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SKOROHOD AND STRATONOVICH INTEGRATION IN THE PLANE

KHALIL CHOUK AND SAMY TINDEL

Abstract. This article gives an account on various aspects of stochastic calculus in the
plane. Specifically, our aim is 3-fold: (i) Derive a pathwise change of variable formula
for a path x : [0, 1]2 → R satisfying some Hölder regularity conditions with a Hölder ex-
ponent greater than 1/3. (ii) Get some Skorohod change of variable formulas for a large
class of Gaussian processes defined on [0, 1]2. (iii) Compare the bidimensional integrals ob-
tained with those two methods, computing explicit correction terms whenever possible. As
a byproduct, we also give explicit forms of corrections in the respective change of variable
formulas.
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1. Introduction

Stochastic calculus for processes indexed by the plane (or higher order objects) is notori-
ously a cumbersome topic. In order to get an idea of this fact, let us start from the simplest
situation of a smooth function x indexed by [0, 1]2 and a regular function ϕ ∈ C2(R). Then
some elementary computations show that

[δϕ(x)]s1s2;t1t2 =

∫

[s1,s2]×[t1,t2]

ϕ(1)(xu;v) duvxu;v +

∫

[s1,s2]×[t1,t2]

ϕ(2)(xu;v) duxu;vdvxu;v, (1)

for all 0 ≤ s1 < s2 ≤ 1 and 0 ≤ t1 < t2 ≤ 1, where we have set [δy]s1s2;t1t2 for the planar
increment of y in the rectangle [s1, s2]× [t1, t2], namely

[δy]s1s2;t1t2 ≡ ys2;t2 − ys1;t2 − ys2;t1 + ys1;t1 . (2)

This simple formula already exhibits the extra term
∫
ϕ(2)(xu;v) dux dvx with respect to

integration in R, and the mixed differential term dux dvx is one of the main source of com-
plications when one tries to extend (1) to more complex situations.

Moving to stochastic calculus in the plane, generalizations of (1) to a random process
x obviously starts with change of variables formulas involving the Brownian sheet or mar-
tingales indexed by the plane. Relevant references include [3, 13, 19], and some common
features of the formulas produced in these articles are the following:

• Higher order derivatives of f showing up.
• Mixed differentials involving partial derivatives of x and quadratic variation type

elements.
• Huge number of terms in the formula due to boundary effects.

This non compact form of stochastic calculus in the plane has certainly been an obstacle to
its development, and we shall go back to this problem later on.

Some recent advances in generalized stochastic calculus have also paved the way to change
of variables formulas in the plane beyond the martingale case. One has to distinguish two
type of contributions in this direction:

(a) Skorohod type formulas for the fractional Brownian sheet (abbreviated as fBs in the
sequel) with Hurst parameters greater than 1/2 have been obtained in [17] thanks to a com-
bination of differential calculus in the plane and stochastic analysis tools inspired by [1]. A
subsequent generalization to Hurst parameters smaller than 1/2 is available in [18], invoking
the notion of extended divergence introduced in [12]. Notice however that the extended
divergence leads to a rather weak notion of integral, and might not be necessary when the
Hurst parameters of the fBs are greater than 1/4.

(b) The article [4] focuses on pathwise methods for stochastic calculus in the plane, and
builds an analog of the rough paths theory for functions indexed by the plane. In particular,
generalizations of (1) with Stratonovich type integrals are given for functions with Hölder
regularity greater than 1/3. The construction is deterministic and general, and only requires
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the existence of a stack of iterated integrals of x called rough path, denoted by X. One can
show in particular that X exists when x is a fBs.

The current article is a contribution to these recent advances on generalized stochastic
calculus in the plane. Namely, we focus on 3 different problems: (i) A complete exposition
of the Stratonovich type change of variables formula obtained through rough paths tech-
niques. (ii) Generalization of [17] to a fairly general Gaussian process x. (iii) Comparison
of Stratonovich and Skorohod formulas, analogously to the 1 dimensional situation handled
in [10]. Before we further comment on these contributions, we now describe our main results
more specifically.

1.1. Some general notation. Before we can turn to the description of our main results,
we introduce some general notation concerning differential calculus in the plane. Let us
mention first that we shall separate as much as possible the first and the second direction of
integration, which will be respectively be denoted by direction 1 and direction 2. Thus the
evaluation of a function f : [0, 1]2k → R will be denoted by fs1···sk;t1···tk . We also set d12x for
the differential duvx and d1x d2x for the differential dux dvx. In fact, since the differential
element d1x d2x is essential for our purposes, we further shorten it into d1̂2̂x.

Another notation which will be used extensively throughout the paper is the following:
we set y = ϕ(x), and for all j ≥ 1 we write yj for the function ϕ(j)(x). With those first
shorthands, equation (1) for a smooth function x : [0, 1]2 → R can be written as

δy =

∫

1

∫

2

y1 d12x+

∫

1

∫

2

y2 d1̂2̂x. (3)

This kind of compact notation is of course useful when cumbersome computations come into
the picture.

Let us anticipate a little on the notation for planar increments which will be introduced at
Section 3.1: we denote by Pk,l the set of R-valued functions involving k variables in direction
1 and l variables in direction 2, satisfying some vanishing conditions on diagonals. We mostly
deal with spaces of the form P2,2 and introduce some Hölder norms. Namely, if f ∈ P2,2(V ),
we set

‖f‖γ1; γ2 = sup

{
|fs1s2; t1t2 |

|s2 − s1|γ1|t2 − t1|γ2
; s1, s2, t1, t2 ∈ [0, 1]

}

,

and we denote by Pγ1,γ2
2,2 (V ) the space of increments in P2,2(V ) whose ‖ · ‖γ1; γ2 norm is finite.

1.2. Stratonovich type formula in the Young case. We assume here that x : [0, 1]2 → R

is a path such that the rectangular increments δx of x satisfy δx ∈ Pγ1,γ2
2,2 with γ1, γ2 > 1/2,

which corresponds to the case where integration with respect to x can be handled by Young
techniques in the plane. Our change of variable formula in this situation relies on the
definition of 2 increments x

1;2,x1̂;2̂ ∈ Pγ1,γ2
2,2 defined as follows (see also Definition 4.2 for

further information):

x
1;2 =

∫

1

∫

2

d12x, and x
1̂;2̂ =

∫

1

∫

2

d1x d2x,

where the integrals can be understood in the Young sense.

With these notations in hand, the change of variables formula can be read as:
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Theorem 1.1. Let x : [0, 1]2 → R be a path such that δx ∈ Pγ1,γ2
2,2 with γ1, γ2 > 1/2. Then

the increments

z1 =

∫

1

∫

2

y1 d12x, and z2 =

∫

1

∫

2

y2 d1̂2̂x, (4)

are well defined in the 2d-Young sense. Moreover:

(i) Both z1 and z2 can be decomposed as:

z1 = y1 x1;2 + ρ1, and z2 = y2 x1̂;2̂ + ρ2, (5)

where ρ1, ρ2 are sums of increments with double regularity (2γ1, 2γ2) in at least one direction.

(ii) Provided x is a smooth path, the increments z1 and z2 are defined as Riemann-Stieljes
integrals.

(iii) If xn is a sequence of smooth functions such that the related increments x
n;1;2,xn;1̂;2̂

converge respectively to x
1;2 and x

1̂;2̂ in Pγ1,γ2
2,2 , then z1,n, z2,n also converge respectively to z1

and z2.

(iv) Some Riemann sums convergences hold true: if π1
n and π2

n are 2 partitions of [s1, s2] ×
[t1, t2] whose mesh goes to 0 as n→ ∞, then

lim
n→∞

∑

π1
n,π

2
n

y1σi;τj
x
1;2
σiσi+1;τjτj+1

= z1s1s2;t1t2 , and lim
n→∞

∑

π1
n,π

2
n

y2σi;τj
x
1̂;2̂
σiσi+1;τjτj+1

= z2s1s2;t1t2 . (6)

(v) The change of variables formula (3) still holds true when integrals are understood in the
Young sense.

Observe that this theorem is not new and can be easily recovered from considerations
contained in [7, 15]. However, we express it here in terms which allow easy generalizations
to Skorohod type integrals and to rough situations as well.

