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SKOROHOD AND STRATONOVICH INTEGRATION IN THE PLANE
KHALIL CHOUK AND SAMY TINDEL

ABSTRACT. This article gives an account on various aspects of stochastic calculus in the
plane. Specifically, our aim is 3-fold: (i) Derive a pathwise change of variable formula
for a path x : [0,1]? — R satisfying some Holder regularity conditions with a Holder ex-
ponent greater than 1/3. (ii) Get some Skorohod change of variable formulas for a large
class of Gaussian processes defined on [0, 1]%. (iii) Compare the bidimensional integrals ob-
tained with those two methods, computing explicit correction terms whenever possible. As
a byproduct, we also give explicit forms of corrections in the respective change of variable
formulas.
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1. INTRODUCTION

Stochastic calculus for processes indexed by the plane (or higher order objects) is notori-
ously a cumbersome topic. In order to get an idea of this fact, let us start from the simplest
situation of a smooth function x indexed by [0,1]? and a regular function ¢ € C*(R). Then
some elementary computations show that

[5()0(1')]5152;:‘,1:‘,2 = / Sp(l) (flfu;v) duvIu;v +/ (,0(2) (flfu;v) dul'u;vdvl'u;va (]-)
[s1,82]%[t1,t2] [s1,82] X [t1,t2]

forall 0 < s; < s9 <land 0 <t <ty <1, where we have set [0y]s,s,:4,¢, for the planar
increment of y in the rectangle [sq, so] X [t1, t2], namely

[53/]8182;151152 = Ysosto = Ysiste — Ysost + Ysiity - (2>

This simple formula already exhibits the extra term f g0(2) (uw) dyx dyx with respect to
integration in R, and the mixed differential term d,x d,x is one of the main source of com-
plications when one tries to extend ([II) to more complex situations.

Moving to stochastic calculus in the plane, generalizations of () to a random process
x obviously starts with change of variables formulas involving the Brownian sheet or mar-
tingales indexed by the plane. Relevant references include [3] 13, [19], and some common
features of the formulas produced in these articles are the following:

e Higher order derivatives of f showing up.

e Mixed differentials involving partial derivatives of x and quadratic variation type
elements.

e Huge number of terms in the formula due to boundary effects.

This non compact form of stochastic calculus in the plane has certainly been an obstacle to
its development, and we shall go back to this problem later on.

Some recent advances in generalized stochastic calculus have also paved the way to change
of variables formulas in the plane beyond the martingale case. One has to distinguish two
type of contributions in this direction:

(a) Skorohod type formulas for the fractional Brownian sheet (abbreviated as fBs in the
sequel) with Hurst parameters greater than 1/2 have been obtained in [I7] thanks to a com-
bination of differential calculus in the plane and stochastic analysis tools inspired by [1]. A
subsequent generalization to Hurst parameters smaller than 1/2 is available in [I8], invoking
the notion of extended divergence introduced in [I12]. Notice however that the extended
divergence leads to a rather weak notion of integral, and might not be necessary when the
Hurst parameters of the fBs are greater than 1/4.

(b) The article [4] focuses on pathwise methods for stochastic calculus in the plane, and
builds an analog of the rough paths theory for functions indexed by the plane. In particular,
generalizations of ([Il) with Stratonovich type integrals are given for functions with Holder
regularity greater than 1/3. The construction is deterministic and general, and only requires
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the existence of a stack of iterated integrals of x called rough path, denoted by X. One can
show in particular that X exists when x is a {Bs.

The current article is a contribution to these recent advances on generalized stochastic
calculus in the plane. Namely, we focus on 3 different problems: (i) A complete exposition
of the Stratonovich type change of variables formula obtained through rough paths tech-
niques. (ii) Generalization of [17] to a fairly general Gaussian process z. (iii) Comparison
of Stratonovich and Skorohod formulas, analogously to the 1 dimensional situation handled
in [10]. Before we further comment on these contributions, we now describe our main results
more specifically.

1.1. Some general notation. Before we can turn to the description of our main results,
we introduce some general notation concerning differential calculus in the plane. Let us
mention first that we shall separate as much as possible the first and the second direction of
integration, which will be respectively be denoted by direction 1 and direction 2. Thus the
evaluation of a function f : [0, 1]% — R will be denoted by fs,...s,:t,.t,- We also set djox for
the differential d,,x and dyx dsx for the differential d,x d,z. In fact, since the differential
element dyx dyz is essential for our purposes, we further shorten it into djsx.

Another notation which will be used extensively throughout the paper is the following:
we set y = ¢(x), and for all j > 1 we write ¢’ for the function o) (z). With those first
shorthands, equation (J) for a smooth function z : 2 — R can be written as

5y—//y d12x+//y diyr. (3)

This kind of compact notation is of course useful when cumbersome computations come into
the picture.

Let us anticipate a little on the notation for planar increments which will be introduced at
Section 3.1k we denote by Py the set of R-valued functions involving k variables in direction
1 and [ variables in direction 2, satisfying some vanishing conditions on diagonals. We mostly
deal with spaces of the form P, 5 and introduce some Hélder norms. Namely, if f € Pao(V),
we set

||f||71;vz = Sup {| |f8182;t1t2| ; S1,82,1t1,12 € [07 1]} )

So — 81‘71‘t2 — t1|72

and we denote by P;,7* (V) the space of increments in P, (V) whose || - ||,,;, norm is finite.

1.2. Stratonovich type formula in the Young case. We assume here that z : [0,1]> — R
is a path such that the rectangular increments dx of x satisfy 0z € P,y" with 71,7, > 1/2,
which corresponds to the case where integration with respect to x can be handled by Young
techniques in the plane. Our change of variable formula in this situation relies on the
definition of 2 increments x"? x%* € PJ%"* defined as follows (see also Definition for

further information):
://dlgl’, and Xi;Q://dlxdgl',
1.J2 1.J2

where the integrals can be understood in the Young sense.

With these notations in hand, the change of variables formula can be read as:
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Theorem 1.1. Let x : [0,1]> = R be a path such that 6x € Py5™ with 1,72 > 1/2. Then

the increments
z—//yd12x andz—//ydmx (4)

are well defined in the 2d-Young sense. Moreover:
(i) Both z' and 2* can be decomposed as:

P =ytx 4t (5)

where p*, p* are sums of increments with double reqularity (2v1,2%2) in at least one direction.

2t = yl x12 + pl, and =z

(ii) Provided xz is a smooth path, the increments z' and 2* are defined as Riemann-Stieljes
integrals.

(iii) If 2™ is a sequence of smooth functions such that the related increments x™%2 x"li2
converge respectively to x%% and x12 i 73“””2 then 22", 2%™ also converge respectively to 2!

and 22,

, X

iv) Some Riemann sums convergences hold true: if wl and 2 are 2 partitions of [sy, sa] x
g n n
[t1,t2] whose mesh goes to 0 as n — oo, then

§ — 1 12 _ 2
nh_{ilo yaz,Tg O—Zo-l+177-]7-]+1 = Zsisastity) and nll_>IIOlo 2 : ya iy Rowoipmimign . Psisaitite” (6)

1
’TI',,L ,7'(' Uur ,7'('

(v) The change of variables formula [B)) still holds true when integrals are understood in the
Young sense.

Observe that this theorem is not new and can be easily recovered from considerations
contained in |7, [15]. However, we express it here in terms which allow easy generalizations
to Skorohod type integrals and to rough situations as well.

1.3. Stratonovich type formula in the rough case. Consider now a function x whose
rectangular increments dx only satisfy dz € 73’“”’2 with 1,7, > 1/3. The definition of 2!, 22
as in (4)) and the equivalent of formula (I]) require now a huge additional effort. In particular,
the correct definition relies on the introduction of a collection of iterated integrals of x (called
rough path above x and denoted by X by analogy with the 1-d case) that we proceed to
describe.

The reader will soon observe that the definition of X involves a whole zoology of objects
which are somehow tedious to describe. In this article we shall index those objects by the
directions of integration, trying to separate as much as possible direction 1 and direction
2 as we already did for the first order integrals x%? and x?. Moreover, when one tries to
define iterated integrals in the plane, the following extra facts have to be taken into account:
(i) The differentials with respect to = can be in one direction only (d;z or dyx) or bidirec-
tional. This reflects into some indices 0 when we don’t integrate in a given direction, and 1 or
2 otherwise. Furthermore, as already mentioned, our bidirectional differentials can be either
of type diaz or dyx dax = djsx. We keep our convention of indices 1; 2 for differentials of the
type diox and 1;2 for differentials of the type dijsx. As an example of these conventions, we
define x':%% € Py, in the following way for a smooth function z:

A A A S92 to o2
11,02 _ : 1020
X = /dlx/dﬁ:p, that is x5, —/ / (/ d1%1;t1) A1 Toyir, A2T gy, -
1 2 s Jty 1
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(i1) We manipulate objects which are either iterated integrals or products of iterated inte-
grals. We indicate that one starts a new integral in one specific direction and gets a product
of increments by placing a new [ sign, and this is translated by a - in the indices of x. For

instance, modifying our previous example, we define x 1102 ¢ Ps 2 in the following way for a

smooth function x:
S92 S3 to
= / dlxol;tl / / d1$02;7—1d2$0—2;7—1.
51 52 t1

11,02 _ . 1-1;02
X —/1d13:/1/2d12:c, that s xg & i

Notice that those breaks in integration can occur at different steps in each direction 1 or 2.
The resulting overlapping integrals will be an important source of technical troubles in the
remainder of the paper.

With these preliminary considerations in mind, our assumptions on the function x are of
the following form:

Hypothesis 1.2. The function x is such that x € Py5" with y1,v2 > 1/3. Moreover, the
following rough path X can be constructed out of x:

Increment | Interpretation | Regularity || Increment | Interpretation | Regularity
x12 f1 fz dip (71, 72) x'? f1 f2 dise (71,72)
x11:02 Jidvx [,diox | (271,72) Xl%;o? Jidwa [, disr | (291,7)
x%2 fodor [ disz | (71,272) X122 Jodow [y dis | (11,27)
x 22 f1 fz dypxdiox | (271,272) x!122 f1 f2 dyprdisr | (271,27)
x1hi22 f1 f2 disrdizr | (271,272) x!122 f1 fz digrdist | (271,27)

In the table above, all increments belong to Pao, so that a regularity («, 5) means that the
increment lyes into Py ’25 . Furthermore, the stack X is a geometric rough path, insofar as
there exists a reqularization x™ of x such that lim,, . ||z — "4, ~, = 0 and such that all the
integrals in X", constructed out of ™ in the Lebesque-Stieljes sense, converge with respect
to their natural respective norms in Py5"%, Pyy "2, PI5» or Py3*2. Note that the natural

Hélder norm of a rough path is denoted by N in the sequel.

Remark 1.3. As we shall see at Section 5 Hypothesis is not completely sufficient in order
to settle a satisfying integration theory with respect to z. In fact the rough path X should
also include higher order increments like x''1922 or x115222 (and other extra terms). We
have only stated Hypothesis here in order to keep our exposition into some reasonable
bounds.

Now we can state our Stratonovich integration theorem in the rough case, which mimics
Theorem [Tt

Theorem 1.4. Let x : [0,1]* — R be a path such that 6x € P3y™ with 71,72 > 1/3 and
assume the further rough path Hypothesis [L3. Consider a function ¢ € C$(R). Then the
increments z* and z* given by @) are well defined as continuous functions of the rough path
X. Moreover:

(i) The increment z* can be decomposed as:

1 1,12 2 11;02 2 .,01;22 2 . 11;22 3 11;22 1
=y X4+ y X Ty X Tyt x0Tyt T

(7)
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and the increment z* admits a decomposition of the form

11;22 4 11;22 2
iyt

where pt, p* are sums of increments with triple reqularity (371, 37v2) in at least one direction.

2 2 1:2 3 ., 11;02 3 .,01;22 3
Zr=ytxtHytx +y°x +y°x

(ii) If ™ is a sequence of smooth functions such that the related rough path X™ converges to

X, then zb™ 22" (defined in the Lebesgue-Stieljes sense) also converge respectively to z' and
2

z°.

(iii) The change of variables formula @) still holds true when integrals are understood in the

rough path sense.

Obviously, Theorem [L.4] would be of little interest if we could not apply it to processes of
interest. To this regard, our guiding example will be the fractional Brownian sheet (fBs in
the sequel). Let us recall that this is a centered Gaussian process x defined on [0, 1)?, with
a covariance function Ry, s,.t,1, = E[Ts, .4, Tsy:,] defined by

1
RSIS%MQ — Z (|$1|2ﬁ” + |82|2'y1 o |51 _ 82|271) (|t1|272 + |t2|2v2 . |t1 _ t2|272) ’ (8)

where the Hurst parameters 71, 7 lye into (0, 1). Many possible representations are available
for the fBs, among which we will appeal to the so-called harmonizable representation (see
relation (8G) below for further details). This allows a natural approximation of x by a
sequence of smooth processes 2" thanks to a cutoff in frequency, and we recall the following
convergence result established in [4]:

Proposition 1.5. Let x a fBs with Hurst parameters v; > 1/3, for j =1,2. Define the reg-
ularization " of x given by a frequency cutoff on B(0,n) in the harmonizable representation
of x. Then:

(i) The family of iterated integral X" defined in ([L2)) associated to x™ fulfills the relation
limy, o0 EINP(X™ — X™)] = 0 for all p > 1, where the norm N is alluded to at Hypothe-
sis[L2. The limit object X is called rough sheet associated to x.

(ii) Theorem 17 applies to the fBs x.

As the reader might imagine, Theorem [[.4] can also be applied to a wide range of Gaussian
and non Gaussian processes. We focus here on fBs for sake of simplicity.

1.4. Skorohod integration. One of the main issue alluded to in this article is a comparison
between Stratonovich and Skorohod type change of variable formulas when x is a Gaussian
process exhibiting some Holder regularity in the plane. Towards this aim, our global strategy
is to use our Theorems [[LT] and [[4] and compute corrections between Stratonovich and
Skorohod type integrals.

We first focus on the Young case, assuming the same regularity conditions as in Section [L.2L
We are then able to handle the case of a fairly general centered Gaussian process x whose
covariance function R satisfies a factorization property of the form

E[xsl;hISz;tz] = RS182;t1t2 = Rl Rz%lty (9)

51892
for two covariance functions R', R? on [0,1] and such that R', R? € C**([0,1]?) (which

ensures that x is (71, 72)-Holder continuous with ~1,v2 > 1/2). Notice in particular that the
fBs covariance function (8] satisfies condition (3.
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The standard growth assumptions on f in order to get a Skorohod formula for f(x) should
also be met. They will feature prominently in the sequel, and we proceed to recall them
now:

Definition 1.6. Let k € N, we will say that a function f € C*(R) satisfies the growth
condition (GC) if there exist positive constants ¢ and \ such that

1 2
A< d < cetll NeEeRr. 10
Ty () " SO e Jorate o
With these notations in hand, and denoting quite informally the Skorohod differentials by
d°® (see Section [G.I Tl for further explanations), we can summarize our results in the following:

Theorem 1.7. Assume x is a centered Gaussian process on [0, 1]* with a covariance func-
tion satisfying (@). Consider a function ¢ € C*(R) satisfying condition (GC). Then the

mcerements
= [ [ ant o= [ [ (11)
1J2 1J2

are well defined in the Skorohod sense of Malliavin calculus. Moreover:

(i) Some Riemann convergences hold true: if ™\ and 72 are 2 partitions of [sy, sa] X [t1, 1]
whose mesh goes to 0 as n — oo, then

— 17<>
nll_{l;lo § ycrl T] O'»LO'Z+1,TJT]+1 - ZS1sz;t1t2 (12)
wl w2
lim Y2 o0 o 6T = 22 (13)
oo 04T 240855t iti41 14sisiy1st; s189;t1t2)

ThTR
where o stands for the Wick product in the left hand side of the relations above, and where
the convergence holds in both a.s and L*(Q) sense.

