consistency (VAC). In this paper,

we adopt a different perspective by revisiting the well-known property of (soft)

substitutability. First, we provide a clear picture of the relationships existing be-

tween soft neighborhood substitutability (SNS) and a tractable property called

pcost which allows us to compare the cost of two values (through the use of

so-called cost pairs). We prove that under certain assumptions, pcost is equiva-

lent to SNS but weaker than SNS in the general case since we show that SNS

is coNP-hard. We also show that SNS preserves the property VAC but not the

property EDAC. Finally, we introduce an algorithm to enforce pcost that benefits

from several optimizations (early breaks, residues, timestamping). The practical

interest of maintaining pcost together with AC*, FDAC or EDAC, during search.

is shown on various series of WCSP instances.

1 Introduction

The Valued Constraint Satisfaction Problem (VCSP) [18] is a general optimization

framework used to handle soft constraints, which has been successfully applied to many

applications in Artificial Intelligence and Operations Research. A problem instance is

modeled in this framework by means of a set of variables and a set of cost functions

defined over a valuation structure. Each cost function determines a violation degree for

each possible instantiation of a subset of variables. These degrees (or costs) can then be

combined using the operator ⊕ of the valuation structure in order to obtain the overall

cost of any complete instantiation. One can broadly classify the different VCSP instan-

tiations according to the properties of the operator ⊕: those where ⊕ is idempotent (e.g.,

min) and those where ⊕ is monotonic (e.g., +).

Interchangeability is a general property of constraint networks introduced in [10].

Two values a and b for a variable x are interchangeable if for every solution I where x is

assigned b, Ix=a is also a solution, where Ix=a means I with x set to a. Full interchange-

ability has been refined into several weaker forms such as neighborhood interchange-

ability, k-interchangeability, partial interchangeability, relational interchangeability and

substitutability. Interchangeability and substitutability have been used in many contexts;

see e.g. [11, 3, 7, 14]. A partial taxonomy of these two properties can be found in [12].



A generalization of interchangeability and substitutability for soft constraints has

been given in [1]. For example, a value a for a variable x is soft substitutable for another

value b in the domain of x if for every complete instantiation I involving (x, a), the cost

of I is less than or equal to the cost of Ix=b. Observation of this property can be used

to delete value b for x whereas preserving optimality. Identifying full substitutability

is not tractable, but is is known [1] that neighborhood substitutability, a limited form

of substitutability where only constraints involving a given variable are considered,

can be computed in polynomial time when ⊕ is idempotent (provided that the arity

of constraints be bounded). However, when ⊕ is monotonic, as it is the case for the

VCSP specialization called WCSP (Weighted CSP), there is no clear picture although

dominance rules related to soft neighborhood substitutability have been used [13, 8].

In this paper, we focus on soft neighborhood substitutability (SNS) for WCSP. We

introduce a property based on cost pairs, called pcost, that allows us to identify ef-

ficiently soft substitutable values. We prove that under certain assumptions, pcost is

equivalent to SNS. However, in the general case, and especially when the WCSP for-

bidden cost k is not ∞, pcost is weaker than SNS. Actually, identifying a soft neigh-

borhood value is coNP-hard. We also study the relationships between SNS and known

soft arc consistency properties such as Existential Directional Arc Consistency (EDAC)

[9] and Virtual Arc Consistency (VAC) [5]. We prove that SNS preserves VAC but not

necessarily EDAC. Finally, we develop a pcost algorithm that benefits from a very mod-

erate best-case time complexity, and we show experimentally that it can be successfully

combined with EDAC during search.

2 Technical Background

A constraint network (CN) P is a pair (X ,C ) where X is a finite set of n variables,

also denoted by vars(P ), and C is a finite set of e constraints. Each variable x has

a (current) domain, denoted by dom(x), which is the finite set of values that can be

(currently) assigned to x; the initial domain of x is denoted by dominit(x). The largest

domain size will be denoted by d. Each constraint cS involves an ordered set S of

variables, called the scope of cS , and represents a relation capturing the set of tuples

allowed for the variables in S. A unary (resp., binary) constraint involves 1 (resp.,

2) variable(s), and a non-binary one strictly more than 2 variables. An instantiation I

of a set X = {x1, . . . , xp} of p variables is a set {(x1, a1), . . ., (xp, ap)} such that

∀i ∈ 1..p, ai ∈ dominit(xi); X is denoted by vars(I) and each ai is denoted by I[xi].
An instantiation I on a CN P is an instantiation of a set X ⊆ vars(P ) ; it is complete if

vars(I) = vars(P ). I is valid on P iff ∀(x, a) ∈ I, a ∈ dom(x). I covers a constraint

cS iff S ⊆ vars(I). I satisfies a constraint cS with S = {x1, . . . , xr} iff (i) I covers

cS and (ii) the tuple (I[x1], . . . , I[xr]) ∈ cS . An instantiation I on a CN P is locally

consistent iff (i) I is valid on P and (ii) every constraint of P covered by I is satisfied by

I . A solution of P is a complete locally consistent instantiation on P ; sols(P ) denotes

the set of solutions of P .

A weighted constraint network (WCN) P is a triplet (X ,W , k) where X is a

finite set of n variables, as for CSP, W is a finite set of e weighted constraints, also

denoted by cons(P ), and k > 0 is a natural integer or ∞. Each weighted constraint



wS ∈ W involves an ordered set S of variables (its scope) and is defined as a cost

function from l(S) to {0, . . . , k} where l(S) is the set of possible instantiations of S.

