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Abstract

The controllability of bilinear systems is well understood for finite dimensional isolated systems where the control

can be implemented exactly. However when perturbations are present some interesting theoretical questions are

raised. We consider in this paper a control system whose control cannot be implemented exactly but is shifted by a

time independent constant in a discrete list of possibilities. We prove under general hypothesis that the collection

of possible systems (one for each possible perturbation) is simultaneously controllable with a common control. The

result is extended to the situations where the perturbations are constant over a common, long enough, time frame. We

apply the result to the controllability of quantum systems. Furthermore, some examples and a convergence result

are presented for the situation when an infinite number of perturbations occur.
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1. Introduction

The fundamental importance of addressing the con-

trollability of bilinear systems has long been recognized

in engineering control applications (see [1–9]). Among

recent applications one may cite the field of quantum

control with optical or magnetic external fields (see

[5, 9–19]).

Although the controllability is well understood when

the system is of finite dimension, isolated and the con-

trol can be implemented exactly new theoretical and

numerical questions are raised when perturbations are

present.

The question that is addressed in this paper is related

to the simultaneous controllability of bilinear systems.

Consider general systems
dXk(t)

dt
= (Ak + u(t)Bk)Xk on

some finite dimensional Lie group G. Simultaneous

controllability is the question of whether all states Xk

can be controlled with the same control u(t).

Problems of simultaneous control of a finite collec-

tion of systems have been addressed recently in appli-
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cations related to quantum control [20–31]. In such

circumstances the system is a collection of molecules

or atoms or spin systems and the control is a mag-

netic field (in NMR) or a laser. The assessment of

whether a single control pulse can drive independent

(i.e., distinct) quantum systems to their respective tar-

get states was addressed theoretically in [20] for gen-

eral Ak, Bk and applied to the optimal dynamic discrim-

ination of separate quantum systems in [21]. The par-

ticular case of identical molecules with Ak = A (con-

stant) and Bk = ξkB, ξk ∈ R, was treated in [22, 23]

where it is proved that all members of an ensemble

of randomly oriented molecules subjected to a single

ultra-fast laser control pulse can be simultaneously con-

trolled. An independent work [30] treats the circum-

stance when Ak = ǫkA, ǫk ∈ R \ {−1, 1} and Bk = B (con-

stant) and was used to show controllability for ensem-

bles N-level of quantum systems having different Lar-

mor dispersion. This last result generalizes the findings

of [25] for ensembles of spin 1/2 systems.

The infinite dimensional version (an infinite num-

ber of systems Aǫ = ǫA with ǫ taking arbitrary values

in an interval ]ǫ∗, ǫ
∗[) was treated in [26, 27, 32] for

the specific situation of the Bloch equations.

In this paper we extend the result in [30] to the new
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circumstance when Ak = A + αkB, αk ∈ R and Bk = B

(constant) or, equivalently, the simultaneous controlla-

bility of systems submitted to time independent pertur-

bations
dXk(t)

dt
= [A + (u(t) + αk)B]Xk. As the result in

[30] does not apply to this situation, we exploit tech-

niques used previously in [22, 23] and prove positive

controllability results.

The perturbation model A+ (u(t)+αk)B was inves-

tigated theoretically and numerically in the physical

literature independent of any theoretical controlla-

bility results. In the quantum computing literature

such perturbations are called ”fixed systematic er-

rors” (see Section VI.A. equation (40) of [33]) or sim-

ply ”systematic control error”, see [34] where the au-

thors concluded that mitigating such errors may be

possible (although at the expense of longer pulse se-

quences). We give here a theoretical result to sustain

this view. We also refer to [35], where the authors

design pulse sequences that are generically robust

with respect to errors in the amplitude of the con-

trol field. In a related recent work the correspond-

ing noise model is called ”low frequency noise” (see

section IV. C. of [36]): it is defined as the portion

of the (control) amplitude noise that has a correla-

tion time that is long (up to 103 times) compared to

the timescale of the dynamics and as such it can be

treated as constant in time. Additional noise models

(additive or multiplicative) are presented in [37] in

the general quantum control area.

