
HAL Id: hal-00866229
https://hal.science/hal-00866229v4

Submitted on 11 Dec 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Ensemble controllability and discrimination of perturbed
bilinear control systems on connected, simple, compact

Lie groups
Mohamed Belhadj, Julien Salomon, Gabriel Turinici

To cite this version:
Mohamed Belhadj, Julien Salomon, Gabriel Turinici. Ensemble controllability and discrimination of
perturbed bilinear control systems on connected, simple, compact Lie groups. European Journal of
Control, 2015, 22, pp.23-29. �10.1016/j.ejcon.2014.12.003�. �hal-00866229v4�

https://hal.science/hal-00866229v4
https://hal.archives-ouvertes.fr


Ensemble controllability and discrimination of perturbed bilinear control
systems on connected, simple, compact Lie groups

M. Belhadja,∗, J. Salomonb, G. Turinicib,c
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Abstract

The controllability of bilinear systems is well understood for finite dimensional isolated systems where the control
can be implemented exactly. However when perturbations are present some interesting theoretical questions are
raised. We consider in this paper a control system whose control cannot be implemented exactly but is shifted by
a time independent constant in a discrete list of possibilities. We prove under general hypothesis that the collection
of possible systems (one for each possible perturbation) is simultaneously controllable with a common control. The
result is extended to the situations where the perturbations are constant over a common, long enough, time frame. We
apply the result to the controllability of quantum systems. Furthermore, some examples and a convergence result are
presented for the situation where an infinite number of perturbations occur. In addition, the techniques invoked in the
proof allow to obtain generic necessary and sufficient conditions for ensemble controllability.
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1. Introduction

The fundamental importance of addressing the con-
trollability of bilinear systems has long been recognized
in engineering control applications (see [1–9]). Among
recent applications one may cite the field of quantum
control with optical or magnetic external fields (see
[5, 9–19]).

Although the controllability is well understood when
the system is of finite dimension, isolated and the con-
trol can be implemented exactly, new theoretical and
numerical questions are raised when perturbations are
present.

The question that is addressed in this paper is related
to the simultaneous controllability of bilinear systems.
Consider a collection of control systems with states Xk,
k = 1, ...,K in Lie groups Gk evolving according to
dXk(t)

dt = (Ak + u(t)Bk)Xk . Simultaneous controllabil-
ity (also called ”ensemble controllability”) is the ques-
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tion of whether all states Xk can be controlled with the
same control u(t). We will use the terms ”simultane-
ous controllability” and ”ensemble controllability” in-
terchangeably.

Problems of simultaneous control of a finite collec-
tion of systems have been addressed recently in appli-
cations related to quantum control [20–31]. In such cir-
cumstances, the system is a collection of molecules or
atoms or spin systems and the control is a magnetic field
(in NMR) or a laser. The assessment of whether a sin-
gle control pulse can drive independent (i.e., distinct)
quantum systems to their respective target states was ad-
dressed theoretically in [20] for general Ak, Bk and ap-
plied to the optimal dynamic discrimination of separate
quantum systems in [21]. The particular case of identi-
cal molecules with Ak = A (constant) and Bk = ξkB, ξk ∈
R, G = S U(N) was treated in [22, 23] where, under
some technical assumptions on A and B, it is proved
that all members of an ensemble of randomly oriented
molecules subjected to a single ultra-fast laser control
pulse can be simultaneously controlled. An indepen-
dent work [30] treats the circumstance when Ak = ϵkA,
|ϵ j| , |ϵℓ | for any j , ℓ, G = S U(N) and Bk = B (con-
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stant) and was used to show controllability for ensem-
bles N-level quantum systems having different Larmor
dispersion. This last result generalizes the findings of
[25] for ensembles of spin 1/2 systems.

The infinite dimensional version (an infinite number
of systems Aϵ = ϵA with ϵ taking arbitrary values in
an interval ]ϵ∗, ϵ∗[) was treated in [26, 27, 32] for the
specific situation of the Bloch equations.

In this paper, we extend the result in [30] to the new
circumstance when Ak = A + αkB, αk ∈ R and Bk = B
(constant) or, equivalently, to the simultaneous control-
lability of systems submitted to time independent per-
turbations dXk(t)

dt = [A + (u(t) + αk)B]Xk. As the re-
sult in [30] does not apply to this situation, we prove
new controllability results. Moreover, the mathematical
techniques employed in this work turn out to be use-
ful in other settings such as [22, 30] for which we give
stronger controllability results.

The perturbation model A + (u(t) + αk)B was investi-
gated theoretically and numerically in the physical liter-
ature independent of any theoretical controllability re-
sults. In the quantum computing literature such pertur-
bations are called ”fixed systematic errors” (see Section
VI.A. equation (40) of [33]) or simply ”systematic con-
trol error”, see [34] where the authors concluded that
mitigating such errors may be possible (although at the
expense of longer pulse sequences). We give here a the-
oretical result to sustain this view. We also refer to [35],
where the authors design pulse sequences that are gener-
ically robust with respect to errors in the amplitude of
the control field. In a related recent work the corre-
sponding noise model is called ”low frequency noise”
(see section IV. C. of [36]): it is defined as the portion of
the (control) amplitude noise that has a correlation time
that is long (up to 103 times) compared to the timescale
of the dynamics and as such it can be treated as con-
stant in time. Additional noise models (additive or mul-
tiplicative) are presented in [37] in the general quantum
control area.