(ii) The change of variables formula for y = f(z) becomes

OYsyt = Zi;’f+23t //yuvlel doR2 + //yu SR doR2 S,y
+1 / / VR R S + / / i RVRZ AR dyR2. (14)
21J27" 417"

2.0

(iii) Ezplicit corrections between z', 2% and z'°, z*° can be computed (see relations ([T4)

and (82)).

Finally, let us move to the Skorohod change of variable in the rough situation. For sim-
plicity of exposition, we have restricted our analysis to the fractional Brownian sheet, mainly
because our computations heavily hinges on the explicit regular approximation sequence x™
given by the harmonizable representation of fBs (similarly to the construction of the rough
path above z). The Skorohod change of variable (consistent with the formulas obtained
in [18]) and Skorohod-Stratonovich comparison we obtain in this case are summarized as
follows:

Theorem 1.8. Assume x is a fractional Brownian sheet on [0,1)?, with v; > 1/3 for j =
1,2. Then the increments z°, 2*° of equation {) are well defined in the Skorohod sense of
Malliavin calculus. Moreover:
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o

(i) Both 2%° and 2*° can be seen as respective limits of z™Y° and z™*°, computed as in

Theorem [L7 for the regularized process x™.
(ii) For all f € C%(R), the change of variables formula (I4) still holds, and can be read as:

SYsit = 27° + 22 + 2917, //y?w u? P27 dudo + //y;jw w2 @Sy, du
1J2 1J2

+71//y2;vu2“_1v272 Exu;vdu+7172//yﬁ;vu‘”l_lv%_ldudv. (15)
1J2 1J2

2.0

(iii) Eaxplicit corrections between z', z* and z"°, 2*° can be computed (see relations (I02)

and (II0) ).

1.5. Further comments. As the reader might have noticed, our paper gives a rather com-
plete picture of pathwise Stratonovich and Ité-Skorohod integration for processes indexed by
the plane. In the case of pathwise integration, we take up the methodology introduced in [4],
based on a highly nontrivial extension of the rough path theory, and compute explicitly all
the terms involved in our Stratonovich expansion. We wished the exposition to be as clear
and self-contained as possible, which explains the length of Sections M and [l

In order to put our strategy for the Itd case into perspective, notice that 2 types of
methodologies are usually available for changes of variables in case of a Gaussian process x:

(a) Define a divergence type operator 6° for = and proceed by integration by parts on
expressions like E[0f(z) G|, where G is a smooth functional of x. This is the strategy

invoked e.g. in |11 [10].

(b) Base the calculations on the pathwise change of variables formula of type (d). This
formula is generally related to some converging Riemann sums like in Theorem [[LT] and one
can compute corrections between Wick and ordinary products in relation (@l). This is the
method implicitly adopted in [I7] and we also resort to this second strategy here, which
allows to derive our Skorohod formula and its comparison with the Stratonovich formula at
the same time.

Unfortunately, the Wick corrections strategy does not work for the rough case, even in the
explicit situation of a fractional Brownian sheet. This mainly stems from the fact that
convenient Riemann sums related to formula (1) are not available (so far) in the case of
Theorem [[L4l This drawback led us to change our strategy again, and proceed by regulariza-
tion. Indeed, as mentioned before, one can come up with an explicit regular approximation
x" of x. For this regularization, we can apply Theorem [L.7] and get some Ito6-Stratonovich
corrections. Invoking the fact that 6° is a closable operator, we can then take limits in our
operations as n — 0o. This allows to compare the changes of variables formulas (II) and (I3),
but the interpretation in terms of Riemann-Wick sums is obviously lost in this case. Notice
that an approximation procedure (expressed in terms of the extended divergence operator)
is also at the heart of [I§] for irregular {Bs.

Finally, let us say a few words about possible extensions of our work:

e Generalizations of Skorohod’s change of variable to a Gaussian process without the fac-
torization hypothesis (@) on the covariance function of = are certainly possible. However,
at a technical level, one should be aware of the fact that the analysis of mixed terms like



SKOROHOD AND STRATONOVICH IN THE PLANE 9

I, [y i R2 di R}, 3y, would require tools of Young integration in dimension 4. These tech-
niques have been used e.g in [6], and the elaboration we need would certainly be cumbersome.
We have thus sticked to the factorized case for R for sake of readability.

e As mentioned before, our strategy for the Skorohod formula in the rough case relies heavily
on a suitable regularization of x. Instead of treating the explicit {Bs example, we could have
stated some general approximation assumptions satisfied in the fBs case. Once again, we
have chosen to specialize our study here for sake of clarity. The general case might be handled
in a subsequent paper, and we also hope to design a strategy based on Riemann-Wick sums
in the next future.

Here is how our article is structured: We recall some basic notation of algebraic integration
in dimension 1 at Section ], and extend it to integration in the plane at Section The
Stratonovich change of variable formula is handled at Section [ for the Young case and at
Section [l in the rough situation. We then move to Skorohod type formulas at Sections
and [1 respectively for the regular and rough cases.

2. ALGEBRAIC INTEGRATION IN DIMENSION 1

We recall here the minimal amount of notation concerning algebraic integration theory in
R, in order to prepare the ground for further developments in the plane. We refer to [8] [9]
for a more detailed introduction.

2.1. Increments. The extended pathwise integration we will deal with is based on the
notion of increments, together with an elementary operator ¢ acting on them. The algebraic
structure they generate is described in [8, [9], but here we present directly the definitions
of interest for us, for sake of conciseness. First of all, for a vector space V' and an integer
k > 1 we denote by Cx(V) the set of functions g : [0,1]* — V such that g;,..,, = 0 whenever
t; = t;11 for some i < k — 1. Such a function will be called a (k — 1)-increment, and we set
Ci(V) = Up>1C, (V). We can now define the announced elementary operator 6 on Cg(V'):

k+1

6:Cu(V) = Cnt(V),  (09)ttiss = D (D) " Gupiny (16)

1=1

where ; means that this particular argument is omitted. A fundamental property of §, which

is easily verified, is that §6 = 0, where 4 is considered as an operator from Ci (V') to Cpi2(V).
We denote ZCi (V') = Cx(V') N Kerd and BCy (V') = Cr(V) N Imd.

Some simple examples of actions of 9, which will be the ones we will really use throughout
the paper, are obtained by letting g € C; and h € Cy. Then, for any s, u,t € [0, 1], we have

5gst = gt — Gs; and 5h’sut - hst - hsu - hut~ (]-7)

Furthermore, it is easily checked that ZCj.1 (V') = BCx(V) for any k& > 1. In particular, the
following basic property holds:

Lemma 2.1. Let k > 1 and h € ZCy1 (V). Then there exists a (non unique) f € Cr(V)
such that h =4 f.

Lemma [21] can be rephrased as follows: any element h € Co(V') such that 6h = 0 can be
written as h = §f for some (non unique) f € C;(V). Thus we get a heuristic interpretation
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of dle,(vy: it measures how much a given l-increment is far from being an exact increment
of a function, i.e., a finite difference.

Notice that our future discussions will mainly rely on k-increments with &£ < 2, for which
we will make some analytical assumptions. Namely, we measure the size of these increments
by Holder norms defined in the following way: for f € Co(V) let

fs
1l = sup 2t

stefoa] |t — s[#

and  Cy(V) = {f € Co(V); [[fllu < o0} (18)

Obviously, the usual Holder spaces C{'(V) will be determined in the following way: for a
continuous function g € C;(V'), we simply set

g1l = 119911, (19)

and we will say that g € C{'(V) iff ||g||, is finite. Notice that || - ||, is only a semi-norm on
C1(V). For h € C3(V) set in the same way

‘hsut|
h = sup

1l = inf{z 1Rillpoipis B =" i, 0 < pi < u} :

where the last infimum is taken over all sequences {h; € C3(V')} such that h =) h; and for
all choices of the numbers p; € (0,2). Then || - ||, is easily seen to be a norm on C3(V'), and
we set

(20)

Cs(V) :={h € C3(V); [[Af], < o0}
Eventually, let C;" (V) = U,51C4(V), and notice that the same kind of norms can be consid-
ered on the spaces ZC3(V), leading to the definition of some spaces ZC4 (V) and ZC37 (V).

With these notations in mind the following proposition is a basic result, which belongs to
the core of our approach to pathwise integration. Its proof may be found in a simple form
in [9].

Proposition 2.2 (The A-map). There exists a unique linear map A : ZCat (V) — CyT (V)
such that

In other words, for any h € C37 (V) such that 5h = 0 there exists a unique g = A(h) € Cy (V)
such that 6g = h. Furthermore, for any u > 1, the map A is continuous from ZC5(V') to

CY (V) and we have
1

20— 2

Let us mention at this point a first link between the structures we have introduced so far
and the problem of integration of irregular functions.

Corollary 2.3. For any 1-increment g € Co(V') such that 6g € C3*t, set §f = (Id — Ad)g.
Then

[AR]], <

1Pllu,  h€ ZC5(V). (21)

‘Hst‘—>0

n—1
6.f8t - hm E gti tit1
=0
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where the limit is over any partition Iy = {to = s,...,t, =t} of [s,t], whose mesh tends to
zero. Thus, the 1-increment 0 f is the indefinite integral of the 1-increment g.

2.2. Products of increments. For notational sake, let us specialize now to the case V = R,
and just write C for C](R). The usual product of two increments considered on (C.,d) is
obtained by gluing one variable in each increment (see e.g [8, [Q]):

Definition 2.4. For g € C, and h € C,,, we denote by gh the element of C,y,m—1 defined by
(GR)t1rtmins = Gtrrotn Pty ooy tman—1 € [0, 1]. (22)
However, another product (defined without gluing of variables) turns out to be useful for
further computations in the plane. This product is called splitting and is defined below:
Definition 2.5. For g € C,, and h € C,,, we denote by S(g, h) the element of C,, ®C,, defined
b
! 1S(g, )], b = Gttt i tigns Tt € 0, 1]. (23)

.....

Notice that S(g,h) can also be considered as an increment in Cpipm,, except that it is not
required to vanish when t, = t,.1.

The splitting operation will have to be inverted at some point. The inverse operation is
called gluing:

Definition 2.6. For n,m > 1, we say that f is an element of M,, ., if it can be written as
a finite linear combination of the following type:

ftl ..... tntm = Z Oé] gil ..... tn h’gn+1 ..... tmitn? thh aj € Rv g] c Cnv h'] S Cm (24)

With these definitions in mind, let us remark that if f € M,,,, is simply of the form
ftl ~~~~~ tn+m = gtl 77777 tn hthrl ----- thrn Wlth g E CTL a’nd h E Cm7 then G(f) = g h

We now recall some elementary properties concerning products of increments:

Proposition 2.7. The following differentiation rules hold true:
(1) Let g € C; and h € Cy. Then gh € Cy and

d(gh) = 0gh + goh. (25)

(2) Let g € C; and h € Cy. Then gh € Cy and
d(gh) = —dgh+ gdh. (26)

(3) Let g € Cy and h € Cy. Then gh € Cy and
d(gh) =0gh + goh. (27)

Proof. We will just prove (25), the other relations being just as simple. If g, h € C;, then
0(9M)]s = gihe = gshs = gs (e = hs) + (91 = 9s) . = g (6h) 4 + (09) 5 P

which proves our claim.
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2.3. Iterated integrals as increments. Iterated integrals of smooth functions on [0, 1]
are obviously particular cases of elements of Cy, which will be of interest for us. A typical
example of this kind of object is given as follows: consider f/ € C° for j = 1,...,n and
0 <s1 <389 <1. Forn >1, we denote by S,(s1, s2) the simplex

Sn(s1,82) ={(o1,...,0,) €10,1]"; 51 <01 <+ <0, < S2} (28)

S22 LOn—1 02
M= [ e = [ [Ca (20)
Sn(s1,s2) s1 s1 s1

We now introduce some notation for iterated integrals which is much too complicated for
integration in dimension 1, but turns out to be useful for integration in the plane. Indeed,
we can alternatively denote the increment h'" defined at (29) by

b =1d, . d(f . f™), or b= /dfl---df", (30)

n times

and we set

where the integration on the n-dimensional simplex is implicit in both cases. We shall also
need a small variant of these conventions: we set

Id,....Id, d,....d(f' ..., f") = f1~-~fj/dfj+1-~-df", (31)
7 times n—j times
where all the products are understood as products of increments as in Definition 2.4

With these conventions in mind, the following relations between multiple integrals and
the operator ¢ will also be useful. The reader is sent to [9] for its elementary proof.

Proposition 2.8. Let f € C{° and g € C?°. Then it holds that

5g:/dg, 6(/fdg):0, 5</dfdg):5f5g,

5 ([, d)(f ., ) IZ[d,...,d](fl,...,fj) d, ... dl(f7 ).

and

3. ALGEBRAIC INTEGRATION IN THE PLANE

This section is devoted to recall the elements of algebraic integration necessary to define an
integral of the form f[o 12 f(z) dx for a Holder function z in the plane with Holder exponent

greater than 1/3. This requires a tensorization of the algebraic structures defined in the
previous section, plus some extra tools that we proceed to introduce.

3.1. Planar increments. We consider here increments of a variable s (also called direction
1) and a variable ¢ (also called direction 2), with (s,t) € [0, 1]>. For a vector space V', we set

Pra(V) ={f €C([0, 1" x [0,1]5 V); foyospstst, = 0 Whenever s; = s;4q or t; =tj,1}.
In the particular case V = R, we simply set Py ;(R) = Py.
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Some partial difference operators §; and d, with respect to the first and second direction
can be defined as in the previous section. Namely, for f € Py (V) we set
k+1
51 . Pk,l(v) — Pk-i—l,l(v)? 51981"'8k+1;t1'“t1 - Z(_l)k_igs1---§imsk+1;t1~~~tla
i=1
and we define 0, similarly. The planar increment ¢ is then obtained as 6 = 01 d. Notice that
for f € P11 we have
6.f8182;t1t2 = fsg;tg - .fsg;tl - .fsl;tg + fsl;tp
which is the usual rectangular increment of a function f defined on [0,1]? and is consistent
with formula ([2). Let us label the following notation for further use:

Notation 3.1. For j = 1,2, we set Z;Py; = Py, Nker(d;) and B; Py = Py NIm(d;). We
also write ZPy; for Py Nker(d) and BPy, for Pr, NIm(d).