When a constraint wS assigns the cost k to an instantiation of S, it means that wS

forbids this instantiation. Otherwise, it is permitted with the corresponding cost (0 is

completely satisfactory). Costs are combined with the specific operators ⊕ defined as:

∀a, b ∈ {0, . . . , k}, a⊕ b = min(k, a+ b).

For any instantiation I and any set of variables X , let I↓X = {(x, a) | (x, a) ∈
I ∧x ∈ X} be the projection of I on X . We denote by Ix=a the instantiation I↓X\{x}∪
{(x, a)}, which is the instantiation obtained from I either by replacing the value as-

signed to x in I by a, or by extending I with (x, a). The set of neighbor constraints

of x is denoted by Γ (x) = {cS ∈ cons(P ) | x ∈ S}. When Γ (x) does not contain

two constraints sharing at least two variables, we say that Γ (x) is separable. If cS is a

(weighted) constraint and I is an instantiation of a set X ⊇ S, then cS(I) will be con-

sidered to be equal to cS(I↓S) (in other words, projections will be implicit). If C is a

set of constraints, then vars(C) = ∪cSS is the set of variables involved in C; if I is an

instantiation such that vars(C) ⊆ vars(I), then costC(I) = ⊕cS∈CcS(I) is the cost

of I obtained by considering all constraints in C. For a WCN P and a complete instan-

tiation I of P , the cost of I is then costcons(P )(I) which will be simplified into cost(I).
The usual (NP-hard) task of Weighted Constraint Satisfaction Problem (WCSP) is, for

a given WCN, to find a complete instantiation with a minimal cost. CSP can be seen as

specialization of WCSP (when only costs 0 and k are used) and WCSP [16] can be seen

as a specialization of the generic framework of valued/semiring-based constraints [2].

Many forms of soft arc consistency have been proposed during the last decade. We

briefly introduce them in the context of binary WCNs. Without any loss of generality,

the existence of a zero-arity constraint c∅ (a constant) as well as the presence of a unary

constraint cx for every variable x is assumed. A variable x is node-consistent (NC*)

iff ∀a ∈ dom(x), c∅ ⊕ cx(a) < k and ∃b ∈ dom(x) | cx(b) = 0. A variable x is

arc-consistent (AC*) iff x is NC* and ∀a ∈ dom(x), ∀cxy ∈ Γ (x), ∃b ∈ dom(y) |
cxy(a, b) = 0 (b is called a simple support of a). A WCN is AC* iff each of its variable

is AC* [15, 16]. A WCN is full directional arc-consistent (FDAC) [4] with respect to an

order < on the variables if it is AC* and ∀cxy | x < y, ∀a ∈ dom(x), ∃b ∈ dom(y) |
cxy(a, b) = cy(b) = 0 (b is called a full support of a). A WCN is existential arc-

consistent (EAC) [9] if it is NC* and ∀x ∈ vars(P ), ∃a ∈ dom(x) | cx(a) = 0 ∧
∀cxy ∈ Γ (x), ∃b ∈ dom(y) | cxy(a, b) = cy(b) = 0 (a is called the existential

support of x). A WCN is existential directional arc-consistent (EDAC) with respect to

an order < on the variables if it is EAC and FDAC with respect to <. For any WCN

P , we can derive an associated CN Bool(P ) by considering constraint relations that

only allow tuples with cost zero in P . P is virtual arc-consistent (VAC) [5] if the arc

consistency closure of Bool(P ) does not involve a variable with an empty domain,

denoted by AC(Bool(P )) 6= ⊥. A WCN is optimal soft arc-consistent (OSAC) if no

SAC transformation (see [6]) applied to it increases c∅. OSAC is stronger than VAC,

which itself is stronger than EDAC, when comparing the values of c∅. We shall note

φ(P ) the enforcement of property φ (e.g., AC, EDAC, . . .) on the (W)CN P .



3 Soft Substitutability

In this section, we introduce soft neighborhood substitutability. Initially, interchange-

ability and substitutability are properties that have been introduced for CSP [10]. From

now on, we consider given a (W)CN P .

Definition 1. Let x ∈ vars(P ) and {a, b} ⊆ dom(x),

– (x, a) is (fully) substitutable for (x, b) on P iff for every solution Ix=b of P , Ix=a

is also a solution of P ;

– (x, a) is (fully) interchangeable with (x, b) on P iff (x, a) is substitutable for (x, b)
and (x, b) is substitutable for (x, a).

For example, consider a CN P such that vars(P ) = {x, y, z} and sols(P ) =
{(a, a, a), (a, b, b), (b, a, a), (c, a, a), (c, b, b)}. The values (x, a) and (x, c) are inter-

changeable and both are substitutable for (x, b). When only a single solution is sought,

we can remove a value that is interchangeable with another value (or for which a value

is substitutable). Such removal preserves the satisfiability of the problem instance but

not the full set of solutions.

From now on, we shall focus on substitutability that has been generalized [1] for

WCSP as follows:

Definition 2. Let x ∈ vars(P ) and {a, b} ⊆ dom(x), (x, a) is soft substitutable for

(x, b) on P iff for every complete instantiation I of P , cost(Ix=a) ≤ cost(Ix=b).

When (x, a) is soft substitutable for (x, b), b can be removed from dom(x) without

changing the cost of the optimal solution(s) of P . Indeed, possible solutions of P with

(x, b) are lost, but it is guaranteed that solutions with (x, a) are at least as good.

