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Introduction

The fundamental importance of addressing the controllability of bilinear systems has long been recognized in engineering control applications (see [START_REF] Sontag | Mathematical control theory: deterministic finite dimensional systems[END_REF][START_REF] Khalil | Nonlinear systems[END_REF][START_REF] Nijmeiher | Nonlinear dynamical control systems[END_REF][START_REF] Leite | Controllability on classical Lie groups[END_REF][START_REF] Ramakrishna | Controllability of molecular-systems[END_REF][START_REF]Small time controllability of systems on compact Lie groups and spin angular momentum[END_REF][START_REF] Albertini | Notions of controllability for quantum mechanical systems[END_REF][START_REF] Altafini | Controllability of quantum mechanical systems by root space decomposition of su(n)[END_REF][START_REF] Turinici | Wavefunction controllability in quantum systems[END_REF]). Among recent applications one may cite the field of quantum control with optical or magnetic external fields (see [START_REF] Ramakrishna | Controllability of molecular-systems[END_REF][START_REF] Turinici | Wavefunction controllability in quantum systems[END_REF][START_REF] Rice | Optical control of quantum dynamics[END_REF][START_REF] Huang | On the controllability of quantum mechanical systems[END_REF][START_REF] Judson | Optimal design of external fields for controlling molecular motionapplication to rotation[END_REF][START_REF] Turinici | On the controllability of bilinear quantum systems[END_REF][START_REF] Schirmer | Complete controllability of quantum systems[END_REF][START_REF] Turinici | Quantum Wave Function Controllability[END_REF][START_REF] Girardeau | Kinematical bounds on evolution and optimization of mixed quantum states[END_REF][START_REF] Beauchard | Local controllability of a 1-D Schrödinger equation[END_REF][START_REF] Beauchard | Local controllability of 1D linear and nonlinear Schrödinger equations with bilinear control[END_REF][START_REF] Girardeau | Kinematical bounds on optimization of observables for quantum states[END_REF]).

Although the controllability is well understood when the system is of finite dimension, isolated and the control can be implemented exactly, new theoretical and numerical questions are raised when perturbations are present.

The question that is addressed in this paper is related to the simultaneous controllability of bilinear systems. Consider a collection of control systems with states X k , k = 1, ..., K in Lie groups G k evolving according to

dX k (t) dt = (A k + u(t)B k )X k .
Simultaneous controllability (also called "ensemble controllability") is the ques-tion of whether all states X k can be controlled with the same control u(t). We will use the terms "simultaneous controllability" and "ensemble controllability" interchangeably.

Problems of simultaneous control of a finite collection of systems have been addressed recently in applications related to quantum control [START_REF] Turinici | Optimal Discrimination of Multiple Quantum Systems: Controllability Analysis[END_REF][START_REF] Li | Optimal Dynamic Discrimination of Similar Molecules Through Quantum Learning Control[END_REF][START_REF] Turinici | Optimally controlling the internal dynamics of a randomly oriented ensemble of molecules[END_REF][START_REF] Rabitz | Controlling quantum dynamics regardless of laser beam spatial profile and molecular orientation[END_REF][START_REF] Schirmer | Controllability of multi-partite quantum systems and selective excitation of quantum dots[END_REF][START_REF] Li | Ensemble controllability of the Bloch equations[END_REF][START_REF] Li | Control of inhomogeneous quantum ensembles[END_REF][START_REF] Li | Ensemble control of Bloch equations[END_REF][START_REF] Sugny | Control of mixed-state quantum systems by a train of short pulses[END_REF][START_REF] Tarn | Controllability of quantum mechanical systems with continuous spectra[END_REF][START_REF] Altafini | Controllability and simultaneous controllability of isospectral bilinear control systems on complex flag manifolds[END_REF][START_REF] Moore | Manipulating molecules[END_REF]. In such circumstances, the system is a collection of molecules or atoms or spin systems and the control is a magnetic field (in NMR) or a laser. The assessment of whether a single control pulse can drive independent (i.e., distinct) quantum systems to their respective target states was addressed theoretically in [START_REF] Turinici | Optimal Discrimination of Multiple Quantum Systems: Controllability Analysis[END_REF] for general A k , B k and applied to the optimal dynamic discrimination of separate quantum systems in [START_REF] Li | Optimal Dynamic Discrimination of Similar Molecules Through Quantum Learning Control[END_REF]. The particular case of identical molecules with A k = A (constant) and B k = ξ k B, ξ k ∈ R, G = S U(N) was treated in [START_REF] Turinici | Optimally controlling the internal dynamics of a randomly oriented ensemble of molecules[END_REF][START_REF] Rabitz | Controlling quantum dynamics regardless of laser beam spatial profile and molecular orientation[END_REF] where, under some technical assumptions on A and B, it is proved that all members of an ensemble of randomly oriented molecules subjected to a single ultra-fast laser control pulse can be simultaneously controlled. An independent work [START_REF] Altafini | Controllability and simultaneous controllability of isospectral bilinear control systems on complex flag manifolds[END_REF] treats the circumstance when A k = ϵ k A, |ϵ j | |ϵ ℓ | for any j ℓ, G = S U(N) and B k = B (con-stant) and was used to show controllability for ensembles N-level quantum systems having different Larmor dispersion. This last result generalizes the findings of [START_REF] Li | Ensemble controllability of the Bloch equations[END_REF] for ensembles of spin 1/2 systems.

The infinite dimensional version (an infinite number of systems A ϵ = ϵA with ϵ taking arbitrary values in an interval ]ϵ * , ϵ * [) was treated in [START_REF] Li | Control of inhomogeneous quantum ensembles[END_REF][START_REF] Li | Ensemble control of Bloch equations[END_REF][START_REF] Beauchard | Controllability issues for continuous-spectrum systems and ensemble controllability of Bloch equations[END_REF] for the specific situation of the Bloch equations.