As in the 1-d case, the Holder regularity of planar increments is an essential feature of our
generalized integration theory. On Pso(V) and Ps 3(V), it is measured by a tensorization of
the Holder norms defined at (I8) and (20). Namely, if f € Pya(V), we set

|f$182't1t2|
. ] 81,89, t, b € [0, 1

||f||’Yly’Y2 sup { |32 — 81|71|t2 _t1|,\/2 ; 81,582,101, 12 [ ] 5
and we denote by Py57*(V) the space of increments in Py5(V) whose || - [5,;, norm is

finite. Along the same lines, we say that h € P35 (V) if there exist 1, ra, p1, p2 such that
Kj+pj =75, =12 and

|h515253-t1t2t3|
su ’ i 81, S9,83,t1,t9,t3 € [0, 1] p < 00.
p{|82—81|'{1|83—32|p1|t2_t1|’i2|t3—t2|p2 3 ©1y92y,93,01,02,03 [ ) ]

Similar norms, omitted here for sake of conciseness, can be defined on P 5(V') and P (V).

For Holder continuous increments with regularity greater than 1, one gets the following
inversion properties, which are a direct consequence of the one dimensional Proposition 2.2}

Proposition 3.2. Let v;,v, > 1. Then:

1) There exist two maps Ay @ BiPy" — Pyy™ and Ay : ByP3y" — Py such that

( p 3,3 3,2

0;\; =1d. These maps satisfy the bound 1A (R )H%m < ey, 1|y, for j =1,2.

2) There exists a map A : BPJY" — PJY"? such that SA = Id. This map satisfies the bound
3,3 2,2

[A) 14172 < a1l -

We do not include the proof of this proposition for sake of conciseness. Let us just mention
that (as the reader might imagine) we have A = A;A,. It should also be observed that some
2-dimensional Riemann sums are related to the sewing map A, echoing Corollary 23k

Proposition 3.3. Let g € Pao satisfying the following assumptions:
01g € Pgy",  bg €PRYY,  dg € Py,
for v1,7v2 > 1, where x denotes any kind of Hélder reqularity. Then there ewists f € PL!
such that
Of = [Id = Ay&y] [Id = Agdo g, and  Wm > Goioryinryer = O fsranitata;

|7|—0
0§, TjET
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where 7 designates a family of rectangular partitions of [s1, sa] X [t1,ts] whose mesh goes to

0.

3.2. Products of planar increments. This section is a parallel of Section 2.2] and we
mainly deal here with a state space V' = R. We describe the different conventions on
products of 2-d increments which will be used in the sequel, starting from the equivalent of

Definition 2.4t

Definition 3.4. For g € Py, », and h € Py, m,, we denote by gh the element lying in the
space Ppy+mi—1na+ma—1 defined by

(gh)317~~~5n1+m171§t17---7tn2+m271 - gsl,---snl it1,5lng h’snl yeesSny4my—1itng s lng+mo—1°

We now define the equivalent of splitting for increments in P:

Definition 3.5. Let g € Py, n, and h € Py m,. Then:
e The partial splitting S1(g, h) is the element of Cyimy—1(Cny @ Cpny) defined by

[Sl (ga h)]s

e The partial splitting So(g, h) is the element of Cyymy—1(Cny @ Crny) defined by

15---8nq+mq ;t17...7tn2+m2,1 - gslw--snl E1seestng h'5n1+17---5n1+m1 itng 7---7tn2+m2—1 .

[52(g7 h)]317~~~5n1+m1*1§t17~~~7t7l2+7n2 - 981,...sn1;t1,...,tn1 hs”l""s”1+"”1*1;t”2+1"“’t”2+””2.
e The splitting S(g, h) is the element of Cp; @ Cpny (Cry @ Criy) defined by
[Sl (97 h)]s

Notice that inverse operations of splittings can also be defined for planar increments. For
sake of conciseness, we let the patient reader generalize Definition in order to get the
definition of gluing GG, G and G for planar increments.

15--Sny+my §t17---7t7l2+7n2 o gsl""s”l it ""’t”2 hs”l F1see-Sng+my ;t”2+1"“’t”2+””2 :

We close this section by introducing a last product of increments which is labeled for
further computations.

Definition 3.6. Let g € Pyy and h € Pia. Then go h is the increment in Pao defined by

[g © h]slsQ;tltz = Ysis05t1 hsl;tth'

3.3. Iterated integrals as increments in the plane. The relationship between iterated
integrals and increments in the plane is crucial for us. Generally speaking, an iterated

integral is given as follows: consider f7/ € Prq for j = 1,...,n and (s1,s2), (t1,t2) € Sy,
where we recall relation (28] defining simplexes. Then we set
1,...,n _ n
hslsg;tl,tz — / d12f0'11 T d12f0'n,Tn (32)
Sn 81,82 XSn(tl,tz

_ / /t2 /Un 1/% 1 / / diafyyy - diofl s

where we recall from Section [LT] that dy f7.. stands for 92 fJ

Expression (32)) is obviously cumbersome, and it could in particular become clearer by
separating the s,o from the ¢,7 variables. This is where the conventions introduced in
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equation ([B0) turn out to be useful. Namely, one can simply tensorize ([B0) in order to write
the increment h'~" defined at ([B2)) as

plon — [dh - -,dl] ® [d2’ . 7d2] (fl7 - -,fn), or Al — //d12f1 .. -dlgfn, (33)
1J2

and notice that we will mainly use the second convention throughout the paper. This
notation proves to be particularly convenient when one is faced with partial integrations
(as introduced in (31])) in both directions 1 and 2. In order to illustrate this point, let us
consider the simple example

9= [di,di] ® [, o] (1, 1) = / 0, f! / diaf?. (34)

Let us now describe the algorithm which allows to go from expression ([B4]) to an integral
like (32)). It can be summarized as follows:

e For direction 1, count the number of iterated integrals starting from the left hand
side (in our example this number is 2). Then interpret these integrals as integrals on
the simplex in direction 1 and write the 1-variables.

e Do the same for direction 2. In our example, there is only one integral in this
direction, so that variable 2 is frozen in the first differential d; f*.

Applying this algorithm, the reader can easily check that g defined at (B4]) can be written as

t2
_ 1 2
gS182;t1t2 _/ dlfgl;tl/ d12 021"
$1<01<02<582 t1

For sake of conciseness, we omit generalizations of this simple example.

4. PLANAR YOUNG INTEGRATION

Before going into the computational details of Young integration, let us describe the general
strategy we shall follow in order to obtain our Ité-Stratonovich type change of variable
formulae in case of non smooth functions x. Indeed, we start from a smooth approximation
™ to our path x and we introduce a useful notation for the remainder of the computations:

Notation 4.1. We shall drop the index n of approrimations in x™, which means that x will
stand for a generic smooth path defined on [0,1]2. For a smooth function ¢ : R — R, we
also write y for the path p(x) and for all § > 1 we set y' = V) (z).

With these notations in hand, for a smooth sheet 2 and f € C? it is well known that
formula (Il) holds true. Recall that we have written this relation under the following form,
compatible with our convention (B3)):

5y://y1 d12x+//y2digx. (35)
1J2 1J2

We shall see that this formula still holds true in the limit for x, except that the integrals
involved in the right hand side of (B5) have to be interpreted in a sense which goes beyond
the Riemann-Stieltjes case. Our main task will thus be to obtain a definition of [, [, y' diox
and fl f2 y* djsr involving iterated integrals of z and increments of y (or y/ for j > 1) only.
Though this task might overlap with some aspects of [4], we present it here because it is
short enough and allows us to introduce part of our formalism.
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Let us introduce what will be later interpreted as the first order elements of the planar
rough path above z:

Notation 4.2. Let x € P/} with 1,72 > 1/2. We set

Xl;2 = 51’, and Xl;2 = [Id — Al(;l][ld — A252] (511’ 521’) .

Notice that for smooth functions we also have

Xhz://dlgx, and Xm://dlxdgx.
1J2 1.J2

We are now ready to express the integrals in (BH) in terms of the planar sewing map
(A;)i=12 and A = A Ay and the increments introduced in Notation

4.1. Change of variables formula. The following theorem gives the analog of relation (B3
in the Young case, and is a way to recast Theorem [[LTl Notice that some extensions of these
results are contained in [4].

Theorem 4.3. Let x € P/ with 71,7, > 1/2 and ¢ € C*(R). With our notations[{.4 and

[71) in mind, define two increments z*, 2% as

2N =[Id — Ay )[Id — Aody) (' x*2),  and 2% = [Id — A& ][Id — Apdo] (2 x52).  (36)

Then items (i)-(v) of Theorem[I1 hold true. Furthermore, for j = 1,2 the following bound
is satisfied: |12y, < o1+ o2, ).

Proof. We first introduce a formalism which will feature prominently in the rough case
treated in the next section.

Step 1: Setting for our computations. Let us write the first step of our expansion in a usual
integration language: for sy, s9,t1,ty € [0, 1] and a continuously differentiable function = we

have
So to
1 _ 1
Zslsz;tltg - / / yal;n d12x01;7'1,
S1 t1

where we have written di22,,.,, instead of d,;%,,.;,. Then according to the elementary
identity Yo .ry = Ysyits + 52y<171;t17'1 we obtain

52 t2 s2 rt2
1 _ 1 1
ZslsQ;tth - / yo'l;tl / d12x0'1;7'1 + / / 52y01;t17—1 d12x0'1;T1'
s1 t1 S1 t1

Going on with this procedure, we end up with a decomposition of the form

82 t2
1 _ .1 1
Z8182;t1t2 - ysl;tl(sxslsmtl@ _'_/ 51y810’1;t1/ d12x01§7'1

S1 t1

to EP) 52 to
1 1
+ / 62y81;t17'1 / d12x0'1§7'1 + / / 5y810'1;t17'1 d12x0'1§7—1’ (37)
t1 s1 S1 t1

It should be observed that for Holder regularities smaller than 1/2 the above decomposition
is not sufficient to yield the application of A. Since further calculations with all explicit
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indices are cumbersome, we shall now show how to translate the above computations with
the formalism of Sectlon we simply write

7' = //y d1293—/ /d12x+//d2y dipw
= y5x—|—/dlyl/d12x+/d2y1/dlgx+//d12y1 dlgl’ (38)
1 2 2 1 1J2

=yl g M02 0122 122,
which is obviously a shorter expression than (387). From now on, we shall carry on our
computations with this simplified formalism.
Step 2: Analysis of the integrals. Consider the term a'%%? above. It is readily checked that
5,a'5%? = §y' x5, In particular, 6,a't? € 732%’“’2, and since 27, > 1 one can resort to
Proposition in order to get the relation a''%? = A;(§;yx%?). Proceeding in the same way

for a®%?? and a'* we end up with

a11;02 — A1(51y1 X1;2>’ a01;22 — A2(52y1 X1;2)7 a11;22 — A(5yl X1;2)7 (39)
where we observe that ¢ € C*(R) is the minimal assumption in order to have dy' €
Py, Furthermore, according to relation (26]) we have d;(yx'?) = —01y' x'2, 05(y' x?) =

—0oy' x12 and §(y' x12) = 6y’ x2, so that (BJ) can be expressed as
a11;02 — —A151(y1 X1;2)’ a01;22 — —A252(y1 X1;2)’ 11 ;22 A(S(y X )
Plugging these relations into (38) we get

= //yl digr = [Id — A161][Id — Agdo] (y' x'2),
1J2

for smooth functions z, which corresponds to claim (ii) in Theorem [Tl Item (i)-(iii)-(v) are
now a matter of straightforward limiting procedures on smooth sheets, and the assertions
concerning z? are obtained exactly in the same way. Item (iv) is an easy consequence of
Proposition and expression (30).

O

4.2. Riemann sums decompositions. This section is meant as a preparation for Skorohod
type computations. Indeed, change of variables in the Skorohod setting involve some mixed
integrals with dx dR terms, for which a suitable representation is required. It will also be
convenient for us to express the integral fl f2 y? dixdyx in different ways, so that we first
recall a proposition borrowed from [4]:

Proposition 4.4. let z € P/ with 71,7, > 1/2. Set y = @(x) for ¢ € C*(R) and
22V = fl f2yd1xd2:c, understood in the Young sense. Then the following series of identities
hold true:

22 = [Id — A16y)[Id — Aobo](yx52) = [Id — A161][Id — Aado)(y 61 6o)
= [Id — A151] [Id — Agég](y 521’ 511’) = [Id — A151] [Id — Agég](y 511’ o 521’),
where we recall that the notation o has been introduced at Definition[3.6.

The following proposition gives different ways to express the increment 2> as limit of
Riemann sums.
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Proposition 4.5. Let 0 < s1 < s9 < 1, 0 < t; < ty < 1 and denote by m = (s);
and Ty = (t;) some partitions of the intervals [sq,ss] and [ti,ts] respectively. Then under

the assumptions of Proposition we have that f:f fttf Yst d12Tsy can be written as limit
of Riemann sums of the form lim, | r, o Zijy3i§tj5x3i3i+1;tjtj+17 and recalling that z%Y =
[; [y dixzdsx we also have:

2, _ : §
z Vo= hm ysi;tj 51xsisi+1;tj52xsi+1;tjtj+1
le‘v‘ﬂ-Z‘_)O 2]

- hm E ysi;tj 52xsi;tjtj+161xsisi+1;tj+1 - hm E ysi;tj 51xsisi+1;tj62xsi;tjtj+1-

|71 ], 2| =0 “= |71l m2|—0 “—
1,7 2Y)

Finally we shall need an extension of the last three propositions to integrals with mixed
driving noises:

Proposition 4.6. Let f € P17 g € Py and h € 7761’62 such that v;+p; > 1, i+ > 1
and B; + p; > 1 fori=1,2. Set

//fdlgd2 [Id — Ayd1][Id — Agdo](f 619 d2h).
Then we also have
//fdlgdgh = [Id — A151][Id — Agég](f 529 (51}1,) = [Id — A151][Id - A252](f (519 0] 52h)
1J2

Moreover, taking up the notations of Proposition [{.5 we have the following Reimann-sum
representation of our integrals:

S92 to
fs;t dlgs;td2hs;t = lim § fsi;tj 5lgsisi+1;tj 52hsi+1;tjtj+1
S1 t1 |7r‘—>0 -

hm § :-fslytg5195152+1yt352h527tjtj+1 hm § :fslvtj52gslytjtj+151h8152+17tj+1

|| —0 <

Proof. Let a' = f 8,9 02h, a®> = f J,95,h and a® = f §,god,h. Then by a simple computation
we have that

Siat = —01f 619 0sh — foigoh € Py rTererEoR
Goa' = —0of 519 02h — f g dsh € PLyTImOE e,

and
dat = 6f 6190:h + 61 f 5g dsh + 0o f G1g0h + f 6gdh € Pyt oretimintzt gt i)

This means that al satisﬁes the assumptions of Proposition B.2] and the same is readily
checked for a* and a®. Thus the increments [Id — Ay61][Id — Axd)(a?) are well defined for
j=1,2,3. We set [Id Ay0q][Id — Agds](a fl f2 f digdsh since both objects coincide for

smooth functions f, g, h
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We now identify the increments [[d — A;d;][Id — Agdo](a?) by analyzing their Riemann
sums. Indeed, a straightforward application of Proposition yields the following limits:

[Id - A151] [Id - A252](a1) = lim Z fsz,tj 5lgszs@+1,t1 52hs@+1,tjtg+1

|| —0 <

[Id - Alél] [Id - A252](a1) = lim Z f5i§tj52h'5i§tjtj+16lgsi5i+1§tj+1

|7|—0 o

[Id - A151] [Id - A252](a3) = lim Z fsz,tj 5lgszs@+1,t1 52h'5ut3t3+1

|7w|=0

We now prove that the 3 increments coincide by shovvlng that the differences between Rie-
mann sums vanish when the mesh of the partitions go to zero. Indeed, if we call w5 the
partition in direction 2, observe for instance that

: 1 3 _
lim E (a —a )Sisi+1;tjtj+1 - hm E fsut 5lgszsz+17t 5h8 iSi+15t5t541

‘7‘(2|—)0 .
i
- E / fs t(slgs iSi+1;t d251h's%s%+17

Now if we remark that |f:12 Jsit01Gsisip15t AiPsisririt] S (Sig1 — 5;)P11P1 we easily obtain that
im0 limy, 50 22, (@' — @%)sisi 10050, = 0. The same relation holds true for ¢® — a® by
symmetry, which ends our proof.