The balance of the paper is as follows: in Section 2
we introduce the general framework and the main no-
tations and in Section 3 we present our main results
including a general ensemble controllability result. In
Section 4, we apply our results to the controllability of
quantum systems. The situation of an infinite number
of perturbations is discussed in Section 5 from the the-
oretical and numerical point of views. Finally, some
conclusions and perspectives of future work are given
in Section 6.

2. Problem formulation

Let G be a Lie group. Throughout this paper G is
considered to be finite dimensional, connected, com-
pact, simple real Lie group. Its Lie algebra is de-
noted by g, the identity element is Id and A, B ∈ g
are fixed. Remarkable examples of such Lie groups are
(see [38, 39]):

• the special unitary group S U(N) for N ≥ 2,

• the special orthogonal group S O(N) for N , 4,

• the compact symplectic group (quaternionic N ×N
unitary matrices) Sp(N) for N ≥ 2,

• the spin group Spin(N) for N ≥ 2.

Consider the following control system on G:

dX(t)
dt
= (A + u(t)B)X(t), X(0) = Id. (1)

The matrix X(t) evolves in the Lie group G.
The controllability of a system on Lie groups such as

(1) is a well-studied problem [4–9]. The literature on
the subject of bilinear control relies essentially on the
following Theorem (originally due to [40]):

Theorem 1. Denote by LA,B the Lie subalgebra of g
generated by A and B. The system (1) on the Lie group
G is controllable if and only if LA,B = g or equivalently
if dimRLA,B = dimRg. Moreover there exists TA,B > 0
such that any target can be reached in time t ≥ TA,B with
controls u such that |u(s)| ≤ 1,∀s ∈ [0, t].
Here dimRLA,B stands for the dimension of LA,B as lin-
ear vector space over R.

An important question is what happens if the control
u(t) in (1) is submitted to some perturbations in a prede-
fined (discrete) list {αk, k = 1, · · · ,K}?

dXk(t)
dt

= AXk(t) + [u(t) + αk]BXk(t), Xk(0) = Id. (2)

Can one still control the systems simultaneously? The
real perturbation αk for a given system is not known be-
forehand, therefore in order to be certain that the system
is controlled, one has to find a control u(t) that simulta-
neously controls all states Xk(t), i.e., find u(t) such that
Xk(T ) = V for k = 1, · · · ,K (here V is the target state).

Yet a distinct circumstance is when αk are not arbi-
trary perturbations but unknown characteristics of the
system to be identified. Here, the goal is to find u(t)
such that, given distinct Vk one has Xk(T ) = Vk. By
measuring the state of the system at the final time T ,
one knows which αk was effective during [0,T ].
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In conclusion, our problem can be formalized as fol-
lows: let Vk ∈ G, k = 1, · · · ,K be arbitrary. Is it possi-
ble to find T > 0 and a measurable u : [0,T ] → R such
that the system given by (2) satisfies Xk(T ) = Vk,∀ k =
1, · · · ,K? If the answer to this question is positive then
the system in (2) will be called simultaneously control-
lable (or ensemble controllable).

3. Simultaneous controllability for perturbations

3.1. Tools for simultaneous controllability

In this section, we recall an important result on si-
multaneous controllability. Consider K bilinear systems
on the (finite dimensional, connected, compact, simple)
Lie groups Gk:

dXk(t)
dt

= (Ak + u(t)Bk)Xk(t), Xk(0) = Id, (3)

where Ak, Bk ∈ gk, k = 1, · · · ,K and gk is the Lie algebra
of Gk. Recall that when Gk is simple the Lie algebra gk
is also simple which means that the only ideals in gk
are {0} and gk. In particular gk is also semi-simple. Let
A = A1⊕· · ·⊕AK ∈ ⊕K

k=1gk andB = B⊕· · ·⊕B ∈ ⊕K
k=1gk.

When gk are represented as matrix algebras and Mk ∈ gk
the element M1 ⊕ ... ⊕ MK ∈ ⊕K

k=1gk is simply the block

diagonal matrix


M1 0

. . .

0 MK

.
By assembling the K bilinear systems (3), the evolu-

tion of this collection of states can be written as a bilin-
ear system on ⊕K

k=1Gk:

dX(t)
dt
= AX(t)+ u(t)BX(t), X(0) = Id ∈ ⊕K

k=1Gk. (4)

Denote by LA,B the Lie algebra generated by the ma-
trices A and B. Then, we have the following result
(see [40], [20], Theorems 1 and 2 p. 277 and [21], Sec-
tion III for an application):

Theorem 2. The collection (3) of K bilinear systems is
simultaneously controllable if and only if LA,B = ⊕K

k=1gk
or equivalently

dimRLA,B =
K∑

k=1

dimRgk.