In this paper, we extend the result in [START_REF] Altafini | Controllability and simultaneous controllability of isospectral bilinear control systems on complex flag manifolds[END_REF] to the new circumstance when A k = A + α k B, α k ∈ R and B k = B (constant) or, equivalently, to the simultaneous controllability of systems submitted to time independent perturbations dX k (t) dt = [A + (u(t) + α k )B]X k . As the result in [START_REF] Altafini | Controllability and simultaneous controllability of isospectral bilinear control systems on complex flag manifolds[END_REF] does not apply to this situation, we prove new controllability results. Moreover, the mathematical techniques employed in this work turn out to be useful in other settings such as [START_REF] Turinici | Optimally controlling the internal dynamics of a randomly oriented ensemble of molecules[END_REF][START_REF] Altafini | Controllability and simultaneous controllability of isospectral bilinear control systems on complex flag manifolds[END_REF] for which we give stronger controllability results.

The perturbation model A + (u(t) + α k )B was investigated theoretically and numerically in the physical literature independent of any theoretical controllability results. In the quantum computing literature such perturbations are called "fixed systematic errors" (see Section VI.A. equation ( 40) of [START_REF] Khodjasteh | Dynamical quantum error correction of unitary operations with bounded controls[END_REF]) or simply "systematic control error", see [START_REF] Khodjasteh | Dynamically error-corrected gates for universal quantum computation[END_REF] where the authors concluded that mitigating such errors may be possible (although at the expense of longer pulse sequences). We give here a theoretical result to sustain this view. We also refer to [START_REF] Souza | Experimental protection of quantum gates against decoherence and control errors[END_REF], where the authors design pulse sequences that are generically robust with respect to errors in the amplitude of the control field. In a related recent work the corresponding noise model is called "low frequency noise" (see section IV. C. of [START_REF] Hocker | Characterization of control noise effects in optimal quantum unitary dynamics[END_REF]): it is defined as the portion of the (control) amplitude noise that has a correlation time that is long (up to 10 3 times) compared to the timescale of the dynamics and as such it can be treated as constant in time. Additional noise models (additive or multiplicative) are presented in [START_REF] Sola | The influence of laser field noise on controlled quantum dynamics[END_REF] in the general quantum control area.

The balance of the paper is as follows: in Section 2 we introduce the general framework and the main notations and in Section 3 we present our main results including a general ensemble controllability result. In Section 4, we apply our results to the controllability of quantum systems. The situation of an infinite number of perturbations is discussed in Section 5 from the theoretical and numerical point of views. Finally, some conclusions and perspectives of future work are given in Section 6.

Problem formulation

Let G be a Lie group. Throughout this paper G is considered to be finite dimensional, connected, compact, simple real Lie group. Its Lie algebra is denoted by g, the identity element is Id and A, B ∈ g are fixed. Remarkable examples of such Lie groups are (see [START_REF] Helgason | Differential geometry, Lie groups, and symmetric spaces[END_REF][START_REF] De Graaf | Lie algebras: theory and algorithms[END_REF]):

• the special unitary group S U(N) for N ≥ 2,

• the special orthogonal group S O(N) for N 4,

• the compact symplectic group (quaternionic N × N unitary matrices) Sp(N) for N ≥ 2,

• the spin group Spin(N) for N ≥ 2.

Consider the following control system on G:

dX(t) dt = (A + u(t)B)X(t), X(0) = Id. ( 1 
)
The matrix X(t) evolves in the Lie group G.

The controllability of a system on Lie groups such as (1) is a well-studied problem [START_REF] Leite | Controllability on classical Lie groups[END_REF][START_REF] Ramakrishna | Controllability of molecular-systems[END_REF][START_REF]Small time controllability of systems on compact Lie groups and spin angular momentum[END_REF][START_REF] Albertini | Notions of controllability for quantum mechanical systems[END_REF][START_REF] Altafini | Controllability of quantum mechanical systems by root space decomposition of su(n)[END_REF][START_REF] Turinici | Wavefunction controllability in quantum systems[END_REF]. The literature on the subject of bilinear control relies essentially on the following Theorem (originally due to [START_REF] Jurdjevic | Control systems on Lie groups[END_REF]): Theorem 1. Denote by L A,B the Lie subalgebra of g generated by A and B. The system [START_REF] Sontag | Mathematical control theory: deterministic finite dimensional systems[END_REF] 

, k = 1, • • • , K}? dX k (t) dt = AX k (t) + [u(t) + α k ]BX k (t), X k (0) = Id. ( 2 
)
Can one still control the systems simultaneously? The real perturbation α k for a given system is not known beforehand, therefore in order to be certain that the system is controlled, one has to find a control u(t) that simultaneously controls all states X k (t), i.e., find u(t) such that

X k (T ) = V for k = 1, • • • , K (here V is the target state).
Yet a distinct circumstance is when α k are not arbitrary perturbations but unknown characteristics of the system to be identified. Here, the goal is to find u(t) such that, given distinct V k one has X k (T ) = V k . By measuring the state of the system at the final time T , one knows which α k was effective during [0, T ].

In conclusion, our problem can be formalized as follows: let V k ∈ G, k = 1, • • • , K be arbitrary. Is it possible to find T > 0 and a measurable u : [0, T ] → R such that the system given by (2) satisfies

X k (T ) = V k , ∀ k = 1, • • • , K? If the
answer to this question is positive then the system in (2) will be called simultaneously controllable (or ensemble controllable).

Simultaneous controllability for perturbations

Tools for simultaneous controllability

In this section, we recall an important result on simultaneous controllability. Consider K bilinear systems on the (finite dimensional, connected, compact, simple) Lie groups G k :

dX k (t) dt = (A k + u(t)B k )X k (t), X k (0) = Id, (3) 
where

A k , B k ∈ g k , k = 1, • • • , K and g k is the Lie algebra of G k .
Recall that when G k is simple the Lie algebra g k is also simple which means that the only ideals in g k are {0} and g k . In particular g k is also semi-simple. Let

A = A 1 ⊕• • •⊕A K ∈ ⊕ K k=1 g k and B = B⊕• • •⊕B ∈ ⊕ K k=1 g k . When g k are represented as matrix algebras and M k ∈ g k the element M 1 ⊕ ... ⊕ M K ∈ ⊕ K k=1 g k is simply the block diagonal matrix             M 1 0 . . . 0 M K            
.