1.3. Stratonovich type formula in the rough case. Consider now a function x whose
rectangular increments δx only satisfy δx ∈ Pγ1,γ2

2,2 with γ1, γ2 > 1/3. The definition of z1, z2

as in (4) and the equivalent of formula (1) require now a huge additional effort. In particular,
the correct definition relies on the introduction of a collection of iterated integrals of x (called
rough path above x and denoted by X by analogy with the 1-d case) that we proceed to
describe.

The reader will soon observe that the definition of X involves a whole zoology of objects
which are somehow tedious to describe. In this article we shall index those objects by the
directions of integration, trying to separate as much as possible direction 1 and direction
2 as we already did for the first order integrals x

1;2 and x
1̂;2̂. Moreover, when one tries to

define iterated integrals in the plane, the following extra facts have to be taken into account:

(i) The differentials with respect to x can be in one direction only (d1x or d2x) or bidirec-
tional. This reflects into some indices 0 when we don’t integrate in a given direction, and 1 or
2 otherwise. Furthermore, as already mentioned, our bidirectional differentials can be either
of type d12x or d1x d2x = d1̂2̂x. We keep our convention of indices 1; 2 for differentials of the

type d12x and 1̂; 2̂ for differentials of the type d1̂2̂x. As an example of these conventions, we

define x
11̂;02̂ ∈ P2,2 in the following way for a smooth function x:

x
11̂;02̂ =

∫

1

d1x

∫

2

d1̂2̂x, that is x
11̂;02̂
s1s2;t1t2 =

∫ s2

s1

∫ t2

t1

(∫ σ2

s1

d1xσ1;t1

)

d1xσ2;τ1d2xσ2;τ1 .
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(ii) We manipulate objects which are either iterated integrals or products of iterated inte-
grals. We indicate that one starts a new integral in one specific direction and gets a product
of increments by placing a new

∫
sign, and this is translated by a · in the indices of x. For

instance, modifying our previous example, we define x
1·1̂;02̂ ∈ P3,2 in the following way for a

smooth function x:

x
1·1̂;02̂ =

∫

1

d1x

∫

1

∫

2

d1̂2̂x, that is x
1·1̂;02̂
s1s2s3;t1t2 =

∫ s2

s1

d1xσ1;t1

∫ s3

s2

∫ t2

t1

d1xσ2;τ1d2xσ2;τ1 .

Notice that those breaks in integration can occur at different steps in each direction 1 or 2.
The resulting overlapping integrals will be an important source of technical troubles in the
remainder of the paper.

With these preliminary considerations in mind, our assumptions on the function x are of
the following form:

Hypothesis 1.2. The function x is such that δx ∈ Pγ1,γ2
2,2 with γ1, γ2 > 1/3. Moreover, the

following rough path X can be constructed out of x:

Increment Interpretation Regularity Increment Interpretation Regularity

x
1;2

∫

1

∫

2
d12x (γ1, γ2) x

1̂;2̂
∫

1

∫

2
d1̂2̂x (γ1, γ2)

x
11;02

∫

1
d1x

∫

2
d12x (2γ1, γ2) x

11̂;02̂
∫

1
d1x

∫

2
d1̂2̂x (2γ1, γ2)

x
01;22

∫

2
d2x

∫

1
d12x (γ1, 2γ2) x

01̂;22̂
∫

2
d2x

∫

1
d1̂2̂x (γ1, 2γ2)

x
11;22

∫

1

∫

2
d12xd12x (2γ1, 2γ2) x

11̂;22̂
∫

1

∫

2
d12xd1̂2̂x (2γ1, 2γ2)

x
1̂1;2̂2

∫

1

∫

2
d1̂2̂xd12x (2γ1, 2γ2) x

1̂1̂;2̂2̂
∫

1

∫

2
d1̂2̂xd1̂2̂x (2γ1, 2γ2)

In the table above, all increments belong to P2,2, so that a regularity (α, β) means that the

increment lyes into Pα,β
2,2 . Furthermore, the stack X is a geometric rough path, insofar as

there exists a regularization xn of x such that limn→∞ ‖x− xn‖γ1,γ2 = 0 and such that all the
integrals in X

n, constructed out of xn in the Lebesgue-Stieljes sense, converge with respect
to their natural respective norms in Pγ1,γ2

2,2 , P2γ1,γ2
2,2 , Pγ1,2γ2

2,2 or P2γ1,2γ2
2,2 . Note that the natural

Hölder norm of a rough path is denoted by N in the sequel.

Remark 1.3. As we shall see at Section 5, Hypothesis 1.2 is not completely sufficient in order
to settle a satisfying integration theory with respect to x. In fact the rough path X should
also include higher order increments like x

11·1;022 or x
1·11;22·2 (and other extra terms). We

have only stated Hypothesis 1.2 here in order to keep our exposition into some reasonable
bounds.

Now we can state our Stratonovich integration theorem in the rough case, which mimics
Theorem 1.1:

Theorem 1.4. Let x : [0, 1]2 → R be a path such that δx ∈ Pγ1,γ2
2,2 with γ1, γ2 > 1/3 and

assume the further rough path Hypothesis 1.2. Consider a function ϕ ∈ C8
b (R). Then the

increments z1 and z2 given by (4) are well defined as continuous functions of the rough path
X. Moreover:

(i) The increment z1 can be decomposed as:

z1 = y1 x1;2 + y2 x11;02 + y2 x01;22 + y2 x11;22 + y3 x1̂1;2̂2 + ρ1, (7)
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and the increment z2 admits a decomposition of the form

z2 = y2 x1̂;2̂ + y3 x11̂;02̂ + y3 x01̂;22̂ + y3 x11̂;22̂ + y4 x1̂1̂;2̂2̂ + ρ2,

where ρ1, ρ2 are sums of increments with triple regularity (3γ1, 3γ2) in at least one direction.

(ii) If xn is a sequence of smooth functions such that the related rough path X
n converges to

X, then z1,n, z2,n (defined in the Lebesgue-Stieljes sense) also converge respectively to z1 and
z2.

(iii) The change of variables formula (3) still holds true when integrals are understood in the
rough path sense.

Obviously, Theorem 1.4 would be of little interest if we could not apply it to processes of
interest. To this regard, our guiding example will be the fractional Brownian sheet (fBs in
the sequel). Let us recall that this is a centered Gaussian process x defined on [0, 1]2, with
a covariance function Rs1s2;t1t2 = E[xs1;t1xs2;t2 ] defined by

Rs1s2;t1t2 =
1

4

(
|s1|

2γ1 + |s2|
2γ1 − |s1 − s2|

2γ1
) (

|t1|
2γ2 + |t2|

2γ2 − |t1 − t2|
2γ2
)
, (8)

where the Hurst parameters γ1, γ2 lye into (0, 1). Many possible representations are available
for the fBs, among which we will appeal to the so-called harmonizable representation (see
relation (86) below for further details). This allows a natural approximation of x by a
sequence of smooth processes xn thanks to a cutoff in frequency, and we recall the following
convergence result established in [4]:

Proposition 1.5. Let x a fBs with Hurst parameters γj > 1/3, for j = 1, 2. Define the reg-
ularization xn of x given by a frequency cutoff on B(0, n) in the harmonizable representation
of x. Then:

(i) The family of iterated integral Xn defined in (1.2) associated to xn fulfills the relation
limn,m→∞ E[N p(Xm − X

n)] = 0 for all p ≥ 1, where the norm N is alluded to at Hypothe-
sis 1.2. The limit object X is called rough sheet associated to x.

(ii) Theorem 1.4 applies to the fBs x.

As the reader might imagine, Theorem 1.4 can also be applied to a wide range of Gaussian
and non Gaussian processes. We focus here on fBs for sake of simplicity.

1.4. Skorohod integration. One of the main issue alluded to in this article is a comparison
between Stratonovich and Skorohod type change of variable formulas when x is a Gaussian
process exhibiting some Hölder regularity in the plane. Towards this aim, our global strategy
is to use our Theorems 1.1 and 1.4 and compute corrections between Stratonovich and
Skorohod type integrals.

