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Abstract— This article proposes a new method to solve non-linear 

magnetostatic problems applied to the modeling of electromagnetic 

devices. A reduced scalar potential formulation is presented and 

solved by a hybrid BEM-NRM. It has been implemented and tested 

in a software called MaGot. We will show that the computation 

time of this new method is very low. Thus, it could be easily and 

efficiently used for the pre-sizing of actuators.  
  

Index Terms— actuators, hybrid method BEM-NRM, magnetostatic, 

modeling. 

I. INTRODUCTION 

Numerical simulations of electromagnetic actuators are an increasing industrial need. In general, the 

designing time and number of prototypes required to design products are higher during the first step 

of the whole process. Several methods have been proposed for actuators designing. Two of the most 

popular methods ones are the Finite Element Method (FEM) [1], [2] and the Reluctance Network 

Method (NRM) [4], [5]. 

Based on an equivalent magnetic circuit, NRM is an approach enabling the very quick understood 

of devices functioning. Computational tools have been developed allowing the automatic assembly of 

equations [4]. Although easy to use, NRM results can be not so accurate in a first step. Thus, the 

network can be improved by comparing the results with those from the FEM model and rebuilding a 

more representative NRM. Once the optimal reluctant model is built, it use is very efficient and quick. 

Unfortunately, the development of the model can be very extensive, especially in devices with 

significant leakage flux. 

Tools based on FEM provides to the user effective representation of the device. Compared to 

NRM, the geometric and physical properties are both precisely and quickly described. On the one 

hand, the FEM is very general and can solve a wide range of problems; on the other hand, resolution 

times can be prohibitive for pre-sizing actuators. This question is more meaningful in a context of 

optimization with a large number of parameters. 
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That’s why a method combining fast computation time and good accuracy would be very 

appropriate to the needs of designers during pre-sizing process. Several others methods have been 

proposed successfully. In particular, the Boundary Element Method (BEM) [6] is very interesting 

because the mesh of the whole domain is not needed. Other alternative methods using the FEM and 

the NRM have been already presented in [3], [7]. 

This paper proposes a hybrid method combining the BEM, for the surrounding region (the air), and 

NRM, for magnetic regions. The inclusion of magnetic sources was made in a particular original way 

which will be discussed in this paper. The Maxwell tensor method is used for torque and force 

calculations. The computation time is discussed in the conclusion section of this article. The approach 

will be compared with FEM and NRM in terms of computation times and accuracy. 

II. FORMULATION 

A. Maxwell's Equations for a Magnetostatic Problem 

Let us consider Maxwell's equations for a magnetostatic problem: 

jhcurl


 , (1) 

0bdiv 


. (2) 

For a non-linear magnetic material, we have: 

 chhb


 where )h( . (3) 

Without any surface currents, we have the following boundary conditions: 
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B. Reduced Scalar Potential Formulation 

The domain will be split into several simply connected domains in order to verify the existence of 

scalar potentials [2], [7].  

Let us represent the studied domain.  
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Fig. 1. Representation of a magnetostatic problem 

with: 

m : is a magnetic region that doesn’t contain any current, this region may optionally contain 

magnets; 



e : is a region outside that can accept the presence of electric currents. 

If there is current within a region, the total field can be decomposed [8], [9]: 

red0 hhh


 , (5) 

where the field 0h


 is the field created by electric current, i.e. the inductor field. The reduced field 

redh


 derives from a reduced potential. 

From (2) and (3), we get in each region: 

m    0gradhdiv mc 




(6) 

e    0gradhdiv e0 




From conservation of the tangential component of h


, it is possible to find a law that allow to take 

into account the magnetic sources. Let us define me  the boundary between the domains e  and m  

and t


 is the tangent vector to this boundary: 
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Fig. 2. Interface between regions and tangent vector. 

With (4) and (5), we get : 

    tgradhtgradh e0mc


  (7) 

By integrating the equation above a path ab  that belongs to the boundary me [10], [11], we get: 

  
ab
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This equation expresses the influence of source terms on the potential. 

III. BOUNDARY ELEMENT METHOD 

A. Fundamental Solution and Poles of the Function 

The equation (9) represents the integral equation deduced from the identity of Green. Where 00 y,x  

represent the pole of the function: 
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The coefficient  00 y,xh  varies in function of pole’s position. There are three possibilities: in the 

domain, out of domain or at the interface. 
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Equation (11) shows the Green’s function used in (9). This function represents an analytical 

solution of Laplace’s equation in a two-dimensional case: 
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B. Discretization of eC  and Matrix System 

The boundary eC  of the domain e  is discretized with boundary elements. 
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Fig. 3. Boundary discretisation. 
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For each element, we have two determine: the potential   and the magnetic flux   flowing 

through the element. To discriminate exact solution and numerical approximation, we will use the 

following notation:   iuy,x   and iC .   iq
n

y,x 



  for element “i”. Quantities are constants 

by element and we use a collocation approach, i.e. the writing of (9) at each element centroid. 