By assembling the K bilinear systems (3), the evolution of this collection of states can be written as a bilinear system on ⊕ K k=1 G k :

dX(t) dt = AX(t) + u(t)BX(t), X(0) = Id ∈ ⊕ K k=1 G k . (4) 
Denote by L A,B the Lie algebra generated by the matrices A and B. Then, we have the following result (see [START_REF] Jurdjevic | Control systems on Lie groups[END_REF], [START_REF] Turinici | Optimal Discrimination of Multiple Quantum Systems: Controllability Analysis[END_REF], Theorems 1 and 2 p. 277 and [START_REF] Li | Optimal Dynamic Discrimination of Similar Molecules Through Quantum Learning Control[END_REF], Section III for an application):

Theorem 2. The collection (3) of K bilinear systems is simultaneously controllable if and only if L

A,B = ⊕ K k=1 g k or equivalently dim R L A,B = K ∑ k=1 dim R g k .
Moreover, there exists T A,B > 0 such that any collection of targets

(V k ) K k=1 ∈ ⊕ K k=1 G k can be reached in time t ≥ T A,B with controls u(t) such that |u(s)| ≤ 1, ∀s ∈ [0, t].

Main result

The proof of our main result uses the following lemma.

Lemma 3. Consider the collection (3) of K bilinear systems as a control system on

⊕ K k=1 G k . Suppose K > 1 and L A k ,B k = g k for any k = 1, • • • , K.
The system is not ensemble controllable if and only if there exist k, ℓ ∈ {1, ..., K}, k ℓ and an isomorphism f :

g k → g ℓ such that f (A k ) = A ℓ and f (B k ) = B ℓ .
Proof. If such an isomorphism exists then the dynamics of the ℓ-th system is completely dependent on the dynamics of the k-th system, in fact there will be an isomorphism of Lie groups

F : G k → G ℓ such that X ℓ = F(X k )

at any time t and with any control u(t).

Therefore the collection of systems is not ensemble controllable.

To prove the direct implication, suppose that the collection of K bilinear systems is not ensemble controllable and let K ′ ≤ K be the first integer such that the systems associated with

A k , B k , k = 1, ..., K ′ are not en- semble controllable but any (K ′ -1)-tuple {i 1 , ..., i K ′ -1 } ⊂ {1, ..., K ′ -1} (i k i ℓ for k ℓ) of systems A i k , B i k , k = 1, ..., K ′ -1, is ensemble controllable; by hypoth- esis K ≥ 2 since any individual system is controllable.
To ease notations we renote K = K ′ .

Step 1:

Denote g 0 = {χ ∈ g K |0 ⊕ • • • ⊕ 0 ⊕ χ ∈ L A,B }. Since L A,B
is a linear space g 0 will also be a non-empty linear space. Let χ ∈ g 0 and ψ ∈ g K . Since L A K ,B K = g K there exists at least an element of the form

ψ 1 ⊕ • • • ⊕ ψ K-1 ⊕ ψ ∈ L A,B . Recall that 0 ⊕ • • • ⊕ 0 ⊕ χ ∈ L A,B thus 0⊕• • •⊕0⊕[χ, ψ] = [0⊕• • •⊕0⊕χ, ψ 1 ⊕• • •⊕ψ K-1 ⊕ψ] ∈ L A,B therefore [χ, ψ] ∈ g 0 .
We obtain that g 0 is an ideal of g K . But g K is a simple Lie algebra which implies that the only ideals in g K are {0} and g K .

We treat first the alternative

g 0 = g K . Let χ 1 ∈ g 1 , • • • , χ K ∈ g K be arbitrary. The (K -1)-tuple of sys- tems on ⊕ K-1 k=1 G k is controllable therefore the Lie alge- bra generated by A 1 ⊕ • • • ⊕ A K-1 and B 1 ⊕ • • • ⊕ B K-1 is ⊕ K-1 k=1 g k thus L A,B contains at least one element of the form χ 1 ⊕ • • • ⊕ χ K-1 ⊕ χ K for some χ K ∈ g K . In ad- dition g 0 = g K implies that χ K -χ K ∈ g 0 therefore 0 ⊕ • • • ⊕ 0 ⊕ (χ K -χ K ) ∈ L A,B . Summing the two we obtain χ 1 ⊕ • • • ⊕ χ K ∈ L A,B therefore L A,B = ⊕ K k=1
g k and we obtain controllability which contradicts the hypothesis. It follows that g 0 = {0}.

Step 2: For any

χ 1 ∈ g 1 , • • • , χ K-1 ∈ g K-1 there exists thus a unique element χ 1 ⊕ • • • ⊕ χ K ∈ L A,B . Introduce the mapping J : ⊕ K-1 k=1 g k → g K defined by J(χ 1 , • • • , χ K-1 ) = χ K ⇐⇒ χ 1 ⊕ • • • ⊕ χ K ∈ L A,B . (5) 
In particular J(B 1 , ..., B K-1 ) = B K and J(A 1 , ..., A K-1 ) = A K . Elementary computations indicate that J is a morphism of Lie algebras, in particular invariant with respect to commutation and J(0, ..., 0) = 0. Consider J 0 : g 1 → g K defined by J 0 (χ 1 ) = J(χ 1 , 0, ..., 0). Take χ 1 such that J 0 (χ 1 ) = 0. Then J(χ 1 , 0, ..., 0) = 0 or, equivalently,

χ 1 ⊕0⊕• • •⊕0 ∈ L A,B .
By a reasoning similar to that in Step 1 we prove that

{χ 1 ∈ g 1 |χ 1 ⊕ 0 ⊕ • • • ⊕ 0 ∈ L A,B } must be {0} thus χ 1 = 0. Therefore we proved J 0 (χ 1 ) = 0 implies χ 1 = 0 which means that J 0 is injective. Since the (K -1)-tuple of systems A k , B k , k = 2, ..., K is ensemble controllable, for any χ 2 ∈ g 2 , ..., χ K ∈ g K the algebra L A,B contains at least one element of the form χ 1 ⊕ χ 2 ⊕ • • • ⊕ χ K .
Considering χ 2 = 0, ... χ K-1 = 0 and χ K arbitrary, we find that for any χ K ∈ g K at least one χ 1 ∈ g 1 exists such that χ K = J(χ 1 , 0, ..., 0) = J 0 (χ 1 ). Therefore J 0 is also surjective thus bijective. Since J 0 is linear and invariant to commutation, it follows that J 0 is an isomorphism between the Lie algebras g 1 and g K .