Because identifying substitutable values involves handling complete instantiations,

this is subject to combinatorial explosion. However, there is a form of local substi-

tutability, called neighborhood substitutability [10, 1], that may be helpful.

Definition 3. Let x ∈ vars(P ) and {a, b} ⊆ dom(x), (x, a) is soft neighborhood sub-

stitutable for (x, b) on P iff for every complete instantiation I of P , costΓ (x)(Ix=a) ≤
costΓ (x)(Ix=b).

We shall say that (x, b) is SNS-eliminable (on P ) when there exists a value (x, a)
such that (x, a) is soft neighborhood substitutable for (x, b). It is rather immediate that

soft neighborhood substitutability implies soft (full) substitutability (but the reverse is

not true). Interestingly enough, soft (neighborhood) substitutability allows compensa-

tion between constraint costs. Such compensation is made possible by the presence of

all intermediate costs in the valuation structure, that is to say, the costs different from

0 and k. A simple illustration is given by Figure 1. There are two binary constraints

cxy and cxz and three trivial unary constraints (all unary costs are equal to 0). Binary

costs are depicted as labeled edges, and zero costs are not shown. Note that (x, a) is

soft substitutable for (x, b).
Definition 3 requires to consider each instantiation of vars(Γ (x)), which has a high

computational cost. Considering each constraint individually allows to reduce this cost,
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Fig. 1. (x, a) is soft substitutable for (x, b)

but in this case, it is highly desirable to be able to identify cost compensations between

constraints. One straightforward way to do this is to compute a sum of minimal cost

differences over all constraints, as mentioned in [13, 8]. Unfortunately, these differences

of costs introduce subtle problems when k 6= ∞. This is illustrated as follows:

Example 1. Consider the two families of constraints Ci = {ci | i ∈ 1..n} and C ′
i =

{c′i | i ∈ 1..n′} defined as:

x yi ci

a c 0

b c 1

x zi c
′
i

a d 1

b d 0

When n = k and n′ = k+1, (x, a) and (x, b) are interchangeable because both are for-

bidden (i.e., have maximum cost k). However, ∀ci ∈ Ci, costci(Ix=b)−costci(Ix=a) =
1 and ∀c′i ∈ C ′

i, costc′i(Ix=b) − costc′
i
(Ix=a) = −1. In the summation over the con-

straints in Γ (x) = Ci ∪ C ′
i, the resulting value is -1 which would indicate that b has

globally a lower cost than a, which is false since both a and b have a cost of k. To

identify correctly this case of substitution when k 6= ∞, it is necessary to use a non

commutative operator, which prevents us from using the usual -.

4 Computing Soft Substitutability

We now focus on soft neighborhood substitutability, and more precisely on the com-

plexity of identifying SNS-eliminable values. We start with some related work. For

the general framework VCSP, efficient algorithms for computing neighborhood substi-

tutability exist [1] when the aggregation operator of the VCSP valuation structure is

idempotent. For the framework FCSP (Fuzzy CSP), the notion of fuzzy neighborhood

substitutability is proposed in [4]: it is shown that fuzzy neighborhood substitutable

values can be identified efficiently when the aggregation operator of the FCSP valua-

tion structure is strictly monotonic or when it is the operator max. More recently, the

possibility of computing dominance forms weaker than soft neighborhood substitutabil-

ity has been proposed in [13]. However, no qualitative study was led. This is what we

propose now for WCSP.

First, we introduce cost pairs as our basic computation mechanism (this is related

to what has been proposed in [4] for FCSP). Indeed, one way to circumvent the afore-

mentioned problems with subtraction is to use only addition defined on pairs of costs.

This method is analogous to the construction of integers as equivalence classes of



ordered pairs of natural numbers where a pair (β, α) represents the integer β − α.

We define + (addition) on pairs of costs by (β, α) + (β′, α′) = (β + β′, α + α′)
(this is the regular + and not ⊕) and the comparison of a pair of costs with zero by

(β, α) ≥ 0 ⇔ β ≥ α. Pairs are ordered by the relation ≤ defined as (β, α) ≤
(β′, α′) ⇔ β − α < β′ − α′ ∨ (β − α = β′ − α′ ∧ α < α′). In a sense, the pair

(β, α) conveys the difference β − α but also the information min(β, α) which is lost

when a simple subtraction is used. Computing cost pairs on each constraint separately

is sufficient for identifying certain soft neighborhood substitutable values: it suffices to

reason from (sum) minimum differences of costs.

Definition 4. Let x ∈ vars(P ) and {a, b} ⊆ dom(x),

– the cost pair of (x, b) w.r.t. (x, a) on cS ∈ Γ (x) is defined as pcost(cS , x : a →
b) = minI∈l(S){(cS(Ix=b), cS(Ix=a))};

– the cost pair of (x, b) with respect to (x, a) on P is defined as pcost(x : a → b) =∑
cS∈Γ (x) pcost(cS , x : a → b).

Proposition 1. Let x ∈ vars(P ) and {a, b} ⊆ dom(x). If pcost(x : a → b) ≥ 0 then

(x, a) is soft neighborhood substitutable for (x, b) on P .