The balance of the paper is as follows: in Section 2

we introduce the general framework and the main no-

tations and in Section 3 we present our main result. In

Section 4, we apply our results to the controllability of

quantum systems. The situation of an infinite number

of perturbations is discussed in Section 5. Finally,

some conclusions and perspectives of future work are

given in Section 6.

2. Problem formulation

Given a matrix M, we denote by Tr(M) its trace.

Consider the following control systems on U(N)

dX(t)

dt
= (A + u(t)B)X(t), X(0) = Id. (1)

Here A and B are skew-Hermitian matrices in u(N). The

matrix X(t) evolves in the Lie group of unitary matrices

U(N), or, if both the matrices A and B have zero trace,

in the Lie group of special unitary matrices S U(N).

We will assume without loss of generality (see [7]) that

Tr(A) = Tr(B) = 0 from now on, i.e., A, B ∈ su(N) and

then X(t) ∈ S U(N).

The controllability of a system on Lie groups such as

(1) is a well-studied problem [4–9]. The literature on

the subject of bilinear control relies essentially on the

following Theorem (originally due to [38]):

Theorem 1. Let A, B ∈ su(N) and denote by LA,B the

Lie subalgebra of su(N) generated by A and B. The

system (1) on the Lie group S U(N) is controllable if

and only if LA,B = su(N) or equivalently if dimRLA,B =

N2 − 1. Moreover there exists TA,B > 0 such that any

target can be reached in time t ≥ TA,B with controls u

such that |u(s)| ≤ 1,∀s ∈ [0, t].

Here dimRLA,B stands for the dimension of LA,B as lin-

ear vector space over R.

An important question is what happens if the control

u(t) in (1) is submitted to some perturbations in a prede-

fined (discrete) list {αk, k = 1, · · · ,K}?

dXk(t)

dt
= AXk(t) + [u(t) + αk]BXk(t), Xk(0) = Id. (2)

Can one still control the systems simultaneously? The

real perturbation αk for a given system is not known be-

forehand, therefore in order to be certain that the system

is controlled, one has to find a control u(t) that simulta-

neously control all states Xk(t), i.e., find u(t) such that

Xk(T ) = V for k = 1, · · · ,K (here V is the target state).

Yet a distinct circumstance is when αk are not arbi-

trary perturbations but unknown characteristics of the

system to be identified. Here the goal is to find u(t) such

that, given distinct Vk one has Xk(T ) = Vk. By measur-

ing the state of the system at the final time T , one knows

what αk was effective during [0,T ].

In conclusion, our problem can be formalized as fol-

lows: let Vk ∈ S U(N), k = 1, · · · ,K be arbitrary. Is it

possible to find T > 0 and a measurable u : [0,T ] → R

such that the system given by (2) satisfies Xk(T ) =

Vk,∀ k = 1, · · · ,K? If the answer to this question is

positive then the system in (2) will be called simultane-

ously controllable.

3. Simultaneous controllability for perturbations

3.1. Tools for simultaneous controllability

In this section we recall some known results on simul-

taneous controllability. Consider K bilinear systems on

S U(N):

dXk(t)

dt
= (Ak + u(t)Bk)Xk(t), Xk(0) = Id, (3)

where Ak, Bk ∈ su(N), k = 1, · · · ,K. We de-

note by diag{M1, · · · ,MP} the block diagonal matrix
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




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
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

















obtained by setting the square matri-

ces M1, · · · ,MP on its diagonal. This definition allows

to introduce A = diag{A1, · · · , AK} as a KN × KN

matrix constructed from Ak, k = 1, · · · ,K and B =
diag{B1, ..., BK}. By assembling the K bilinear systems

(3), the evolution of this collection of states can be writ-

ten as a bilinear system (with block diagonal entries) on

(S U(N))K :

dX(t)

dt
= AX(t) + u(t)BX(t), X(0) = Id ∈ (S U(N))K .