Moreover, there exists TA,B > 0 such that any collection
of targets (Vk)K

k=1 ∈ ⊕K
k=1Gk can be reached in time t ≥

TA,B with controls u(t) such that |u(s)| ≤ 1,∀s ∈ [0, t].

3.2. Main result

The proof of our main result uses the following
lemma.

Lemma 3. Consider the collection (3) of K bilinear sys-
tems as a control system on ⊕K

k=1Gk. Suppose K > 1
and LAk ,Bk = gk for any k = 1, · · · ,K. The system
is not ensemble controllable if and only if there exist
k, ℓ ∈ {1, ...,K}, k , ℓ and an isomorphism f : gk → gℓ
such that f (Ak) = Aℓ and f (Bk) = Bℓ.

Proof. If such an isomorphism exists then the dynam-
ics of the ℓ-th system is completely dependent on the
dynamics of the k-th system, in fact there will be an
isomorphism of Lie groups F : Gk → Gℓ such that
Xℓ = F(Xk) at any time t and with any control u(t).
Therefore the collection of systems is not ensemble con-
trollable.

To prove the direct implication, suppose that the col-
lection of K bilinear systems is not ensemble control-
lable and let K′ ≤ K be the first integer such that the
systems associated with Ak, Bk, k = 1, ...,K′ are not en-
semble controllable but any (K′−1)-tuple {i1, ..., iK′−1} ⊂
{1, ...,K′ − 1} (ik , iℓ for k , ℓ) of systems Aik , Bik ,
k = 1, ...,K′ − 1, is ensemble controllable; by hypoth-
esis K ≥ 2 since any individual system is controllable.
To ease notations we renote K = K′.

Step 1: Denote g0 = {χ ∈ gK |0⊕ · · · ⊕ 0⊕ χ ∈ LA,B}.
Since LA,B is a linear space g0 will also be a non-empty
linear space. Let χ ∈ g0 and ψ ∈ gK . Since LAK ,BK = gK

there exists at least an element of the form ψ1 ⊕ · · · ⊕
ψK−1 ⊕ψ ∈ LA,B. Recall that 0⊕ · · · ⊕ 0⊕χ ∈ LA,B thus
0⊕· · ·⊕0⊕[χ, ψ] = [0⊕· · ·⊕0⊕χ, ψ1⊕· · ·⊕ψK−1⊕ψ] ∈
LA,B therefore [χ, ψ] ∈ g0. We obtain that g0 is an ideal
of gK . But gK is a simple Lie algebra which implies that
the only ideals in gK are {0} and gK .

We treat first the alternative g0 = gK . Let χ1 ∈
g1, · · · , χK ∈ gK be arbitrary. The (K − 1)-tuple of sys-
tems on ⊕K−1

k=1 Gk is controllable therefore the Lie alge-
bra generated by A1 ⊕ · · · ⊕ AK−1 and B1 ⊕ · · · ⊕ BK−1
is ⊕K−1

k=1 gk thus LA,B contains at least one element of the
form χ1 ⊕ · · · ⊕ χK−1 ⊕ χ̃K for some χ̃K ∈ gK . In ad-
dition g0 = gK implies that χK − χ̃K ∈ g0 therefore
0 ⊕ · · · ⊕ 0 ⊕ (χK − χ̃K) ∈ LA,B. Summing the two
we obtain χ1 ⊕ · · · ⊕χK ∈ LA,B therefore LA,B = ⊕K

k=1gk
and we obtain controllability which contradicts the hy-
pothesis. It follows that g0 = {0}.

Step 2: For any χ1 ∈ g1, · · · , χK−1 ∈ gK−1 there exists
thus a unique element χ1 ⊕ · · · ⊕ χK ∈ LA,B. Introduce
the mapping J : ⊕K−1

k=1 gk → gK defined by

J(χ1, · · · , χK−1) = χK ⇐⇒ χ1 ⊕ · · · ⊕ χK ∈ LA,B. (5)

3



In particular J(B1, ..., BK−1) = BK and J(A1, ..., AK−1) =
AK . Elementary computations indicate that J is a mor-
phism of Lie algebras, in particular invariant with re-
spect to commutation and J(0, ..., 0) = 0.

Consider J0 : g1 → gK defined by J0(χ1) =
J(χ1, 0, ..., 0). Take χ1 such that J0(χ1) = 0. Then
J(χ1, 0, ..., 0) = 0 or, equivalently, χ1⊕0⊕· · ·⊕0 ∈ LA,B.
By a reasoning similar to that in Step 1 we prove that
{χ1 ∈ g1|χ1⊕0⊕· · ·⊕0 ∈ LA,B}must be {0} thus χ1 = 0.
Therefore we proved J0(χ1) = 0 implies χ1 = 0 which
means that J0 is injective. Since the (K − 1)-tuple of
systems Ak, Bk, k = 2, ...,K is ensemble controllable,
for any χ2 ∈ g2, ..., χK ∈ gK the algebra LA,B contains at
least one element of the form χ1 ⊕ χ2 ⊕ · · · ⊕ χK . Con-
sidering χ2 = 0, ... χK−1 = 0 and χK arbitrary, we find
that for any χK ∈ gK at least one χ1 ∈ g1 exists such
that χK = J(χ1, 0, ..., 0) = J0(χ1). Therefore J0 is also
surjective thus bijective. Since J0 is linear and invariant
to commutation, it follows that J0 is an isomorphism
between the Lie algebras g1 and gK .