We first focus on the Young case, assuming the same regularity conditions as in Section 1.2.
We are then able to handle the case of a fairly general centered Gaussian process x whose
covariance function R satisfies a factorization property of the form

E[xs1;t1xs2;t2 ] = Rs1s2;t1t2 = R1
s1s2R

2
t1t2 , (9)

for two covariance functions R1, R2 on [0, 1] and such that R1, R2 ∈ C1-var([0, 1]2) (which
ensures that x is (γ1, γ2)-Hölder continuous with γ1, γ2 > 1/2). Notice in particular that the
fBs covariance function (8) satisfies condition (9).
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The standard growth assumptions on f in order to get a Skorohod formula for f(x) should
also be met. They will feature prominently in the sequel, and we proceed to recall them
now:

Definition 1.6. Let k ∈ N, we will say that a function f ∈ Ck(R) satisfies the growth
condition (GC) if there exist positive constants c and λ such that

λ <
1

4 maxs,t∈[0,1] (R1
sR

2
t )
, and max

l=0,...,k
|f (l)(ξ)| ≤ c eλ |ξ|2 for all ξ ∈ R. (10)

With these notations in hand, and denoting quite informally the Skorohod differentials by
d⋄ (see Section 6.1.1 for further explanations), we can summarize our results in the following:

Theorem 1.7. Assume x is a centered Gaussian process on [0, 1]2 with a covariance func-
tion satisfying (9). Consider a function ϕ ∈ C4(R) satisfying condition (GC). Then the
increments

z1,⋄ =

∫

1

∫

2

y1 d⋄12x, and z2,⋄ =

∫

1

∫

2

y2 d⋄
1̂2̂
x, (11)

are well defined in the Skorohod sense of Malliavin calculus. Moreover:

(i) Some Riemann convergences hold true: if π1
n and π2

n are 2 partitions of [s1, s2] × [t1, t2]
whose mesh goes to 0 as n→ ∞, then

lim
n→∞

∑

π1
n,π

2
n

y1σi;τj
⋄ x1;2

σiσi+1;τjτj+1
= z1,⋄s1s2;t1t2 (12)

lim
n→∞

∑

π1
n,π

2
n

y2σi;τj
⋄ δ2xsi;tjtj+1

⋄ δ1xsisi+1;tj = z2,⋄s1s2;t1t2 , (13)

where ⋄ stands for the Wick product in the left hand side of the relations above, and where
the convergence holds in both a.s and L2(Ω) sense.

(ii) The change of variables formula for y = f(x) becomes

δys;t = z1,⋄s;t + z2,⋄s;t +
1

2

∫

1

∫

2

y2u;v d1R
1
u d2R

2
v +

1

2

∫

1

∫

2

y3u;vR
1
u d2R

2
v d

⋄
1xu;v

+
1

2

∫

1

∫

2

y3u;vR
2
v d1R

1
u d

⋄
2xu;v +

1

4

∫

1

∫

2

y4u;vR
1
uR

2
v d1R

1
u d2R

2
v. (14)

(iii) Explicit corrections between z1, z2 and z1,⋄, z2,⋄ can be computed (see relations (74)
and (82)).

Finally, let us move to the Skorohod change of variable in the rough situation. For sim-
plicity of exposition, we have restricted our analysis to the fractional Brownian sheet, mainly
because our computations heavily hinges on the explicit regular approximation sequence xn

given by the harmonizable representation of fBs (similarly to the construction of the rough
path above x). The Skorohod change of variable (consistent with the formulas obtained
in [18]) and Skorohod-Stratonovich comparison we obtain in this case are summarized as
follows:

Theorem 1.8. Assume x is a fractional Brownian sheet on [0, 1]2, with γj > 1/3 for j =
1, 2. Then the increments z1,⋄, z2,⋄ of equation (4) are well defined in the Skorohod sense of
Malliavin calculus. Moreover:
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(i) Both z1,⋄ and z2,⋄ can be seen as respective limits of zn,1,⋄ and zn,2,⋄, computed as in
Theorem 1.7 for the regularized process xn.

(ii) For all f ∈ C6(R), the change of variables formula (14) still holds, and can be read as:

δys;t = z1,⋄ + z2,⋄ + 2γ1γ2

∫

1

∫

2

y2u;v u
2γ1−1v2γ2−1 dudv + γ2

∫

1

∫

2

y3u;v u
2γ1v2γ2−1 d⋄1xu;vdv

+ γ1

∫

1

∫

2

y3u;v u
2γ1−1v2γ2 d⋄2xu;vdu+ γ1γ2

∫

1

∫

2

y4u;v u
4γ1−1v4γ2−1 dudv. (15)

(iii) Explicit corrections between z1, z2 and z1,⋄, z2,⋄ can be computed (see relations (102)
and (110)).

1.5. Further comments. As the reader might have noticed, our paper gives a rather com-
plete picture of pathwise Stratonovich and Itô-Skorohod integration for processes indexed by
the plane. In the case of pathwise integration, we take up the methodology introduced in [4],
based on a highly nontrivial extension of the rough path theory, and compute explicitly all
the terms involved in our Stratonovich expansion. We wished the exposition to be as clear
and self-contained as possible, which explains the length of Sections 4 and 5.

In order to put our strategy for the Itô case into perspective, notice that 2 types of
methodologies are usually available for changes of variables in case of a Gaussian process x:

(a) Define a divergence type operator δ⋄ for x and proceed by integration by parts on
expressions like E[δf(x)G], where G is a smooth functional of x. This is the strategy
invoked e.g. in [1, 10].

(b) Base the calculations on the pathwise change of variables formula of type (1). This
formula is generally related to some converging Riemann sums like in Theorem 1.1, and one
can compute corrections between Wick and ordinary products in relation (6). This is the
method implicitly adopted in [17] and we also resort to this second strategy here, which
allows to derive our Skorohod formula and its comparison with the Stratonovich formula at
the same time.

Unfortunately, the Wick corrections strategy does not work for the rough case, even in the
explicit situation of a fractional Brownian sheet. This mainly stems from the fact that
convenient Riemann sums related to formula (1) are not available (so far) in the case of
Theorem 1.4. This drawback led us to change our strategy again, and proceed by regulariza-
tion. Indeed, as mentioned before, one can come up with an explicit regular approximation
xn of x. For this regularization, we can apply Theorem 1.7 and get some Itô-Stratonovich
corrections. Invoking the fact that δ⋄ is a closable operator, we can then take limits in our
operations as n→ ∞. This allows to compare the changes of variables formulas (1) and (15),
but the interpretation in terms of Riemann-Wick sums is obviously lost in this case. Notice
that an approximation procedure (expressed in terms of the extended divergence operator)
is also at the heart of [18] for irregular fBs.

Finally, let us say a few words about possible extensions of our work:

• Generalizations of Skorohod’s change of variable to a Gaussian process without the fac-
torization hypothesis (9) on the covariance function of x are certainly possible. However,
at a technical level, one should be aware of the fact that the analysis of mixed terms like
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∫

1

∫

2
y3u;vR

2
v d1R

1
u d

⋄
2xu;v would require tools of Young integration in dimension 4. These tech-

niques have been used e.g in [6], and the elaboration we need would certainly be cumbersome.
We have thus sticked to the factorized case for R for sake of readability.

• As mentioned before, our strategy for the Skorohod formula in the rough case relies heavily
on a suitable regularization of x. Instead of treating the explicit fBs example, we could have
stated some general approximation assumptions satisfied in the fBs case. Once again, we
have chosen to specialize our study here for sake of clarity. The general case might be handled
in a subsequent paper, and we also hope to design a strategy based on Riemann-Wick sums
in the next future.

Here is how our article is structured: We recall some basic notation of algebraic integration
in dimension 1 at Section 2, and extend it to integration in the plane at Section 3. The
Stratonovich change of variable formula is handled at Section 4 for the Young case and at
Section 5 in the rough situation. We then move to Skorohod type formulas at Sections 6
and 7, respectively for the regular and rough cases.

2. Algebraic integration in dimension 1

We recall here the minimal amount of notation concerning algebraic integration theory in
R, in order to prepare the ground for further developments in the plane. We refer to [8, 9]
for a more detailed introduction.