Proof. For a constraint cS , let Ics be the instantiation of S−{x} which yields the min-

imal cost pair in minI∈l(S){(cS(Ix=b), cS(Ix=a))}. By definition, pcost(cS , x : a →
b) = (cS(I

cS
x=b), cS(I

cS
x=a)). By definition of min on cost pairs, we have ∀I, ∀cS ∈

Γ (x), (cS(Ix=b), cS(Ix=a)) ≥ (cS(I
cS
x=b), cS(I

cS
x=a)). By summing up, we obtain ∀I ,∑

cS∈Γ (x)(cS(Ix=b), cS(Ix=a)) ≥
∑

cS∈Γ (x)(cS(I
cS
x=b), cS(I

cS
x=a)). By hypothesis, we

have pcost(x : a → b) ≥ 0, so
∑

cS∈Γ (x)(cS(I
cS
x=b), cS(I

cS
x=a)) ≥ 0, and consequently

∀I,
∑

cS∈Γ (x)(cS(Ix=b), cS(Ix=a)) ≥ 0. From definition of + and ≤ on cost pairs, we

can derive ∀I,
∑

cS∈Γ (x) cS(Ix=b) ≥
∑

cS∈Γ (x) cS(Ix=a) which implies ∀I,min(k,
∑

cS∈Γ (x) cS(Ix=b)) ≥ min(k,
∑

cS∈Γ (x) cS(Ix=a)). Since ∀ai ∈ {0, . . . , k}, a1 ⊕

. . . ⊕ an = min(k, a1 + . . . an}, we can conclude that ∀I,
⊕

cS∈Γ (x) cS(Ix=b)) ≥
⊕

cS∈Γ (x) cS(Ix=a)). Hence, (x, a) is soft neighborhood substitutable for (x, b) on P .

⊓⊔

The converse of Proposition 1 is not true in the general case. One first case where

it is false is when the scope of non-binary constraints intersect on more than one vari-

able (non separable neighborhood). In this situation, constraints cannot be considered

individually.

Example 2. Let’s consider four variables x, y, z t such that dom(x) = {a, b}, dom(y) =
{c, d}, dom(z) = dom(t) = {e}, and two ternary constraints cxyz, cxyt defined by the

following cost table:

x y z t cxyz cxyt

a c e e 1 0

b c e e 0 1

a d e e 0 1

b d e e 1 0



It is easily seen that (x, a) is soft neighborhood substitutable for (x, b) but pcost(cxyz,
x, a → b) = pcost(cxyt, x, a → b) = (0, 1) and therefore pcost(x, a → b) = (0, 2) 6≥
0.

So a first condition for the converse of Proposition 1 to hold it that Γ (x) be separable

(which is the case of binary normalized networks).

Another case where the converse of Proposition 1 is false is when k 6= ∞. Con-

sidering the WCN of example 1 with n = k and n′ = k + 1, we can observe that

pcost(x : a → b) = (n, n′) = (k, k + 1) 6≥ 0. However, both (x, a) and (x, b) imply

cost k and therefore (x, a) is substitutable for (x, b) (and conversely). On this example,

it might seem a good idea to use ⊕ instead of + in the definition of the addition of

pairs. However, Example 3 shows that this would lead to the incorrect identification of

substitutable values.

Example 3. Consider the unary constraint cx and the family of binary constraints Ci =
{ci | i ∈ 1..n} defined by:

x yi ci

a a 2

a b 0

b a 1

b b 0

x cx

a 1

b 0

Clearly, (x, a) is not substitutable for (x, b). With the sum of pairs defined with +
and n = k, pcost(x, a → b) = (n, 2n + 1) 6≥ 0. If the sum of pairs was defined with

⊕, we would obtain (k, k) ≥ 0. Note that even if (k, k) was interpreted as k− k = 0 or

as k − k = k (absorbing element), the problem would remain: in both cases, we would

have (k, k) ≥ 0.

Interestingly, there are some situations where, even when k 6= ∞, using cost pairs

allows us to identify exactly neighborhood substitutable values.

Proposition 2. Let x ∈ vars(P ) and {a, b} ⊆ dom(x) such that Γ (x) is separable

and pcost(x, a → b) = (β, α) with α < k. If (x, a) is soft neighborhood substitutable

for (x, b) on P then pcost(x : a → b) ≥ 0.

Proof. Since by hypothesis Γ (x) is separable, one can define the instantiation Imin

on vars(Γ (x)) \ {x} as the union for each constraint Cs ∈ Γ (x) of the instantiations

IcS defined in the proof of Proposition 1. Imin is such that pcost(cS , x : a → b) =
(cS(I

min
x=b ), cS(I

min
x=a)).

By hypothesis, ∀I, costΓ (x)(Ix=b) ≥ costΓ (x)(Ix=a) which can be rewritten as

∀I,
⊕

cS∈Γ (x) cS(Ix=b) ≥
⊕

cS∈Γ (x) cS(Ix=a). This is especially true for I = Imin

therefore
⊕

cS∈Γ (x) cS(I
min
x=b ) ≥

⊕
cS∈Γ (x) cS(I

min
x=a), giving min(k, β) ≥min(k, α)

where β =
∑

cS∈Γ (x) cS(I
min
x=b )) and α =

∑
cS∈Γ (x) cS(I

min
x=a). By definition, pcost(x :

a → b) = (β, α) and therefore pcost(x : a → b) ≥ 0 iff β ≥ α. Now, if α < k,

min(k, α) = α and min(k, β) ≥ min(k, α) ⇒ β ≥ α ⇒ pcost(x : a → b) ≥ 0 (this

is true for both β < k and β ≥ k). Note that when α ≥ k, min(k, β) ≥ min(k, α) 6⇒
β ≥ α, a counter example being β = k and α = k + 1. ⊓⊔



Corollary 1. Let x ∈ vars(P ) and {a, b} ⊆ dom(x) such that Γ (x) is separable

and pcost(x : a → b) = (β, α) with α < k. If (β, α) < 0 then (x, a) is not soft

neighborhood substitutable for (x, b) on P .