Furthermore, let χ ∈ g1 and ψk ∈ gk, k ≤ K − 1; then

χ ⊕ 0 ⊕ · · · ⊕ 0 ⊕ J0(χ) ∈ LA,B
ψ1 ⊕ · · · ⊕ ψK−1 ⊕ J(ψ1, ..., ψK−1) ∈ LA,B.

Computing the commutator, we obtain

[χ, ψ1]⊕0⊕· · ·⊕0⊕[J0(χ), J(ψ1, ..., ψK−1)] ∈ LA,B, (6)

and the definition of J and J0 imply that
J0([χ, ψ1]) = [J0(χ), J(ψ1, ..., ψK−1)]. Since
J0 is a morphism of Lie algebras, we obtain
[J0(χ), J0(ψ1)] = [J0(χ), J(ψ1, ..., ψK−1)]. This can
be written [J0(χ), J(0, ψ2, ..., ψK−1)] = 0. But J0
is surjective therefore [Z, J(0, ψ2, ..., ψK−1)] = 0
for all Z ∈ g1. The Lie algebra g1 is (simple
thus) semi-simple which means that the above
equation implies J(0, ψ2, ..., ψK−1) = 0 for any
ψ2 ∈ g2, ... , ψK−1 ∈ gK−1. In particular,
J0(A1) = J(A1, 0, ..., 0) = J(A1, ..., AK−1) = AK

and similarly J0(B1) = BK , Q.E.D.

Remark 1. 1. When dimRgk are all different the indi-
vidual controllability implies ensemble controlla-
bility. From this point of view the situation gk = g
(for all k) is the most difficult.

2. When gk = g (for all k) one can exploit the structure
of g. For the remarkable example g = su(N), we
know that any automorphism is either χ 7→ YχY−1

or χ 7→ YχY−1 for some Y ∈ S U(N) (χ denotes
the element-wise complex conjugation). In any
such situation, it is enough to know if some Y
exists such that Aℓ = YAkY−1, Bℓ = YBkY−1 or
Aℓ = YAkY−1, Bℓ = YBkY−1.

3. The result is not true for semi-simple Lie algebras.
In this case the non-controllability is equivalent to
the existence of an isomorphism between an ideal
of some gk and an ideal of some gℓ.

4. The result extends easily to the situation of several
controls.

Using the previous results we can now treat the situa-
tion where the control seen by the k-th system is u(t)+αk

and not u(t)αk as in [22].

Theorem 4. Consider K ≥ 1 and αk ∈ R, k = 1, ..,K.
The collection of systems (2) is simultaneously control-
lable if and only if LA,B = g and αk , αℓ for any k , ℓ.
In this case, there exists TA,B,α1,··· ,αK > 0 such that the
system is controllable in any time t ≥ TA,B,α1,··· ,αK with
controls u such that |u(s)| ≤ 1,∀s ∈ [0, t].

Proof. In the view of the Theorem 1 the condition
LA,B = g is necessary. Of course αk , αℓ for any k , ℓ is
also required otherwise the same system with the same
control appears twice in the list.

To assess controllability of (2), we consider it as a
control system on ⊕K

k=1G given by matrices A = (A +
α1B)⊕ · · · ⊕ (A+αK B) and B = B⊕ · · · ⊕ B. Simultane-
ous controllability is equivalent to proving that LA,B is
isomorphic with ⊕K

k=1g.
Suppose that this is not the case; then by Lemma 3,

there exist k , ℓ and an automorphism f : g → g such
that f (A + αkB) = A + αℓB and f (B) = B. Denote
β = αℓ − αk , 0 then f (A) = A + βB.

Denote by Aut(g) the group of automorphisms of g.
We recall that Aut(g) is compact (see [38, 39, 41] or any
classical Lie theory textbook). Indeed, from the defini-
tion of the Killing form Kg(χ, ψ) = Trg([χ, ·] ◦ [ψ, ·]) it
follows that any automorphism h ∈ Aut(g) is such that
Kg(h(χ), h(ψ)) = Kg(χ, ψ). Since g is connected, com-
pact, simple (thus semi-simple) the Killing form is neg-
ative definite and thus Aut(g) is isomophic to a closed
Lie subgroup of the orthogonal group of O(dimRg;R)
therefore Aut(g) is compact.

On the other hand

A = f (A) − βB = −βB + f (−βB + f (A))
= −2βB + f ( f (A)) = ... = −mβB + f m(A).