(4)

Denote by LA,B the Lie algebra generated by the ma-

trices A and B. Then we have the following result

(see [20], Theorems 1 and 2 p. 277 for the proof

and [21], Section III for an application):

Theorem 2. The K bilinear systems (3) are simultane-

ously controllable if and only if LA,B = (su(N))K or

equivalently

dimRLA,B = K(N2 − 1).

Here dimR LA,B stands for the dimension of LA,B as lin-

ear vector space over R. Moreover, there exists TA,B >

0 such that any collection of targets (Vk)K
k=1 ∈ (S U(N))K

can be reached in time t ≥ TA,B with controls u(t) such

that |u(s)| ≤ 1,∀s ∈ [0, t].

A specific result has been proved in [22] (Section

II.B) for particular choices Ak = A and Bk = αkB.

Theorem 3 ([22]). Let A, B ∈ su(N) and consider a ba-

sis where A is diagonal, denote A = (−i)diag{λ1, ..., λN},
λi ∈ R being the eigenvalues of iA. In this basis con-

sider the following non-oriented graph GB = (VB,EB),

VB = {1, 2, · · · ,N}, EB = {(k, l) | Bkl , 0}.
Assume that the graph GB is connected and that

∀(k1, l1), (k2, l2) ∈ EB, (k1, l1) , (k2, l2) : λk1
− λl1 ,

λk2
− λl2 . Consider also α1, · · · , αK ∈ R such that

|αk | , |αl|, ∀k , l. Then the system on (S U(N))K

dXk(t)

dt
= (A + u(t)αkB)Xk, Xk(0) = Id, (5)

is simultaneously controllable and LA,B = (su(N))K .

Moreover there exists TA,B,α1,··· ,αK
such that any collec-

tion of targets (Vk)K
k=1
∈ (S U(N))K can be reached in

any time t larger than TA,B,α1,··· ,αK
with controls u such

that |u(s)| ≤ 1,∀s ∈ [0, t].

3.2. Main result

Using the previous results we can now attack the

situation when the control seen by the k-th system is

u(t) + αk and not u(t)αk as in [22].

Theorem 4. Consider the bilinear system on S U(N)

in equation (2), where A, B ∈ su(N). Suppose that

L[A,B],B = su(N).

Then for any distinct αk ∈ R, k = 1, ..,K, the col-

lection of systems (2) is simultaneously controllable

in the sense described above. Moreover there exists

TA,B,α1,··· ,αK
> 0 such that the system is controllable

in any time t ≥ TA,B,α1,··· ,αK
with controls u such that

|u(s)| ≤ 1,∀s ∈ [0, t].

Proof. To assess controllability of (2), we consider

it as a system on (S U(N))K given by matrices A =
diag{A + α1B, · · · , A + αK B} and B = diag{B, · · · , B}.
Consider also the Lie algebra L = LA,B spanned

by A and B. Note that L[A,B],B = su(N) implies

LA,B = su(N). Since [A,B] = diag{[A, B], · · · , [A, B]}
and since L[A,B],B = su(N) it follows that L con-

tains any matrix of the form diag{X, · · · , X}, X ∈
su(N). Thus L contains Lie{A, diag{X, · · · , X}, X ∈
su(N)}which contains diag{A, · · · , A} thus containsA−
diag{A, · · · , A} = diag{α1B, · · · , αK B}. Consequently

L contains Lie{diag{α1B, · · · , αK B}, diag{X, · · · , X},
X ∈ su(N)}. Consider now a particular basis, i.e.,

the one that diagonalizes the Hermitian matrix i[A, B].