When pcost(x : a → b) = (β, α) with α ≥ k, deciding if (x, a) is soft neighbor-

hood substitutable for (x, b) is much harder. Indeed, this problem is co-NP hard.

To prove this, we introduce the Multiple-choice Double Cost Problem (MCDP). We

show that MCDP is NP-complete and exhibit a polynomial reduction of the MCDP

problem to soft neighborhood substitutability.

Multiple-choice Double Cost Problem (MDCP) Given m sets E1, E2, . . ., Em of ob-

jects such that each object oj ∈ Ei has a cost value rij ∈ Z
+ as well as a secondary

cost value sij ∈ Z
+. Given a maximal cost C ∈ Z

+, the MDCP problem consists in

deciding if it is possible to choose one object from each set such that the sum of the

costs of these selected objects does not exceed C and does not exceed the sum of the

secondary costs as well. This problem may be formulated as:

∑m

i=1

∑
j∈Ei

rijxij ≤ C,
∑m

i=1

∑
j∈Ei

rijxij ≤
∑m

i=1

∑
j∈Ei

sijxij ,∑
j∈Ei

xij = 1, i = 1, . . . ,m,

xij ∈ {0, 1}, i = 1, . . . ,m, j ∈ Ei.

Proposition 3. The multiple-choice double cost problem is NP-complete.

Proof. Membership to NP is immediate. For NP-hardness, we reduce Multiple-choice

Knapsack problem (MCKP known to be NP-hard [17]) to Multiple-choice Double Cost

Problem. For MCKP, we have also m sets, and each object is given a profit pij ∈ Z
+

as well as a weight wij ∈ Z
+. Given a minimal profit P ∈ Z

+ and a maximal weight

W ∈ Z
+, the MCKP decision problem is formulated as:

∑m

i=1

∑
j∈Ei

wijxij ≤ W ,
∑m

i=1

∑
j∈Ei

pijxij ≥ P ,∑
j∈Ei

xij = 1, i = 1, . . . ,m,

xij ∈ {0, 1}, i = 1, . . . ,m, j ∈ Ei.

To encode a MCKP instance into a MDCP instance, we keep the same structure (sets)

and define:

C = qW −mP ,

rij = qwij − P, i = 1, . . . ,m, j ∈ Ei,

sij = mpij + rij − P, i = 1, . . . ,m, j ∈ Ei.

with q = 2mP . With such a value for q, one can show that all values C, rij and sij
belong to Z

+. The first MDCP equation can be transformed as follows:∑m

i=1

∑
j∈Ei

rijxij ≤ C

⇒
∑m

i=1

∑
j∈Ei

(qwij − P )xij ≤ qW −mP

⇒
∑m

i=1

∑
j∈Ei

qwijxij −mP ≤ qW −mP because exactly m variables xij are set

to 1



⇒
∑m

i=1

∑
j∈Ei

wijxij ≤ W .

The second MDCP equation can be transformed as follows:∑m

i=1

∑
j∈Ei

rijxij ≤
∑m

i=1

∑
j∈Ei

sijxij ,

⇒ 0 ≤
∑m

i=1

∑
j∈Ei

(mpij − P )xij by simplifying rij from both sides,

⇒ 0 ≤
∑m

i=1

∑
j∈Ei

mpijxij −mP because exactly m variables xij are set to 1,

⇒ P ≤
∑m

i=1

∑
j∈Ei

pijxij . ⊓⊔

Proposition 2 states that pcost allows us to exactly identify soft neighborhood sub-

stitutable values when two conditions are verified: γ(x) is separable and pcost(x, a →
b) = (β, α) with α < k. In the following proposition, by construction, we deal with

instances such that γ(x) is separable. However, nothing is imposed on α, with the con-

sequence that some SNS-eliminable values cannot be detected in polynomial time.

Proposition 4. Deciding if a value is soft neighborhood substitutable for another on a

WCN (X ,W , k) where k 6= ∞ is coNP-hard.

Proof. Any MDCP instance can be reduced to the problem of deciding whether a value

(x, a) is not soft substitutable for a value (x, b) on a WCN P . From the MDCP in-

stance, we build the WCN P as follows. vars(P ) contains a variable x such that

dom(x) = {a, b} and a variable yi for each set Ei ; the domain of yi contains the

objects oi1, oi2, . . . of Ei. cons(P ) contains exactly m binary soft constraints wxyi
: we

have wxyi
({(x, a), (yi, oij)}) = sij and wxyi

({(x, b), (yi, oij)}) = rij . k is set to C.

Determining if (x, a) is not soft substitutable for (x, b) on P is equivalent to finding

an instantiation I of vars(Γ (x)) such that costΓ (x)(Ix=a) > costΓ (x)(Ix=b) which is

equivalent to
∑

cS∈Γ (x) cs(Ix=b) < k ∧
∑

cS∈Γ (x) cs(Ix=a) >
∑

cS∈Γ (x) cs(Ix=b).
The first (resp. second) condition encodes the first (resp. second) inequality of the

MDCP. Since variables xij of the MDCP instance correspond to the assignment of

variables yi in the WCSP (xij = 1 ⇔ yi = oij), the third equation of the MDCP

instance is directly encoded in the WCSP instance. ⊓⊔

5 Relationships with Soft Arc Consistency

After introducing soft neighborhood substitutability closure, this section presents some

results relating soft neighborhood substitutability to various forms of soft arc consis-

tency.