2.1. Increments. The extended pathwise integration we will deal with is based on the
notion of increments, together with an elementary operator δ acting on them. The algebraic
structure they generate is described in [8, 9], but here we present directly the definitions
of interest for us, for sake of conciseness. First of all, for a vector space V and an integer
k ≥ 1 we denote by Ck(V ) the set of functions g : [0, 1]k → V such that gt1···tk = 0 whenever
ti = ti+1 for some i ≤ k − 1. Such a function will be called a (k − 1)-increment, and we set
C∗(V ) = ∪k≥1Ck(V ). We can now define the announced elementary operator δ on Ck(V ):

δ : Ck(V ) → Ck+1(V ), (δg)t1···tk+1
=

k+1∑

i=1

(−1)k−igt1···t̂i···tk+1
, (16)

where t̂i means that this particular argument is omitted. A fundamental property of δ, which
is easily verified, is that δδ = 0, where δδ is considered as an operator from Ck(V ) to Ck+2(V ).
We denote ZCk(V ) = Ck(V ) ∩ Kerδ and BCk(V ) = Ck(V ) ∩ Imδ.

Some simple examples of actions of δ, which will be the ones we will really use throughout
the paper, are obtained by letting g ∈ C1 and h ∈ C2. Then, for any s, u, t ∈ [0, 1], we have

δgst = gt − gs, and δhsut = hst − hsu − hut. (17)

Furthermore, it is easily checked that ZCk+1(V ) = BCk(V ) for any k ≥ 1. In particular, the
following basic property holds:

Lemma 2.1. Let k ≥ 1 and h ∈ ZCk+1(V ). Then there exists a (non unique) f ∈ Ck(V )
such that h = δf .

Lemma 2.1 can be rephrased as follows: any element h ∈ C2(V ) such that δh = 0 can be
written as h = δf for some (non unique) f ∈ C1(V ). Thus we get a heuristic interpretation
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of δ|C2(V ): it measures how much a given 1-increment is far from being an exact increment
of a function, i.e., a finite difference.

Notice that our future discussions will mainly rely on k-increments with k ≤ 2, for which
we will make some analytical assumptions. Namely, we measure the size of these increments
by Hölder norms defined in the following way: for f ∈ C2(V ) let

‖f‖µ = sup
s,t∈[0,1]

|fst|

|t− s|µ
, and Cµ

2 (V ) = {f ∈ C2(V ); ‖f‖µ <∞} . (18)

Obviously, the usual Hölder spaces Cµ
1 (V ) will be determined in the following way: for a

continuous function g ∈ C1(V ), we simply set

‖g‖µ = ‖δg‖µ, (19)

and we will say that g ∈ Cµ
1 (V ) iff ‖g‖µ is finite. Notice that ‖ · ‖µ is only a semi-norm on

C1(V ). For h ∈ C3(V ) set in the same way

‖h‖γ,ρ = sup
s,u,t∈[0,1]

|hsut|

|u− s|γ|t− u|ρ
(20)

‖h‖µ = inf

{
∑

i

‖hi‖ρi,µ−ρi ; h =
∑

i

hi, 0 < ρi < µ

}

,

where the last infimum is taken over all sequences {hi ∈ C3(V )} such that h =
∑

i hi and for
all choices of the numbers ρi ∈ (0, z). Then ‖ · ‖µ is easily seen to be a norm on C3(V ), and
we set

Cµ
3 (V ) := {h ∈ C3(V ); ‖h‖µ <∞} .

Eventually, let C1+
3 (V ) = ∪µ>1C

µ
3 (V ), and notice that the same kind of norms can be consid-

ered on the spaces ZC3(V ), leading to the definition of some spaces ZCµ
3 (V ) and ZC1+

3 (V ).

With these notations in mind the following proposition is a basic result, which belongs to
the core of our approach to pathwise integration. Its proof may be found in a simple form
in [9].

Proposition 2.2 (The Λ-map). There exists a unique linear map Λ : ZC1+
3 (V ) → C1+

2 (V )
such that

δΛ = IdZC1+
3 (V ) and Λδ = IdC1+

2 (V ).

In other words, for any h ∈ C1+
3 (V ) such that δh = 0 there exists a unique g = Λ(h) ∈ C1+

2 (V )
such that δg = h. Furthermore, for any µ > 1, the map Λ is continuous from ZCµ

3 (V ) to
Cµ
2 (V ) and we have

‖Λh‖µ ≤
1

2µ − 2
‖h‖µ, h ∈ ZCµ

3 (V ). (21)

Let us mention at this point a first link between the structures we have introduced so far
and the problem of integration of irregular functions.

Corollary 2.3. For any 1-increment g ∈ C2(V ) such that δg ∈ C1+
3 , set δf = (Id − Λδ)g.

Then

δfst = lim
|Πst|→0

n−1∑

i=0

gti ti+1
,
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where the limit is over any partition Πst = {t0 = s, . . . , tn = t} of [s, t], whose mesh tends to
zero. Thus, the 1-increment δf is the indefinite integral of the 1-increment g.

2.2. Products of increments. For notational sake, let us specialize now to the case V = R,
and just write Cγ

k for Cγ
k (R). The usual product of two increments considered on (C∗, δ) is

obtained by gluing one variable in each increment (see e.g [8, 9]):

Definition 2.4. For g ∈ Cn and h ∈ Cm, we denote by gh the element of Cn+m−1 defined by

(gh)t1,...,tm+n−1 = gt1,...,tnhtn,...,tm+n−1 , t1, . . . , tm+n−1 ∈ [0, 1]. (22)

However, another product (defined without gluing of variables) turns out to be useful for
further computations in the plane. This product is called splitting and is defined below:

Definition 2.5. For g ∈ Cn and h ∈ Cm, we denote by S(g, h) the element of Cn⊗Cm defined
by

[S(g, h)]t1,...,tm+n
= gt1,...,tnhtn+1,...,tm+n

, t1, . . . , tm+n ∈ [0, 1]. (23)

Notice that S(g, h) can also be considered as an increment in Cn+m, except that it is not
required to vanish when tn = tn+1.

The splitting operation will have to be inverted at some point. The inverse operation is
called gluing :

Definition 2.6. For n,m ≥ 1, we say that f is an element of Mn,m if it can be written as
a finite linear combination of the following type:

ft1,...,tn+m
=
∑

j∈J

αj g
j
t1,...,tn h

j
tn+1,...,tm+n

, with αj ∈ R, gj ∈ Cn, h
j ∈ Cm. (24)

For f of the form (24), we then define G(f) ∈ Cn+m−1 as:

[G(f)]t1,...,tn+m−1 =
∑

j∈J

αj g
j
t1,...,tn h

j
tn,...,tm+n−1

.

With these definitions in mind, let us remark that if f ∈ Mn,m is simply of the form
ft1,...,tn+m

= gt1,...,tn htn+1,...,tm+n
with g ∈ Cn and h ∈ Cm, then G(f) = g h.

We now recall some elementary properties concerning products of increments:

Proposition 2.7. The following differentiation rules hold true:

(1) Let g ∈ C1 and h ∈ C1. Then gh ∈ C1 and

δ(gh) = δg h + g δh. (25)

(2) Let g ∈ C1 and h ∈ C2. Then gh ∈ C2 and

δ(gh) = −δg h+ g δh. (26)

(3) Let g ∈ C2 and h ∈ C1. Then gh ∈ C2 and

δ(gh) = δg h + g δh. (27)

Proof. We will just prove (25), the other relations being just as simple. If g, h ∈ C1, then

[δ(gh)]st = gtht − gshs = gs (ht − hs) + (gt − gs) ht = gs (δh)st + (δg)st ht,

which proves our claim.
�
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2.3. Iterated integrals as increments. Iterated integrals of smooth functions on [0, 1]
are obviously particular cases of elements of C2, which will be of interest for us. A typical
example of this kind of object is given as follows: consider f j ∈ C∞

1 for j = 1, . . . , n and
0 ≤ s1 < s2 ≤ 1. For n ≥ 1, we denote by Sn(s1, s2) the simplex

Sn(s1, s2) = {(σ1, . . . , σn) ∈ [0, 1]n; s1 < σ1 < · · · < σn < s2} (28)

and we set

h1,...,ns1s2
≡

∫

Sn(s1,s2)

df 1
σ1
· · ·dfn

σn
=

∫ s2

s1

∫ σn−1

s1

· · ·

∫ σ2

s1

df 1
σ1
· · · dfn

σn
. (29)

We now introduce some notation for iterated integrals which is much too complicated for
integration in dimension 1, but turns out to be useful for integration in the plane. Indeed,
we can alternatively denote the increment h1,...,n defined at (29) by

h1,...,n = [d, . . . , d
︸ ︷︷ ︸

n times

](f 1, . . . , fn), or h1,...,n =

∫

df 1 · · · dfn, (30)

where the integration on the n-dimensional simplex is implicit in both cases. We shall also
need a small variant of these conventions: we set

[Id, . . . , Id
︸ ︷︷ ︸

j times

, d, . . . , d
︸ ︷︷ ︸

n−j times

](f 1, . . . , fn) ≡ f 1 · · · f j

∫

df j+1 · · · dfn, (31)

where all the products are understood as products of increments as in Definition 2.4.