Since L[A,B],B = su(N) the graph GB of B (see The-

orem 3 for its definition) has to be connected in this

basis (see Section 4 in [9]). Let us denote by X̄ a

matrix such that iX̄ does not have degenerate tran-

sitions (i.e., is ”strongly regular” in the terminol-

ogy of the Definition 2 in [30]). Recall that a ma-

trix Y with eigenvalues λY
1
, ..., λY

N
has no degener-

ate transitions if λY
a − λY

b
, λY

i
− λY

j
for all (a, b) ,

(i, j). Then, L contains Lie{diag{(α1 + η)B, · · · , (αK +

η)B}, diag{X̄, · · · , X̄} ∀ η ∈ R}. In particular there exists

η̄ ∈ R such that |αk + η̄| , |α j + η̄| ∀ j , k. Then by

Theorem 3 it follows that Lie{diag{(α1+ η̄)B, · · · , (αK +

η̄)B}, diag{X̄, · · · , X̄)} = (su(N))K . Thus the system (2)

is controllable. The assertions on TA,B,α1,··· ,αK
are conse-

quences of Theorem 3, Q.E.D.

Remark 1. It is important to mention that the con-

dition L[A,B],B = su(N) is sufficient but not neces-

sary. In order to illustrate this remark, we con-

sider K = 2 bilinear systems in (2) and choose

A =
1
i


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




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


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2 3 0












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, B =
1
i





















−2 0 0

0 1 0

0 0 1





















, α1 =
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1, α2 = −1. Using the online calculator avail-

able at [39], we obtain that dimR LA,B = 8, thus

LA,B = su(3) and dimR L[A,B],B = 4, thus L[A,B],B ,

su(3). However dimR Ldiag{A+α1B,A+α2B},diag{B,B} = 16

thus Ldiag{A+α1B,A+α2B},diag{B,B} = (su(3))2 and the bilin-

ear systems are simultaneously controllable by the The-

orem 2 despite L[A,B],B , su(3).

Remark 2. Having proved the result above for the bi-

linear setting, it is interesting to compare with the anal-

ogous result in the linear case. For this we consider the

following linear systems:

d

dt
x1 = Ax1 + Bu(t), x1(0) = 0,

d

dt
x2 = Ax2 + B[u(t) + α], x2(0) = 0.

The dynamics of x2(t) − x1(t) is not influenced by the

control since d
dt

(x2 − x1) = A(x2 − x1) + Bα, x2(0) −
x1(0) = 0. Hence this collection of systems is not si-

multaneously controllable.

The result in Theorem 4 can be extended to the situation

where the perturbations of the control can depend on

time. We will require however that the perturbations be

constant on a common, long enough, time interval.

Corollary 5. Consider the collection of control systems

on S U(N) where A, B ∈ su(N) :























dYk(t)

dt
=

{

A + (u(t) + δku(t))B
}

Yk(t),

Yk(0) = Yk,0 ∈ S U(N).

(6)

Suppose that L[A,B],B = su(N) and there exists 0 < t1 <

t2 < ∞ such that δku(t) = αk (constant) ∀t ∈ [t1, t2] and

αk , αℓ for k , ℓ. Then there exists TA,B,α1,··· ,αK
such

that if t2 − t1 ≥ TA,B,α1,··· ,αK
the collection of systems (6)

is simultaneously controllable at any time T ≥ t2.

Proof. Let Vk be given targets for the systems (6) at

time T ≥ t2. Define u(t) to be zero on [0, t1] ∪ [t2,T ]

and V−
k
= Y−

k
(t1) where Y−

k
(t) is the solution of

dY−
k

(t)

dt
=

(A+δku(t)B)Y−
k

(t), Y−
k

(0) = Yk,0 and V+
k
= Y+

k
(T ) where

Y+
k

(t) satisfies
dY+

k
(t)

dt
= (A + δku(t)B)Y+

k
(t), Y+

k
(t2) = Id.

Set targets Wk = (V+
k

)−1Vk(V−
k

)−1 for the system (2) on

[0, t2− t1] and initial states Xk(0) = Id and let ũ(t) be the

control that drives Xk from Xk(0) = Id to Xk(t2 − t1) =

Wk,∀k = 1, · · · ,K. Then the control u(s) with u(s) = 0,

for s ∈ [0, t1[∪]t2,T ] and u(s) = ũ(s − t1), for s ∈ [t1, t2]

is such that Yk(T ) = V+
k

WkV−
k
= Vk, Q.E.D.