(40)

U

5. PATHWISE STRATONOVICH FORMULA IN THE ROUGH CASE

In this section, we consider a path 2 € Py with 41,7, > 1/3 and we wish to establish

the change of variables formula for y = p(x ) (with ¢ € C§(R)) announced in Theorem [4l
In such a general context, the integration theory with respect to z relies on the existence of
a rough path X sitting above . Now recall that the first elements of X have been introduced
at Hypothesis [L2 However, as mentioned in Remark [[.3] the rough path still has to be
completed and we proceed to its description here.

Let us first introduce another indexing convention for the elements of the rough path X,
similarly to what is done at Section
(i11) (Following (ii) at Section [[.3)) We shall see that some overlapping integrals in directions
1 and 2 difficult the regularity analysis of certain increments. This will force us to some
splitting operations on iterated integrals, leading to some split elements of the rough path
X. We indicate this splitting procedure by a ® in indices of x. An example of this operation
is given by the increment x'12%2? € Cy(Cy ® Cy):

tq
11 1202
Xsisoitrtatats — / / (/ d12a701;71) (/ d12a702;'r2) .
t3

With this additional notation in mind, the complete description of X is given below:

Hypothesis 5.1. The function x is such that éx € Py with y1,v, > 1/3, and fulfills
Hypothesis [1.2.  In addition, the stack X of iterated mtegmls related to x is required to
contain the elements in the table below, where we let the reader guess the natural Holder
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reqularities related to each increment. As in Hypothesis[L.2, the iterated integrals above are

TABLE 1. Further elements of X

Increment Interpretation Increment Interpretation
1122 1 [, diszdisx 18122 [T dat @1 [, dist
X11'1;022 fl dlz f2 d12113' fl d12517 X11.1;222 fl f2 dlgl'dlgl’ fl d12;1;'
ﬁgﬁzz fl o f2 dis? XH?%;%m fl f2 dioxdi27 @1 fl dipx
x [ dix [, diox @1 [ dipx | x| [ [ disx [ diox [ disx

assumed to be limits along approzimations of x by smooth functions. Furthermore, the rough
path X should also contain all the elements x obtained by symmetrizing the increments of
Table [1 with respect to 1 <> 2, as well as those for which we change the last indices 1;2 by
1;2. In total, we have to assume the existence of 26 additional increments.

With the additional notation introduced above, we are now ready to give the expression
of z! in terms of the rough path X.

Proof of Theorem[1.7). Consider a smooth function x and y = ¢(z). According to our no-
tational conventions of Section B.3] we wish to express fl f2 y! dio2 in terms of elementary
increments of y, plus some elements of the rough path X. As in the Young case, we thus start
from expression (B8], but now the terms a2, 5?2 and a'%?? need a further decomposition.
We proceed to their analysis.

Step 1: First boundary integrals. Consider the term a'? in expression ([B8). Two building

blocks of our methodology can be observed on the analysis of this term in an elementary
way:
(1) As noticed in the proof of Proposition 23] our definition a%? = fl diy? f2 dyox easily
yields the identity

51092 = 61y S, (41)

Indeed, a possible way to understand this relation is to write:
&11;02 = [dl, dl] [Id, 52](?}1, ZL’) — 51&11;02 = [51, 51] [Id, 52] (yl, ZL’) = 51?/1 5!13',

where we have invoked Proposition for the first variable only

11;02

(ii) If we only consider the integral fl dyy' within a't%2, we can write

/dlyl = /yl dix = y151z + /d1y2 dix, (42)
1 1 1

where we recall that we have set y' = f/(x) and y? = f”(z) in Notation ET}

11;02

Plugging relation ([@2) into the definition of a we obtain

attif? = y2/d1x/dlgx—l— /d1y2 dlx/dlgx = g2 x 1102 4 1102, (43)
1 2 1 2

where x'19? has been defined at Hypothesis and where we have just defined the remainder
p'%% by p't%% = [ dyy®dyx [, dipx. Now notice that p''*% is an increment which should
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belong to 733%“*2 if x € P/}7*, and thus should be expressed in terms of A;. In order to

check this fact write

PUL02 1102 2 1102
and apply 0; to both sides of this identity. Namely, the increment d,a is computed
according to relation (&I, while the term y?x'%? is handled by means of identity (20]):

51 (y2 X11;02) — —51y2 X11;02 + y2 (51X11;02.

In addition, Hypothesis states that X is geometric, so that 6,x1%? = §;2 §z like in the
smooth case. We thus end up with:

81pM % = b1y G + Gy X0 — 2 5y
1

Observe now, thanks to a simple Taylor expansion, that §,y! = y?6,2 + r%!, where r¥%! is an
element of 7322711 2. We thus get

51/)11;02 = (y251x + ry’l) ox + 51y1 X102 _ y1 hxdr =rvtor + 51y2 XH;OQ,

11;02

and the last increment is easily seen to be an element of 773'“’“’2 to which A; can be applied.
Hence
p11;02 — Al (,,,,y,l St + 51'3/2 X11;02) ’

and plugging this identity into (43]), we get

all02 — 251102 4 A (Ty,l 57+ 6,12 X11;02) . (44)
Along the same lines, one can show that
a0l — 250122 A (Ty25I+5 y? X0 22) (45)

Step 2: First decomposition of the double integral. Let us handle now the term a2, starting

by the equivalent of ingredient (ii) above. We thus write an expansion for the term f1 f2 dy2Y,
which can be handled thanks to relation (B5]) as

//d12y1 ://y2d12x+//y3dlxd2xu
1J2 1J2 1J2

11;22

and plugging this relation into the definition of a we obtain

a'l?? = //y2 d1233d12$+//y3 dyx dox dipx = b2 —1—611;22. (46)
1J2 1J2

We proceed now to the analysis of the term b2, To this aim, go back to relation (B8) in
order to write

pls22 //( //d12x+/d1y /d12:c+/d2y /d12x+//d12y d12$> dyox

11 ;22 blll 022 bOll 222 blll 222 (47)

pi1022 /d1y2/d121’ dypz, B2 = /d2y2/d121' dia, (48)

and b1 = [ [ dyoy® dipx dipx. We shall treat those 3 terms separately.
p111:022 ;

where

Step 3: Analysis of the boundary integrals. The term is a third order iterated integral
in direction 1. One can thus try to apply ingredient (i) above, namely compute §;b!1:022
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in order to observe if we get an increment in Pg’;l’*. Unfortunately, this brings some extra
complications due to overlapping integrations. This is why we have postponed these com-
putations to Lemma below, which asserts that ¢,b''1:0% ¢ 735;)’721’72 and is a continuous

function of the couple (X,y). We have thus obtained that b'"11:022 = A;(p¥>1) for a certain
= 735’721 2 Exactly along the same lines, we also get that b211222 = A, (p¥*2).

Going back to expression (A7), we see that we are now only left with the definition of the
triple iterated integral b'1%222,

Step 4: Analysis of the triple iterated integral. Recall that b''22% = [ [ dyoy? dypx dypz. Tt is
thus natural to analyze this increment thanks to an application of the operator 9. The reader
might verify that, applying successively d; and J5 plus Proposition 2.8 in each direction, one

gets:

111;222 11;22 1-11;22-2 11-1;2-22 11-1;22-2
ob +b +b +b ,

=6y’ x

where

b1.11;22.2 ://d12y2/d12$/d12$, b11.1;2~22 ://d12y2/d12x/d12x7 (49)
1.J2 1 2 1J2 2 !

and b''1?22 = (| [, diayPdiox) 0. Now we resort to Lemma 6.3 to assert that b''%?*? and

HIL222 Jye into P32 We shall see at the end of the proof that 515222 can also be
Y 3,3 P
included in a P;3* term.

Going back to relation (7)) and summarizing our computations from Steps 3 and 4, we
have thus obtained that

b11;22 _ y2 X11;22 +A1(py2,1> +A2(py2,2) + 61115222, (50)
where p?*t € P32, pr"? € PJ4%2 and where b2 s dissected up to the term b2,

Step 5: Analysis of b2, We now go back to the term 55?2 introduced at equation (F8).
Its analysis is very similar to the one we developed for b'%?2, so that we only sketch the main
differences.

First of all, in order to get an equivalent to relation (B8], we resort to the differential
element djsx. This yields:

//y3 disx =9 //digz—l-/dlyzfdigl'—i-/dgyg/dﬁI—l-//d12y3 disz, (51)
1J2 1J2 1 2 2 1 1J2

and we plug this relation into (46)) in order to get

b11;22 — y3 X

b111;022 :/d1y3/d12xd12x7 b011;222 _ /d2y3/diéxd12$,
1 2 2 !

and b2 — f1 f2 di21® disz dyo.

The 2 terms 11922 and $911222 can now be respectively handled similarly to 511022 and
bO1L222 - We obtain that

6111;022 :Al(pys’l), and 6011;222 _ A2(py372).

1192 | p1in022 | 011,222 4 p111;292

where
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As far as 111222 jg concerned, we dissect it through the application of ¢, which yields
SHUI222 58 51122 | 11222 plT1222 | il
where pUi1:222 pll1222 5nq pli222 4p6 defined as in ([@J). In addition, as in Step 4, it can

be proven that §y?®x!122 4 ptil222 4 pll1222 o 735’}1’372. Similarly to (B0), we thus end up
with a relation of the form

bi1;22 _ y2 Xli;zé +A1(py3,1> +A2(py3,2) + blil;2é2’ (52)

2 391, 2 3 91.959 . .
where p¥"! € Py}, pv"% € PJy™7 and where b''1%2 is conveniently decomposed up to the

term b11.1;222

Step 6: Analysis of b*'52%2 and pH1222 Write pl11i222 4 pll1222 — Cox, with

EZ//d12y2 d12$+//d12y3dﬁ$.
1J2 1J2

We wish to show that p11:222 4 pli1i222 ¢ 775’},1’372, which amounts to check that ¢ lies into

7722721’272. In order to prove this claim, start again from a change of variable formula for

y = ¢(z) plus elementary manipulations like those of relation (B8]). This yields

S 5?/1—//.@20[1295—//93(11217
1J2 1J2

S - <y2 X124 qlH02(y2) | 0222y 4 11023 3) 4 a01;22(y3)> ’

where at92(y2), . a®522(y3) are defined similarly to (@3), with either 42 or 4? instead of
y'. With the same calculations as for ([@4)—@H), we thus get

a11;02(y2) — X102 A <ry2,1 51 + 61y X11;02>

a01;22(y2> — X022 A, <Ty2,2 57 + Sy X01;22> 7
and

ali;oi(ys) — x1102 4 A <Ty371 <2 +6ly4xli;oi>

aoi;zé(yg) _— X022 4 A <Ty3,2 X2 4 5o Xoi;zé) '

These identities easily yield the following claims:

(a) The increment / is a continuous function of xb!, x!1:02 x01:22 xi?é, xli?og, x01:22 and yl.
(b) The fact that ¢ € 772231’272 is proven thanks to long and tedious Taylor type expansions.

We refer to the stability result [4, Theorem 7.13| for further details.
We now plug this information into (50) and (52)) in order to write
piL22 +bil;22 _ y2 1122 +y2 Xli;zé +A1(py2,1 +py3,1> +A2(py2,2 +py3,2> +A(£5x).

Finally, we propagate this identity back into (@€l), ([A5]), (44) and eventually (B8), which
yields our identity (7). We leave the details of these last computations to the patient reader.
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2

Step 7: Conclusion. We have just obtained expression (7)) for z'. As far as 22 is concerned,

we start by replacing relation (B8] by:

//y2 disr = y2 //digz—l-/d1y2/dﬁ$+/d2y2/dﬁl’+//d12y2 dis.
1J2 1J2 1 2 2 1 1J2

The expansion then proceeds exactly like in the expansion of 2!, and details are omitted for
sake of conciseness. The claims (ii) and (iii) of Theorem [[4] follow by a limiting procedure.
O

Lemma 5.2. Let b'1922 qnd b915222 pe the terms defined by [@S). Then:

(i) The increment §;b"5922 4s contained in Pyy™ and is a continuous function of the fol-
lowing elements of X: x11:22 x 111022 101522 HOLO22 gy )

0115222
11522 5 011:222

. . . 3 . . .
is contained inPy 5" and is a continuous function of the fol-

(ii) The increment dy
11202 0110292 (7 )

lowing elements of X: x X

pl11;022 pO11;222

Proof. Let us prove the result for 6, , since 09 is analyzed exactly in the same
way.

Towards this aim, invoking Proposition 2.8 in direction 1 only we get
51b111;022 _ 51'3/2 X11;22 + h11-1;022’ with h11-1;022 _ /d1y2 /dlgl’/dlg[lf. (53)
1 2 1

Now, under Hypothesis 5.1] the term 6,7%x'%?? above is easily seen to lye into 73??;1,2%'
However, the term h is more troublesome. In order to see this additional problem more
clearly, let us specify h a little: for si, s9, 83 € S3 and t1,t5 € Sy it can be written as

to T2 S92 o2 S3
11-1;022 - 2
h515233§t1t2 - / (/ / (/ d1y0'1;t1) d12$02;T1 / d12$03;72)

t1 t1 S1 S1 52

to S92
2
= / (/ 51y5102;t1d152$02;t172) d251x8283;7'2a (54)
t1 S1

and the regularity of this last increment is far from being obvious to determinate. Further-
more, a closer look at h leads to the following conclusion: the problem in the regularity
analysis stems from the overlap in integrations for directions 1 and 2, apparent in the defini-
tion of h. In order to fix this new problem (which can obviously only occur when integrals of
order 3 or more are showing up), we introduce a third ingredient of our methodology, based
on the splitting operation of Definition

(iii) The splitting operation can be applied to overlapping terms like 21022 in order to
separate the term || dyy? [, disx from the term [, diox. This simple trick allows to solve the
intricate structure of integration in both directions 1 and 2. Unfortunately, the remaining
terms have to be defined separately now, and are not of order 3 anymore. This means that
another step of expansion might be necessary for their proper definition. In our running
example, this additional step concerns the term fl diy? f2 dyox in (B3)).