With these conventions in mind, the following relations between multiple integrals and
the operator δ will also be useful. The reader is sent to [9] for its elementary proof.

Proposition 2.8. Let f ∈ C∞
1 and g ∈ C∞

1 . Then it holds that

δg =

∫

dg, δ

(∫

fdg

)

= 0, δ

(∫

dfdg

)

= δf δg,

and

δ
(
[d, . . . , d](f 1, . . . , fn)

)
=

n−1∑

i=1

[d, . . . , d](f 1, . . . , f j) [d, . . . , d](f j+1, . . . , fn).

3. Algebraic integration in the plane

This section is devoted to recall the elements of algebraic integration necessary to define an
integral of the form

∫

[0,1]2
f(x) dx for a Hölder function x in the plane with Hölder exponent

greater than 1/3. This requires a tensorization of the algebraic structures defined in the
previous section, plus some extra tools that we proceed to introduce.

3.1. Planar increments. We consider here increments of a variable s (also called direction
1) and a variable t (also called direction 2), with (s, t) ∈ [0, 1]2. For a vector space V , we set

Pk,l(V ) =
{
f ∈ C([0, 1]k × [0, 1]l; V ); fs1···sk; t1···tl = 0 whenever si = si+1 or tj = tj+1

}
.

In the particular case V = R, we simply set Pk,l(R) ≡ Pk,l.
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Some partial difference operators δ1 and δ2 with respect to the first and second direction
can be defined as in the previous section. Namely, for f ∈ Pk,l(V ) we set

δ1 : Pk,l(V ) → Pk+1,l(V ), δ1gs1···sk+1; t1···tl =
k+1∑

i=1

(−1)k−igs1···ŝi···sk+1; t1···tl ,

and we define δ2 similarly. The planar increment δ is then obtained as δ = δ1 δ2. Notice that
for f ∈ P1,1 we have

δfs1s2; t1t2 = fs2; t2 − fs2; t1 − fs1; t2 + fs1; t1 ,

which is the usual rectangular increment of a function f defined on [0, 1]2 and is consistent
with formula (2). Let us label the following notation for further use:

Notation 3.1. For j = 1, 2, we set ZjPk,l = Pk,l ∩ ker(δj) and BjPk,l = Pk,l ∩ Im(δj). We
also write ZPk,l for Pk,l ∩ ker(δ) and BPk,l for Pk,l ∩ Im(δ).

As in the 1-d case, the Hölder regularity of planar increments is an essential feature of our
generalized integration theory. On P2,2(V ) and P3,3(V ), it is measured by a tensorization of
the Hölder norms defined at (18) and (20). Namely, if f ∈ P2,2(V ), we set

‖f‖γ1; γ2 = sup

{
|fs1s2; t1t2 |

|s2 − s1|γ1|t2 − t1|γ2
; s1, s2, t1, t2 ∈ [0, 1]

}

,

and we denote by Pγ1,γ2
2,2 (V ) the space of increments in P2,2(V ) whose ‖ · ‖γ1; γ2 norm is

finite. Along the same lines, we say that h ∈ Pγ1,γ2
3,3 (V ) if there exist κ1, κ2, ρ1, ρ2 such that

κj + ρj = γj, j = 1, 2, and

sup

{
|hs1s2s3; t1t2t3 |

|s2 − s1|κ1|s3 − s2|ρ1 |t2 − t1|κ2|t3 − t2|ρ2
; s1, s2, s3, t1, t2, t3 ∈ [0, 1]

}

<∞.

Similar norms, omitted here for sake of conciseness, can be defined on P2,3(V ) and P3,2(V ).

For Hölder continuous increments with regularity greater than 1, one gets the following
inversion properties, which are a direct consequence of the one dimensional Proposition 2.2:

Proposition 3.2. Let γ1, γ2 > 1. Then:

(1) There exist two maps Λ1 : B1P
γ1,γ2
3,3 → Pγ1,γ2

2,3 and Λ2 : B2P
γ1,γ2
3,3 → Pγ1,γ2

3,2 such that
δjΛj = Id. These maps satisfy the bound ‖Λj(h)‖γ1,γ2 ≤ cγj‖h‖γ1,γ2 for j = 1, 2.

(2) There exists a map Λ : BPγ1,γ2
3,3 → Pγ1,γ2

2,2 such that δΛ = Id. This map satisfies the bound
‖Λ(h)‖γ1,γ2 ≤ cγ1,γ2‖h‖γ1,γ2.

We do not include the proof of this proposition for sake of conciseness. Let us just mention
that (as the reader might imagine) we have Λ = Λ1Λ2. It should also be observed that some
2-dimensional Riemann sums are related to the sewing map Λ, echoing Corollary 2.3:

Proposition 3.3. Let g ∈ P2,2 satisfying the following assumptions:

δ1g ∈ Pγ1,∗
3,2 , δ2g ∈ P∗,γ2

2,3 , δg ∈ Pγ1,γ2
3,3 ,

for γ1, γ2 > 1, where ∗ denotes any kind of Hölder regularity. Then there exists f ∈ P1,1

such that

δf = [Id− Λ1δ1] [Id− Λ2δ2] g, and lim
|π|→0

∑

σi,τj∈π

gσiσi+1;τjτj+1
= δfs1s2;t1t2 ,
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where π designates a family of rectangular partitions of [s1, s2]× [t1, t2] whose mesh goes to
0.

3.2. Products of planar increments. This section is a parallel of Section 2.2, and we
mainly deal here with a state space V = R. We describe the different conventions on
products of 2-d increments which will be used in the sequel, starting from the equivalent of
Definition 2.4:

Definition 3.4. For g ∈ Pn1,n2 and h ∈ Pm1,m2, we denote by gh the element lying in the
space Pn1+m1−1,n2+m2−1 defined by

(gh)s1,...sn1+m1−1;t1,...,tn2+m2−1 = gs1,...sn1 ;t1,...,tn2
hsn1 ,...sn1+m1−1;tn2 ,...,tn2+m2−1 .

We now define the equivalent of splitting for increments in P:

Definition 3.5. Let g ∈ Pn1,n2 and h ∈ Pm1,m2. Then:

• The partial splitting S1(g, h) is the element of Cn2+m2−1(Cn1 ⊗ Cm1) defined by

[S1(g, h)]s1,...sn1+m1 ;t1,...,tn2+m2−1
= gs1,...sn1 ;t1,...,tn2

hsn1+1,...sn1+m1 ;tn2 ,...,tn2+m2−1 .

• The partial splitting S2(g, h) is the element of Cn1+m1−1(Cn2 ⊗ Cm2) defined by

[S2(g, h)]s1,...sn1+m1−1;t1,...,tn2+m2
= gs1,...sn1 ;t1,...,tn1

hsn1 ,...sn1+m1−1;tn2+1,...,tn2+m2
.

• The splitting S(g, h) is the element of Cn1 ⊗ Cm1(Cn2 ⊗ Cm2) defined by

[S1(g, h)]s1,...sn1+m1 ;t1,...,tn2+m2
= gs1,...sn1 ;t1,...,tn2

hsn1+1,...sn1+m1 ;tn2+1,...,tn2+m2
.

Notice that inverse operations of splittings can also be defined for planar increments. For
sake of conciseness, we let the patient reader generalize Definition 2.6 in order to get the
definition of gluing G1, G2 and G for planar increments.

We close this section by introducing a last product of increments which is labeled for
further computations.

Definition 3.6. Let g ∈ P2,1 and h ∈ P1,2. Then g ◦ h is the increment in P2,2 defined by
[g ◦ h]s1s2;t1t2 = gs1s2;t1hs1;t1t2 .