3.3. Further results on related models

Note that the model in equation (1) implies that the

perturbation αk is present even when the control u(t) is

null. In practice, it may sometimes be possible to elimi-

nate the perturbations when the control field is not used

and in this situation the controller can switch between a

free, unperturbed dynamics and a controlled, perturbed

one. This circumstance is modeled as






















dZk(t)

dt
= AZk(t) + [u(t) + αk]ξ(t)BZk(t),

Zk(0) = Zk,0 ∈ S U(N),

(7)

where the controls are u(t) and ξ(t), but ξ(t) ∈ {0, 1}∀t ≥
0 (ξ being a measurable function). We obtain the fol-

lowing

Theorem 6. The system (7) is simultaneously control-

lable if and only if LA,B = su(N).

Proof. With ξ(t) as a new control the

system (7) is controllable if and only if

Ldiag{A,··· ,A},diag{A+α1B,··· ,A+αK B},diag{B,··· ,B} = (su(N))K

or, equivalently Ldiag{A,··· ,A},diag{B,··· ,B},diag{α1B,··· ,αK B} =

(su(N))K . Denote L1 =

Ldiag{A,··· ,A},diag{B,··· ,B},diag{α1B,··· ,αK B}. Suppose

now LA,B = su(N). As A, B span the whole

su(N) then L1 contains any matrix of the form

diag{X, · · · , X}, X ∈ su(N). From this point the

proof is similar as the one of Theorem 4. Of course

LA,B = su(N) is a necessary condition for controllabil-

ity, which proves the reverse implication, Q.E.D.

Remark 3. For the situation (7) a result analogous to

Corollary 5 can be proved. We leave the proof as an

exercise to the reader. In addition both results remain

true when ξ is piecewise constant (with a discrete set

of discontinuities).

4. Application to the control of a quantum system

Consider now a quantum bilinear system (cf. [5, 9,

14]):

i
d

dt
ψ = [H0 + u(t)µ]ψ(t), (8)

H0 =







































1.0 0 0 0 0

0 1.2 0 0 0

0 0 1.3 0 0

0 0 0 2.0 0

0 0 0 0 2.15







































, µ =







































0 0 0 1 1

0 0 0 1 1

0 0 0 1 1

1 1 1 0 0

1 1 1 0 0







































. (9)
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Figure 1: The control that drives ψ0 to ψT (cf. equation (8)) irrespective of the perturbation αk ∈ {−0.1, 0, 0.1}. The quality of the control is over

99% for any perturbation. However the trajectories ψ(t) corresponding to u(t) − 0.1, u(t) and u(t) + 0.1 are all different.

controlled by the control u(t) and with

ψ(0) = (1/
√

2, 0, 0, 1/
√

2, 0)T and target

ψT = (0, 1/
√

2, 0, 0, 1/
√

2)T . This system has

been extensively used as a benchmark for testing

the controllability of bilinear quantum finite-

dimensional systems: controllability criterions,

search algorithms to find the controls etc. It has no

degenerate transitions but a bi-partite connectivity

graph structure: the set of eigenstates 1 to 3 are

not directly connected, same for 4 and 5. Thus

transferring population from eigenstate 1 to 2

requires a second-order excitation using eigenstates

4 or 5 as intermediary. Define B = µ/i and, for

simplicity, A = [H0 − 0.2Tr(H0).Id]/i such that both

A and B belong to su(5). Using the tool in [39] we

obtain dimRLA,B = dimR L[A,B],B = 24 = dimR su(5)

and since L[A,B],B ⊂ LA,B ⊂ su(5) it follows that

L[A,B],B = LA,B = su(5). Consider the perturbations

α1 = −0.1, α2 = 0, α3 = 0.1. Therefore Theorem 4,

Corollary 5 and Theorem 6 of the previous section

apply. Since S U(5) is transitive on the unit sphere of

C
N(cf. [7]) there exists UT such that UTψ0 = ψT and

by the Theorem 4 there exists a time T and a control

u : [0,T ] → R such that u(t), u(t) − 0.1 and u(t) + 0.1

all drive Id to UT in equation (1) thus all drive the

initial state ψ0 to the final state ψT in equation (8). We

searched numerically the control u(t) using a so-called

monotonic procedure, see [40–45] for details. For

T = 500, we obtain the control presented in Figure 1.