Furthermore, let χ ∈ g 1 and

ψ k ∈ g k , k ≤ K -1; then χ ⊕ 0 ⊕ • • • ⊕ 0 ⊕ J 0 (χ) ∈ L A,B ψ 1 ⊕ • • • ⊕ ψ K-1 ⊕ J(ψ 1 , ..., ψ K-1 ) ∈ L A,B .
Computing the commutator, we obtain

[χ, ψ 1 ]⊕0⊕• • •⊕0⊕[J 0 (χ), J(ψ 1 , ..., ψ K-1 )] ∈ L A,B , (6) 
and the definition of J and J 0 imply that

J 0 ([χ, ψ 1 ]) = [J 0 (χ), J(ψ 1 , ..., ψ K-1 )].
Since J 0 is a morphism of Lie algebras, we obtain [J 0 (χ), J 0 (ψ 1 )] = [J 0 (χ), J(ψ 1 , ..., ψ K-1 )]. This can be written [J 0 (χ), J(0, ψ 2 , ..., ψ K-1 )] = 0. But J 0 is surjective therefore [Z, J(0, ψ 2 , ..., ψ K-1 )] = 0 for all Z ∈ g 1 . The Lie algebra g 1 is (simple thus) semi-simple which means that the above equation implies J(0, ψ 2 , ..., ψ K-1 ) = 0 for any

ψ 2 ∈ g 2 , ... , ψ K-1 ∈ g K-1 . In particular, J 0 (A 1 ) = J(A 1 , 0, ..., 0) = J(A 1 , ..., A K-1 ) = A K and similarly J 0 (B 1 ) = B K , Q.E.D. Remark 1. 1. When dim R g k are all different the indi-
vidual controllability implies ensemble controllability. From this point of view the situation g k = g (for all k) is the most difficult. 2. When g k = g (for all k) one can exploit the structure of g. For the remarkable example g = su(N), we know that any automorphism is either χ → YχY -1 or χ → YχY -1 for some Y ∈ S U(N) (χ denotes the element-wise complex conjugation). In any such situation, it is enough to know if some Y exists such that

A ℓ = Y A k Y -1 , B ℓ = Y B k Y -1 or A ℓ = Y A k Y -1 , B ℓ = Y B k Y -1 .
3. The result is not true for semi-simple Lie algebras.

In this case the non-controllability is equivalent to the existence of an isomorphism between an ideal of some g k and an ideal of some g ℓ . 4. The result extends easily to the situation of several controls.

Using the previous results we can now treat the situation where the control seen by the k-th system is u(t)+α k and not u(t)α k as in [START_REF] Turinici | Optimally controlling the internal dynamics of a randomly oriented ensemble of molecules[END_REF].

Theorem 4. Consider K ≥ 1 and α k ∈ R, k = 1, .., K.
The collection of systems ( 2) is simultaneously controllable if and only if L A,B = g and α k α ℓ for any k ℓ.

In this case, there exists T

A,B,α 1 ,••• ,α K > 0 such that the system is controllable in any time t ≥ T A,B,α 1 ,••• ,α K with controls u such that |u(s)| ≤ 1, ∀s ∈ [0, t].
Proof. In the view of the Theorem 1 the condition L A,B = g is necessary. Of course α k α ℓ for any k ℓ is also required otherwise the same system with the same control appears twice in the list.

To assess controllability of ( 2), we consider it as a control system on ⊕ K k=1 G given by matrices

A = (A + α 1 B) ⊕ • • • ⊕ (A + α K B) and B = B ⊕ • • • ⊕ B.
Simultaneous controllability is equivalent to proving that L A,B is isomorphic with ⊕ K k=1 g. Suppose that this is not the case; then by Lemma 3, there exist k ℓ and an automorphism f :

g → g such that f (A + α k B) = A + α ℓ B and f (B) = B. Denote β = α ℓ -α k 0 then f (A) = A + βB.
Denote by Aut(g) the group of automorphisms of g. We recall that Aut(g) is compact (see [START_REF] Helgason | Differential geometry, Lie groups, and symmetric spaces[END_REF][START_REF] De Graaf | Lie algebras: theory and algorithms[END_REF][START_REF] Varadarajan | Lie groups, Lie algebras, and their representations[END_REF] or any classical Lie theory textbook). Indeed, from the definition of the Killing form

K g (χ, ψ) = T r g ([χ, •] • [ψ, •]) it follows that any automorphism h ∈ Aut(g) is such that K g (h(χ), h(ψ)) = K g (χ, ψ).
Since g is connected, compact, simple (thus semi-simple) the Killing form is negative definite and thus Aut(g) is isomophic to a closed Lie subgroup of the orthogonal group of O(dim R g; R) therefore Aut(g) is compact.

On the other hand

A = f (A) -βB = -βB + f (-βB + f (A)) = -2βB + f ( f (A)) = ... = -mβB + f m (A).
Here, the automorphism f m is the m-th power of the automorphism f . We obtain thus:

B = - A -f m (A) βm , ∀m = 1, 2, ... (7) 
All f m live in the compact set Aut(g) thus the sequence f m (A) is bounded and, passing to the limit in the equation [START_REF] Albertini | Notions of controllability for quantum mechanical systems[END_REF], we obtain B = 0 which is impossible, Q.E.D.