3.3. Iterated integrals as increments in the plane. The relationship between iterated
integrals and increments in the plane is crucial for us. Generally speaking, an iterated
integral is given as follows: consider f j ∈ P∞

1,1 for j = 1, . . . , n and (s1, s2), (t1, t2) ∈ S2,
where we recall relation (28) defining simplexes. Then we set

h1,...,ns1s2;t1,t2 ≡

∫

Sn(s1,s2)×Sn(t1,t2)

d12f
1
σ1;τ1 · · · d12f

n
σn;τn (32)

=

∫ s2

s1

∫ t2

t1

∫ σn−1

s1

∫ τn−1

t1

· · ·

∫ σ2

s1

∫ τ2

t1

d12f
1
σ1;τ1 · · ·d12f

n
σn;τn,

where we recall from Section 1.1 that d12f
j
σ;τ stands for ∂2στf

j
σ;τ .

Expression (32) is obviously cumbersome, and it could in particular become clearer by
separating the s, σ from the t, τ variables. This is where the conventions introduced in
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equation (30) turn out to be useful. Namely, one can simply tensorize (30) in order to write
the increment h1,...,n defined at (32) as

h1,...,n = [d1, . . . , d1]⊗ [d2, . . . , d2] (f
1, . . . , fn), or h1,...,n =

∫

1

∫

2

d12f
1 · · · d12f

n, (33)

and notice that we will mainly use the second convention throughout the paper. This
notation proves to be particularly convenient when one is faced with partial integrations
(as introduced in (31)) in both directions 1 and 2. In order to illustrate this point, let us
consider the simple example

g ≡ [d1, d1]⊗ [Id, d2] (f
1, f 2) =

∫

1

d1f
1

∫

2

d12f
2. (34)

Let us now describe the algorithm which allows to go from expression (34) to an integral
like (32). It can be summarized as follows:

• For direction 1, count the number of iterated integrals starting from the left hand
side (in our example this number is 2). Then interpret these integrals as integrals on
the simplex in direction 1 and write the 1-variables.

• Do the same for direction 2. In our example, there is only one integral in this
direction, so that variable 2 is frozen in the first differential d1f

1.

Applying this algorithm, the reader can easily check that g defined at (34) can be written as

gs1s2;t1t2 =

∫

s1<σ1<σ2<s2

d1f
1
σ1;t1

∫ t2

t1

d12f
2
σ2;τ1

.

For sake of conciseness, we omit generalizations of this simple example.

4. Planar Young integration

Before going into the computational details of Young integration, let us describe the general
strategy we shall follow in order to obtain our Itô-Stratonovich type change of variable
formulae in case of non smooth functions x. Indeed, we start from a smooth approximation
xn to our path x and we introduce a useful notation for the remainder of the computations:

Notation 4.1. We shall drop the index n of approximations in xn, which means that x will
stand for a generic smooth path defined on [0, 1]2. For a smooth function ϕ : R → R, we
also write y for the path ϕ(x) and for all j ≥ 1 we set yj = ϕ(j)(x).

With these notations in hand, for a smooth sheet x and f ∈ C2
b it is well known that

formula (1) holds true. Recall that we have written this relation under the following form,
compatible with our convention (33):

δy =

∫

1

∫

2

y1 d12x+

∫

1

∫

2

y2 d1̂2̂x. (35)

We shall see that this formula still holds true in the limit for x, except that the integrals
involved in the right hand side of (35) have to be interpreted in a sense which goes beyond
the Riemann-Stieltjes case. Our main task will thus be to obtain a definition of

∫

1

∫

2
y1 d12x

and
∫

1

∫

2
y2 d1̂2̂x involving iterated integrals of x and increments of y (or yj for j ≥ 1) only.

Though this task might overlap with some aspects of [4], we present it here because it is
short enough and allows us to introduce part of our formalism.
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Let us introduce what will be later interpreted as the first order elements of the planar
rough path above x:

Notation 4.2. Let x ∈ Pγ1,γ2
1,1 with γ1, γ2 > 1/2. We set

x
1;2 = δx, and x

1̂;2̂ = [Id− Λ1δ1][Id− Λ2δ2] (δ1x δ2x) .

Notice that for smooth functions we also have

x
1;2 =

∫

1

∫

2

d12x, and x
1̂;2̂ =

∫

1

∫

2

d1x d2x.

We are now ready to express the integrals in (35) in terms of the planar sewing map
(Λi)i=1,2 and Λ = Λ1Λ2 and the increments introduced in Notation 4.2.

4.1. Change of variables formula. The following theorem gives the analog of relation (35)
in the Young case, and is a way to recast Theorem 1.1. Notice that some extensions of these
results are contained in [4].

Theorem 4.3. Let x ∈ Pγ1,γ2
1,1 with γ1, γ2 > 1/2 and ϕ ∈ C4(R). With our notations 4.2 and

4.1 in mind, define two increments z1, z2 as

z1 = [Id− Λ1δ1][Id− Λ2δ2](y
1
x
1;2), and z2 = [Id− Λ1δ1][Id− Λ2δ2](y

2
x
1̂;2̂). (36)

Then items (i)–(v) of Theorem 1.1 hold true. Furthermore, for j = 1, 2 the following bound
is satisfied: ‖zj‖γ1;γ2 ≤ cϕ(1 + ‖x‖2γ1;γ2).

Proof. We first introduce a formalism which will feature prominently in the rough case
treated in the next section.

Step 1: Setting for our computations. Let us write the first step of our expansion in a usual
integration language: for s1, s2, t1, t2 ∈ [0, 1] and a continuously differentiable function x we
have

z1s1s2;t1t2 =

∫ s2

s1

∫ t2

t1

y1σ1;τ1
d12xσ1;τ1 ,

where we have written d12xσ1;τ1 instead of dστxσ1;τ1. Then according to the elementary
identity yσ1;τ1 = ys1;t1 + δ2y

1
σ1;t1τ1

we obtain

z1s1s2;t1t2 =

∫ s2

s1

y1σ1;t1

∫ t2

t1

d12xσ1;τ1 +

∫ s2

s1

∫ t2

t1

δ2y
1
σ1;t1τ1

d12xσ1;τ1 .

Going on with this procedure, we end up with a decomposition of the form

z1s1s2;t1t2 = y1s1;t1δxs1s2;t1t2 +

∫ s2

s1

δ1y
1
s1σ1;t1

∫ t2

t1

d12xσ1;τ1

+

∫ t2

t1

δ2y
1
s1;t1τ1

∫ s2

s1

d12xσ1;τ1 +

∫ s2

s1

∫ t2

t1

δy1s1σ1;t1τ1
d12xσ1;τ1. (37)

It should be observed that for Hölder regularities smaller than 1/2 the above decomposition
is not sufficient to yield the application of Λ. Since further calculations with all explicit
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indices are cumbersome, we shall now show how to translate the above computations with
the formalism of Section 3.3: we simply write

z1 =

∫

1

∫

2

y1 d12x =

∫

1

y1
∫

2

d12x+

∫

1

∫

2

d2y
1 d12x

= y δx+

∫

1

d1y
1

∫

2

d12x+

∫

2

d2y
1

∫

1

d12x+

∫

1

∫

2

d12y
1 d12x (38)

≡ y1 x1;2 + a11;02 + a01;22 + a11;22,

which is obviously a shorter expression than (37). From now on, we shall carry on our
computations with this simplified formalism.

Step 2: Analysis of the integrals. Consider the term a11;02 above. It is readily checked that
δ1a

11;02 = δ1y
1
x
1;2. In particular, δ1a

11;02 ∈ P2γ1;γ2
3,2 , and since 2γ1 > 1 one can resort to

Proposition 3.2 in order to get the relation a11;02 = Λ1(δ1y x
1;2). Proceeding in the same way

for a01;22 and a11;22 we end up with

a11;02 = Λ1(δ1y
1
x
1;2), a01;22 = Λ2(δ2y

1
x
1;2), a11;22 = Λ(δy1 x1;2), (39)

where we observe that ϕ ∈ C4(R) is the minimal assumption in order to have δy1 ∈
Pγ1,γ2

2,2 . Furthermore, according to relation (26) we have δ1(y x
1;2) = −δ1y1 x1;2, δ2(y

1
x
1;2) =

−δ2y1 x1;2 and δ(y1 x1;2) = δy1 x1;2, so that (39) can be expressed as

a11;02 = −Λ1δ1(y
1
x
1;2), a01;22 = −Λ2δ2(y

1
x
1;2), a11;22 = Λδ(y1 x1;2).