The quality of the control, i.e. the quantity
|〈ψ(T ),ψ(0)〉|
‖ψ(0)‖ is

over 99% for all perturbations αk, k = 1, 2, 3. We also

tested different pairs of initial and target states (ψ0, ψT )

and in all cases high quality controls were found.

5. Extensions to a infinite set of perturbations

We investigate in this section the circumstance

when K (the number of perturbations) is infinite.

The controllability of a system consisting of an infi-

nite collection of finite-dimensional systems has been

analysed for the situation of the Bloch equation (N =

2) in [25–27, 32]. To the best of our knowledge no

general results are available for generic systems and

values of N; moreover the counter-example in Theo-

rem 4 in [27] warns that general results may be im-

possible to obtain.

We explore two questions: first we give an exam-

ple that builds on the Bloch equation where a pos-

itive controllability result is expected; next we give

a procedure for the numerical identification of ap-

proximate controls of the system (11).

5.1. An example of perturbed Bloch equation

Recall the notation for the Pauli matrices:

σx =

(

0 1

1 0

)

, σy =

(

0 −i

i 0

)

, σz =

(

1 0

0 −1

)

, (10)

and consider the Bloch equation with two controls:

i
dXk(t, ω, α, β)

dt
=

{

ωσz + [u(t) + α]σx +

[v(t) + β]σy

}

Xk(t, ω, α, β),

Xk(0, ω, α, β) = Id,

α ∈]α∗, α∗[, β ∈]β∗, β∗[, ω ∈]ω∗, ω∗[. (11)

Although a rigorous proof of the controllability

would require the tools in [32] and is beyond the

scope of this work, we give below the arguments to

conclude that this system is controllable (with un-

bounded controls). Consider the sequence of con-

trols: a (π/2)σx pulse (for the control u), followed
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by free evolution during a unit of time and then a

−(π/2)σx pulse (for u) again. This results in the evo-

lution

e−i(π/2)σx e−i(ωσz+ασx+βσy)ei(π/2)σx = e−i(−ωσz+ασx−βσy).

(12)

Thus the propagator associated to −ωσz +ασx − βσy

can be synthesized. A similar computation (now us-

ing the control v) allows to construct −ωσz − ασx +

βσy. Using now infinitesimal times and the formula

eU+V
= limn→∞

(

eU/neV/n
)n

we have thus at our dis-

posal all propagators e±iωσz , e±iασx , e±iβσy . Recall that

we also have e±iσx , e±iσy .

From now on, the argument is similar to that

in [27]: commutators of, for instance, ±iωσz and

±iσx, produce ±iωσy and then commutators ±iωσz

and ±iωσy, produce ±iω2σx, and all other polynomi-

als of ω can be obtain as multiplicative factors be-

fore ωz. Similar arguments allow to further obtain

all possible polynomials of three variables ω, α, β.

Therefore we obtain (approximate) controllability of

the system to any (smooth) target dependent (or not)

of the variables ω, α, β.

Remark 4. Not all situations have favorable out-

comes. For instance, using same arguments as in

Remark page 030302-2 of [26], it is possible to show

that for the controlled Hamiltonian σz +ασy +u(t)σx

the unknown perturbation α ∈]α∗, α∗[ cannot always

be compensated. Indeed, the attainable propagators

are of the form

exp{i f1(α)(σy−ασz)+i f2(α)(σz+ασy)+i f3(α)σx} (13)

where f1, f2 and f3 are arbitrary functions of α2.

Thus when for instance α∗ = −α∗ functions f1, f2, f3
are odd functions which is a restriction for control-

lability.

