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Abstract

The controllability of bilinear systems is well understood for isolated systems where the control can be implemented

exactly. However when perturbations are present some interesting theoretical questions are raised. We consider in this

paper a control system whose control cannot be implemented exactly but is shifted by a time independent constant

in a given list of possibilities. We prove under general hypothesis that the collection of possible systems (one for

each possible perturbation) is simultaneously controllable with a common control. The result is extended to the

situations where the perturbations are constant over a common, long enough, time frame. We apply the result to the

controllability of quantum systems.

Keywords:

quantum control, Lie group controllability, bilinear system, perturbations

1. Introduction

The fundamental importance of addressing the controllability of bilinear systems has long been recognized in

engineering control applications (see [1–9]). Among recent applications one may cite the field of quantum control

with optical or magnetic external fields (see [5, 9–19]).

Although the controllability is well understood when the system is isolated and the control can be implemented

exactly new theoretical and numerical questions are raised when perturbations are present.

The question that is addressed in this paper is related to the simultaneous controllability of bilinear systems. Con-

sider general systems
dXk(t)

dt
= (Ak + u(t)Bk)Xk on some finite dimensional Lie group G. Simultaneous controllability

is the question of whether all states Xk can be controlled with the same control u(t).

Problems of simultaneous control of multiple systems have been addressed recently in applications related to

quantum control [20–31]. In such circumstances the system is a collection of molecules or atoms or spin systems

and the control is a magnetic field (in NMR) or a laser. The assessment of whether a single control pulse can drive

independent (i.e., distinct) quantum systems to their respective target states was addressed theoretically in [20] for

general Ak, Bk and applied to the optimal dynamic discrimination of separate quantum systems in [21]. The particular

case of identical molecules with Ak = A (constant) and Bk = ξkB, ξk ∈ R, was treated in [22, 23] where Turinici

and coworkers proved that all members of an ensemble of randomly oriented molecules subjected to a single ultra-

fast laser control pulse can be simultaneously controlled. An independent work [30] treats the circumstance when

Ak = ǫiA, ǫi , ±1 and Bk = B (constant) and was used to show controllability for ensembles N-level of quantum

systems having different Larmor dispersion. This last result generalizes the findings of [25] for ensembles of spin 1/2

systems.
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In this paper we extend the result in [30] to the new circumstance when Ak = A + αkB, αk ∈ R and Bk = B

(constant) or, equivalently, the simultaneous controllability of systems submitted to time independent perturbations
dXk(t)

dt
= [A+(u(t)+αk)B]Xk. As the result in [30] does not apply to this situation we exploit techniques used previously

in [22, 23] and prove positive controllability results.

The balance of the paper is as follows: in Section 2 we introduce the general framework and the main notations

and in Section 3 we present our main result. In Section 4, we apply our results to the controllability of quantum

systems. Finally, some conclusions and perspectives of future work are given in Section 5.

2. Problem formulation

Given a matrix M, we denote by Tr(M) its trace.

As a fundamental aspect of bilinear control theory, controllability has been widely studied for isolated (un-

perturbed) systems where the control can be implemented exactly. However when perturbations are present a le-

gitimate question arises: what states can still be attained? Consider the following control systems on U(N)

dX(t)

dt
= (A + u(t)B)X(t), X(0) = Id. (1)

Here A and B are skew-Hermitian matrices in u(N). The matrix X(t) evolves in the Lie group of unitary matrices U(N),

or, if both the matrices A and B have zero trace, in the Lie group of special unitary matrices S U(N). We will assume

without loss of generality (see [7]) that Tr(A) = Tr(B) = 0 from now on, i.e., A, B ∈ su(N) and then X(t) ∈ S U(N).

The controllability of a system on Lie groups such as (1) is a well-studied problem [4–9]. The literature on the

subject of bilinear control relies essentially on the following Theorem (originally due to [32]):

Theorem 1. Let A, B ∈ su(N) and denote by LA,B the Lie subalgebra of su(N) generated by A and B. The system (1) on

the Lie group S U(N) is controllable if and only if LA,B = su(N) or equivalently if dimRLA,B = N2 −1. Moreover there

exists TA,B > 0 such that any target can be reached in time t ≥ TA,B with controls u such that |u(s)| ≤ 1,∀s ∈ [0, t].

Here dimRLA,B stands for the dimension of LA,B as linear vector space over R.