Here, the automorphism f m is the m-th power of the
automorphism f . We obtain thus:

B = −A − f m(A)
βm

,∀m = 1, 2, ... (7)

All f m live in the compact set Aut(g) thus the sequence
f m(A) is bounded and, passing to the limit in the equa-
tion (7), we obtain B = 0 which is impossible, Q.E.D.
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Corollary 5. Consider the bilinear system in equation
(3), where Gk = G and Ak = ϵkA, Bk = B, ϵk ∈ R,
k = 1, ..,K. Suppose |ϵk | , |ϵℓ | for any k , ℓ and
LA,B = g; then the collection of systems (3) is ensem-
ble controllable.

Proof. We use the same arguments as in the previous
result. Let f be an automorphism of g, with f (ϵkA) =
ϵℓA. Since |ϵk | , |ϵℓ | there exists λ ∈ R, |λ| , 1 such
that f (A) = λA. Suppose for instance |λ| > 1 (otherwise
use f −1). Then f m(A) = λmA and the contradiction is
obtained because all f m live in a compact set.

Remark 2. 1. The Theorem 4 is not true for semi-
simple Lie groups. For instance let χ, ψ ∈ su(N)
such that Lχ,ψ = su(N) and A = χ ⊕ (χ + ψ) ∈
su(N) ⊕ su(N), B = ψ ⊕ ψ ∈ su(N) ⊕ su(N), α1 =

0, α2 = 1. The result above implies that (A, B)
is controllable as a system on S U(N) ⊕ S U(N).
However the matrices A and B corresponding to
the collection of systems A + (u(t) + αk)B areA =
χ ⊕ (χ + ψ) ⊕ (χ + ψ) ⊕ (χ + 2ψ) and respectively
B = ψ ⊕ ψ ⊕ ψ ⊕ ψ. We note that the second and
the third component are identical thus the system
is not controllable.

2. The assumptions of the Corrolary 5 are weaker
than those present in the literature. In [30],
the same conclusion is obtained under the addi-
tional hypothesis that the transitions of iA are non-
degenerate (i.e., A is ”strongly regular” in the ter-
minology of the Definition 2 in [30]). Recall that
a matrix ψ with eigenvalues λψ1 , ..., λψN has no de-
generate transitions if λψa − λψb , λ

ψ
i − λ

ψ
j for all

(a, b) , (i, j).
3. Additional results can be easily constructed along

the same lines, for instance for cases where the per-
turbation is not additive but on the form αku(t)+βk.

4. Having proved the results above for the bilinear
setting, it is interesting to compare with the analo-
gous result in the linear case. For this we consider
the following linear systems:

d
dt

x1 = Ax1 + Bu(t), x1(0) = 0

d
dt

x2 = Ax2 + B[u(t) + α], x2(0) = 0.

The dynamics of x2(t) − x1(t) is not influenced
by the control since d

dt (x2 − x1) = A(x2 − x1) +
Bα, x2(0) − x1(0) = 0. Hence this collection of
systems is never simultaneously controllable.

The Theorem 4 can be extended to the situation when
the perturbations of the control depend on time. We will
require however that the perturbations be constant on a
common, long enough, time interval.

Corollary 6. Consider the collection of control systems
with control u(t):

dYk(t)
dt

=
{
A + (u(t) + βk(t))B

}
Yk(t),Yk(0) = Yk,0 ∈ G.

(8)
Suppose that LA,B = g and there exists 0 < t1 < t2 < ∞
such that βk(t) = αk (constant) ∀t ∈ [t1, t2] and αk ,
αℓ for k , ℓ. Then there exists TA,B,α1,··· ,αK such that
if t2 − t1 ≥ TA,B,α1,··· ,αK the collection of systems (8) is
simultaneously controllable at any time T ≥ t2.

Proof. Let Vk be given targets for the systems (8) at
time T ≥ t2. Define u(t) to be zero on [0, t1] ∪ [t2,T ]
and V−k = Y−k (t1) where Y−k (t) is the solution of dY−k (t)

dt =

(A + βk(t)B)Y−k (t), Y−k (0) = Yk,0 and V+k = Y+k (T ) where

Y+k (t) satisfies dY+k (t)
dt = (A + βk(t)B)Y+k (t), Y+k (t2) = Id.

Set targets Wk = (V+k )−1Vk(V−k )−1 for the system (2) on
[0, t2− t1] and initial states Xk(0) = Id and let ũ(t) be the
control that drives Xk from Xk(0) = Id to Xk(t2 − t1) =
Wk,∀k = 1, · · · ,K. Then the control u(s) with u(s) = 0,
for s ∈ [0, t1[∪]t2,T ] and u(s) = ũ(s − t1), for s ∈ [t1, t2]
is such that Yk(T ) = V+k WkV−k = Vk, Q.E.D.

3.3. Further results on related models

Note that the model in Equation (1) implies that the
perturbation αk is present even when the control u(t) is
null. In practice, it may sometimes be possible to elimi-
nate the perturbations when the control field is not used
and in this situation the controller can switch between a
free, unperturbed dynamics and a controlled, perturbed
one. This circumstance is modeled as

dZk(t)
dt

= AZk(t) + [u(t)+ αk]ξ(t)BZk(t),Zk(0) ∈ G, (9)

where the controls are u(t) and ξ(t), but ξ(t) ∈ {0, 1}∀t ≥
0 (ξ being a measurable function). We obtain the fol-
lowing

Corollary 7. The system (9) is simultaneously control-
lable if and only if LA,B = g and αk , αℓ for any k , ℓ.