Ingredient (iii) applied to our increment h'1%22 yields the following developments: we

have
Sl(hll'l;om) = /d1y2/d121’ ®1 /dlgl', (55)
1 2 1

and let us add the following comments:
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(a) In direction 2, the quantity S;(h''1%%?) can be simply expressed in terms of iterated
integrals of the driving process x and elementary increments of y.

h11-1;022)

(b) The exact expression of S ( can be obtained from (54]) by splitting the variables

S9, S3 into 3 variables ss, s3, S4:

t2 52
11-1;022 _ 2
[Sl(h' )] s1s2s3sastita / </ 51y8102;t1d152x02?t172) d261x3334?7'2’
t1

S1

We now set h!192 = fl dyy? f2 dyox, which is the increment we shall further expand in (55).
This can be performed exactly as for a'%%? in Step 2, just replacing y by y?, and enables the
following expression which should be compared to equahty (@4):

P02 — 351102 | A <ry2’1 51 + 611 X11;02> ’

where we recall that x!'192 = fl dix f2 dy2x. We plug this relation into (55) and we obtain

Sy (R11102) — o3 /dlx/dux ®, /d12x+h11-1;022;ﬁ_ (56)
1 2 1
In the last expression, ' 192%¢ is defined as follows: we have
g2 =[5, @, Id] hI11022E
= ’f’y i1 //dlgl' ®1 /d12z+51y /dll’/dlgx ®1 /dlgl’
e L1122 | 5 08 5 1191022 (57)

and notice that n'192%% is only expressed in terms of elementary increments based on ¥
and iterated integrals of . Furthermore, Hypothesis 5.1l guarantees that n'!'1022# lies into
[C3" @ CJ'](C?), and thus A 1022E = [A; @, 1d](n'11922%), Going back to (BH), we end up
with
Sl(hll'l?(m) _ y3 /dll’/dlgl' 1 /dlsz + [A1 ) Id] (7711.1;022#1).
1 2

1

We can now go back to an expression for h'11%22 itself by applying the inverse map G; of
Sp. This gives

R0 = ?/3 /dlx/d1255/d1293+@1 ([Al X1 Id] (7711'1;022;%)
1 2 1

= P02 4G (A, @, 1] (7711~1;022;:1)) ‘
Plugging this relation back in equation (53]), we end up with
G022 G212 g 25 11022 4 G (A @, Id] (n11-1;022;ﬁ)) 7 (58)

. . 3 . . .
which is now clearly an element of Py} and a continuous function of the increments
x 1122 x 111022 510122 1H©L022 and 4 as claimed in our proposition.

In the same spirit, we also have
P22 N, (5,2 X122 4 P xOU222 4 G, ([Ag @, Id] (n2152224))]
where 701222 is defined similarly to n't'5922% in ([57).
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Lemma 5.3. Let b''1222 gnd b1 15222 be the terms defined by [@9). Then:

: . 11229 31,3
(i) The increment 6,0 15?*2 is an element of Py "7
x111222 (18122 (1181022 (1101222 gnd o)

and is a continuous function of x'1-1:022,

1292 : 371,3
b2 s an element of Py g™

111;2202 ) J y.

011;22-2
’

(ii) The increment oo and 1s a continuous function of x

111222 115202 01132202

Proof. Those two terms contain overlapping integrations in direction 1 and 2 again, and we
thus proceed to their dissection through ingredient (iii). In the case of b'1%22 we will use
an additional expansion in direction 1 only, and thus write

Sl (b11-1;2-22) = //dlgyz/dlgl’ &1 /dlgl', and set 011;2-2 = //d12y2/d12x. (59)
1J2 2 1 1J2 2

11;2:2

In order to expand ¢ one step further in direction 1, observe that

//d12y2 = /52d1y2 = /52 (y3d1x) = /52y3 d1x+/y3 Oadyx.
1J2 1 1 1 1

Plugging this identity into the definition of ¢!'1i22

M=k 4 k?, where k'= /5293 dlz/dlzx’ B = /y3 52d1I/d12I.
1 2 ! ?

we get a decomposition as

We now apply ingredients (i) and (ii) to analyze those terms. First, one can compute &;c!?2
as
51011;2'2 = /51d2y2/51d2x = 5y2 ox. (60)
2 2
Next expand g? in direction 1 in both k! and k2, which yields
kfl _ 5 y3 X11;02 ‘|',01 and k2 _ y3 X11;2-2 +,02
3’Y1,2'Yz

where p! and p? are two remainder terms morally lying in P55 Setting p¢ = p' + p?, we
have thus obtained the following relation:

AL22 52y3 X102 y3 X122 o° . = AL22 52y3 1502 _ y3 <1122

Applying d; to both sides of the last identity plus relation (60) and Hypothesis [5.1] we end
up with:

0 pt = (5y2 — 0oy 81 — y35x) dx + 6y x'B0% 6198 x 22,
Furthermore, an elementary Taylor type computation shows that (dy! — dyy® 612 — y30x) €

732%’ and thus it is readily checked that d,p° € 733'“’“’2 We now plug the decomposition of
51p back into the relation (59) defining S; (o' 22) in order to obtain

Sl (b11.1;2.22) = 52’3/3 /dll’/dlgx X1 /dlgz+y3 //dlgl’/dlgl’ X1 /dlgl’
1 2 1 1J2 2 1

11-1;2-22;
_l_ h ) 7ﬁ’

where h!11%2% is defined in the following way: setting n'1'1222# = [§; @, Id]RM 12228 we
have
22— (§y — Gy by — yP0m) IO 4 gyP XSO o 58 x11E1222)
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As in the proof of Lemma [5.2, notice that n'!'122%% is only expressed in terms of elementary
increments based on y and X, and belongs to the domain of A; ®; Id. Hence, applying the
gluing operator GG; we end up with the relation

PULTZ22 58 1115022 43 1101222 | ([Al @, 1d] n11-1;2-22;ﬁ) ‘
In the same manner, we obtain
pUIZY g8 OU222 B 111222 | ([A2 @5 1d] n1~11;22~2;1j) ’
where
iz (5y2 — 51y S — y?’éx) XU2X2 | 5y 3 3 2202011 | 53 5 1112282

which ends the proof.

6. SKOROHOD’S CALCULUS IN THE YOUNG CASE

This section is devoted to relate the Young type integration theory introduced at Section @]
and the Skorohod integral in the plane handled in [I7]. Specifically, we shall first generalize
the Skorohod change of variables formula given in [17] for a fractional Brownian sheet with
Hurst parameter greater than 1/2 to a fairly general Gaussian process. We shall then compare
this formula with Theorem [L1litem (v).

Before going on with our computations, let us label some notations for further use:

Notation 6.1. We write X S, Y if there exist a constant ¢ depending on a,b, ... such
that the quantities X,Y satisfy X < c¢Y. For a partition {(s;,t;)i;} of a rectangle A =
[s1,82] X [t1,t2], Aij denotes the rectangle [s;, si41] X [tj,t41].

6.1. Malliavin calculus framework. We consider in this section a centered Gaussian pro-
cess {xy; (s,1) € [0,1]?} defined on a complete probability space (Q, F,P), with covariance
function E[xg, 4, Tsyity] = Rsyseitrt,- We now briefly define the basic elements of Malliavin
calculus with respect to x and then specify a little the setting under which we shall work.

6.1.1. Malliavin calculus with respect to x. We first relate a Hilbert space H to our process x,
defined as the closure of the linear space generated by the functions {1 s[04, (s,t) € [0, 1]}
with respect to the semi define positive form (1(os,1x[0,1]s L[0,s0]x[0,t2]) = Rsisotrta- Then the
map I; : 1y gxjo, — Tsx can be extended to an isometry between H and the first chaos
generated by {z.; (s,t) € [0,1]?}.

Starting from the space H, a Malliavin calculus with respect to x can now be developped
in the usual way (see [I0, I4] for further details). Namely, we first define a set of smooth
functionals of = by

S = {f(Il(wl)a - '>Il('l/)n)); n e Na.f € Cgo(Rn)’¢1’ s >'l/)n € H}
and for F' = f(I1(¢1),...,11(1,)) € S we define

DF = Zaif(fl(?/)l)a o Ii(n)) i
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Then D is a closable operator from LP(2) into LP(2, H). Therefore we can extend D to the
closure of smooth functionals under the norm
1
1Fllp = (E[FPT+ E[|DF3])?

The iteration of the operator D is defined in such a way that for a smooth random variable
F € S the iterated derivative D*F' is a random variable with values in H®*. The domain
DFP of DF is the completion of the family of smooth random variables F' € S with respect
to the semi-norm :

1Fllkp = (E[IFV’] +ZE[||DjF||%®j]> :

j=1
Similarly, for a given Hilbert space V we can define the space D¥?(V) of V-valued random
variables, and D> (V) = N, > D
Consider now the adjoint 6° of D. The domain of this operator is defined as the set of
u € L*(Q,H) such that E[|[(DF,u)x|] < ||F|l12, and for this kind of process 6°(u) (called
Skorohod integral of ) is the unique element of L?(£2) such that
E[6°(u)F] = E[(DF,u)3], for F €D"“?
Note that E[d°(u)] = 0 and
(0% (u) 2] < Elull3] + Ell Dulfor.
The following divergence type property of §° will be useful in the sequel:
0°(Fu) = F6°(u) — (Du, F)y, (61)
and we also recall the following compatibility of 6 with limiting procedures:
Lemma 6.2. let u,, be a sequence of elements in Dom(5°), which converges to u in L*(Q, H).

We further assume that 6°(u,,) converges in L*(Q) to some random variable F € L*(Q2). Then
u € Dom(d°) and 6°(u) = F.

6.1.2. Wick products. Some of our results below will be expressed in terms of Rieman-Wick
sums. We give a brief account on these objects, mainly borrowed from [10, [IT].

Among functionals F' of x such that F' € D>, the set of multiple integrals plays a special
role. In order to introduce it in the context of a general process = indexed by the plane,
consider an orthonormal basis {e,; n > 1} of # and let ® denote the symmetric tensor
product. Then

fn = Z fi1,~~~,in6i1® .. ®6in, fi17"'77;7l ceR (62)
finite
is an element of H®" satisfying the relation:
1fallyen = D 1 fininl® (63)
finite

Moreover, H®" is the completion of the set of elements like ([62) with respect to the norm (63).

For an element f, € H®", the multiple Ito integral of order n is well-defined. First, any
element of the form given by (62)) can be rewritten as

fn = Z fjl“‘j'rrle?ikl@ T ®e;€:y]jm’ (64)

finite
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where the ji, ..., jm are different and ki + - - - + k,, = n. Then, if f, € H®" is given under
the form (64)), define its multiple integral as:

th Hk1 11(6]1))"'Hkm(ll(ejm))’ (65)
finite
where Hj, denotes the k-th normalized Hermite polynomial given by

Y = -z k—2
Hi(z) = (—1)" ez = g —ij!(k—Qj)!x 7
i<k/2

It holds that the multiple integrals of different order are orthogonal and that
E [II(fa)?] = ntll full3,0n.

This last isometric property allows to extend the multiple integral for a general f, € H®"
by L?(Q) convergence. Finally, one can define the integral of f,, € H®" by putting [,,(f,) :=
I( fn) where fn € H®" denotes the symmetrized version of f,,. Moreover, the chaos expan-
sion theorem states that any square integrable random variable F' € L2(Q G,P), where G is
the o- field generated by z, can be written as

F=3"L(f) with E[F= Zn 5l (66)
n=0

With these notations in mind, one way to introduce Wick products on a Wiener space is
to impose the relation

Lu(fa) © In(9m) = Tnym(fn@gm) (67)
for any f, € H®" and g,, € H®", where the multiple integrals I,,(f,) and I,,(gn) are defined
by @3). If F =" 1,(f,) and G = 3" 1, (gm), we define F o G by

N1 No

FoG=>Y > ILin(fi®gn).

n=1 m=1

By a limit argument, we can then extend the Wick product to more general random variables
(see [I1] for further details). In this paper, we will take the limits in the L*() topology.

Some corrections between ordinary and Wick products will be computed below. A simple
example occurs for products of f(z) by a Gaussian increment. Indeed, for a smooth function
f and g1, 92 € H, it is shown in [11] that

F(IL(gr) © Ii(g2) = f(Li(g1)) 1i(g2) = f'(11(g1)) (g1, 92) 3 - (68)
We now state a result which is proven in [10, Proposition 4.1].

Proposition 6.3. Let ' € D2 and g € H®*. Then
(1) FoI.(g) is well defined in L*(2).
(2) Fg € Dom&°".
(3) Foli(g) = 0 (Fg).
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6.1.3. Further assumptions and preliminary results. In order to simplify our computations,
let us introduce some additional assumptions on the covariance R:

Hypothesis 6.4. The covariance R of our centered Gaussian process x belongs to the space
Ctvar(0, 1)), and satisfies a factorization property of the form

_ 1 2
E[xsl;hISz;tz] - RS182;t1t2 Rslsth1t2>

for two covariance functions R*, R? on [0,1]. In addition, setting R® = R!_ for a € [0,1]
and i = 1,2, we assume that a — R! is differentiable and we suppose that

|2Rtizb - Rtim
for all a,b € [0, 1], with v; > 1. Finally we suppose that (R")!, = 9, R., € L>=([0,1]).

(69)

The first consequence of our Hypothesis is that the regularity of x corresponds to the
Young type regularity of Section [l Indeed, it is readily checked that relation (69]) yields

E [(51'5152;1&1@)2} S |S - S,|Vl|t - t/|'yz‘

Since x is Gaussian, an easy application of Kolmogorov’s criterion ensures that
aq,o . 4! 1 V2 1
r€P™, with o= —ea >, = —6>_ 70
1= 125 275 2> 5 (70)
for arbitrarily small €;,€e; > 0. This enables us to appeal to Young’s integration theory in
order to define integrals of the form [, [, p(x) dip.

Let us quote two lemmas concerning Holder norms in the plane which will feature in our
comparison between Stratonovich and Skorohod integrations. The first one deals with the
composition of a Holder process with a nonlinearity f:

Lemma 6.5. Let f € C*(R), 01,0, > 0 and a rectangle A C [0,1]%. Then on A we have

that
161yllex.0 < N1y llo:a 1612(l6, 0
and
lyllor00 < (N losa + 11y lloia) 192 loy 00 (1 + [0 loy.00),
where || - |lo.a stands for the supremum norm on A and y’ still denotes pU)(x).

