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Abstract

The controllability of bilinear systems is well understofud isolated systems where the control can be implementeadtigx
However when perturbations are present some interestemrdtical questions are raised. We consider in this papenta
system whose control cannot be implemented exactly butifiediby a time independent constant in a given list of pdbgés.

We prove under general hypothesis that the collection ofiptessystems (one for each possible perturbation) is samebusly
controllable with a common control. The result is extendethe situations where the perturbations are constant ovemsnon,
long enough, time frame. We apply the result to the contibdltst of quantum systems.

Keywords:
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1. Introduction andBy = &B, & € R, was treated in [22, 23] where Turinici
and coworkers proved that all members of an ensemble of ran-
The fundamental importance of addressing the controflabildomly oriented molecules subjected to a single ultra-fasg
ity of bilinear systems has long been recognized in enginger control pulse can be simultaneously controlled. An indepen
control applications (see [1-9]). Among recent applicadione  dent work [30] treats the circumstance whian= €A, ¢ # +1
may cite the field of quantum control with optical or magneticandBy = B (constant) and was used to show controllability for
external fields (see [5, 9-19]). ensembledl-level of quantum systems havindigirent Larmor
Although the controllability is well understood when thessy  dispersion. This last result generalizes the findings of {@6
tem is isolated and the control can be implemented exacily neensembles of spin/2 systems.
theoretical and numerical questions are raised when fertur  In this paper we extend the result in [30] to the new circum-
tions are present. stance whey = A+ axB, ax € R andBy = B (constant) or,
The question that is addressed in this paper is related to thequivalently, the simultaneous controllability of systesub-
simultaneous controllability of bilinear systems. Corsigen-  mitted to time independent perturbatioﬁ%@ = [A+ (u(t) +
eral systemgﬁk—t“) = (Ax+Uu(t) B ) Xk on some finite dimensional «x)B]Xk. As the result in [30] does not apply to this situation
Lie groupG. Simultaneous controllability is the question of we exploit techniques used previously in [22, 23] and prove
whether all stateXy can be controlled with the same control positive controllability results.
u(t). The balance of the paper is as follows: in Section 2 we in-
Problems of simultaneous control of multiple systems haveroduce the general framework and the main notations and in
been addressed recently in applications related to quactam  Section 3 we present our main result. In Section 4, we apply
trol [20-31]. In such circumstances the system is a coblecti our results to the controllability of quantum systems. Hina
of molecules or atoms or spin systems and the control is a magome conclusions and perspectives of future work are given i
netic field (in NMR) or alaser. The assessment of whether-a sinSection 5.
gle control pulse can drive independent (i.e., distincgrgum
systems to their respective target states was addresswethe
ically in [20] for generalAy, Bk and applied to the optimal dy- 2. Problem formulation
namic discrimination of separate quantum systems in [2lig¢ T
particular case of identical molecules wiffa = A (constant) Given a matrixM, we denote by Ti{l) its trace.
As a fundamental aspect of bilinear control theory, control
= . 216 77 926 575 lability has been widely studied for isolated (un-pertusys-
Emr;ﬁsarl)(:?dr}elsnsgeg.:ljohg;edéB-elhadj@ismai.rnu.tn (M. Belhadj), tems where the COI.'ItI'O| can be Implem.ented exaCtly' How-
salomon@ceremade.dauphine . £r (J. Salomon), ever when perturbations are present a legitimate quegisasa
gabriel.turinici@dauphine.fr (G. Turinici) what states can still be attained? Consider the followingrod
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systems otJ (N)
dX(t)

dt
HereA andB are skew-Hermitian matrices ifN). The matrix
X(t) evolves in the Lie group of unitary matrickyN), or, if
both the matriceé\ andB have zero trace, in the Lie group of
special unitary matriceS U(N). We will assume without loss
of generality (see [7]) that T&) = Tr(B) = 0 from now on, i.e.,
A, B € suN) and thenX(t) € SU(N).