Definition 5. The soft neighborhood substitutability closure (or SNS-closure) of a WCN

P , denoted by SNS (P ), is any WCN obtained after iteratively removing SNS-eliminable

values until convergence.

Since this operation is not confluent, SNS (P ) is not unique. When we use the pcost

approach to identify SNS-eliminable values, we note PSNS (P ).

Proposition 5. Let P be an EDAC-consistent WCN. SNS (P ) is not necessarily EDAC-

consistent.



Proof. Consider the WCN P depicted in Figure 2(a). Note that P is EDAC-consistent

w.r.t. the order w > x > z > y, and that (w, a) and (z, a) are respectively soft

neighborhood substitutable for (w, b) and (z, b), since pcost(w, a → b) = (0, 0) and

pcost(z, a → b) = (0, 0). There exists a unique SNS-closure of P , P ′ = SNS (P ),
which is depicted in Figure 2(b). Clearly, P ′ is not EDAC-consistent since (x, b) and

(y, b) have no support on cxy . ⊓⊔

1

11

1 1

b b b b

w

a a a a

x y z

(a) P

1

11

1 1

b b b b

w

a a a a

x y z

(b) P ′

Fig. 2. EDAC versus SNS

Lemma 1. Let P be a VAC-consistent WCN, x ∈ S and {a, b} ⊆ dom(x) such that

(x, b) is AC-consistent in Bool(P ). If pcost(x : a → b) ≥ 0 on P then (x, a) is

neighborhood substitutable (in the CSP sense [10]) for (x, b) on Bool(P ).

Proof. We suppose that P is VAC-consistent and (x, b) is AC-consistent in Bool(P ).
Because (x, b) is AC-consistent in Bool(P ), we know that for every constraint cS ∈
Γ (x), there exists an instantiation I of S such that I[x] = b and cS(I) = 0 (by con-

struction of Bool(P )). This means that on every such constraint cS , pcost(cS , x : a →
b) ≤ 0. As by hypothesis pcost(x : a → b) ≥ 0, for every constraint cS ∈ Γ (x), we

have necessarily pcost(cS , x : a → b) = 0. We can deduce that for every constraint

cS ∈ Γ (x), for every instantiation I of S such that I[x] = b and cS(I) = 0, the in-

stantiation I ′ = Ix=a is such that cS(I
′) = 0. Finally, we can conclude that (x, a) is

neighborhood substitutable for (x, b) on Bool(P ). ⊓⊔

Proposition 6. Let P be a VAC-consistent WCN, x ∈ vars(P ) and {a, b} ⊆ dom(x).
If pcost(x : a → b) ≥ 0 on P then P \ {(x, b)} is VAC-consistent.

Proof. On the one hand, suppose that (x, b) is AC-consistent in Bool(P ). From the pre-

vious lemma, we know that (x, a) is neighborhood substitutable for (x, b) on Bool(P ),
and so we have AC(Bool(P )) 6= ⊥ ⇔ AC(Bool(P \ {(x, b)})) 6= ⊥. Because P

is VAC-consistent, necessarily P \ {(x, b)} is VAC-consistent. On the other hand, sup-

pose that (x, b) is not AC-consistent in Bool(P ). Clearly we have AC(Bool(P )) =
AC(Bool(P \ {(x, b)})), and so P \ {(x, b)} is VAC-consistent (since P is VAC-

consistent). ⊓⊔

Corollary 2. Let P be a WCN. If P is VAC-consistent then SNS (P ) is VAC-consistent.

The previous corollary also holds for OSAC (because OSAC is stronger than VAC).



6 Algorithms

In this section, we introduce an algorithm to enforce AC*+PSNS (that can be easily

adapted to EDAC+PSNS, for example). The main idea is always to start identifying

SNS-eliminable values from a WCN that is AC*-consistent. This allows us to reduce

the computation effort by using early breaks and residues.

The main procedure is Algorithm 1. As usual, we use a set, denoted by Q, to store

the variables whose domain has been recently reduced. Initially, Q is initialized with all

variables (line 4). Then, at line 6, a classical AC* algorithm, denoted here by W-AC*,

is run (for example, this may be W-AC*2001 [16]), before soliciting a function called

PSNSr. The calls to W-AC* and PSNSr are interleaved until a fixed point is reached

(i.e., Q = ∅).

Function PSNSr, Algorithm 2, iterates over all variables in order to collect SNS-

eliminable values into a set called ∆. This set is initialized at line 1 and updated at lines

6 and 8. Let us imagine that all SNS-eliminable values (that can be identified by means

of pcost) for a variable x have been deleted, and that the domains of all variables in

the neighborhood of x remain the same (while possible reductions happen elsewhere).

Clearly, there is no need to consider x again for seeking SNS-eliminable values. This

is the point of line 3. Here, timestamps are used. By introducing a global counter time

and by associating a time-stamp stamp[x] with every variable x as well as a time-stamp

substamp with function PSNSr, it is possible to determine which variables should be

considered. The value of stamp[x] indicates at which moment a value was most recently

removed from dom(x), while the value of substamp indicates at which moment PSNSr

was most recently called. Variables time , stamp[x] for each variable x and substamp

are initialized at lines 1 to 3 of Algorithm 1. The value of time is incremented whenever

a variable is added to Q (line 13 of Algorithm 2 and this must also be performed inside

W-AC*) and whenever PSNSr is called (line 9). All SNS-eliminable values collected

in ∆ are removed while updating Q for the next call to W-AC* (lines 10 to 12).