5.2. Convergence of the controls for a discrete set of

perturbations

We investigate here a numerical algorithm to find

the control when the set of perturbations can be a

whole (possibly unbounded) interval Iα ⊂ R. Fix

A, B ∈ S U(N) such that L[A,B],B = su(N) and let us

denote by X(t, α, u) the solution of
dX(t)

dt
= (A + (u(t) +

α)B)X at time t starting from X(0) = Id. Fix also

a target state Y(α) ∈ C0(Iα; S U(N)) i.e. continuous

with respect to α ∈ Iα.

Consider a sequence of divisions Tℓ ⊂ Iα : αℓ
1
<

αℓ
1
< ... < αℓ

Kℓ
of the interval Iα such that |Tℓ | :=

max j=2,Kℓ
|αℓ

j
− αℓ

j−1
| tends to 0 when ℓ tends to ∞.

Fix also a tolerance η ≥ 0. Using the results of the

previous sections there exists a time Tℓ and a con-

trol uℓ such that ‖X(Tℓ, α
ℓ
j
, uℓ) − Y(αℓ

j
)‖ ≤ η for all

j = 1, ...,Kℓ.

In this section we give a sufficient result that en-

sures the existence of a control u that steers the ini-

tial state Id to the target Y for the whole interval of

perturbations Iα up to the tolerance η.

Proposition 7. Suppose that the sequence Tℓ is not con-

verging to infinity and ‖uℓ‖Lr([0,Tℓ]) are bounded by a

common constant for some 1 < r < ∞. Then there

exists T > 0 and u ∈ Lr([0,T ]) (independent of α) such

that ‖X(T, α, u) − Y(α)‖ ≤ η for all α ∈ Iα.

Proof. Since Tℓ does not converge to ∞ it has a sub-

sequence converging to some T ∈ R. Denote again

by Tℓ this subsequence; we can moreover consider

that all Tℓ are either greater or smaller than T , let

us say Tℓ ≤ T for all ℓ. Extend the domain of defi-

nition of uℓ on [0,T ] with uℓ = 0 on [Tℓ,T ]; this will

not change its Lr norm. Up to extracting another

subsequence, there exists u ∈ Lr([0,T ]) such that uℓ
converges weakly in L1([0,T ]) to u. Let us prove that

u satisfies the required conditions. Fix α ∈ Iα. Since

|Tℓ | → 0 there exists a sequence αℓ
kℓ

such that αℓ
kℓ
→ α

when ℓ → ∞. We write:

‖Y(α) − X(T, α, u)‖ ≤ ‖Y(α) − Y(αℓkℓ )‖
+‖Y(αℓkℓ ) − X(Tℓ, α

ℓ
kℓ
, uℓ)‖

+‖X(Tℓ, α
ℓ
kℓ
, uℓ) − e(T−Tℓ)AX(Tℓ, α

ℓ
kℓ
, uℓ)‖

+‖e(T−Tℓ)AX(Tℓ, α
ℓ
kℓ
, uℓ) − X(T, α, u)‖. (14)

The first term in the right hand side converges to 0

as ℓ → ∞ while the second is bounded by η. The

term ‖X(Tℓ, α
ℓ
kℓ
, uℓ) − e(T−Tℓ)AX(Tℓ, α

ℓ
kℓ
, uℓ)‖ is equal to

‖Id − e(T−Tℓ)A‖ and thus converges to 0. The last term

can be written as:

‖e(T−Tℓ)AX(Tℓ, α
ℓ
kℓ
, uℓ) − X(T, α, u)‖

= ‖e(T−Tℓ)AX(Tℓ, 0, α
ℓ
kℓ
+ uℓ) − X(T, 0, α + u)‖

= ‖X(T, 0, αℓkℓ + uℓ + 1[Tℓ ,T ] · (−αℓkℓ ))
−X(T, 0, α + u)‖. (15)

Since Tℓ → T , it follows that αℓ
kℓ
+ uℓ + 1[Tℓ ,T ] · (−αℓkℓ )

converges weakly in L1([0,T ]) to α + u. From The-

orem 3.6 of [46], the weak convergence of αℓ
kℓ
+ uℓ +

1[Tℓ ,T ] · (−αℓkℓ ) to α+u ensures that limℓ→∞ X(T, 0, αℓ
kℓ
+

uℓ + 1[Tℓ ,T ] · (−αℓkℓ )) = X(T, 0, α+ u). Combining all es-

timations we obtain the conclusion:

‖X(T, α, u) − Y(α)‖ ≤ η. (16)
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Remark 5. The Proposition is not a controllability

result but can be used numerically to find the con-

trol when controllability hold true.