(A+u®B)X(), X(0) = Id. 1)

whereAy, By € sUN),k=1,---, K.
We denote bydiag{M,,---, Mp} the block diagonal matrix

M1 0
obtained by setting the square matrices
0 Mp
My, -+, Mp on its diagonal. This definition allows for intro-

ducingA = diag{Ay, - - -, Ak} as aKN x KN matrix constructed
fromA,k=1,---,K and8 = diag{By, ..., Bk}. By assembling
the K bilinear systems (3), the evolution of this collection of
states can be written as a bilinear system (with block diagon

The controllability of a system on Lie groups such as (1) is 3entries) on § U(N))K:

well-studied problem [4-9]. The literature on the subjddtie
linear control relies essentially on the following Theorgarig-
inally due to [32]):

Theorem 1. Let A B € suN) and denote by g the Lie sub-

dX ()

B AX() + ut)BX(1), X(0)=1d e (SUN)K. (4)

Denote bylL 4 s the Lie algebra generated by the matricés

algebra of sN) generated by A and B. The system (1) on theand8. Then we have the following result (see [20, 21]):

Lie group SUN) is controllable if and only ifLag = Su(N)
or equivalently ifdimgLLag = N? — 1. Moreover there exists
Tag > 0 such that any target can be reached in time Tap
with controls u such that(s)| < 1,V¥se€ [0, 1].

HeredimgLLa g Stands for the dimension bf, g as linear vector
space oveR.

An important question is what happens if the contr) in
(1) is submitted to some perturbations in a predefined (elistr
list {ax, k=1,---,K}?

dX(®)

dt

Can one still control the systems simultaneously? The real p

= AX(t) + [u(t) + ax] BX(1), Xi(0) = Id. )

Theorem 2. The K bilinear systems (3) are simultaneously
controllable if and only ifL.4 5 = (SUN))¥ or equivalently

dimgLs = K(N? - 1).

Heredimg L4 4 stands for the dimension b5 ¢ as linear vec-

tor space oveR. Moreover there exists4 g > 0 such that any
collection of target$Vk)|’f:l € (SU(N))K can be reached in time
t > T4 with controls t) such thaju(s)| < 1, Vs € [0, t].

A stronger result has been proved in [22] for particular chsi
A = AandBk = akB.

turbationay for a given system is not known beforehand, there-Theorem 3 ([22]). Let AB € suN) and consider a basis

fore in order to be certain that the system is controlled e h
to find a control(t) that simultaneously control all stat&¥g(t),
i.e., findu(t) such thatX((T) = Vfork = 1,---,K (hereV is
the target state).

Yet a distinct circumstance is whem are not arbitrary per-
turbations but unknown characteristics of the system talee-i
tified. Here the goal is to find(t) such that, giverlistinct \f
one hasX(T) = Vk. By measuring the state of the system at
the final timeT one knows whaty, was dfective during [QT].

In conclusion, our problem can be formalized as follows: let

Vk € SU(N),k = 1,---,K be arbitrary. Is it possible to find
T > 0 and a measurable: [0, T] — R such that the system
given by (2) satisfieXy(T) = Wk Y k= 1,---,K? If the answer

to this question is positive then the system in (2) will bdezal

simultaneously controllable

3. Simultaneous controllability for perturbations

3.1. Tools for simultaneous controllability

We recall in this section some known results on simultaneous

controllability that will be necessary in the following siens.
ConsiderK bilinear systems o U(N):

dX(t)

G = (AcHUDBYX(D, X(0)=1d,

®3)

A 0

where A is diagonal, denote A (i) ,AieR

0 AN

being the eigenvalues of iA. In this basis consider the ¥ollo
ing non-oriented graplgg = (Vs,Es), Vs = {1,2,---,N},
&g = {(k,1) | Ba # 0}.

Assume:

the graphGs is connected.

(5)
V(K1 11), (K2, 12) € Eg, (K1, 11) # (K2, 12) © A=A, # A,—A,.(6)
Consider alsary, - - -, ak € R such that
|| # |an], YK # 1. (7
Then the system & U(N))K

% = (A + u(t)axB) Xk, X«(0)=1d

is simultaneously controllable. Moreover there exists
TABan-ac SUCh that any collection of targetévi)l, e
(SU(N))X can be reached in a time smaller tham d,...ax
with controls u such thgt(s)| < 1, Vs e [0, 1].



3.2. Main result linear case For this we consider the following linear systems:

Using the previous results we can now attack the situation dﬂtxl = Ax + Bu(t), x.(0)=0.
when the control seen by theth system isu(t) + ax and not
u(t)ax as in [22]. 9% = Ax+Blu(t)+a], x(0)=0.