Next we also need an integral semi-norm dominating Holder’s norms in the plane. This is
given by the following Garsia type result:

Lemma 6.6. Let p > 1, 01,0, > 0 and y € P11. The following relation holds true:

5 |5yu1u2;vlv2‘p d d d d 71
10y115,.0, So1.65.0 uydusdvdvs. (71)

0,1)4 [U2 — u|P1PF2 vy — vy [P2P 2

We now turn to a consequence of our additional Hypothesis on embedding properties
of the Hilbert space H defined above:

Lemma 6.7. Under Hypothesis[06.4], we have || f|l2 < | f oo || R]|1-vars[0,1]¢-



SKOROHOD AND STRATONOVICH IN THE PLANE 31

Proof. Consider a step function f = > a;1a,; related to a partition (Ay); of [0,1]%. We
have

Sg S tj tk
2 E 1 2 _ E 1 2
||f“7‘[ - aijalkRSiistjtk - aijakl/ / / / d12R8152d12Rt1t2
0 0 0 0

0,5,0,k i,5,k,l
= o8 f81;t1 f52§t2d12R;182d12R?1t2 < Hf”io ||R||1—var;[0,l}4' (72)
0,1

The general case now easily follows by density of the step functions in H.
O

Let us now recall that we work under the usual assumptions for Skorohod type change of
variables formulae given at Definition and referred to as (GC) condition in the sequel.
Notice that maxg tejo.1)(RIR?) = maxg te(o,1) E[|2s:[*]. Thus condition (GC) implies that

E| sup |f(a:s;t)\”] <oo, forall r>1 (73)

s5,t€[0,1]

We now state an approximation result in ‘H which proves to be useful in order to get our
It6 type formula.

Proposition 6.8. Let = be a centered Gaussian process on [0,1] satisfying Hypothesis
and f € CY(R) such that the growth condition (GC) is fulfilled for ¢ and V). Consider a
rectangle A = [sy1, So] X [t1,t2] and m = (s;);, m2 = (t;); two respective dissections of the

intervals [s1, so] and [t1,ts]. Then
2
= ()’
H
Proof. Observe first that
ys;tlA(Sv t) - Zysi;t]‘ 1Aij(57 t) = Z(ys;t - y8i§tj)1Ai,j(S7 t)
i7j

i7j

lim E

‘7‘(‘1|,|7T2|—>0

Hy'lA - Z Ysists 1oy,
4,

where we have used Notation 6.1l for the rectangles A; ;.

from which the following estimation is easily obtained:
(s)eA | Isi—sa|<[mi][t1—t2|<|m]

|(y5§t - y5i§tj)1Ai,j (S,t)l < ( sup |ysl-t| max |$81;t1 - IS2;t2|> 1Ai,j‘

Hence if we take expectations in this last estimation and resort to Hélder’s inequality, we
obtain that

2

[e.9]

1 4 1/2 4
sup [yl"| E / { o ax |Zsit — Tt | } H E :1Aij
(s,t)EA [s—s|<[m1],[t—t|<|m2] y

E

Hy'lA - Zy&'?ta‘lﬁi,j
i7j

S ]El/Z

o0
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Now the r.h.s of this inequality goes to zero when the mesh of the partitions m, 7 goes
to zero by continuity properties of z (see ([Z0)). Our claim thus easily stems from the
embedding (72).

U

6.2. Ito-Skorohod type formula. We now turn to one of the main aim of this article,
namely the proof of a Skorohod type change of variable formula for a general Gaussian
process x defined on [0, 1], under our assumptions Our starting point is the relation
between z! and its Skorohod equivalent.

Proposition 6.9. Assume z is a centered Gaussian process on [0,1]*> with a covariance
function satisfying @). Consider a function ¢ € C*(R) satisfying condition (GC) and a
rectangle A = [s1, o] X [t1,t2]. Then we have that y*1n € Dom(56°), and if we define the
increment z° = §°(y*1a) the following relation holds true:

17
Zslzggtltz = 8182,t1t2 - / / ystd1R1d2R?’ (74)

where z' is given by Proposition[].3 and the second integral in the right hand side of (T4) is
of Riemann-Stietjes type. Moreover, relation (I2) holds true in the L*(Q)) and almost sure
sense.

Proof. Consider a sequence of partitions 7, = (7}, 72) whose mesh go to 0 as n — oo. The
generic elements of 7, will be denoted by (s;,?;). Owing to formula (1)), we have that

o1 _ 1 2
E 0 (ysi;tj lAij) - E ysi;tj5x3i5i+1§tjtj+1 - E ysi;tjE[xSi;tj5xsisi+1;tjtj+1]

Tn Tn Tn

o § : 1 § 2 1 2 _ n n
- ysi;tj5I8i8i+1;tjtj+1 - ysi;tj( SiSit1 - R )(Rt jti+1 - Rtjtj) = Al - A2'
Tn Tn

We now treat those two terms separately.

Step 1: Estimation of A}. The term A} = >
Since x € Py
to ([@).

The L?(Q) convergence of the Riemann sums defining A7 is more cumbersome, and we

have to go back to the definition of the Young integral given by Theorem [£3]l Indeed one
can write fssf o s, ditey =3 [ ys,diatgy, and thanks to ([BE) we get that
n ij )

o yshtj 0Zs;sii1:t5t4, 18 @ Riemann type sum.

with oy, ap > 1/2, it converges a.s to [[ y* diox as n goes to co, according

/ / YaaiaTsr = AT+ Y (1d = Aob2) (M161) (4" 02) 501 150,0,1

Tn

+ Z Id - A151>(A262>(y15x>sisi+1§tjtj+l - Z A(S(yléx)sisi+l§tjtj+l’

Tn Tn
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Furthermore, some partial summations can be performed on the terms Id — A;d; for i = 1,2
and setting D} = f:f fttf Ysadiotsy — AT we deduce that

D = Z [(Id — A191)(Agds)] (y15I)5152§tjtj+1

+ Z [(Id - A252)(A151)] (yl(sx)sisi+1§t1t2 - Z A(S(yléx)sisi+l§tjtj+l’

1
Ty Tn

Recalling the Holder regularity ([fQ) of our process x, we thus obtain

1DV < Is2 — 51| 1029 0,00 102 a0 D [Ee1 — 512
i

+1t2 = 01211019 o l10% oy a0 D ISi41 — s>

1
Tn

+ ||5y1||al7a2’|5x“a170&2 Z ‘Si-i-l - Si‘2a1|tj+1 B tj‘2a2‘

Tn

Now taking expectations in the last relation and using Hélder’s inequality we end up with

EHD?P] 581,82,151,152,041,0{2 (|7T1‘4a1_2 + |7T2|4012—2) E1/2[H5SL’H4 ]

aq,02
X (B2 151 A ) + V20100 2, + BV 16011, o)), (75)

for n large enough.

We are now going to prove that one can recast ([3]) into
EHD?P] 1,52t t2,01 2 (|7Tl|4061_2 + |7T2|4a2_2) . (76)

Indeed, applying Lemma toy =z, 6 = a1, 0 = as and p large enough, one can easily
check that E[||6z||2 ] < +o0o. In addition, combining the fact that E[||dx|% ] < +oo

ar,02 1,002

with Lemma plus condition (GC) on the function f, we obtain that

Bl ay ;)" (B0 116,0,]'7* + Elll02y [a,]2 + El0y " l[ay.0,]'2) < +o0.

1,02 aq,02

Hence inequality (76) is easily deduced from (75)), and this proves that A} converges in L?(Q)
to fssf fttf YaudioTsy as m — 00.

Step 2: Estimation of A}. Recall that A7 is defined by
Ag = Z ygi;t]‘ (Rii+1si - R;isi)(R?j+1tj - R?jtj)’
In order to treat this term, first remark that for £ = 1,2 we have

1
Ry = Ri = 5 (RS = RED) b

S$iSi+1 S$iSi Si4+1Si+1 SiSi



34 KHALIL CHOUK AND SAMY TINDEL

where pf = 3(2RE . — RE. — RE ). Injecting this relation in the definition of the

2 SiSi+1 Si+18i+1
term AZ and recalling that we have set R = RF

aa’

Ag = 1/4 Z yi;t]‘ (Ripﬁl - Ril)(R?J+1 - Rt2]>

+]‘/2 Z ygi;tj |:(Rl%j+1 - jo)piisi+1 + (R;Li+1 - Rii)pfjt]uﬁl _I_ piisi+1pt2jtj+1j|
= Ay + Ay + Ajy + Ay,

We will now show that

: n 1 * & : . n
lim A}, = 1 /51 /t1 y2,diRid>R;,  and nh—gloZ;Azj =0, (77)
]:

we obtain

n—o0

where the limits are understood in the almost sure and L? sense.

Indeed, it is easily understood that the terms A%,, A5;, A3, are remainder terms: according
to Hypothesis [6.4] we have that |p!,| < |a — b7, and we get the following inequality for A%,:

Ay S |771|AY1_1 sup |y§;t| Z(Siﬂ —5;) |R§j+1 - R?j|
(s,t)eA .

to
< Iml sup [l (52— 1) / R,
(s,t)eA t1

This relation, plus the condition (GC) on f, obviously entails that lim, ., A%, = 0 in the
almost sure and L?*(f2) sense. The case of A%, A%, follow exactly along the same lines.

We now focus on the term A%,: observe that

S92 12
a] — 1/4/ / yg;tle;dQR?
S1 t1

S92 12
< swp 2] max e — Taml / / dyR | d 2]
S1 t1

(siyea | ls=sI<[ml [t [<|m2|

Invoking the same estimates as before for the Holder norm of x and condition (GC) on f,
the proof of our assertion (7)) is now completed.

Step 3: Conclusion. Let us summarize the results obtained in the last two steps: plugging
relation (77) into the definition of A% and recalling the limiting behavior of A} established
at Step 1, we have obtained that

S92 12 1 S2 t2
tiw Yk ) = [ [ o= [ [ diRaR?
T S1 t1 S1 t1

where the convergence is understood in both a.s and L*(Q) sense. Furthermore, Proposi-
tion asserts that ) ysli;tj 1,,, converges in L*(Q,H) to y'1a. This finishes our proof of
relation (74) thanks to a direct application of Lemma [6.2]

As far as expression ([[2]) with Wick-Riemann sums is concerned, recall that we have proved

S| T2 | — 5 : ]- ..
(y ) |7r] ‘ ‘ Hl‘ 0 : (ysl t] A” )
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Now invoke Proposition for £k =1 in order to state that
1 1 1
60(y8i;tj1Aij) = ysi;tj < 50(1Aij) = ysi;tj <& 5$sis¢+1;tjtj+1a

which ends the proof.
O

Proposition 6.9 gives a meaning to the increment z%° and compares them to the corre-

sponding Stratonovich increment z'. In order to Compare change of variables formulae, we
still have to define Skorohod 1ntegrals of the form 2%°, which is what we proceed to do now.

To this aim, let us start by some formal con81derat10ns. it is easily conceived that

S t S t u v
/ / Vs Tie :/ / / / Rolotundtey = X (N()  (T8)
0 0 0 0 0 0

where, similarly to [I7], we set

N(y)u’u;vv’ =Y 1[0,s}><[0,v}(ua U/) 1[0,u}><[0,t](u/a U),

where we integrate firstly in (¢/,v) and then in (u,v’), and where the notation §*? specifies
that we perform double integrals in the Skorohod sense. Our objective in what follows is to
give a rigorous meaning to equation ([78).

Lemma 6.10. Tuke up the notation of Proposition[6.d, and consider f € C*(R) satisfying
condition (GC). For a sequence of partitions (7, ),>1 whose mesh goes to 0 define

Uyt = Zyw O,sil [t 1] (85 0) Ly xfog) (1 V1), (79)

Then a™ converges to N(y) in L?(Q, H®?) as n goes to infinity.

Proof. First notice that the tensor norm of an element K € H®? can be bounded as:

_ 1 1 2 1
HKHH®2 - / s Kala/1§b1b/1 Ka2al2§b2b/2d12Ra1a,1 d12Ra2a,2d12Rb1b/1 dlszzblz
0,1

< /[ . | Kavayonty Kasavoty | [d12 Ry, o | dio Ry, [|d1o RSy [|dia Ry | (80)
0,1

Furthermore, a simple computation shows that

CLZ;LU;M) - N u u;vv, — Z [ys27 yi;v} [1[0,11} X[tj,t541] (u/v U)l[si,si+1} x[0,v] (U, U/)]

+ Z yslyt] 0 ;8] %[0, ta](u v ) - 1[0 u] %[0, v](u v )) 1[Si78i+1}><[tj7tj+1](u> 'U)] s

and thus,

3
< < sup ‘ya;b| sup ‘xaa;bz - $a1;b1|
(avb)e[ovs]x[ovt} ‘az—a1‘§|ﬂ'1|7|b2—b1‘§|7T2‘

T 2
au?u;vv’ - N(y )U'U;UU'

+ max(l[si,8i+1}(ul) + 1[tj ,tj+1}(vl)) sup ‘yg;bo . (81)
4] (a,b)€[0,s] x[0,t]

Our claims are now easily derived: on the one hand the right hand side of (8]) converges to
zero when n — oo if v’ # s; and v’ # t; for all 4, j. Then using inequality (80) and dominated
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convergence we obtain that a™ converges a.s to N(y) in H®2. On the other hand, in order
to obtain the convergence in L*(€2, H®?) it suffices to use the fact that f satisfies condition
(GC) and apply once again dominated convergence.

O

Now we are able to define our mixed integral in the Skorohod sense and connect it to the
equivalent integral in the Young theory:

Proposition 6.11. Assume x is a centered Gaussian process on [0,1]* with a covariance
function satisfying @). Consider a function ¢ € C*(R) satisfying condition (GC) and a
rectangle A = [sy, 8] X [t1,t2]. Then we have that N(y) € Dom(5%?%), and if we define
22¢ = §*%(N(y)) the following relation holds:

Z?f;z;tltz = slsg,tltg - / / yu vlel d2R2 Y / / yu le d2R2 dlxu v
= / / ViR R d + | / / yLRR AR LR, (82)
s1 t1 s1 t1

where fssf Yoo Ry doRY dy 0,y and f52 “ *ys. RE di R} dyyy, are defined according to Propo-
sition [{.0. Moreover relation (I3)) holds true in the L*(Q) and almost sure sense.

Proof. Like for Proposition [6.9 our strategy is as follows: consider a sequence T, = (7}, 72)
whose mesh go to 0 as n — oo and set a” = a™ defined by ([[9). We have seen at Lemma

610 that lim,, . a™ = N(y) in L*(Q, H®?). We shall now study the convergence of 6°(a™) by
means of Wick-Stratonovich corrections. Then we will conclude by invoking Proposition 6.2

Step 1: Wick-Stratonovich corrections. According to relation (67]) and Proposition for
k = 2 we obtain

50’2(61”) = Z 50’2(3/;-;1‘/]’1[0,Sz‘]X[tjvtj+1} ® 1[8i78z‘+1]X[07tﬂ)

Tn

_ 2
- § :ysi;tj © 52$5i§tjtj+1 © 51$5i5i+1§tj‘ (83)

Tn

We now use Theorem 4.10 in [I1] in order to get that 50’2(a”) can be decomposed as:

2
Z ysl, 62.:(:3“15 t]+1 < 51x5151+17 Z ysl, t ti j+1 - Rtjtj)51x5i5i+1§tj
— R} (R, — R;, )00 (84)
ysl, slshq s4,8: /Y2 s5tt541
+§ Yl RURA(RL, —R\)(R, . —R,)=B!-B}—Bj}+B]
Sisty S$i8i41 $;8i titit1 tit; ) — 1 2 3 4-

Tn

Like in the proof of Proposition [6.9] we treat those 4 terms separately.
Step 2: Estimation of BY, ..., B}. The term B} can be decomposed as

n __ 2 1 2
Bl - § :ysi;tj51x8i8i+1§tj52zsi§tjtj+l E :ysz,tj 8151+1 - Rszsl)(RtJtJ+1 - Rtjtj)'

Tn
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Moreover, the second term in the r.h.s is the same as A} in the proof of Proposition [6.9]
while the convergence for ) yi;tjélxsisi 15t; 025,541, Tollows exactly along the same lines
as A7 in the same proof. We thus leave to the patient reader the task of showing that

Y L[ [ 17 p2

lim B? = / / Ys:t dlxs;td%vs;t - _/ / Ysit lesd2Rt7 (85)

n—00 S1 11 4 S1 t1
and we concentrate now on the other terms in (84).