Plugging these relations into (38) we get

z1 =

∫

1

∫

2

y1 d12x = [Id− Λ1δ1][Id− Λ2δ2](y
1
x
1;2),

for smooth functions z, which corresponds to claim (ii) in Theorem 1.1. Item (i)-(iii)-(v) are
now a matter of straightforward limiting procedures on smooth sheets, and the assertions
concerning z2 are obtained exactly in the same way. Item (iv) is an easy consequence of
Proposition 3.3 and expression (36).

�

4.2. Riemann sums decompositions. This section is meant as a preparation for Skorohod
type computations. Indeed, change of variables in the Skorohod setting involve some mixed
integrals with dx dR terms, for which a suitable representation is required. It will also be
convenient for us to express the integral

∫

1

∫

2
y2 d1xd2x in different ways, so that we first

recall a proposition borrowed from [4]:

Proposition 4.4. let x ∈ Pγ1,γ2
1,1 with γ1, γ2 > 1/2. Set y = ϕ(x) for ϕ ∈ C2(R) and

z2,y ≡
∫

1

∫

2
y d1xd2x, understood in the Young sense. Then the following series of identities

hold true:

z2,y = [Id− Λ1δ1][Id− Λ2δ2](y x
1̂;2̂) = [Id− Λ1δ1][Id− Λ2δ2](y δ1x δ2x)

= [Id− Λ1δ1][Id− Λ2δ2](y δ2x δ1x) = [Id− Λ1δ1][Id− Λ2δ2](y δ1x ◦ δ2x),

where we recall that the notation ◦ has been introduced at Definition 3.6.

The following proposition gives different ways to express the increment z2,y as limit of
Riemann sums.
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Proposition 4.5. Let 0 < s1 < s2 < 1, 0 < t1 < t2 < 1 and denote by π1 = (si)i
and π2 = (tj) some partitions of the intervals [s1, s2] and [t1, t2] respectively. Then under

the assumptions of Proposition 4.4 we have that
∫ s2
s1

∫ t2
t1
yst d12xst can be written as limit

of Riemann sums of the form lim|π1|,|π2|→0

∑

i,j ysi;tjδxsisi+1;tjtj+1
, and recalling that z2,y ≡

∫

1

∫

2
y d1xd2x we also have:

z2,y = lim
|π1|,|π2|→0

∑

i,j

ysi;tjδ1xsisi+1;tjδ2xsi+1;tjtj+1

= lim
|π1|,|π2|→0

∑

i,j

ysi;tjδ2xsi;tjtj+1
δ1xsisi+1;tj+1

= lim
|π1|,|π2|→0

∑

i,j

ysi;tjδ1xsisi+1;tjδ2xsi;tjtj+1
.

Finally we shall need an extension of the last three propositions to integrals with mixed
driving noises:

Proposition 4.6. Let f ∈ Pγ1,γ2
1,1 ,g ∈ Pρ1,ρ2

1,1 and h ∈ Pβ1,β2

1,1 such that γi+ ρi > 1, βi+ γi > 1
and βi + ρi > 1 for i = 1, 2. Set

∫

1

∫

2

f d1g d2h = [Id− Λ1δ1][Id− Λ2δ2](f δ1g δ2h).

Then we also have
∫

1

∫

2

f d1gd2h = [Id− Λ1δ1][Id− Λ2δ2](f δ2g δ1h) = [Id− Λ1δ1][Id− Λ2δ2](f δ1g ◦ δ2h).

Moreover, taking up the notations of Proposition 4.5 we have the following Reimann-sum
representation of our integrals:

∫ s2

s1

∫ t2

t1

fs;t d1gs;td2hs;t = lim
|π|→0

∑

i,j

fsi;tjδ1gsisi+1;tjδ2hsi+1;tjtj+1

= lim
|π|→0

∑

i,j

fsi;tjδ1gsisi+1;tjδ2hsi;tjtj+1
= lim

|π|→0

∑

i,j

fsi;tjδ2gsi;tjtj+1
δ1hsisi+1;tj+1

.

Proof. Let a1 = f δ1g δ2h, a
2 = f δ2g δ1h and a3 = f δ1g◦δ2h. Then by a simple computation

we have that

δ1a
1 = −δ1f δ1g δ2h− f δ1g δh ∈ Pmin(γ1+ρ1,ρ1+β1),β2

3,2

δ2a
1 = −δ2f δ1g δ2h− f δg δ2h ∈ Pρ1,min(γ2+β2,ρ2+β2)

2,3 ,

and

δa1 = δf δ1g δ2h + δ1f δg δ2h+ δ2f δ1g δh+ f δg δh ∈ Pmin(γ1+ρ1,ρ1+β1),min(γ2+β2,ρ2+β2)
3,3 .

This means that a1 satisfies the assumptions of Proposition 3.2, and the same is readily
checked for a2 and a3. Thus the increments [Id − Λ1δ1][Id − Λ2δ2](a

j) are well defined for
j = 1, 2, 3. We set [Id− Λ1δ1][Id− Λ2δ2](a

1) =
∫

1

∫

2
f d1gd2h since both objects coincide for

smooth functions f, g, h.



SKOROHOD AND STRATONOVICH IN THE PLANE 19

We now identify the increments [Id − Λ1δ1][Id − Λ2δ2](a
j) by analyzing their Riemann

sums. Indeed, a straightforward application of Proposition 3.3 yields the following limits:

[Id− Λ1δ1][Id− Λ2δ2](a
1) = lim

|π|→0

∑

i,j

fsi;tjδ1gsisi+1;tjδ2hsi+1;tjtj+1

[Id− Λ1δ1][Id− Λ2δ2](a
1) = lim

|π|→0

∑

i,j

fsi;tjδ2hsi;tjtj+1
δ1gsisi+1;tj+1

[Id− Λ1δ1][Id− Λ2δ2](a
3) = lim

|π|→0

∑

i,j

fsi;tjδ1gsisi+1;tjδ2hsi;tjtj+1
.

We now prove that the 3 increments coincide by showing that the differences between Rie-
mann sums vanish when the mesh of the partitions go to zero. Indeed, if we call π2 the
partition in direction 2, observe for instance that

lim
|π2|→0

∑

i,j

(a1 − a3)sisi+1;tjtj+1
= lim

|π2|→0

∑

i,j

fsi;tjδ1gsisi+1;tjδhsisi+1;tjtj+1

=
∑

i

∫ t2

t1

fsitδ1gsisi+1;t d2δ1hsisi+1;t

(40)

Now if we remark that |
∫ t2
t1
fsitδ1gsisi+1;t dthsisi+1;t| . (si+1 − si)

ρ1+β1, we easily obtain that

lim|π1|→0 lim|π2|→0

∑

i,j(a
1 − a3)sisi+1;tjtj+1

= 0. The same relation holds true for a2 − a3 by
symmetry, which ends our proof.

�

5. Pathwise Stratonovich formula in the rough case

In this section, we consider a path x ∈ Pγ1,γ2
1,1 with γ1, γ2 > 1/3 and we wish to establish

the change of variables formula for y = ϕ(x) (with ϕ ∈ C8
b (R)) announced in Theorem 1.4.

In such a general context, the integration theory with respect to x relies on the existence of
a rough path X sitting above x. Now recall that the first elements of X have been introduced
at Hypothesis 1.2. However, as mentioned in Remark 1.3, the rough path still has to be
completed and we proceed to its description here.

Let us first introduce another indexing convention for the elements of the rough path X,
similarly to what is done at Section 1.3:

(iii) (Following (ii) at Section 1.3) We shall see that some overlapping integrals in directions
1 and 2 difficult the regularity analysis of certain increments. This will force us to some
splitting operations on iterated integrals, leading to some split elements of the rough path
X. We indicate this splitting procedure by a ⊗ in indices of x. An example of this operation
is given by the increment x

11;2⊗2 ∈ C2(C2 ⊗ C2):

x
11;2⊗2
s1s2;t1t2t3t4 =

∫ s2

s1

∫ σ2

s1

(∫ t2

t1

d12xσ1;τ1

)(∫ t4

t3

d12xσ2;τ2

)

.