Theorem 4. Consider the bilinear system on §NJ) in equa- | he dynamics ok(t) — x,(t) is not influenced by the control:
tion (2), where AB € suN). Suppose thalt{a g,z = SUN). d

Then for any distincey € R,k = 1, .., K, the collection of sys- g2 —x) = Alxe = xa) + Bar, %2(0) - x(0) = 0.

tems (2) is simultaneously controllable in the sense deedri

above. Moreover there exists &.,..o, > 0 such that the sys- Hence this collection of systems is not simultaneously rmnt
tem is controllable in any time t Tag.a,..« With controls u lable. One can conclude that simultaneous control is a neati

such thafu(s)| < 1, Vs e [0, 1]. phenomena.

Proor. TO assess controllability of (2), we con- _ h oW
sider it as a system onSU(N))X given by matrices perturbations of the control can depend on time. We will ieju
A = diag(A + 1B, -, A+ axB) and 8 = diag(B,- -, B). however that the perturbations be constant on a common, long

Consider also the Lie algebfa= L4 3 spanned byA andB. enough, time interval.

Note thatLiage = SuN) implies Lag = suUN). Since  rpoqem 5 Consider the collection of control systems on
[A, B8] = diag([A B].---,[A B]) and sinceljag e = sUN) it g U(N):
follows thatlL contains any matrix of the formiag(X; - - -, X),

X € SL(N): Thus L .conta_lns Lie{A, diag(X, - - -, X), X € % _ {A+ () + 6ku(t))B}Yk(t),
suN)} which contains diag(A,---,A) thus contains

A —diag(A, - - -, A) = diag(e1B, - - -, ak B).

Consequently. containd_ie{diag(a1B, - - -, ak B), diag(X;, - - -, X),
X € sUN)}. . o - Suppose that there exidis< t; < t, < co such thawiu(t) = ax
Consider now a particular basis, i.e., the one that diagge®l  (constant)vt € [ty, to]. Then there existsalsq,...ox Such that if
the Hermitian matrix[A, B]. Sinceljags = SUN) the graph  t, _; > Tag,, ..., the collection of systems (8) is simultane-
Gs of B (see Theorem 3 for its definition) has to be connectechysly controllable at any time B t,.

in this basis [15]. Let us take nowW a matrix such thatX

(8)
Y«0) = YioeSUN).

satisfies condition (6). Proor. Let Vi be given targets for the systems (8) at tifhe:
Then, L _contains Lie{diag((ex + n)B),---.(ak + t,. Defineu(t) = 0andV, = Y (t1) whereY, (1) is the
n)B)],diag(X,---,X} V¥V n € R. In particular there exists -

n € Rsuch thatax + 7l # laj + 7l ¥ | # k. solution of

Then by Theorem 3 it follows thatLie{diag((e1 + -

MB), -, (ak + MB),diagX,---,X)} = suN). Thus dv ® _ (A+ SUOB)Y-(), Yo (0) = Yio

the system (2) is controllable. The assertions on the maximu dt '

time to control are consequences of Theorem 3, Q.E.D. andV;t = Y (T) whereY; () satisfies

Remark 1. It is important to mention that the condition dy; (t) . .
Liage = SUN) is syficient but not necessary In or- qr = A+ aUOB)Y (D). Y (t2) = 1d.
der to illustrate this remark, we considé& = 2 bilin-
01 2 Settarget®\i = (V;")1Vi(V,) ™ for the system (2) on [—t1]
ear systems in (2) and chooge = 1| 1 0 3| B = andinitial state(0) = Id and denoteit) be the control that
2 30 drives X from X,(0) = Id to Xg(to — t1) = Wi, Vk = 1,---, K.
-2 00 Then the control
|_1[ 0 1 0| a1 = 1Laz = -1. Using the online
0 0 1 0, se[0,t4]
calculator available at [33] we obtain that dithag = 8 u(s) ={ U(s—t1), se[tt]
thus Lag = su3) and dinkLiags = 4 thusLiage # 0, se€]t,T]

su3). However dim Lgiaga+o,BA+a:B)diages) = 16 thus
Ldiag(A+a1B,A+asB),.diag(B,B) = (su3))? and the bilinear systems are

simultaneously controllable by the Theorem 2 despijigs s #
su3). 3.3. Further results on related models

is such thatvy(T) = VWKV, = Vi, Q.E.D.