The term By = ) | y::’i;tj Rii(Rfjth - Rfjtj)dlatsisiﬂ;tj can be decomposed as B} = Bj, +
BY,, with
1 2 2 3 pl 2
B;Ll = 5 ysl,t R (Rt Jj+1 Rtj>51x3i3i+l§tj7 Bg2 = Zysi;t]‘Rsiptjtj+161x3i3i+l§tj7

where we recall that we have set pffjtjﬂ = (2th . Rfjtj — Rfjﬂtjﬂ) for k =1,2.

It is now easily seen that the almost sure and L? convergence of By are obtained with the
same kind of considerations as for A7 in the proof of Proposition We get that

1 S t
lim By = = / / Y2 RY doR2 dy 0y,
n—00 2 0 0 )

and B, B} are also handled in the same way.

Step 3: Conclusion. Thanks to Step 1 and Step 2, we have obtained that 6°(a™) converges
to the right hand side of relation (82) as n — oo, in both almost sure and L?* senses. As
mentioned before, this limiting behavior plus the convergence of a" to N(y) established at
Lemma yield relation (82) by a direct application of Proposition Furthermore,
relation (I3) is also a direct consequence of relation (83)).

O

Notice that our formula (82) involves some mixed integrals of the form [ f(f Yo Rodi R,
d2%y;, which are defined as Young type integrals. The following proposition, whose proof is
similar to Propositions [6.9] and and is left to the reader for sake of conciseness, gives a
meaning to the analogue integrals in the Skorohod setting.

Proposition 6.12. Let f € CYR) be a function satisfying condition (GC). Then for every
fired u € [0, s] we have that v — y3. RS € Dom(0°") where 50“ is the divergence operator

associated to the process (Ty.,)vepg. We can thus define fo o Voo Rod1 R, A5y by

/ / yu ’UR2 lel 2Iuv = llm 5078i (ygi;tj]‘[tj,tj+l])R (Ril+1 - Ril)

|7|—0
Tn

where the convergence holds in both L?(Q2) and almost sure senses. In addition, we have the
following identity:

s t 1 s t
/ / Yoo R0 dy Ry dSy = / / yi;szle}Ldgxuw—§ / / Yno Ry RS di R, dy R
0 0

Finally, the integral fo fos Yu: 3 JRLdyR2dSx,., is defined similarly.
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Remark 6.13. We have defined all the integrals we needed in order to prove our Skorohod
change of variable formula ([I4]). Indeed, the proof of formula (I4]) is now easily deduced by
injecting the identities of Propositions[6.9] and [612]in the Stratonovich type formula (3]).

7. SKOROHOD’S CALCULUS IN THE ROUGH CASE

Our goal in this section is to extend the formulae given in Propositions and
to rougher situations, namely for Gaussian processes in the plane with Holder regularities
smaller than 1/2. This is however a harder task than in the Young case, and this is why we
introduce 2 simplifications in our considerations:

(1) Instead of dealing with a general centered Gaussian process whose covariance admits the
factorization property of Hypothesis [6.4] we handle here the case of a fractional Brownian
sheet () (s,1)ej0,12 With Hurst parameters v, v, € (1/3,1/2].

(2) The definition of our Skorohod integrals with respect to z is obtained in the following way:
we first regularize x as a smooth process x". For this process we can still use the formulae
of Propositions and like in the Young case. We shall then perform a limiting
procedure on these formulae (this is where the specification of a concrete approximation is
important ), which will give our Stratonovich-Skorohod corrections. Notice however that the
interpretation in terms of Riemann-Wick sums will be lost with this strategy.

As in the previous section, we start our considerations by specifying the Malliavin frame-
work in which we are working.

7.1. Further Malliavin calculus tools. Recall that the covariance function of our frac-
tional Brownian sheet z is given by (§). We can thus consider a Hilbert space H* related
to = exactly as in Section [6.I] where we now stress the dependence in x of H” in order to
differentiate it from the Hilbert space related to white noise. In particular we denote by [T
the isometry between H* and the first chaos generated by x.

However, the Malliavin structure related to the harmonizable representation of x will
also play a prominent role in the sequel. Namely, it is well known (see e.g. [16]) that for
s,t € [0, 1], z can be represented as

Zot = Oy W (Qut) = /R Que(&m) W(dE, dn), (86)

where ¢, -, is a normalization constant whose exact value is irrelevant for our computations,
W is the Fourier transform of the white noise on R?, and Q. is a kernel defined by

et —1 e — 1

Qs;t(fﬂl) = |£|ﬁﬂ+% ‘7]‘724—% . (87)

This induces us to consider the canonical Hilbert space related to W, that is H" = L*(R?).

The relations between Malliavin calculus with respect to W and z are then summarized in
the next lemma:

Lemma 7.1. Denote by ]D)x’f“p (resp. DVkP) the Sobolev spaces related to x (resp. W), and
recall the notation LY = DW-L2(L%(R)) borrowed from [14]. For ¢ : [0,1]> — R, set

K(b(gv 7]) = (bs;t 83815@3;15 (57 77) detv (88)

[0,1]2
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where we recall that Q is defined by [&T). Then the following holds true:

(i) We can represent the space H* as the closure of the set of step functions under the norm
@Ml = 1K@l L2 e2)-

(i) We have D*M2(H*) = K1 (ILY?). In addition, for any smooth function F and any
H*-valued square integrable random variable u the following identity holds:

(t, D" F)ge = (Ku, DV F) 1252,
(iii) As far as divergence operators are concerned, the relation is
Dom(5"°) = K" Dom(6"°), and §°(u) = 6"°(Ku).
Proof. Let ¢ =3, - & 1(s, s, 1x[t;.1,41) D€ @ step function. We have that:

If(gb) = Z¢i7jéx8i8i+1;tjtj+1 = Z¢i,jW(5Q8iSi+1tjtj+1)
i,j Y]

(89)
- W (Z gbi,j(sQSisiJrl;tjthrl) - W(K¢)?
1,J
which easily yields our first claim (i).
Let now F' be a smooth functional of = of the form F' = f(z4.4,,...,%s,.t,). Then
E [<U, DmF>fo] = E[ Z 8lf(xslt17 . ,xsntn)(u, 1[075l]x[07tl]>7‘[mi|
le{1,...,n} (90)

—E[ Y 0 @t TtV K Lo 0) 22|

1e{1,....n}

E((w, D"Fy] = E[(Ku, > G (W(Quar)so s W(Qut) Qo) 2w |

= B [(Ku, DV F)pa]

which gives our assertion (ii) by density of smooth functionals. Relation (iii) is easily derived
from (ii) by duality.
U

Notice that the preceding result can be extended to second order derivatives thanks to a
simple tensorization trick. We label here the result for further use:

Lemma 7.2. Under the conditions of Lemmal71, set

[K®2¢] (6162) /)71772) = ¢8182;t1t2 asthl;tl (51) nl)aSthg;tQ (627 772) dSldSthldtQ. (91)
[0,1)*
Then for any smooth functional F and any (H®)®?-valued square integrable random variable
u we have:

(u, D> Fye = (K®%u, D> F) 12 gs).
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7.2. Embedding results. Similarly to [2], we now give an embedding result for the space
‘H?* which proves to be useful for further computations.

Lemma 7.3. Let 71,7 € (0, %] Then the following inequality is satisfied:

Sttty |?
5 S 0srsaitrt dsidt, | dsadt
i 5 [, ([ ) o
1 L o,
" /R |53 — s1[>~2n </0 it = Tt dt) d1dss (92)
1 1 , ,
+ T2 7 9—9~ as; - as; dS) dt,dt "‘/ TTLS; det,
/]Rz |ty — 4[>~ </0 ot ~ o o [0,1]2‘ d

where we have set Uy = gyl 172(5,1).

Proof. In this proof we only consider the case 71,72 < 1/2. Indeed, if 1 = 1/2 or 75 = 1/2
then our process z is simply a Brownian motion in the first or in the second direction, and
this situation is handled by L? norms.

For vy, 72 < 1/2, definitions (87) and (88)) entail:

2
2 1—27v; 1—2v2 1s€+atn
5
HUHH_/ 1 n] / Ugis€ dsdt
R? [0,1]2

from which one deduces that H is isometric to H/>= " @ HY?> " where HY/?~" stands for
the Sobolev space W1/2771:2. Now we use the fact that 1/2 —~; € (0,1/2), and recall that
the norm defined by

d&dn,

2
12/2—71 (¢) :/R Md81d52 ‘I’/ |¢s 2d$

2 |82 — 81|2 2y

is equivalent to the usual norm in H'/?=71. This yields (@) by tensorization.

O
Let us now introduce two more semi-norms:
|51f8182't| ‘ 2fs t1t2|
fllaa = sup — o and [[fllg2= sup
e (sran 0120, 152 — 51 17lls2 = (stnime? |t — t1[P

With these notations in hand, the following embedding result is easily deduced from Lem-

ma [7.3]

Corollary 7.4. Let 71,7 € (0,1/2) and v € P{y™ such that 0 <
have the following embedding:

[ulla S Novar(u),  where: Nog(f) = fllas+ 1 fllax + [1flls2 + 1 F oo (93)

7.3. Strategy and preliminary results. The strategy we shall develop in order to extend
Proposition (and also Proposition [6.17]) to the rough case is based on a regularization of
x. Specifically, for a strictly positive integer n, set

Ph= e | Qulen) WS di), (94
€ls[nl<n

—a; < ;. Then we
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where we recall that x and @ are respectively defined by ([86) and (87). For fixed n, it is
readily checked that 2" is a regular Gaussian process. Its covariance function is given by

n n 2.n
R5132,t1t2 = Rilsth1t27 Where
in (em§ _ 1)(e—zb5 . 1) .
Ry = C%'/H |£]2r+1 g, for i=1,2, (95)
<n

and hence R" is a regular function which satisfies Hypothesis 6.4 One can thus apply
Proposition and obtains the following Skorohod-Stratonovich comparison:

n ™ n 1 n N
=07 ) = [ e~ [aR G R (96)

for ¢ € C%(R) satisfying condition (GC), and where we set again A = [sy, s9] X [t1ts]. Our
goal is now to take limits in equation (9).

A first observation in this direction is that equation (Q6]) involves Skorohod integrals with
respect to ™. The fact that a different integral has to be defined for each n is somehow
clumsy, and this is why we have decided to express all integrals with respect to W in the re-
mainder of our computations. Namely, the same computations as for equations (89) and (90

entail that 67" °(y") = 6"°(K"y"), where K™ is the operator defined by

K"p(&,m) = 1(5,17|§n)/[ | Dt 0501Q st (€, m)dsdlt. (97)
0,1]2

With this representation in hand, our limiting procedure can be decomposed as follows:

e Take L? limits in the right hand side of equation (@8] by means of rough paths techniques.
e Show that K™y" converges in L?(2, L*(R)) to Ky.

Thanks to the closability of V-, this will show the convergence of 67" (y"1g,152) 10 6™ (y1(g 132)
and our Skorohod-Stratonovich correction formula will be obtained in this way.

We now state and prove 3 useful lemmas for our future computations. The first one deals
with convergence of covariance functions:

Lemma 7.5. Fori=1,2, set R =u?%. Then for all € > 0 we have
lim HRZ” RiH?%‘—E =0,

n——+00
where R™™ is defined by (05)).

Proof. We recall that c,, fR ‘ET; ﬂz d¢ = a®i. Then an elementary computation shows that

cos(a) — cos(bf) oy / e
Cyi ) €| Soie la =07 7¢ g7 edg,
! A>n |£|2%+1 ! | | |m|2n| |

which gives || 2™ — R"{|ay,—¢ Sye figs, [€]777d€, and this finishes the proof.

|0:(R™" — R')ap| =

Our second preliminary result ensures that 2" is an accurate approximation of x:

Proposition 7.6. Let p > 1 and 0 < € < min(v;,72). Then we have the following conver-
gence:

lim E [[|" — 2|, _, = 0.

n—00 ,»YQ_J
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In addition, there exists A\ > 0 such that

sup E [6’\5“1’(&06[0,112 o5l < 4oo. (98)
neN

Proof. The definitions (86) of z, (@) of 2" plus formula (&) for @ allow to write, for all
n>1:

|€zszx _ ezslx‘2|€zt2y _ eztly‘2

E[J5(2" — )srsnirss ] = / dady

. ly|>n |2 [y |2+t (99)

Soe 81— 512007ty — g 202/

where we have set [, = f‘w‘ \y|>n% (this quantity is obviously finite). Hence by

Gaussian hypercontractivity and Lemma [6.6] we obtain

Eﬂ&ﬁs sastat |2]p/2
n P < 152;t112
E[[Hx x“w—sﬁz—ﬁ] ~P71,72,€ /[071]4 ‘32 — 51‘(“/1—6)10—1—2|t2 - tl‘(“/z—ﬁ)il)+2

dtzngdtldsl

5 (In)p/2 / |82 — Sl|p€/2_2|t2 — t1|p6/2_1dt2d82dt1d81 S ([n)p/2
(0,1]%

Since lim,, o I, = 0, we thus get lim,, . E[[||z" — || | = 0, which is our first claim.

p
Y1—€72—€

We now focus on the exponential integrability of sup ™. Notice that for a fixed n one can
easily get those exponential estimates thanks to Fernique’s lemma. However, we claim some
uniformity in n here, and we thus come back to uniform estimates of moments in order to

prove ([@8)). Let then r = max(| = |, | == ]) + 1 and remark that ||2"||o < [2"]|c.. We thus

y1—edr Laa—e
use a decomposition of the form E[e* P02 |m?%t|2] = I'"(X\) + I*"()\), where
r—1 )\l “+o00 >\l
I'(\) = l TEleZ], and 7)) = ZZ: TEll="1%]-
=0 =r

We now bound those 2 terms separately: one the one hand, it is readily checked that
I'(A) < max supE[||z"||Z] < +oo,
i=0,...,7 peN ’
for € < min(7;,72). On the other hand, the bound on I*"(\) is obtained invoking Lemma [6.0]
again. Indeed, starting from expression (7I]) and introducing a standard Gaussian random
variable V, it is easily seen that

E[l2"|] < Cove EN? /

0,1]2x[0,1)2 |82 — S1|2T2 [ty — t |2t

(025, oyt *)

s1s2t1ty

dSldSthldtQ
with A is a Gaussian random variable A/(0,1). Now we have

152 __ us1x |2 pitey ity 2
supE[\éx” \2} §/ le e e el dxdy
R2

Py

‘ezx _ 1|2‘ezy _ 1‘2
|x‘2“/1+1‘y‘72+1

< sy — s1P [ty — > /
R2

Furthermore, it can be shown that Cy . is of the form M ! for a given M > 1. Thus
sup E[||z"[12] < M'E [N*],
neN

dl’dy SJ ‘82 — 81‘2%‘1‘,2 — t1|272.
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from which the relation 7*"(\) < oo is easily obtained. This finishes the proof of (@8).
U

With classical considerations concerning compositions of Holder functions with non linear-
ities, we finally get the following result which is labelled for further use. Its proof is omitted
for sake of conciseness.