By discretizing the equation (10), we get: 
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This equation can be represented by the following matrix system: 

0QTUH BEMBEM   (14) 

where BEMU and BEMQ are vectors of dimension N  associated to following expressions:  
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T is an invertible matrix, we can write a relation linking the flux to the potential on the boundary: 

BEMBEMBEM UPQ   (16) 

 HTinvPBEM   (17) 

The matrix represented by equation (17) is a fully populated matrix. 

IV. RELUCTANCE NETWORK METHOD (NRM) AND COUPLING BOTH METHODS 

A. Generalities 

In order to take into account the physical behavior of materials and to develop a simple method 

without decreasing the accuracy of the results, we decompose the magnetic domain into bricks and we 

introduce a reluctance network inside each of them. This network can optionally contain sources of 

magnetomotive force. An originality of our approach is that bricks can be subdivised in order to 

obtain (if needed) a more accurate representation of the magnetic behavior. 
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Fig. 4. Introducing NRM in the two bricks of the magnetic domain. 

B. Development 

Let us suppose a region m , discretized and composed of M  bricks. Each brick k contain T  flux 

tubes connecting the central potential to the potentials of facets. ktq  is the flow through the facet t of 

the brick k , so the following relation can be written [12]: 

  ktkt0kktkt PFuuq   (18) 

The permeance of a tube can be calculated from its permeability kt , its length ktL  and its cross 

section ktS  [4]: 
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C. Potentials elimination 

By isolating the central potential in the equation (18): 
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D. Flux elimination 

Let us consider a facet shared by two flux tubes. The incoming flux comes in from a single tube, 

and comes out though the other one. This conservation of the flow can also be expressed by ensuring 

that the sum flux is equal to zero. 

For each facet kt : 
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The sum of both equations links potentials of two adjacent bricks. As the number of facets on 

equation are the same. It is also applicable on a facet shared by a brick and by an element treated with 

the boundary element method. 

E. Calculation of magnetomotive force 

According to Ampere's law and equation (8) and also assuming a uniform field into a subset of the 

domain bricks, we can deduce the magnetomotive force of a tube with: 

  

kt0k

c0kt dsthhF


 (24) 

where ds  represents the section of a flux tube. The field ch


 represents the contribution of the 

magnets (3) and 0h


 represents the field created by the coil. The field ch


 is easily taken into account 
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once it represents an intrinsic field in the region created by magnetic charges [13]. The following 

figure presents the method to introduce influence of coil into the reluctance network. 

 

Fig. 5. Coil modeling. 

j  is given by: 
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With (1), we get: 
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Then the field t0h  is independent of coil width. 

H

NI
h t0   ktLH   (27) 

F. Coupling between both methods 

The equation (21) can be rewritten by the following matrix system: 

NRMNRMNRMNRMborder FUPQ   (28) 

where NRMP  represents the permeance matrix, UNRM the potential, QNRMborder the flux flowing through 

the border of the device, and FNRM the magnetomotive forces created by sources. Let us notice that 

NRMP  is a sparse matrix and have more unknowns than equation. 

Thanks to (21) and (16), we can easily eliminate external flux unknowns and build a matrix 

representing the BEM-NRM coupling: 

NRMNRMNRMBEM FUP   (29) 

where NRMBEMP   is build using BEMP  and NRMP  matrix. 

V. CALCULATING FORCES 

We use the Maxwell stress tensor approach to compute forces and couples. The force on a simply 

connected domain is given by [1]: 
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LK  is a L  segment of a volume element K and n


 its normal vector: 
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Fig. 6. Normal vector. 

By discretizing equation (12), we get: 

  kl

k l

kl
2

k

klkl

k

klm Snb
2

1
bnb

1
F
~

 
















 (31) 

where klS  is the surface of the segment kl . 1kl   if the segment is within the boundary of the 

magnetic region.  

VI. RESULTS FEM AND BEM-NRM 

In this section, we present the comparisons between the FEM model and the BEM-NRM model of 

the actuator represented by figure 7. The purpose of this section is to validate the proposed method. 

All the results were obtained in static two-dimension case. The idea is to have a sufficiently large 

number of static results in order to introduce them into a tool where the study the dynamic behavior of 

the actuator is possible. However, the dynamic simulation is outside the scope of this work.  
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Fig. 7. An U actuator. 

We have the following geometrical characteristics: 

mmx 1001 ; 202x ; 103 x ; 501y ; 202 y ; 204 y ; 201z ; turnAATcoil .2000 . 



The magnet is represented by the following physical properties: T1Br  ; 1rµ . 

We use the fixed point method to solve the nonlinear system. The nonlinear ferromagnetic material 

is represented by an initial permeability and a saturation level in equation 13: 

1000µr  ; T2Js  , 
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The figure 8 shows the mesh and the field lines of the model BEM-NRM1. 