An important question is what happens if the control u(t) in (1) is submitted to some perturbations in a predefined

(discrete) list {αk, k = 1, · · · ,K}?

dXk(t)

dt
= AXk(t) + [u(t) + αk]BXk(t), Xk(0) = Id. (2)

Can one still control the systems simultaneously? The real perturbation αk for a given system is not known beforehand,

therefore in order to be certain that the system is controlled one has to find a control u(t) that simultaneously control

all states Xk(t), i.e., find u(t) such that Xk(T ) = V for k = 1, · · · ,K (here V is the target state).

Yet a distinct circumstance is when αk are not arbitrary perturbations but unknown characteristics of the system to

be identified. Here the goal is to find u(t) such that, given distinct Vk one has Xk(T ) = Vk. By measuring the state of

the system at the final time T one knows what αk was effective during [0,T ].

In conclusion, our problem can be formalized as follows: let Vk ∈ S U(N), k = 1, · · · ,K be arbitrary. Is it possible

to find T > 0 and a measurable u : [0,T ]→ R such that the system given by (2) satisfies Xk(T ) = Vk ∀ k = 1, · · · ,K?

If the answer to this question is positive then the system in (2) will be called simultaneously controllable.

3. Simultaneous controllability for perturbations

3.1. Tools for simultaneous controllability

We recall in this section some known results on simultaneous controllability that will be necessary in the following

sections. Consider K bilinear systems on S U(N):

dXk(t)

dt
= (Ak + u(t)Bk)Xk(t), Xk(0) = Id, (3)
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where Ak, Bk ∈ su(N), k = 1, · · · ,K. We denote by diag{M1, · · · ,MP} the block diagonal matrix

























M1 0

. . .

0 MP

























obtained by setting the square matrices M1, · · · ,MP on its diagonal. This definition allows for introducing A =
diag{A1, · · · , AK} as a KN × KN matrix constructed from Ak, k = 1, · · · ,K and B = diag{B1, ..., BK}. By assembling

the K bilinear systems (3), the evolution of this collection of states can be written as a bilinear system (with block

diagonal entries) on (S U(N))K :

dX(t)

dt
= AX(t) + u(t)BX(t), X(0) = Id ∈ (S U(N))K . (4)

Denote by LA,B the Lie algebra generated by the matricesA and B. Then we have the following result (see [20, 21]):

Theorem 2. The K bilinear systems (3) are simultaneously controllable if and only if LA,B = (su(N))K or equivalently

dimRLA,B = K(N2 − 1).

Here dimR LA,B stands for the dimension of LA,B as linear vector space over R. Moreover there exists TA,B > 0

such that any collection of targets (Vk)K
k=1 ∈ (S U(N))K can be reached in time t ≥ TA,B with controls u(t) such that

|u(s)| ≤ 1,∀s ∈ [0, t].

A specific result has been proved in [22] for particular choices Ak = A and Bk = αkB.

Theorem 3 ([22]). Let A, B ∈ su(N) and consider a basis where A is diagonal, denote A = (−i)diag(λ1, ..., λN),

λi ∈ R being the eigenvalues of iA. In this basis consider the following non-oriented graph GB = (VB,EB), VB =

{1, 2, · · · ,N}, EB = {(k, l) | Bkl , 0}.
Assume that the graph GB is connected and that ∀(k1, l1), (k2, l2) ∈ EB, (k1, l1) , (k2, l2) : λk1

−λl1 , λk2
−λl2 . Consider

also α1, · · · , αK ∈ R such that |αk | , |αl|, ∀k , l. Then the system on (S U(N))K

dXk(t)

dt
= (A + u(t)αkB)Xk, Xk(0) = Id, (5)

is simultaneously controllable and LA,B = (S U(N))K . Moreover there exists TA,B,α1,···,αK
such that any collection of

targets (Vk)K
k=1
∈ (S U(N))K can be reached in a time smaller than TA,B,α1,···,αK

with controls u such that |u(s)| ≤ 1,∀s ∈
[0, t].

3.2. Main result

Using the previous results we can now attack the situation when the control seen by the k-th system is u(t) + αk

and not u(t)αk as in [22].

Theorem 4. Consider the bilinear system on S U(N) in equation (2), where A, B ∈ su(N). Suppose that L[A,B],B =

su(N).

Then for any distinct αk ∈ R, k = 1, ..,K, the collection of systems (2) is simultaneously controllable in the sense

described above. Moreover there exists TA,B,α1,···,αK
> 0 such that the system is controllable in any time t ≥ TA,B,α1,···,αK

with controls u such that |u(s)| ≤ 1,∀s ∈ [0, t].