Lemma 7.7. Let p1,p2 € (0,1), z',2* two increments lying in Py, and f € C*(R)
satisfying condition (GC). Then we have:

2
Np1,p2(f(a71) - f(:L’Z)) N Cal 22 NPLPZ (Il - 12) [1 +Np17p2 (Il) +Np17p2 (Iz)} (100)
where we recall that Ny, o, (f) has been defined at equation (@3). In the relation above we
have also set cp1 g2 = exp(O(Sup pejo2 |T5° + 5UD (s neoap [224]%)), where 6 is the constant
featuring in condition (GC).

7.4. Ito-Skorohod type formula. We now turn to the limiting procedure in equation (96,
beginning with the term involving covariances only:

Proposition 7.8. Let f € CS(R) be a function satisfying condition (GC) with a small
parameter X > 0, and x™ be the regularized version of x defined by ([O4). Then the following
convergence:

lim yo iRV Ay R = 1 / Yours? T2 sl (101)

nte0 J0,1)2 [0,1]2
holds in L*(S2).

Proof. The integrals involved in ([I0I]) are all of Young type. Owing to Proposition .6 we
thus have:

/ yg‘;tlei’"ngf’" = [(Id — Al(;l)(ld — A252)] (y"élRl’"(Sng’").
[0,1]2

By continuity of the sewing map, the desired convergence will thus stem from the relations
lim,,_,o A*" = 0 and lim,,_,o A*>™ = 0, where for € > 0 we set:

2
AL = Z |6, R™ — §;R||29s—c, and  A*™ =N, (y" —y).

1=1

Now the relation lim,,_,g A"™ = 0 is obviously a direct consequence of Lemma [T As far
as A% is concerned, we start from relation (I00) and apply Hélder’s inequality. This yields

E[(N'Yl—ﬁ,’m—ﬁ(yn - y))2]
S EV{(cp )T EV3[l” =l oy JEVA{(L+ Ny (™) + Ny ()]

Y1—€72—€

Then according to Proposition we see that the r.h.s of this last equation vanishes when
n goes to infinity, which proves our claim.

U

We now compute the correction terms in z!, that is the equivalent of Proposition
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Proposition 7.9. Let x be a fBs with Hurst parameters ~1,7v, > 1/3. Consider a function
o € C3(R) satisfying condition (GC) and a rectangle A = [s1, o] X [t1,t2]. Then we have
that y*1a € Dom(6°), and if we define the increment z1° = 6°(y'1a) the following relation
holds true:

Z;;Zg;tltz = Zsllszgtltg - 7172 /A yit‘s?\ﬂ_ltzfm_ld‘gdt’ (102)
where z' is the rough integral given by Theorem [1.7).

Proof. Let us start from the corrections for the regularized process z”, for which we can
appeal to Proposition We obtain relation (@6]), written here again for convenience:

1n,e — $n70 77/71 _
Zslsz;tltg - 5 (y 1A) - /

n n ]‘ n n n
Yy dipall, — Z/ yarldi RY"dy Ry (103)
A A

Now putting together Proposition and the continuity of the rough path integral, we get
convergence of the r.hs of (I03)) in L?(£2). Thus one can write, in the a.s and L?(£2) sense:

lim §""°(y") = / YsudioTs — N / YausT TP dtds,
n—-+o0o A ) A )

where the integral with respect to x is interpreted in the sense of Theorem .4

Let us further analyze the convergence of 6*"°(y™): recall that this quantity can be written
as 6" °(K™y"), where K™ is defined by (@7) or specifically as

n, n Zé_lln n w]uUTwnU
(K"y")(&n) = ET 2] [ (/A Y€t dudv) L(jgllnl<n) (104)

Hence, owing to closability of the operator 5W7°, the proof of (I02) is reduced to show that
Km™y™! converges in L*(2; L?(A)) to Ky'. Now expression ([04)) easily entails that

HKnyn,l - KyHLZ(R) < Hyml - ylH’H

+ / ‘5‘ 1—2v |n|1—2’yg / yqluvezﬁu-l-mvdudv
€] Inl>n A

and we shall bound the 2 terms on the r.h.s of this inequality.

2
d&dn,

Indeed, on the one hand we consider 71,79, > 1/4 and € > 0 small enough. This gives

[ g
(€:m)lloc 27

2
E

/ yu;velgw“w dudv
A

dgdn]

n——+oo

5 n ‘K [(N’Y1—e,'yz—5(y))2] — 0.
On the other hand, Corollary [T4] asserts that ||y — y" ||y S Nyy—ero—e(y™ — ), and the r.h.s

of this relation vanishes as n — oo thanks to Proposition [[.6l This concludes our proof.
O

In order to complete our comparison between It6 and Stratonovich formulae, we still have
to compare the Skorohod type increment z%° and the rough integral z2. As a previous step,
let us give an intermediate result concerning some mixed integrals in R, x:
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Proposition 7.10. Let ¢ € C®(R) and recall that for the fractional Brownian sheet x we
have R. = u®" for i =1,2. Then the integral

/lel dll' d2R2 = [(Id — Al(;l)(ld — A252)] (y1R151$52R2 + 1/2y2R1 (511’)252R2) (105)

is well defined a.s, in the sense of Proposition[3.3. Moreover the following convergence takes
place in L*(9):

lim [ g RLndyn R — / UL Rldyzaoda 2. (106)
n—+00 J A A

Finally, the same kind of result is still verified when one interchanges directions 1 and 2 in

relation (I0H)).

Proof. Let us first check that the integral in ([I0]) is well-defined in the sense of Proposi-
tion L6l To this aim, set A = y*R16,2 6, R?+1/2y* R (6,2)%5, R?. Then a simple application
of Proposition 2.7 yields §; A = 2z 6, R?, with

z= (y251x — 51y1) R'$1x — 1/26,(y*RY)(6,2) — y'0, R* 2.
It is thus easily seen that 6; A € 77?‘?’;1_6’272 for an arbitrary small €, thanks to the fact that

e Py " and diy' —yPhir € 772211_6’72 almost surely. Notice that with the same kind of

considerations we also have that J,A € 73;713’372_6,

Let us now compute dA: we have
0A = —(522 (52R2 - — (Al + AQ) (52R2,
where
Ay = gRYz, with g¢=0y* — 825 x — y?ox,

and where setting (012 01 02)s,sp:t11, = 01T, 5981 0T sy 50:112, Similarly to Definition .6, we have

Ag = 52y151R151x - {51y1 - y251$}R1(5$ - 1/25y2((51${7>2
—1/2815*{6x 01 12 + S 01 S}
The reader can now easily check that A; € 735’721_5’72_5. In order to check the regularity of
Ay, observe that ¢ is of the form g = d2h, with

hsyspye = (51?/;152#_ygl;t)élISwz#
1 1
= (/ dﬁﬁ/ dely2($sl;t + 99/(5125'3152;15)> (513:3132;1&)2- (107)
0 0

Computing doh with formula (I0T), one obtains that A' = 6,hR'61z € 735’721_5’72_5.

Let us summarize our last considerations: we have seen that both A; and A, lye into
735’}1_6’72_6, and recalling that 6A = —(A; + A3)d, R?, we obtain 0A € ngl‘f’?’”‘f. We have
also checked that 6;A € Pg}l_e’zw and 0,A € 732231’3%_6. Gathering all this information,
we have checked the assumptions of Proposition for the increment A, which justifies

expression ([I05]).
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Now we focus on the convergence formula (I06). We start by observing that for all n > 1
the following representation holds true:

/ Yy REMdox” dy R2™ = [(Id — Ay6y)(Id — Agdy)]A™
A

with A" = y™I RV, RE™ 4 1/2y™ RV (§,2™)?0, R*™. Hence, owing to the continuity of the
planar sewing-maps (A;);=12 and A, our claim (I06]) is reduced to prove that the sequences
||An - AH’Yl—E,?’Yz—G? ||51 (An - A)H?”Yl—f,?’Yz—E? ||52(An - A) ||’Yl—573’Yz—6 and ||5(An - A)||3’Yl—573’Yz—6
converge in L*(€) and almost surely to 0. Furthermore, it is readily checked that those
convergences all stem from the relations

5
i [ R~ Rl + 30 Ny =) + (01" = (512 [ays-cn =0 (108)

1=0
and
lim [0 (h = ") [lqy—eqp—e = 0, with 2" = Gyy™! —y™ 612", (109)
n—

where the limits take place in some LP(€)) with a sufficiently large p, and where we recall
that h is defined by ([I07). We now turn to the proof of those two relations.

To begin with, note that the convergence (I08) easily stems from Lemma [I.5] for the terms
R, Proposition for the terms x and Lemma [[.7] for the terms y. In order to prove (I09),
we invoke again the integral representation (I07) for both A" and h. Then some elementary
considerations (omitted here for sake of conciseness) allow to reduce the problem to the
following relation:

LP(Q) — lim (E[Ni’l_m_e(x" —o)]+ > BN, (- y’)]) =0.

n—00 -
=0

This last relation is a direct consequence of Proposition and composition with non lin-
earities, whenever f satisfies the growth condition (GC) with a small parameter A > 0. The
proof is now finished.

U

We can now state our result concerning the Ito-Stratonovich correction for the mixed
stochastic integral [ ydizdyr:

Theorem 7.11. Let x be a fBs with Hurst parameters v1,ve > 1/3. Consider a function
¢ € C3(R) satisfying condition (GC) and a rectangle A = [sy, so| X [t1,t2]. Then we have that
N(y*) € Dom(6°?), and if we define the Skorohod integral z*° as §°*(N(y?)), the following
particular case of relation (82]) holds:

2,0 2 2 2y1—1,2v2—1 3 2v1,,2v2—1
zslsg;tltg - Zslsggtltz — 7172 / yu;vu v dUdv -2 yu;’uu v dvdlxuw
A A

—71/ yi;vu%_lvz”dudzxu;v+7172/ yﬁ;vu‘m_lvﬂm_ldudv. (110)
A A
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Proof. We follow the same strategy as for Theorem apply first Proposition [6.17] for the
regularized process x™, which yields:

R R VY
A A ’ A
12 [ GRR R i, ~ 12 [ SRR b,
A A
+1/4 / Y Ry Ry Ry Ry (111)
A

Now our preliminary results allow to take limits in relation (ITI)). Indeed, owing to Propo-
sitions and [ZI0 plus the continuity of the rough increment z? given at Theorem [L4]
we obtain the convergence in L?*(2) for the four first terms in the r.h.s of equation (ITI)).
Moreover the last term also converges in L?((2), thanks to the same arguments as in the
proof of the Proposition [.8 We thus get the convergence of the r.h.s of equation (IIT]) to
the r.h.s of equation (II0), and also the fact that 2% converges in L*(). Like in the proof of
Theorem [7.9] the proof of (II0) is thus reduced to show the L? convergence of the integrand
defining 2%°.

However, mimicking again the proof of Theorem [7.9] it is easily seen that

1l )
/ / Uito B 5, o= 072 (N(y"?)) = 07 (K™ 22N (y™))
o Jo
where we recall that K®? is defined by (@I]) and

[K™920] (21223 9132) = V(s sl s oot <ny [K 0] (21223 y1312).

It thus remains to show that K™®?(N(y™?)) converges to K®?(N(y?) in L*(2, L*(R%)).
Towards this aim, we introduce the further notation us(£,n) = y2,(e** — 1)(e" — 1),

why(€,m) = Yl (€ = 1)(e" — 1) and

Wy, Eosm,m) = [ usg(Er,m)e 2T dsdt

a" (&, o, m2) = ugy (&1, m ) e st

e~

Then note that
I(K™)®2(N(y") — K2 (N () |72y < 17+ 13 + I3,

where

- B U dgld;h
I / ( |§2|1 2'yl|772|1 292 |u(€1>€2;771,172)|2d§2d772)
1 1] |m[>n \JR? €427y 202+

_ _ R dfldﬁl
= / (/ &= 27 i€y, 03, zdidn)
2 R2 ‘£2|7|772‘2"‘ 2‘ ‘2| ‘(1 2 1 2>| 2 2 ‘51‘2“/1+1‘n1|2’}/2+1




48 KHALIL CHOUK AND SAMY TINDEL

and

Iy :/ (/ &2 o) 202 (&4 €251, ) —ﬂ"(€1>€2;771,772)|2d§2d772)
RQ

RQ

d&idm
| [Prtt]my [2r2 L

In order to bound those 3 terms, observe that

Noy—ern=e (€M) S Nay—eq—e(y) (L £ €77+ I~ + [€]7 7 [n*7)
and thus Corollary [Z.4] entails that

1 }
EI" SE 2_E . y2 2 / —————=d&dn e 0,
] SEWN =W | T

and
E[Igl] S/ n_EE[ ’31—6,’)/2—6(y2):| nﬁoo 0

As far as I¥ is concerned, we remark that

Ny —emp—e(u(€m) = u"(€,1)) S Noy—emo—e(y® = 4™ ) (L + [E7 7+ |7 + €[ |07

and then we can conclude along the same lines as in Theorem [Tl that E[I}] vanishes as n
goes to infinity. This finishes the proof.
U

The last step in order to go from Theorem [Z.11]to Theorem [L.8is to convert Stratonovich
into Skorohod type integrals in the right hand side of relation (II0). To this aim, let us first
recall the following one-parameter result:

Proposition 7.12. Let B a fractional brownian motion with hurst parameters 1/2 >~ > 1/3
then we have that u — @(B,)u*’ € Dom(5%P) and we have that

/ p(B,u*d°B, = / @(B,)u*dB, — v / ¢ (B,)u"tdu
[0,1] [0,1] [0,1]

Proof. Use exactly the same arguments of the Proposition (Z9) for the one parameters
setting. U

Now the Corollary below is the key to the conversion of Theorem [Z.11] into Theorem L8

Corollary 7.13. For v; > 1/3 and ¢ € C%(R) then for every v € [0,1] u — yi. u*" €
Dom(6%*+) and the following formula hold true

/yg;vu27102“’2_1d<{xuwdv:/yivu%vz'yrldlxuwdw—fyl/ yﬁwu‘m_lv‘m_ldudv
A ) A

Proof. we recall that z,, =low 2 B, with B is a fBm with hurst parameter +; and then it
suffice to use the proposition (4] O
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