Corollary 5. Consider the bilinear system in equation [START_REF] Nijmeiher | Nonlinear dynamical control systems[END_REF], where

G k = G and A k = ϵ k A, B k = B, ϵ k ∈ R, k = 1, .., K. Suppose |ϵ k | |ϵ ℓ |
for any k ℓ and L A,B = g; then the collection of systems ( 3) is ensemble controllable.

Proof. We use the same arguments as in the previous result. Let f be an automorphism of g, with f (

ϵ k A) = ϵ ℓ A. Since |ϵ k | |ϵ ℓ | there exists λ ∈ R, |λ| 1 such that f (A) = λA. Suppose for instance |λ| > 1 (otherwise use f -1 ). Then f m (A) = λ m A
and the contradiction is obtained because all f m live in a compact set.

Remark 2. 1. The Theorem 4 is not true for semisimple Lie groups. For instance let χ, ψ ∈ su(N)

such that L χ,ψ = su(N) and A = χ ⊕ (χ + ψ) ∈ su(N) ⊕ su(N), B = ψ ⊕ ψ ∈ su(N) ⊕ su(N), α 1 = 0, α 2 = 1.
The result above implies that (A, B) is controllable as a system on S U(N) ⊕ S U(N). However the matrices A and B corresponding to the collection of systems A + (u(t)

+ α k )B are A = χ ⊕ (χ + ψ) ⊕ (χ + ψ) ⊕ (χ + 2ψ) and respectively B = ψ ⊕ ψ ⊕ ψ ⊕ ψ.
We note that the second and the third component are identical thus the system is not controllable. 2. The assumptions of the Corrolary 5 are weaker than those present in the literature. In [START_REF] Altafini | Controllability and simultaneous controllability of isospectral bilinear control systems on complex flag manifolds[END_REF], the same conclusion is obtained under the additional hypothesis that the transitions of iA are nondegenerate (i.e., A is "strongly regular" in the terminology of the Definition 2 in [START_REF] Altafini | Controllability and simultaneous controllability of isospectral bilinear control systems on complex flag manifolds[END_REF]). Recall that a matrix ψ with eigenvalues λ ψ 1 , ..., λ ψ N has no degenerate transitions if λ ψ a -λ ψ b λ ψ i -λ ψ j for all (a, b) (i, j).

Additional results can be easily constructed along

the same lines, for instance for cases where the perturbation is not additive but on the form α k u(t)+β k .

4. Having proved the results above for the bilinear setting, it is interesting to compare with the analogous result in the linear case. For this we consider the following linear systems:

d dt x 1 = Ax 1 + Bu(t), x 1 (0) = 0 d dt x 2 = Ax 2 + B[u(t) + α], x 2 (0) = 0.
The dynamics of x 2 (t)x 1 (t) is not influenced by the control since d dt (x 2x 1 ) = A(x 2x 1 ) + Bα, x 2 (0)x 1 (0) = 0. Hence this collection of systems is never simultaneously controllable.

The Theorem 4 can be extended to the situation when the perturbations of the control depend on time. We will require however that the perturbations be constant on a common, long enough, time interval. Corollary 6. Consider the collection of control systems with control u(t): 8) is simultaneously controllable at any time T ≥ t 2 .

dY k (t) dt = { A + (u(t) + β k (t))B } Y k (t), Y k (0) = Y k,0 ∈ G. (8) Suppose that L A,B = g and there exists 0 < t 1 < t 2 < ∞ such that β k (t) = α k (constant) ∀t ∈ [t 1 , t 2 ] and α k α ℓ for k ℓ. Then there exists T A,B,α 1 ,••• ,α K such that if t 2 -t 1 ≥ T A,B,α 1 ,••• ,α K the collection of systems (
Proof. Let V k be given targets for the systems (8) at time T ≥ t 2 . Define u(t) to be zero on [0,

t 1 ] ∪ [t 2 , T ] and V - k = Y - k (t 1 ) where Y - k (t) is the solution of dY - k (t) dt = (A + β k (t)B)Y - k (t), Y - k (0) = Y k,0 and V + k = Y + k (T ) where Y + k (t) satisfies dY + k (t) dt = (A + β k (t)B)Y + k (t), Y + k (t 2 ) = Id. Set targets W k = (V + k ) -1 V k (V - k ) -1
for the system (2) on [0, t 2t 1 ] and initial states X k (0) = Id and let ũ(t) be the control that drives

X k from X k (0) = Id to X k (t 2 -t 1 ) = W k , ∀k = 1, • • • , K. Then the control u(s) with u(s) = 0, for s ∈ [0, t 1 [∪]t 2 , T ] and u(s) = ũ(s -t 1 ), for s ∈ [t 1 , t 2 ] is such that Y k (T ) = V + k W k V - k = V k , Q.E.D.

Further results on related models

Note that the model in Equation ( 1) implies that the perturbation α k is present even when the control u(t) is null. In practice, it may sometimes be possible to eliminate the perturbations when the control field is not used and in this situation the controller can switch between a free, unperturbed dynamics and a controlled, perturbed one. This circumstance is modeled as

dZ k (t) dt = AZ k (t) + [u(t) + α k ]ξ(t)BZ k (t), Z k (0) ∈ G, ( 9 
)
where the controls are u(t) and ξ(t), but ξ(t) ∈ {0, 1}∀t ≥ 0 (ξ being a measurable function). We obtain the following Corollary 7. The system ( 9) is simultaneously controllable if and only if L A,B = g and α k α ℓ for any k ℓ.

Proof. Let ξ(t) = 1 and apply the Theorem 4. Of course L A,B = g and α k α ℓ for any k ℓ are necessary conditions for controllability, which proves the reverse implication, Q.E.D. Remark 3. For the situation (9) a result analogous to Corollary 6 can be proved. We leave the proof as an exercise to the reader. In addition, both results remain true when ξ is piecewise constant (with a discrete set of discontinuities).