Proof. To assess controllability of (2), we consider it as a system on (S U(N))K given by matrices A = diag(A +

α1B, · · · , A + αK B) and B = diag(B, · · · , B). Consider also the Lie algebra L = LA,B spanned by A and B. Note that

L[A,B],B = su(N) implies LA,B = su(N). Since [A,B] = diag([A, B], · · · , [A, B]) and since L[A,B],B = su(N) it follows

that L contains any matrix of the form diag(X, · · · , X), X ∈ su(N). Thus L contains Lie{A, diag(X, · · · , X), X ∈ su(N)}
which contains diag(A, · · · , A) thus contains A − diag(A, · · · , A) = diag(α1B, · · · , αK B). Consequently L contains

Lie{diag(α1B, · · · , αK B), diag(X, · · · , X), X ∈ su(N)}. Consider now a particular basis, i.e., the one that diagonalizes

the Hermitian matrix i[A, B]. Since L[A,B],B = su(N) the graph GB of B (see Theorem 3 for its definition) has to be

connected in this basis [15]. Let us take now X̄ a matrix such that iX̄ satisfies condition of degenerate transitions. Then,

L contains Lie{diag((α1 + η)B), · · · , (αK + η)B)], diag(X̄, · · · , X̄} ∀ η ∈ R. In particular there exists η̄ ∈ R such that

|αk + η̄| , |α j + η̄| ∀ j , k. Then by Theorem 3 it follows that Lie{diag((α1 + η̄)B), · · · , (αK + η̄)B))], diag(X̄, · · · , X̄)} =
(su(N))K . Thus the system (5) is controllable. The assertions on TA,B,α1,···,αK

are consequences of Theorem 3, Q.E.D.
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Remark 1. It is important to mention that the condition L[A,B],B = su(N) is sufficient but not necessary. In order to il-

lustrate this remark, we consider K = 2 bilinear systems in (2) and choose A = 1
i
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,

α1 = 1, α2 = −1. Using the online calculator available at [33] we obtain that dimR LA,B = 8 thus LA,B = su(3) and

dimR L[A,B],B = 4 thus L[A,B],B , su(3). However dimR Ldiag(A+α1B,A+α2B),diag(B,B) = 16 thus Ldiag(A+α1B,A+α2B),diag(B,B) =

(su(3))2 and the bilinear systems are simultaneously controllable by the Theorem 2 despite L[A,B],B , su(3).

Remark 2. Having proved the result above for the bilinear setting, it is interesting to compare with the analogous

result in the linear case. For this we consider the following linear systems:

d

dt
x1 = Ax1 + Bu(t), x1(0) = 0,

d

dt
x2 = Ax2 + B[u(t) + α], x2(0) = 0.

The dynamics of x2(t) − x1(t) is not influenced by the control since d
dt

(x2 − x1) = A(x2 − x1) + Bα, x2(0) − x1(0) = 0.

Hence this collection of systems is not simultaneously controllable. One can conclude that simultaneous control is a

nonlinear phenomena.

The result in Theorem 4 can be extended to the situation where the perturbations of the control can depend on time.

We will require however that the perturbations be constant on a common, long enough, time interval.

Theorem 5. Consider the collection of control systems on S U(N) where A, B ∈ su(N) :

dYk(t)

dt
=

{

A + (u(t) + δku(t))B

}

Yk(t),Yk(0) = Yk,0 ∈ S U(N). (6)

Suppose that L[A,B],B = su(N) and there exists 0 < t1 < t2 < ∞ such that δku(t) = αk (constant) ∀t ∈ [t1, t2]. Then

there exists TA,B,α1,···,αK
such that if t2 − t1 ≥ TA,B,α1,···,αK

the collection of systems (6) is simultaneously controllable at

any time T ≥ t2.

Proof. Let Vk be given targets for the systems (6) at time T ≥ t2. Define u(t) to be zero on [0, t1] ∪ [t2,T ] and

V−
k
= Y−

k
(t1) where Y−

k
(t) is the solution of

dY−
k

(t)

dt
= (A + δku(t)B)Y−

k
(t), Y−

k
(0) = Yk,0 and V+

k
= Y+

k
(T ) where Y+

k
(t)

satisfies
dY+

k
(t)

dt
= (A + δku(t)B)Y+

k
(t), Y+

k
(t2) = Id. Set targets Wk = (V+

k
)−1Vk(V−

k
)−1 for the system (2) on [0, t2 − t1]

and initial states Xk(0) = Id and denote ũ(t) be the control that drives Xk from Xk(0) = Id to Xk(t2 − t1) = Wk,∀k =

1, · · · ,K. Then the control u(s) with u(s) = 0, for s ∈ [0, t1[∪]t2,T ] and u(s) = ũ(s − t1), for s ∈ [t1, t2] is such that

Yk(T ) = V+
k

WkV−
k
= Vk, Q.E.D.