In particular the situation η = 0 corresponds

to exact controllability; however the results in [32]

show that approximate controllability is more likely

to hold and the controls will be in L∞
loc

, thus in all

Lr([0, t]).

6. Conclusion and perspectives

Using Lie-algebraic methods, sufficient conditions

have been derived for the simultaneous controllability

of a finite-dimensional system, in the case where the

control is submitted to finite collection of constant or

partially constant perturbations. Additional arguments

have been presented when the number of possible

perturbations is infinite.

This work studied the controllability for possibly

large final times. A related question is whether small

time local controllability (called STLC) is also true. A

further question is whether the result extends to more

general, time dependent, perturbations.
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Cuza University” Iaşi, Romania) for helpful discussions

concerning this work and for proposing the model in

Section 3.3.

References

[1] E.-D. Sontag, Mathematical control theory: deterministic finite

dimensional systems, 2nd Edition, Springer, 1998.

[2] H.-K. Khalil, Nonlinear systems, Macmillan, 1996.

[3] H. Nijmeiher, A. van der Schaft, Nonlinear dynamical control

systems, Springer, 1990.

[4] F. S. Leite, P.-E. Crouch, Controllability on classical Lie groups,

Mathematics of Control, Signals, and Systems 1 (1988) 31–42.

[5] V. Ramakrishna, M. Salapaka, M. Dahleh, H. Rabitz, A. Peirce,

Controllability of molecular-systems, Physical Review A 51

(1995) 960–966.

[6] D. D’Alessandro, Small time controllability of systems on com-

pact Lie groups and spin angular momentum, J. Math. Phys.

42 (9) (2001) 4488–4496.

[7] F. Albertini, D. D’Alessandro, Notions of controllability for

quantum mechanical systems, in: 40th IEEE Conference on De-

cision and Control, Vol. 2, Orlando, FL, 2001, pp. 1589–1594.

[8] C. Altafini, Controllability of quantum mechanical systems by

root space decomposition of su(n), Journal of Mathematical

Physics 43 (5) (2002) 2051–2062.

[9] G. Turinici, H. Rabitz, Wavefunction controllability in quantum

systems, Journal of Physics A: Mathematical and Theoretical 36

(2003) 2565–2576.

[10] S. Rice, M. Zhao, Optical control of quantum dynamics, Wiley,

2000.

[11] G. Huang, T. Tarn, J. Clark, On the controllability of quantum

mechanical systems, J. Math. Phys. 24 (1983) 2608–2618.

[12] R. Judson, K. Lehmann, H. Rabitz, W.-S. Warren, Optimal

design of external fields for controlling molecular motion-

application to rotation, J. Molec. Structure 223 (1990) 425–456.

[13] G. Turinici, On the controllability of bilinear quantum systems,

in: M. Defranceschi, C. L. Bris (Eds.), Mathematical models

and methods for ab initio Quantum Chemistry, Lecture Notes in

Chemistry vol. 74, Springer, 2000, pp. 75–92.

[14] S.-G. Schirmer, H. Fu, A.-I. Solomon, Complete controllability

of quantum systems, Phys. Rev. A 63 (2001) 063410.

[15] G. Turinici, H. Rabitz, Quantum Wave Function Controllability,

Chemical Physics 267 (1-3) (2001) 1–9.

[16] M.-D. Girardeau, M. Ina, S.-G. Schirmer, T. Gulsrud, Kinemat-

ical bounds on evolution and optimization of mixed quantum

states, Phys. Rev. A 55 (1997) R1565–R1568.

[17] K. Beauchard, Local controllability of a 1-D Schrödinger equa-
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