Application to the control of a quantum system

Consider now a quantum bilinear system (cf. [START_REF] Ramakrishna | Controllability of molecular-systems[END_REF][START_REF] Turinici | Wavefunction controllability in quantum systems[END_REF][START_REF] Schirmer | Complete controllability of quantum systems[END_REF][START_REF] Tersigni | On using shaped light pulses to control the selectivity of product formation in a chemical reaction: An application to a multiple level system[END_REF]):

i d dt ψ = [H 0 + u(t)µ]ψ(t), ( 10 
)
H 0 =                    1.0 0 0 0 0 0 1.2 0 0 0 0 0 1.3 0 0 0 0 0 2.0 0 0 0 0 0 2.15                    , ( 11 
) µ =                    0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 1 1 1 0 0 1 1 1 0 0                    , (12) 
controlled by the control u(t) and with ψ(0) = (1/ √ 2, 0, 0, 1/ √ 2, 0) T and target ψ T = (0, 1/ √ 2, 0, 0, 1/ √ 2) T . This system has been extensively used (see the references above) as a benchmark for testing the controllability of bilinear quantum finite-dimensional systems: controllability criterions, search algorithms to find the controls etc. It has no degenerate transitions but a bi-partite connectivity graph structure: the set of eigenstates 1 to 3 are not directly connected, same for 4 and 5. Thus transferring population from eigenstate 1 to 2 requires a second-order excitation using eigenstates 4 or 5 as intermediary. Define B = µ/i and, for simplicity, A = [H 0 -0.2Tr(H 0 ).Id]/i such that both A and B belong to su [START_REF] Ramakrishna | Controllability of molecular-systems[END_REF]. Using the tool in [START_REF]Online controllability calculator[END_REF], we obtain dim R L A,B = 24 = dim R su( 5) thus L A,B = su [START_REF] Ramakrishna | Controllability of molecular-systems[END_REF]. Consider the perturbations α 1 = -0.1, α 2 = 0, α 3 = 0.1. Therefore Theorem 4, Corollary 6 and Corrolary 7 of the previous section apply. Since S U( 5) is transitive on the unit sphere of C 5 (cf. [START_REF] Albertini | Notions of controllability for quantum mechanical systems[END_REF]) there exists U T ∈ S U [START_REF] Ramakrishna | Controllability of molecular-systems[END_REF] such that U T ψ 0 = ψ T and by the Theorem 4 there exists a time T and a control u : [0, T ] → R such that u(t), u(t) -0.1 and u(t) + 0.1 all drive Id to U T in equation ( 1) thus all drive the initial state ψ 0 to the final state ψ T in equation [START_REF] Rice | Optical control of quantum dynamics[END_REF]. We searched numerically the control u(t) using a so-called monotonic procedure, see [START_REF] Belhadj | A stable toolkit method in quantum control[END_REF][START_REF] Tannor | Control of photochemical branching: Novel procedures for finding optimal pulses and global upper bounds[END_REF][START_REF] Zhu | A rapid monotonically convergent iteration algorithm for quantum optimal control over the expectation value of a positive definite operator[END_REF][START_REF] Schirmer | Efficient algorithm for optimal control of mixed-state quantum systems[END_REF][START_REF] Baudouin | Constructive solution of a bilinear optimal control problem for a Schrödinger equation[END_REF][START_REF] Maday | New formulations of monotonically convergent quantum control algorithms[END_REF] for details. For T = 500, we obtain the control presented in Figure 1. The quality of the control, i.e. the quantity |⟨ψ(T ),ψ(0)⟩| ∥ψ(0)∥ is over 99% for all perturbations α k , k = 1, 2, 3. We also tested different pairs of initial and target states (ψ 0 , ψ T ) and in all cases high quality controls were found.

Extensions to an infinite set of perturbations

We investigate in this section the circumstance when K (the number of perturbations) is infinite. The controllability of a system consisting of an infinite collection of finite-dimensional systems has been analyzed for the situation of the Bloch equation (G = S O( 3)) in [START_REF] Li | Ensemble controllability of the Bloch equations[END_REF][START_REF] Li | Control of inhomogeneous quantum ensembles[END_REF][START_REF] Li | Ensemble control of Bloch equations[END_REF][START_REF] Beauchard | Controllability issues for continuous-spectrum systems and ensemble controllability of Bloch equations[END_REF]. To the best of our knowledge no general results are available for generic systems and values of N; moreover the counter-example in Theorem 4 in [START_REF] Li | Ensemble control of Bloch equations[END_REF] warns that general results may be impossible to obtain.

We explore two questions: first we give an example that builds on the Maxwell-Bloch equation where a positive controllability result is expected; next we give a procedure for the numerical identification of approximate controls of a Bloch equation.

An example of perturbed Maxwell-Bloch equation

Let Ω a compact subset of R 3 and recall the notation for the Pauli matrices:

σ x = ( 0 1 1 0 ) , σ y = ( 0 -i i 0 ) , σ z = ( 1 0 0 -1 ) . (13) 
Consider the Maxwell-Bloch equation with two controls:

i dX(t, ω, α, β) dt = { ωσ z + [u(t) + α]σ x + [v(t) + β]σ y } X(t, ω, α, β), X(0, ω, α, β) = Id, (ω, α, β) ∈ Ω. (14) 
Proposition 8. Let f = ( f x , f y , f z ) : Ω → R 3 be a continuous function. Then, for any η > 0 there exists a time T η > 0 and two controls u η , v η ∈ L ∞ ([0, T η ]) such that for all (ω, α, β) ∈ Ω:

∥X(T η , ω, α, β) -e i( f x (ω,α,β)σ x + f y (ω,α,β)σ y + f z (ω,α,β)σ z ) ∥ ≤ η. (15) 
Proof. Although a rigorous proof of the controllability would require the tools in [START_REF] Beauchard | Controllability issues for continuous-spectrum systems and ensemble controllability of Bloch equations[END_REF] and is beyond the scope of this work, we give below the arguments that indicate that this system is controllable. Consider the sequence of controls: start with u = -(π/2)δ 0 ( δ 0 is the Dirac The control that drives ψ 0 to ψ T (cf. equation ( 10)) irrespective of the perturbation α k ∈ {-0.1, 0, 0.1}. The quality of the control is over 99% for any perturbation. However the trajectories ψ(t) corresponding to u(t) -0.1, u(t) and u(t) + 0.1 are all different.

mass at the origin), followed by free evolution during a unit of time and then

u = +(π/2)δ 1 . That is, choose u = -(π/2)δ 0 + (π/2)δ 1 , v = 0.
This results in the evolution e -i(π/2)σ x e -i(ωσ z +ασ x +βσ y ) e i(π/2)σ x = e -i(-ωσ z +ασ x -βσ y ) . ( 16) Thus the propagator associated with -ωσ z + ασ x -βσ y can be synthesized. A similar computation (now using the control v) allows to construct -ωσ z -ασ x + βσ y . Using now infinitesimal times and the formula e U+V = lim n→∞ ( e U/n e V/n

) n , we have thus at our disposal all propagators e ±iωσ z , e ±iασ x , e ±iβσ y . Recall that we also have e ±iσ x , e ±iσ y .

From now on, the argument is similar to that in [START_REF] Li | Ensemble control of Bloch equations[END_REF]: the formula lim n→∞ { e -χ/n e -ψ/n e χ/n e ψ/n } n 2 = e [χ,ψ] ,

allows to use commutators of, for instance, ±iωσ z and ±iσ x which produce ±iωσ y and then commutators ±iωσ z and ±iωσ y , which produce ±iω 2 σ x ; all other polynomials of ω can be obtained as multiplicative factors in front of ω z . Similar arguments allow to further obtain all possible polynomials of three variables ω, α, β. Therefore we obtain approximate controllability of the system to any (smooth) target with L ∞ controls.

Remark 4. 1. The result extends obviously to the Bloch equation (set on S O(3), see next section).

2. Not all situations have favorable outcomes. For instance, using same arguments as in Remark page 030302-2 of [START_REF] Li | Control of inhomogeneous quantum ensembles[END_REF], it is possible to show that for the controlled Hamiltonian σ z + ασ y + u(t)σ x the unknown perturbation α ∈]α * , α * [ cannot always be compensated. Indeed, the attainable propagators are of the form

exp{i f 1 (α 2 )(σ y -ασ z )+i f 2 (α 2 )(σ z +ασ y )+i f 3 (α 2 )σ x } (18 
) where f 1 , f 2 and f 3 are arbitrary functions. Thus when for instance Ω is symmetric with respect to α the functions f 1 , f 2 , f 3 are odd functions which is a restriction for controllability.

Convergence of the controls for a discrete set of perturbations

We investigate here a numerical algorithm to find the control when the set of perturbations can be a whole (possibly unbounded) closed interval I α ⊂ R. Suppose A, B ∈ g are such that L A,B = g and let us denote by X(t, α, u) the solution of dX (t) dt = (A + (u(t) + α)B)X at time t starting from X(0) = Id.

Consider also a continuous cost function to be minimized F : I α × G → R + and to fix notations suppose that for any α ∈ I α there exists some Z α ∈ G with F(α, Z α ) = 0. One interesting example of such function is the distance F(α, Z) = ∥Z -Y(α)∥ to some predefined target Y(α) continuous with respect to α ∈ I α . Of course Y can be in particular constant with respect to α. Consider a sequence of divisions T ℓ ⊂ I α :

α ℓ 1 < α ℓ 1 < ... < α ℓ K ℓ of the interval I α such that |T ℓ | := max j=2,K ℓ |α ℓ j -α ℓ j-1
| tends to 0 when ℓ tends to ∞. Fix also a tolerance η ≥ 0. Using the results of the previous sections there exists a time T ℓ and a control u ℓ such that F(α ℓ j , X(T ℓ , α ℓ j , u ℓ )) ≤ η for all j = 1, ..., K ℓ . In this section, we give a sufficient result that ensures the existence of a control u that minimizes the cost F for the whole interval of perturbations I α up to the tolerance η. Proposition 9. Suppose that the sequence T ℓ is not converging to infinity and ∥u ℓ ∥ L r ([0,T ℓ ]) are bounded by a common constant for some 1 < r < ∞. Then there exists T > 0 and u ∈ L r ([0, T ]) (independent of α) such that F(α, X(T, α, u)) ≤ η, for all α ∈ I α .

Proof. Since T ℓ does not converge to ∞ it has a subsequence converging to some T ∈ R. Denote again by T ℓ this subsequence; we can moreover consider that all T ℓ are either greater or smaller than T , let us say T ℓ ≤ T for all ℓ. Extend the domain of definition of u ℓ on [0, T ] with u ℓ = 0 on [T ℓ , T ]; this will not change its L r norm. Up to extracting another subsequence, there exists u ∈ L r ([0, T ]) such that u ℓ converges weakly in L 1 ([0, T ]) to u. Let us prove that u satisfies the required conditions. Fix α ∈ I α . Since |T ℓ | → 0, there exists a sequence α ℓ k ℓ such that α ℓ k ℓ → α when ℓ → ∞. We write:

∥X(T ℓ , α ℓ k ℓ , u ℓ ) -X(T, α, u)∥ ≤ ∥X(T ℓ , α ℓ k ℓ , u ℓ ) -e (T -T ℓ )A X(T ℓ , α ℓ k ℓ , u ℓ )∥ +∥e (T -T ℓ )A X(T ℓ , α ℓ k ℓ , u ℓ ) -X(T, α, u)∥. (19) The term ∥X(T ℓ , α ℓ k ℓ , u ℓ ) -e (T -T ℓ )A X(T ℓ , α ℓ k ℓ , u ℓ )
∥ is bounded by C∥Ide (T -T ℓ )A ∥ for some constant C > 0 and thus converges to 0. The last term can be written as:

∥e (T -T ℓ )A X(T ℓ , α ℓ k ℓ , u ℓ ) -X(T, α, u)∥ = ∥e (T -T ℓ )A X(T ℓ , 0, α ℓ k ℓ + u ℓ ) -X(T, 0, α + u)∥ = ∥X(T, 0, α ℓ k ℓ + u ℓ + 1 [T ℓ ,T ] • (-α ℓ k ℓ )) -X(T, 0, α + u)∥. ( 20 
)
Since T ℓ → T , it follows that α ℓ k ℓ + u ℓ + 1 [T ℓ ,T ] • (-α ℓ k ℓ ) converges weakly in L 1 ([0, T ]) to α + u. From Theorem 3.6 of [START_REF] Ball | Controllability for distributed bilinear systems[END_REF] (see also the Aubin-Lions lemma [START_REF] Aubin | Un théorème de compacité[END_REF]), the weak convergence of α ℓ

k ℓ + u ℓ + 1 [T ℓ ,T ] • (-α ℓ k ℓ ) to α + u ensures that lim ℓ→∞ X(T, 0, α ℓ k ℓ + u ℓ + 1 [T ℓ ,T ] • (-α ℓ k ℓ )) = X(T, 0, α + u). Combining all estimations, we obtain lim ℓ→∞ X(T ℓ , α ℓ k ℓ , u ℓ ) = X(T, α, u) thus F(α, X(T, α, u)) = lim ℓ→∞ F(α ℓ k ℓ , X(T ℓ , α ℓ k ℓ , u ℓ )) ≤ η, (21) 
and the conclusion follows.

Remark 5. The Proposition is not a controllability result but can be used numerically to find the control when controllability holds true.

In particular the situation η = 0 corresponds to exact controllability; however the results in [START_REF] Beauchard | Controllability issues for continuous-spectrum systems and ensemble controllability of Bloch equations[END_REF] show that approximate controllability is more likely to hold and the controls will be in L ∞ loc , thus in all L r ([0, t]). As a numerical illustration we consider the Bloch equation (which is a perturbation of the system in [START_REF] Beauchard | Controllability issues for continuous-spectrum systems and ensemble controllability of Bloch equations[END_REF] for ω = ω 0 ) :

d dt           M x M y M z           =           0 -(u(t) + α) 0 u(t) + α 0 -ω 0 0 ω 0 0                     M x M y M z           ,           M x (0) M y (0) M z (0)           = M 0 ,
where u(t) is the control. The system can be put into the framework of Proposition 9 by considering G = S O(3),

A = ω 0           0 0 0 0 0 -1 0 1 0           , B =           0 -1 0 1 0 0 0 0 0           .
Let M f be some target state. The goal to steer M 0 to M f at time T can be rephrased as minimizing, with respect to u, F(α, X(T, α, u)) where F(α, Z) = ∥ZM 0 -M f ∥. The tolerance η is set to 5%. We take M 0 = (1, 0, 0) T and M f = (0, 0, 1) T . The perturbation α takes all values in the interval I α = [-α max , α max ]; the divisions T ℓ use a Tchebytchev-type grid containing the points α ℓ k = α max cos(kπ/ℓ) with k = 0, • • • , K ℓ = ℓ. We consider the values of the parameters ω 0 = 50, T = 1000, α max = 0.5 For the numerical resolution of the evolution equation in X(t, α, u) we use a Crank-Nicholson time-discretization scheme, with 10 3 time steps in [0, T ]. To compute the optimal controls u ℓ we apply again the monotonic procedure, see Section 4.

In order to check the assumptions of Proposition 9 we set r = 2 and verify that the ∥u ℓ ∥ L 2 remain bounded when ℓ increases. The norms ∥u ℓ ∥ L 2 are presented in Figure 2 and are uniformly bounded with respect to ℓ.

The quality of these controls is evaluated with F(α, X(T, α, u ℓ )), which is in all cases lower than η. In Figure 3, F(α, X(T, α, u ℓ )) is plotted as a function of α for the control field u 250 . We observe a very accurate control in the whole interval α ∈ I α (but the quality decays outside this interval).

Conclusion and perspectives

Necessary and sufficient conditions have been derived for the ensemble controllability of a finite collection of bilinear systems on a connected, compact, simple Lie group. The result was applied to the case where the control is submitted to a finite collection of constant or partially constant perturbations. The result extends to ensemble controllability and generalizes several works from the literature. Additional arguments have been presented when the number of possible perturbations is infinite. This work studied the controllability for possibly large final times. A related question is whether small time local controllability (called STLC) is also true. A further question is whether the result extends to more general, time dependent, perturbations.

Figure 1 :

 1 Figure1: The control that drives ψ 0 to ψ T (cf. equation (10)) irrespective of the perturbation α k ∈ {-0.1, 0, 0.1}. The quality of the control is over 99% for any perturbation. However the trajectories ψ(t) corresponding to u(t) -0.1, u(t) and u(t) + 0.1 are all different.

Figure 2 :

 2 Figure 2: Norms of ∥u ℓ ∥ L 2 for ℓ = 5, 10, 25, 50, 100, 150, 200, 250.

FFigure 3 :

 3 Figure 3: Values of F(α, X(T, α, u ℓ )) for α ∈ [-1, 1]. The optimal control u 250 is applied. As expected the quality is within the tolerance η in the interval I α but not outside it.

  on the Lie group G is controllable if and only if LA,B = g or equivalently if dim R L A,B = dim R g.

	Moreover there exists T A,B > 0
	such that any target can be reached in time t ≥ T A,B with
	controls u such that |u(s)| ≤ 1, ∀s ∈ [0, t].
	Here dim R L A,B stands for the dimension of L A,B as lin-
	ear vector space over R.
	An important question is what happens if the control
	u(t) in (1) is submitted to some perturbations in a prede-
	fined (discrete) list {α k
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