3.3. Further results on related models

Note that the model in equation (1) implies that the perturbation αk is present even when the control u(t) is null.

In practice it may sometimes be possible to eliminate the perturbations when the control field is not used and in

this situation the controller can switch between a free, unperturbed dynamics and a controlled, perturbed one. This

circumstance is modeled as

dZk(t)

dt
= AZk(t) + [u(t) + αk]ξ(t)BZk(t),Zk(0) = Zk,0 ∈ S U(N), (7)

where the controls are u(t) and ξ(t), but ξ(t) ∈ {0, 1}∀t ≥ 0 (ξ being a measurable function). We obtain the following

Theorem 6. The system (7) is simultaneously controllable if and only if LA,B = su(N).

Proof. With ξ(t) as a new control the system (7) is controllable if and only if Ldiag(A,···,A),diag(A+α1B,···,A+αK B),diag(B,···,B) =

(su(N))K or, equivalently Ldiag(A,···,A),diag(B,···,B),diag(α1B,···,αK B) = (su(N))K . Denote L1 = Ldiag(A,···,A),diag(B,···,B),diag(α1B,···,αK B).

Note that the control ξ(t) allows to add diag(A, · · · , A) to the Lie algebra. Suppose now LA,B = su(N). As A, B span

the whole su(N) then L1 contains any matrix of the form diag(X, · · · , X), X ∈ su(N). From this point the proof is

similar as the one of Theorem 4. Of course LA,B = su(N) is a necessary condition for controllability, which proves the

reverse implication, Q.E.D.

Remark 3. For the situation (7) a result analogous to the Theorem 5 can be proved. We leave the proof as an exercise

to the reader.
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Figure 1: The control that drives ψ0 to ψT (cf. equation (8)) irrespective of the perturbation αk ∈ {−0.1, 0, 0.1}. The quality of the control is over

99% for any perturbation. However the trajectories ψ(t) corresponding to u(t) − 0.1, u(t) and u(t) + 0.1 are all different.

4. Application to the control of a quantum system

Consider now a quantum bilinear system (cf. [5, 9, 14]):

i
d

dt
ψ = [H0 + u(t)µ]ψ(t), H0 =
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. (8)

controlled by the control u(t) and with ψ(0) = (1/
√

2, 0, 0, 1/
√

2, 0)T and target ψT = (0, 1/
√

2, 0, 0, 1/
√

2)T . Define

B = µ/i and, for simplicity, A = [H0 − 0.2Tr(H0).Id]/i such that both A and B belong to su(5). Using the tool

in [33] we obtain dimRLA,B = dimR L[A,B],B = 24 = dimR su(5) and since L[A,B],B ⊂ LA,B ⊂ su(5) it follows that

L[A,B],B = LA,B = su(5). Consider the perturbations α1 = −0.1, α2 = 0, α3 = 0.1. Therefore theorems 4, 5 and 6

of the previous section apply. Since S U(5) is transitive on the unit sphere of CN(cf. [7]) there exists UT such that

UTψ0 = ψT and by the Theorem 4 there exists a time T and a control u : [0,T ] → R such that u(t), u(t) − 0.1 and

u(t) + 0.1 all drive Id to UT in equation (1) thus all drive the initial state ψ0 to the final state ψT in equation (8). We

searched numerically the control u(t) using a so-called monotonic procedure, see [34–39] for details. For T = 500

we obtain the control presented in Figure 1. The quality of the control, i.e. the quantity
|〈ψ(T ),ψ(0)〉|
‖ψ(0)‖ is over 99% for

all perturbations αk, k = 1, 2, 3. We also tested different pairs of initial and target states (ψ0, ψT ) and in all cases high

quality controls were found.

5. Conclusion and perspectives

Using Lie-algebraic methods, sufficient conditions have been derived for the simultaneous controllability of a

finite-dimensional system, in the case where the control is submitted to constant or partially constant perturbations.