Note that the model in equation (1) implies that the pertur-
Remark 2. Having proved the result above for théinear set-  bationay is present even when the contrgt) is null. In prac-
ting, it is interesting to compare with the analogous resulté th tice it may sometimes be possible to eliminate the pertiohsat

3

The result in Theorem 4 can be extended the situation when the



when the control field is not used and in this situation the-con
troller can switch between a free, unperturbed dynamicsaand
controlled, perturbed one. This circumstance is modeled as

AZ(Y) + [u(t) + ] £() BZ(),

dz(t)
dt

9)
Z(0)

where the controls ane(t) andé&(t), buté&(t) € {0, 1)Vt > 0 (¢
being a measurable function). We obtain the following resul

Zxo € SU(N),

Theorem 6. The system (9) is simultaneously controllable if
and only ifLag = SUN).

Proor. With £(t) as a new control the system (9) is controllable
if and only if Laiag(a. A) diagiA+a1 B, AtaxB).diag®,-B) = (SUN))*
or, equivalentlyLgiag. - A) diag(B.-B).diagi1B.-axB) = (SUN))K.
Denotell; = LiagA,-A).diag(B, - B),diag(@1B,ax B) -

Note that the contrai(t) allows to addliag(A, - - -, A) to the Lie
algebra.

Suppose novlLa g = SUN). As A, B span the wholsu(N) then
L, contains any matrix of the formiag(X, - - -, X), X € suN).
From this point the proof is similar as the one of Theorem 4.
Of courseLag = sUN) is a necessary condition for controlla-
bility, which proves the reverse implication, Q.E.D.

Figure 1: The control that drive, to ¢t (cf. equation (10)) irrespective of the
perturbationay € {-0.1,0,0.1}. The quality of the control is over 99% for any
perturbation. However the trajectorigét) corresponding tai(t) — 0.1, u(t) and
u(t) + 0.1 are all diferent.

that]L[AB],B =Lag = sub).
Consider the perturbations = —0.1, > = 0,a3 = 0.1. There-
fore theorems 4, 5, 6 of the previous section apply.

SinceS U(5) is transitive (cf. [7]) there existdt such that

Remark 3. For the situation (9) a result analogous to the The-U;y, = y1 and by the Theorem 4 there exists a tifh@and a
orem 5 can be proved. We leave the proof as an exercise to th®ntrolu : [0, T] — R such thau(t), u(t) - 0.1 andu(t) + 0.1

reader.

4. Application to the control of a quantum system

Consider now a quantum bilinear system

idy = [Ho+ultyyu),
(10)
W0) = (5.0.0.35.0

controlled by the controlu(t) and with targetyt
(0,L,0,0, %)T, with (cf. [5, 9, 14])

759
10 0 0 0 O
0 12 0 0 0

Ho=| 0 0 13 0 © (11)
0 0 0 20 O
0O 0 0 0 215
00011

00011

u={0 0 0 1 1 (12)
11100

11100

DefineB = 1y and, for simplicity, A = 1[Ho — £Tr(Ho).Id]
such that bottA andB belong tosu(5).

Using the tool in [33] we obtain diglLag = dimg Liag e =
24 = dimg su5) and sinceliag g € Lag € sub) it follows

all drive Id to Ut in equation (1) thus all drive the initial state
Yo to the final state/t in equation (10).

We searched numerically the contraft) using a so-called
monotonic procedure, see [34—39] for detalils.

For T = 500 we obtain the control presented in Figure 1. The
quality of the control, i.e. the quanti@% is over 99% for

all perturbationsy, k = 1,2,3. We also tested fferent pairs

of initial and target states/6, y1) and in all cases high quality
controls were found.

5. Conclusion and per spectives

Using Lie-algebraic methods, ficient conditions have
been derived for the simultaneous controllability of a énit
dimensional system, in the case where the control is subdnitt
to constant or partially constant perturbations.

This work studied the controllability for possibly largedin
times. A related question is whether small time local cdigro
bility (called STLC) is also true. A further question is whet
the result extends to more general, time dependent, parturb
tions.
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