Proof. Let ξ(t) = 1 and apply the Theorem 4. Of course
LA,B = g and αk , αℓ for any k , ℓ are necessary
conditions for controllability, which proves the reverse
implication, Q.E.D.
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Remark 3. For the situation (9) a result analogous to
Corollary 6 can be proved. We leave the proof as an
exercise to the reader. In addition, both results remain
true when ξ is piecewise constant (with a discrete set of
discontinuities).

4. Application to the control of a quantum system

Consider now a quantum bilinear system (cf. [5, 9,
14, 42]):

i
d
dt
ψ = [H0 + u(t)µ]ψ(t), (10)

H0 =


1.0 0 0 0 0
0 1.2 0 0 0
0 0 1.3 0 0
0 0 0 2.0 0
0 0 0 0 2.15

 , (11)

µ =


0 0 0 1 1
0 0 0 1 1
0 0 0 1 1
1 1 1 0 0
1 1 1 0 0

 , (12)

controlled by the control u(t) and with
ψ(0) = (1/

√
2, 0, 0, 1/

√
2, 0)T and target

ψT = (0, 1/
√

2, 0, 0, 1/
√

2)T . This system has
been extensively used (see the references above) as a
benchmark for testing the controllability of bilinear
quantum finite-dimensional systems: controllability
criterions, search algorithms to find the controls etc.
It has no degenerate transitions but a bi-partite con-
nectivity graph structure: the set of eigenstates 1 to
3 are not directly connected, same for 4 and 5. Thus
transferring population from eigenstate 1 to 2 requires
a second-order excitation using eigenstates 4 or 5 as
intermediary. Define B = µ/i and, for simplicity,
A = [H0 − 0.2Tr(H0).Id]/i such that both A and B
belong to su(5). Using the tool in [43], we obtain
dimRLA,B = 24 = dimR su(5) thus LA,B = su(5).
Consider the perturbations α1 = −0.1, α2 = 0, α3 = 0.1.
Therefore Theorem 4, Corollary 6 and Corrolary 7 of
the previous section apply. Since S U(5) is transitive on
the unit sphere of C5 (cf. [7]) there exists UT∈ S U(5)
such that UTψ0 = ψT and by the Theorem 4 there
exists a time T and a control u : [0,T ] → R such
that u(t), u(t) − 0.1 and u(t) + 0.1 all drive Id to UT in
equation (1) thus all drive the initial state ψ0 to the final
state ψT in equation (10). We searched numerically the
control u(t) using a so-called monotonic procedure, see

[44–49] for details. For T = 500, we obtain the control
presented in Figure 1. The quality of the control, i.e.
the quantity |⟨ψ(T ),ψ(0)⟩|

∥ψ(0)∥ is over 99% for all perturbations
αk, k = 1, 2, 3. We also tested different pairs of initial
and target states (ψ0, ψT ) and in all cases high quality
controls were found.

5. Extensions to an infinite set of perturbations

We investigate in this section the circumstance when
K (the number of perturbations) is infinite. The control-
lability of a system consisting of an infinite collection
of finite-dimensional systems has been analyzed for the
situation of the Bloch equation (G = S O(3)) in [25–
27, 32]. To the best of our knowledge no general results
are available for generic systems and values of N; more-
over the counter-example in Theorem 4 in [27] warns
that general results may be impossible to obtain.

We explore two questions: first we give an example
that builds on the Maxwell-Bloch equation where a pos-
itive controllability result is expected; next we give a
procedure for the numerical identification of approxi-
mate controls of a Bloch equation.

5.1. An example of perturbed Maxwell-Bloch equation
Let Ω a compact subset of R3 and recall the notation

for the Pauli matrices:

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (13)

Consider the Maxwell-Bloch equation with two con-
trols:

i
dX(t, ω, α, β)

dt
=

{
ωσz + [u(t) + α]σx +

[v(t) + β]σy

}
X(t, ω, α, β),

X(0, ω, α, β) = Id, (ω, α, β) ∈ Ω. (14)

Proposition 8. Let f = ( fx, fy, fz) : Ω → R3 be a con-
tinuous function. Then, for any η > 0 there exists a time
Tη > 0 and two controls uη, vη ∈ L∞([0,Tη]) such that
for all (ω, α, β) ∈ Ω:

∥X(Tη, ω, α, β) − ei( fx(ω,α,β)σx+ fy(ω,α,β)σy+ fz(ω,α,β)σz)∥ ≤ η.
(15)

Proof. Although a rigorous proof of the controllability
would require the tools in [32] and is beyond the scope
of this work, we give below the arguments that indicate
that this system is controllable. Consider the sequence
of controls: start with u = −(π/2)δ0 ( δ0 is the Dirac
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Figure 1: The control that drives ψ0 to ψT (cf. equation (10)) irrespective of the perturbation αk ∈ {−0.1, 0, 0.1}. The quality of the control is over
99% for any perturbation. However the trajectories ψ(t) corresponding to u(t) − 0.1, u(t) and u(t) + 0.1 are all different.