This work studied the controllability for possibly large final times. A related question is whether small time local

controllability (called STLC) is also true. A further question is whether the result extends to more general, time

dependent, perturbations.
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Mathématiques Pures et Appliquées 94 (5) (2010) 520–554. doi:10.1016/j.matpur.2010.04.001.

[19] M.-D. Girardeau, S.-G. Schirmer, J.-V. Leahy, R.-M. Koch, Kinematical bounds on optimization of observables for quantum states, Phys.

Rev. A 58 (1998) 2684–2689.

[20] G. Turinici, V. Ramakrishna, B. Li, H. Rabitz, Optimal Discrimination of Multiple Quantum Systems: Controllability Analysis, J. Phys. A:

Mathematical and General 37 (1) (2003) 273–282.

[21] B. Li, G. Turinici, V. Ramakhrishna, H. Rabitz, Optimal Dynamic Discrimination of Similar Molecules Through Quantum Learning Control,

Journal of Physical Chemistry B 106 (33) (2002) 8125–8131.

[22] G. Turinici, H. Rabitz, Optimally controlling the internal dynamics of a randomly oriented ensemble of molecules, Phys. Rev. A 70 (6) (2004)

063412. doi:10.1103/PhysRevA.70.063412.

[23] H. Rabitz, G. Turinici, Controlling quantum dynamics regardless of laser beam spatial profile and molecular orientation, Physical review A:

Atomic, Molecular and Optical Physics 75 (4) (2007) 043409.

[24] S.-G. Schirmer, I.-C. Pullen, A.-I. Solomon, Controllability of multi-partite quantum systems and selective excitation of quantum dots, Journal

of Optics B 7 (2005) S293–S299.

[25] J.-S. Li, N. Khaneja, Ensemble controllability of the Bloch equations, in: 45th IEEE Conference on Decision and Control, San Diego, CA,

USA, 2006, pp. 13–15.

[26] J.-S. Li, N. Khaneja, Control of inhomogeneous quantum ensembles, Phys. Rev. A 73 (2006) 030302.

[27] J.-S. Li, Control of inhomogeneous ensembles, Phd thesis, Harvard University (2006).

[28] D. Sugny, A. Keller, O. Atabek, D. Daems, C. M. Dion, S. Guerin, H.-R. Jauslin, Control of mixed-state quantum systems by a train of short

pulses, Physical Review A (Atomic, Molecular, and Optical Physics) 72 (3) (2005) 032704.

[29] T.-J. Tarn, J.-W. Clark, D.-G. Lucarelli, Controllability of quantum mechanical systems with continuous spectra, in: 39th IEEE Conference

on Decision and Control, Sydney, Austalia, 2000.

[30] C. Altafini, Controllability and simultaneous controllability of isospectral bilinear control systems on complex flag manifolds, Systems &

Control Letters 58 (2009) 213–216.

[31] K. Moore, H. Rabitz, Manipulating molecules, Nature Chemistry 4 (2012) 72–73.

[32] V. Jurdjevic, H. J. Sussmann, Control systems on Lie groups, J. Differ. Equations 12 (1972) 313–329.

[33] Online controllability calculator.

URL https://www.ceremade.dauphine.fr/ turinici/index.php/fr/recherche/calculator.html

[34] M. Belhadj, J. Salomon, G. Turinici, A stable toolkit method in quantum control, Journal of Physics A: Mathematical and Theoretical 41 (36)

(2008) 362001–362011.

[35] D. Tannor, V. Kazakov, V. Orlov, Control of photochemical branching: Novel procedures for finding optimal pulses and global upper bounds,

in: Time Dependent Quantum Molecular Dynamics ed J Broeckhove and L Lathouwers, New York: Plenum, 1992, pp. 347–360.

[36] W. Zhu, H. Rabitz, A rapid monotonically convergent iteration algorithm for quantum optimal control over the expectation value of a positive

definite operator, J. Chem. Phys. 109 (1998) 385–391.

[37] S. G. Schirmer, M. D. Girardeau, J. V. Leahy, Efficient algorithm for optimal control of mixed-state quantum systems, Phys. Rev. A 61 (1999)

012101. doi:10.1103/PhysRevA.61.012101.

[38] L. Baudouin, J. Salomon, Constructive solution of a bilinear optimal control problem for a Schrödinger equation, Systems & Control Letters

57 (6) (2008) 453–464. doi:10.1016/j.sysconle.2007.11.002.

[39] Y. Maday, G. Turinici, New formulations of monotonically convergent quantum control algorithms, J. Chem. Phys. 118 (2003) 8191–8196.

6