In order to present the comparisons, we have to consider the variation of the air gap 3y . The figures 

9 and 10 present the force as a function of the errors computed with MaGot (BEM-NRM) and Flux 

(FEM tool). BEM-NRM2 was obtained by subdivising each brick of BEM-NRM1 in four bricks. In 

figure 10, FEM1 and FEM2 represent FEM solutions using different mesh size. The idea is to study 

the evolution of the accuracy and the computation time. The reference solution is obtained by FEM 

with a very dense mesh. The error is divided by a reference value of force or torque in order to get a 

relative one. 

  

Fig. 8. Mesh and field lines of the model BEM-NRM1.  
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Fig. 9. Magnetic force developed by the actuator. 
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Fig. 10. Relative error in the force. 

In a similar way, the calculation of the torque has been studied. It shows the advantages of this 

approach compared to a pure NRM. In fact, the pure NRM model for rotational motion requires many 

efforts to be built by designers (due to the leakage fluxes). The figures 11 and 12 show the shape of 

the torque as a function of the errors. 
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Fig. 11. Torque developed by the actuator. 
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Fig. 12. Relative error in the torque. 

The computation time was measured on the same computing server, and same conditions for each 

150 different positions. Table I shows the computation time and number of elements for each test:  



TABLE I. FORCE AND TORQUE COMPUTATION TIME 

METHOD 
NUMBER OF ELEMENTS COMPUTATION TIME 

FORCE TORQUE FORCE TORQUE 

FEM1 1292 6670 03mn02s 05mn52s 

FEM2 1518 6794 03mn22s 06mn07s 

BEM-

NRM1 
48 48 08s 08s 

BEM-

NRM2 
192 192 02mn16s 02mn09s 

We observe that a very low number of elements and a very low computation time (BEM-NRM1) to 

get an accurate result. 

VII. EVALUATION OF A METHOD’S ROBUSTNESS 

The purpose of this section is to evaluate the method’s robustness. For the actuator from the 

previous section, we built four models using the program RelucTool [4], [5] based on NRM. 

Depending on the time taken for the design of these models, its accuracy is higher or lower. This fact 

can be highlighted looking at the design process. 

   

Fig. 13. Model NRM1.   Fig. 14. Model NRM2.   Fig. 15. Model NRM3. 

 

Fig. 16. Model NRM4. 

Models NRM1 and NRM2 are simple and apparently can be constructed quickly. The reluctances 

airgap11 and 12 (NRM2) are represented by three parameters: inner radius, outer radius and angle. 

With the evolution of the air gap, field lines are distorted, so it is difficult to define these parameters. 



For the results presented below we set the parameters observing the results obtained with the FEM, 

and then adjusting these parameters. A FEM model built using Flux is show in figure 17. 

 

Fig. 17. FEM Model. 

The model NRM2 is closer to the reference (FEM) than the model NRM1 because of the  increase 

of the reluctance airgap11 and airgap12. The NRM2 model represents better the leakages flux. 

Leakages fluxes around the magnet are also important and this is why the model NRM3 was built. 

Despite the positive evolution of these results, they are not enough satisfying. Then a new model 

(NRM4) is constructed by studying the actuator in more detailed and, therefore, by again spending 

more time of development. According to figure 18 and 19, we get good results with this last model 

(NRM4). In comparison with this complex procedure, the development of our NRM-BEM approach 

is very simple and still more accurate. 
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Fig. 18. Magnetic force developed by the actuator. 
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Fig. 19. Relative error in the force. 

During the process of designing, we are often faced with the need to optimize the structures. This 

means that the models must be robust to parametric variations. So, we changed two parameters of our 

actuator: mmx 601 ; 153 x . The objective here is to evaluate the robustness of the models. 
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Fig. 20. Magnetic force developed by the actuator changing parameters x1 and x3. 
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Fig. 21. Relative error in the force. 

 The results are presented in figure 20 and 21, and show that the change of some parameters 



significantly decrease the accuracy of the NRM models. However, the BEM-NRM results remain 

accurate. We can conclude on the good robustness of our new approach. 

VIII. CONCLUSION 

A hybrid BEM-NRM is has been developed and adapted to the actuators pre-sizing. Magnetic 

sources are taken into account in a very simple way. The goal of this paper is to present first results of 

this original approach. The results presented here demonstrate that our method provides very fast and 

quite accurate computations compared to FEM. It is very important for optimization tasks which are 

currently very expensive in terms of computation time. 

The comparisons between the BEM-NRM and NRM show several advantages of the method we 

propose. Although obtained results are not practically instantaneous as in the case of NRM, the 

computational effort is very small. The modeling of the device is more efficient because user does not 

need to worry about leakages flux. As showed in figure 21, BEM-NRM is more robust than NRM in 

terms of geometric variations. 

The process of pre-sizing electric actuators asks for a fast, accurate and robust method. In this 

process, we do not have time for long but accurate calculations as FEM. As discussed in Section VII, 

the construction of a NRM model is long and can requires a specific expertise. Additionally, the FEM 

is often used to study the behavior of leakage flux before the construction of the model NRM. So we 

need to combine both methods and two computational tools which can become long. The proposed 

method is a good compromise between all requirements.  
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