mass at the origin), followed by free evolution during a
unit of time and then u = +(π/2)δ1. That is, choose u =
−(π/2)δ0 + (π/2)δ1, v = 0. This results in the evolution

e−i(π/2)σx e−i(ωσz+ασx+βσy)ei(π/2)σx = e−i(−ωσz+ασx−βσy).
(16)

Thus the propagator associated with −ωσz + ασx − βσy

can be synthesized. A similar computation (now using
the control v) allows to construct −ωσz − ασx + βσy.
Using now infinitesimal times and the formula eU+V =

limn→∞
(
eU/neV/n

)n
, we have thus at our disposal all

propagators e±iωσz , e±iασx , e±iβσy . Recall that we also
have e±iσx , e±iσy .

From now on, the argument is similar to that in [27]:
the formula

lim
n→∞

{
e−χ/ne−ψ/neχ/neψ/n

}n2

= e[χ,ψ], (17)

allows to use commutators of, for instance, ±iωσz

and ±iσx which produce ±iωσy and then commutators
±iωσz and ±iωσy, which produce ±iω2σx; all other
polynomials of ω can be obtained as multiplicative fac-
tors in front of ωz. Similar arguments allow to fur-
ther obtain all possible polynomials of three variables
ω, α, β. Therefore we obtain approximate controllabil-
ity of the system to any (smooth) target with L∞ con-
trols.

Remark 4. 1. The result extends obviously to the
Bloch equation (set on S O(3), see next section).

2. Not all situations have favorable outcomes. For in-
stance, using same arguments as in Remark page
030302-2 of [26], it is possible to show that for the
controlled Hamiltonian σz + ασy + u(t)σx the un-
known perturbation α ∈]α∗, α∗[ cannot always be
compensated. Indeed, the attainable propagators

are of the form

exp{i f1(α2)(σy−ασz)+i f2(α2)(σz+ασy)+i f3(α2)σx}
(18)

where f1, f2 and f3 are arbitrary functions. Thus
when for instance Ω is symmetric with respect to
α the functions f1, f2, f3 are odd functions which is
a restriction for controllability.

5.2. Convergence of the controls for a discrete set of
perturbations

We investigate here a numerical algorithm to find the
control when the set of perturbations can be a whole
(possibly unbounded) closed interval Iα ⊂ R. Suppose
A, B ∈ g are such that LA,B = g and let us denote by
X(t, α, u) the solution of dX(t)

dt = (A + (u(t) + α)B)X at
time t starting from X(0) = Id.

Consider also a continuous cost function to be mini-
mized F : Iα × G → R+ and to fix notations suppose
that for any α ∈ Iα there exists some Zα ∈ G with
F(α,Zα) = 0. One interesting example of such func-
tion is the distance F(α,Z) = ∥Z − Y(α)∥ to some pre-
defined target Y(α) continuous with respect to α ∈ Iα.
Of course Y can be in particular constant with respect
to α. Consider a sequence of divisions Tℓ ⊂ Iα :
αℓ1 < αℓ1 < ... < αℓKℓ

of the interval Iα such that
|Tℓ | := max j=2,Kℓ

|αℓj − αℓj−1| tends to 0 when ℓ tends to
∞. Fix also a tolerance η ≥ 0. Using the results of the
previous sections there exists a time Tℓ and a control uℓ
such that F(αℓj, X(Tℓ, αℓj, uℓ)) ≤ η for all j = 1, ...,Kℓ. In
this section, we give a sufficient result that ensures the
existence of a control u that minimizes the cost F for the
whole interval of perturbations Iα up to the tolerance η.

Proposition 9. Suppose that the sequence Tℓ is not con-
verging to infinity and ∥uℓ∥Lr([0,Tℓ]) are bounded by a
common constant for some 1 < r < ∞. Then there
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exists T > 0 and u ∈ Lr([0, T ]) (independent of α) such
that F(α, X(T, α, u)) ≤ η, for all α ∈ Iα.

Proof. Since Tℓ does not converge to ∞ it has a sub-
sequence converging to some T ∈ R. Denote again
by Tℓ this subsequence; we can moreover consider that
all Tℓ are either greater or smaller than T , let us say
Tℓ ≤ T for all ℓ. Extend the domain of definition of uℓ
on [0,T ] with uℓ = 0 on [Tℓ,T ]; this will not change its
Lr norm. Up to extracting another subsequence, there
exists u ∈ Lr([0,T ]) such that uℓ converges weakly in
L1([0,T ]) to u. Let us prove that u satisfies the required
conditions. Fix α ∈ Iα. Since |Tℓ | → 0, there exists a
sequence αℓkℓ such that αℓkℓ → αwhen ℓ → ∞. We write:

∥X(Tℓ, αℓkℓ , uℓ) − X(T, α, u)∥
≤ ∥X(Tℓ, αℓkℓ , uℓ) − e(T−Tℓ)AX(Tℓ, αℓkℓ , uℓ)∥
+∥e(T−Tℓ)AX(Tℓ, αℓkℓ , uℓ) − X(T, α, u)∥. (19)