Algorithm 1: AC*-PSNS(P : WCN)

Output: P , made AC*-consistent and PSNS-closed

1 time ← 0 ;

2 substamp ← −1 ;

3 stamp[x]← 0, ∀x ∈ vars(P ) ;

4 Q← vars(P ) ;

5 repeat

6 PSNS r (W -AC ∗(P,Q)) ;

7 until Q 6= ∅;

Algorithm 3 allows us to compute the pcost of (x, b) with respect to (x, a). Because

we know that the WCN is currently AC*-consistent, we have the guarantee that the

pcost of (x, b) with respect to (x, a) on any non-unary constraint cS where x ∈ S is

less than or equal to 0. This means that we can never compensate a pair (β, α) s.t.



Algorithm 2: PSNSr(P : WCN AC*-consistent)

1 ∆← ∅ ;

2 foreach x ∈ vars(P ) do

3 if ∃y ∈ Γ (x) | stamp[y] > substamp then

4 foreach (a, b) ∈ dom(x)2 | b > a do

5 if pcost(x, a→ b) ≥ 0 then

6 ∆← ∆ ∪ {(x, b)} ;

7 else if pcost(x, b→ a) ≥ 0 then

8 ∆← ∆ ∪ {(x, a)} ;

9 substamp ← time++ ;

10 foreach (x, a) ∈ ∆ do

11 remove (x, a) from dom(x) ;

12 Q← Q ∪ {x} ;

13 stamp[x]← time++ ;

Algorithm 3: pcost(x, a → b): cost pair

1 pcst ← (cx(b), cx(a)) ;

2 if pcst < 0 then

3 return pcst

4 pcst ← pcst + pcost(residues[x, a, b], x, a→ b) ;

5 if pcst < 0 then

6 return pcst

7 foreach cS ∈ Γ (x) | cS 6= residues[x, a, b] do

8 d← pcost(cS , x, a→ b) ;

9 if d < (cx(a), cx(b)) then

10 residues[x, a, b]← cS ;

11 pcst ← pcst + d ;

12 if pcst < 0 then

13 return pcst

14 return pcst

Algorithm 4: pcost(cS , x : a → b): cost pair

1 pcst ← (1, 0) ;

2 foreach I ∈ l(S \ {x}) do

3 if (cS(Ix=b), cS(Ix=a)) < pcst then

4 pcst ← (cS(Ix=b), cS(Ix=a)) ;

5 return pcst

α > β with a pair (β′, α′) s.t. α′ < β (once the pair of unary costs has been taken into

account). A strong benefit of that observation is the possibility of using early breaks



during such computations. This is performed at lines 3, 6 and 13. Residues are another

mechanism used to increase the performance of the algorithm. For every variable x,

and every pair (a, b) of values in dom(x), we store in residues[x, a, b] the constraint cS
which guarantees that (x, b) is not SNS-eliminable by (x, a), if it exists. The residual

constraint takes priority (lines 4 to 6); this way, if it compensates the initial unary cost,

we avoid unnecessary work. It is updated at lines 9-10. Note that we can initialize

the array residues with any arbitrary constraints (not shown in the algorithm), and

that Algorithm 4 necessarily returns a value less than or equal to 0 (this explains the

initialization of pcst to (1, 0) at line 1).

We now discuss the complexity of PSNSr while assuming (for simplicity) that

the WCN is binary. The space complexity is O(nd2) due to the use of the structure

residues . The time complexity of Algorithm 4 is O(d), and the time complexity of Al-

gorithm 3 is O(1) in the best case (if it is stopped at line 3) and O(qd) in the worst case,

where q = |Γ (x)|. Discarding line 3, the time complexity of Algorithm 2 is O(nd2)
in the best case and O(nd3e) in the worst-case. Of course, Algorithm 2 can be called

several times at line 6 of Algorithm 1, so we obtain a worst-case time complexity in

O(n2d4e). However, we have observed in our experiments that the number of succes-

sive calls to PSNSr is quite limited in practice (as we were predicting). Besides, imagine

now that we call AC*-PSNS after the assignment of a value to a variable x (i.e., dur-

ing search). In the best case (from a complexity point of view), no removal is made

by W -AC∗, and so, we just consider the neighbors of x, due to line 3 of Algorithm

2, which gives a best-case time complexity in O(qd2). This last result leans us toward

experimenting maintaining AC*-PSNS during search.

7 Experimental Results

To show the practical value of removing SNS-eliminable values, we have conducted an

experimentation using the series of WCSP instances available at http://carlit.

toulouse.inra.fr/cgi-bin/awki.cgi/BenchmarkS and a cluster of Xeon

3.0GHz with 1 GB of RAM under Linux. Our goal is to observe the relative efficiency of

solving WCSP instances when maintaining AC*, AC*+PSNS, FDAC, FDAC+PSNS,

EDAC, and EDAC+PSNS. For variable ordering during search, we use the simple static

heuristic max degree which is independent of the pruning efficiency of the different al-

gorithms, as in [8] where some experiments have been performed with a partial form of

SNS enforced during a preprocessing stage.

Table 1 shows the average results obtained on various series. For each series, the

number of considered instances (#inst) is given below the name of the series. We have

discarded the instances that have not been solved by at least one of the algorithms,

within 1,200 seconds. Here, a solved instance means that an optimal solution has been

found and proved. In Table 1, the number (#sol) of instances solved within 1,200 sec-

onds is given as well as the average CPU time over these solved instances. The average

number (avg-sub) of SNS-eliminable values deleted during search (at each step) is also

given (rounded to the nearest integer). On RLFAP instances (celar, scens, graphs), the

benefit of using PSNS is rather erratic, but on planning (driver, mprime), coloring (my-

ciel, geom), spot and warehouse instances, we can see a clear advantage of embedding



Series AC* AC* FDAC FDAC EDAC EDAC

+PSNS +PSNS +PSNS

celar #sol (cpu) 5 (337) 4 (231) 6 (316) 6 (341) 6 (344) 7 (461)

#inst=7 avg-sub 0 3 0 6 0 4

driver #sol (cpu) 18 (103) 18 (52) 19 (39.3) 19 (19.7) 19 (68.5) 19 (56.8)

#inst=19 avg-sub 0 1 0 1 0 1

geom #sol (cpu) 5 (37.4) 5 (12.4) 5 (18.8) 5 (11.0) 5 (21.0) 5 (12.0)

#inst=5 avg-sub 0 0 0 1 0 0

mprime #solv (cpu) 4 (9.82) 8 (17.4) 4 (11.6) 8 (12.0) 5 (206) 8 (21.0)

#inst=8 avg-sub 0 1 0 1 0 1

myciel #sol (cpu) 3 (122) 3 (77.0) 3 (72.9) 3 (34.3) 3 (80.4) 3 (37.8)

#inst=3 avg-sub 0 2 0 3 0 3

scens+graphs #sol (cpu) 1 (20.4) 3 (113) 8 (242) 7 (186) 6 (266) 5 (19.8)

#inst=9 avg-sub 0 8 0 8 0 8

spot5 #sol (cpu) 0 0 3 (20.5) 3 (12.6) 3 (20.1) 3 (11.4)

#inst=3 avg-sub 0 0 0 0 0 0

warehouse #sol (cpu) 12 (286) 12 (46.2) 18 (166) 24 (139) 28 (53.2) 29 (79.8)

#inst=34 avg-sub 0 4 0 7 0 27

#solved 48 53 66 75 75 79

Table 1. Mean results obtained on various series (a time-out of 1,200 seconds was set per in-

stance).

PSNS. Overall, maintaining PSNS is cost-effective as it usually offers a benefit both in

terms of solved instances (see last line of the table) and CPU time.

Table 2 presents the results obtained on some representative instances. It is inter-

esting to note that on the warehouse instances (here, cap101, cap111 and capmo1),

enforcing PSNS does not entail a reduction of the size of the search tree (see the val-

ues of #nodes). However, PSNS permits to significantly reduce the size of the domains,

making propagation of soft constraints quicker. On celar7-sub1, note that (maintain-

ing) EDAC+PSNS is only about 50% faster than EDAC while the number of nodes has

been divided by 10. This means that on such instances, PSNS is rather expensive, which

maybe lets room for further improvements.

8 Conclusion

In this paper, we have investigated the property of soft neighborhood substitutability

for weighted constraint networks, and have found a sufficient condition on substitutions

that can be identified by an algorithm of reasonable complexity (restricted to the neigh-

borhood and polynomial). We have proved that, even in simple cases, when k 6= ∞,

the problem of deciding whether a value is soft neighborhood substitutable for another

is coNP-hard. We have also given some properties linking substitutability and soft arc

consistencies. Finally, we have proposed an algorithm that exploits early breaks and

residues and shown experimentally that it can be helpful during search.



Instances AC* AC* FDAC FDAC EDAC EDAC

+PSNS +PSNS +PSNS

cap101 cpu 232 42.1 1.6 1.62 1.48 1.12

#nodes 242K 242K 835 835 75 75

avg-sub 0 1 0 2 0 15

cap111 cpu >1,200 >1,200 633 162 3.03 2.74

#nodes − − 72,924 72,924 439 199

avg-sub 0 2 0 3 0 12

capmo1 cpu >1,200 >1,200 >1,200 >1,200 >1,200 984

#nodes − − − − − −

avg-sub 0 15 0 23 0 64

driverlog02ac cpu 253 49.5 10.6 7.99 19.3 13.5

#nodes 4,729K 701K 19,454 8,412 19,444 8,402

avg-sub 0 0 0 0 0 0

driverlogs06 cpu >1,200 >1,200 187 61.0 218 80.1

#nodes − − 2,049K 609K 2,049K 609K

avg-sub 0 0 0 0 0 0

mprime04ac cpu >1,200 30.9 >1,200 15.7 >1,200 43.7

#nodes − 189K − 22,373 − 20,381

avg-sub 0 0 0 1 0 1

myciel5g-3 cpu 38.1 19.6 3.87 4.18 4.36 4.57

#nodes 518K 168K 10,046 9,922 6,159 6,128

avg-sub 0 2 0 3 0 2

celar7-sub1 cpu 925 820 147 145 135 86.4

#nodes 9,078K 1,443K 732K 91,552 796K 70,896

avg-sub 0 6 0 9 0 6

graph07 cpu >1,200 261 3.11 3.58 3.86 4.3

#nodes 6,156K 145K 1,112 647 1,796 1,514

avg-sub 0 23 0 9 0 4

scen06-24 cpu >1,200 >1,200 1,061 >1,200 >1,200 >1,200

#nodes − − − 375K − −

avg-sub 0 2 0 6 0 7

spot5-29 cpu >1,200 >1,200 30.1 18.0 47.2 22.5

#nodes − − 343K 174K 352K 185K

avg-sub 0 0 0 0 0 0

Table 2. Illustrative results obtained on some problem instances.
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