The term ∥X(Tℓ, αℓkℓ , uℓ) − e(T−Tℓ)AX(Tℓ, αℓkℓ , uℓ)∥ is
bounded by C∥Id − e(T−Tℓ)A∥ for some constant C > 0
and thus converges to 0. The last term can be written as:

∥e(T−Tℓ)AX(Tℓ, αℓkℓ , uℓ) − X(T, α, u)∥
= ∥e(T−Tℓ)AX(Tℓ, 0, αℓkℓ + uℓ) − X(T, 0, α + u)∥
= ∥X(T, 0, αℓkℓ + uℓ + 1[Tℓ ,T ] · (−αℓkℓ ))
−X(T, 0, α + u)∥. (20)

Since Tℓ → T , it follows that αℓkℓ + uℓ + 1[Tℓ ,T ] · (−αℓkℓ )
converges weakly in L1([0,T ]) to α+ u. From Theorem
3.6 of [50] (see also the Aubin-Lions lemma [51]), the
weak convergence of αℓkℓ + uℓ + 1[Tℓ ,T ] · (−αℓkℓ ) to α + u
ensures that limℓ→∞ X(T, 0, αℓkℓ + uℓ + 1[Tℓ ,T ] · (−αℓkℓ )) =
X(T, 0, α + u). Combining all estimations, we obtain
limℓ→∞ X(Tℓ, αℓkℓ , uℓ) = X(T, α, u) thus

F(α, X(T, α, u)) = lim
ℓ→∞

F(αℓkℓ , X(Tℓ, αℓkℓ , uℓ)) ≤ η, (21)

and the conclusion follows.

Remark 5. The Proposition is not a controllability re-
sult but can be used numerically to find the control when
controllability holds true.

In particular the situation η = 0 corresponds to exact
controllability; however the results in [32] show that ap-
proximate controllability is more likely to hold and the
controls will be in L∞loc, thus in all Lr([0, t]).

As a numerical illustration we consider the Bloch
equation (which is a perturbation of the system in [32]
for ω = ω0) :

d
dt

Mx

My

Mz

 =
 0 −(u(t) + α) 0
u(t) + α 0 −ω0

0 ω0 0


Mx

My

Mz

 ,
Mx(0)
My(0)
Mz(0)

 = M0,

where u(t) is the control. The system can be put into the
framework of Proposition 9 by considering G = S O(3),

A = ω0

0 0 0
0 0 −1
0 1 0

, B =

0 −1 0
1 0 0
0 0 0

.
Let M f be some target state. The goal to steer

M0 to M f at time T can be rephrased as minimizing,
with respect to u, F(α, X(T, α, u)) where F(α,Z) =
∥ZM0 − M f ∥. The tolerance η is set to 5%. We take
M0 = (1, 0, 0)T and M f = (0, 0, 1)T . The perturbation
α takes all values in the interval Iα = [−αmax, αmax]; the
divisions Tℓ use a Tchebytchev-type grid containing the
points αℓk = αmax cos(kπ/ℓ) with k = 0, · · · ,Kℓ = ℓ.
We consider the values of the parameters ω0 = 50,
T = 1000, αmax = 0.5 For the numerical resolution
of the evolution equation in X(t, α, u) we use a Crank-
Nicholson time-discretization scheme, with 103 time
steps in [0,T ]. To compute the optimal controls uℓ we
apply again the monotonic procedure, see Section 4.

In order to check the assumptions of Proposition 9
we set r = 2 and verify that the ∥uℓ∥L2 remain bounded
when ℓ increases. The norms ∥uℓ∥L2 are presented in
Figure 2 and are uniformly bounded with respect to
ℓ. The quality of these controls is evaluated with

100 150 200 250
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8

0 50

8.5

9

9.5

10

Number of perturbations

L2
-n

or
m

 o
f u

Figure 2: Norms of ∥uℓ∥L2 for ℓ = 5, 10, 25, 50, 100, 150, 200, 250.

F(α, X(T, α, uℓ)), which is in all cases lower than η. In
Figure 3, F(α, X(T, α, uℓ)) is plotted as a function of α
for the control field u250. We observe a very accurate
control in the whole interval α ∈ Iα (but the quality de-
cays outside this interval).

6. Conclusion and perspectives

Necessary and sufficient conditions have been de-
rived for the ensemble controllability of a finite collec-
tion of bilinear systems on a connected, compact, sim-
ple Lie group. The result was applied to the case where
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Figure 3: Values of F(α, X(T, α, uℓ)) for α ∈ [−1, 1]. The optimal
control u250 is applied. As expected the quality is within the tolerance
η in the interval Iα but not outside it.

the control is submitted to a finite collection of constant
or partially constant perturbations. The result extends to
ensemble controllability and generalizes several works
from the literature. Additional arguments have been
presented when the number of possible perturbations is
infinite.

This work studied the controllability for possibly
large final times. A related question is whether small
time local controllability (called STLC) is also true. A
further question is whether the result extends to more
general, time dependent, perturbations.
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