With this additional notation in mind, the complete description of X is given below:

Hypothesis 5.1. The function x is such that δx ∈ Pγ1,γ2
2,2 with γ1, γ2 > 1/3, and fulfills

Hypothesis 1.2. In addition, the stack X of iterated integrals related to x is required to
contain the elements in the table below, where we let the reader guess the natural Hölder
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regularities related to each increment. As in Hypothesis 1.2, the iterated integrals above are

Table 1. Further elements of X

Increment Interpretation Increment Interpretation

x
11̂;22̂

∫

1

∫

2
d12xd1̂2̂x x

1⊗1;22
∫

1

∫

2
d12x⊗1

∫

1
d12x

x
11·1;022

∫

1
d1x

∫

2
d12x

∫

1
d12x x

11·1;222
∫

1

∫

2
d12xd12x

∫

1
d12x

x
11̂;02̂

∫

1
d1x

∫

2
d1̂2̂x x

11⊗1;222
∫

1

∫

2
d12xd12x⊗1

∫

1
d12x

x
11⊗1;022

∫

1
d1x

∫

2
d12x⊗1

∫

1
d12x x

11·1;2·22
∫

1

∫

2
d12x

∫

2
d12x

∫

1
d12x

assumed to be limits along approximations of x by smooth functions. Furthermore, the rough
path X should also contain all the elements x obtained by symmetrizing the increments of
Table 1 with respect to 1 ↔ 2, as well as those for which we change the last indices 1; 2 by
1̂; 2̂. In total, we have to assume the existence of 26 additional increments.

With the additional notation introduced above, we are now ready to give the expression
of z1 in terms of the rough path X.

Proof of Theorem 1.4. Consider a smooth function x and y = ϕ(x). According to our no-
tational conventions of Section 3.3, we wish to express

∫

1

∫

2
y1 d12x in terms of elementary

increments of y, plus some elements of the rough path X. As in the Young case, we thus start
from expression (38), but now the terms a11;02, a01;22 and a11;22 need a further decomposition.
We proceed to their analysis.

Step 1: First boundary integrals. Consider the term a11;02 in expression (38). Two building
blocks of our methodology can be observed on the analysis of this term in an elementary
way:

(i) As noticed in the proof of Proposition 4.3, our definition a11;02 =
∫

1
d1y

1
∫

2
d12x easily

yields the identity

δ1a
11;02 = δ1y

1 δx. (41)

Indeed, a possible way to understand this relation is to write:

a11;02 = [d1, d1] [Id, δ2](y
1, x) =⇒ δ1a

11;02 = [δ1, δ1] [Id, δ2](y
1, x) = δ1y

1 δx,

where we have invoked Proposition 2.8 for the first variable only

(ii) If we only consider the integral
∫

1
d1y

1 within a11;02, we can write
∫

1

d1y
1 =

∫

1

y1 d1x = y1δ1x+

∫

1

d1y
2 d1x, (42)

where we recall that we have set y1 = f ′(x) and y2 = f ′′(x) in Notation 4.1.

Plugging relation (42) into the definition of a11;02 we obtain

a11;02 = y2
∫

1

d1x

∫

2

d12x+

∫

1

d1y
2 d1x

∫

2

d12x = y2 x11;02 + ρ11;02, (43)

where x11;02 has been defined at Hypothesis 1.2 and where we have just defined the remainder
ρ11;02 by ρ11;02 =

∫

1
d1y

2 d1x
∫

2
d12x. Now notice that ρ11;02 is an increment which should
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belong to P3γ1,γ2
2,2 if x ∈ Pγ1,γ2

1,1 , and thus should be expressed in terms of Λ1. In order to
check this fact, write

ρ11;02 = a11;02 − y2 x11;02,

and apply δ1 to both sides of this identity. Namely, the increment δ1a
11;02 is computed

according to relation (41), while the term y2 x11;02 is handled by means of identity (26):

δ1
(
y2 x11;02

)
= −δ1y

2
x
11;02 + y2 δ1x

11;02.

In addition, Hypothesis 1.2 states that X is geometric, so that δ1x
11;02 = δ1x δx like in the

smooth case. We thus end up with:

δ1ρ
11;02 = δ1y

1 δx+ δ1y
2
x
11;02 − y2 δ1x δx.

Observe now, thanks to a simple Taylor expansion, that δ1y
1 = y2δ1x+ ry,1, where ry,1 is an

element of P2γ1,γ2
2,1 . We thus get

δ1ρ
11;02 =

(
y2δ1x+ ry,1

)
δx+ δ1y

1
x
11;02 − y1 δ1x δx = ry,1 δx+ δ1y

2
x
11;02,

and the last increment is easily seen to be an element of P3γ1,γ2
2,2 , to which Λ1 can be applied.

Hence
ρ11;02 = Λ1

(
ry,1 δx+ δ1y

2
x
11;02

)
,

and plugging this identity into (43), we get

a11;02 = y2 x11;02 + Λ1

(
ry,1 δx+ δ1y

2
x
11;02

)
. (44)

Along the same lines, one can show that

a01;22 = y2 x01;22 + Λ2

(
ry,2 δx+ δ2y

2
x
01;22

)
. (45)

Step 2: First decomposition of the double integral. Let us handle now the term a11;22, starting
by the equivalent of ingredient (ii) above. We thus write an expansion for the term

∫

1

∫

2
d12y,

which can be handled thanks to relation (35) as
∫

1

∫

2

d12y
1 =

∫

1

∫

2

y2 d12x+

∫

1

∫

2

y3 d1x d2x,

and plugging this relation into the definition of a11;22 we obtain

a11;22 =

∫

1

∫

2

y2 d12x d12x+

∫

1

∫

2

y3 d1x d2x d12x ≡ b11;22 + b1̂1;2̂2. (46)

We proceed now to the analysis of the term b11;22. To this aim, go back to relation (38) in
order to write

b11;22 =

∫

1

∫

2

(

y2
∫

1

∫

2

d12x+

∫

1

d1y
2

∫

2

d12x+

∫

2

d2y
2

∫

1

d12x+

∫

1

∫

2

d12y
2 d12x

)

d12x

= y2 x11;22 + b111;022 + b011;222 + b111;222, (47)

where

b111;022 =

∫

1

d1y
2

∫

2

d12x d12x, b011;222 =

∫

2

d2y
2

∫

1

d12x d12x, (48)

and b111;222 =
∫

1

∫

2
d12y

2 d12x d12x. We shall treat those 3 terms separately.

Step 3: Analysis of the boundary integrals. The term b111;022 is a third order iterated integral
in direction 1. One can thus try to apply ingredient (i) above, namely compute δ1b

111;022
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in order to observe if we get an increment in P3γ1,∗
3,2 . Unfortunately, this brings some extra

complications due to overlapping integrations. This is why we have postponed these com-
putations to Lemma 5.2 below, which asserts that δ1b

111;022 ∈ P3γ1,γ2
3,2 and is a continuous

function of the couple (X, y). We have thus obtained that b111;022 = Λ1(ρ
y2,1) for a certain

ρy
2,1 ∈ P3γ1,γ2

3,2 . Exactly along the same lines, we also get that b011;222 = Λ2(ρ
y2,2).

Going back to expression (47), we see that we are now only left with the definition of the
triple iterated integral b111;222.

Step 4: Analysis of the triple iterated integral. Recall that b111;222 =
∫

1

∫

2
d12y

2 d12x d12x. It is
thus natural to analyze this increment thanks to an application of the operator δ. The reader
might verify that, applying successively δ1 and δ2 plus Proposition 2.8 in each direction, one
gets:

δb111;222 = δy2 x11;22 + b1·11;22·2 + b11·1;2·22 + b11·1;22·2,

where

b1·11;22·2 =

∫

1

∫

2

d12y
2

∫

1

d12x

∫

2

d12x, b11·1;2·22 =

∫

1

∫

2

d12y
2

∫

2

d12x

∫

1

d12x, (49)

and b11·1;22·2 = (
∫

1

∫

2
d12y

2d12x) δx. Now we resort to Lemma 5.3 to assert that b1·11;22·2 and

b11·1;2·22 lye into P3γ1,3γ2
3,3 . We shall see at the end of the proof that b11·1;22·2 can also be

included in a P3γ1,3γ2
3,3 term.

Going back to relation (47) and summarizing our computations from Steps 3 and 4, we
have thus obtained that

b11;22 = y2 x11;22 + Λ1(ρ
y2,1) + Λ2(ρ

y2,2) + b111;222, (50)

where ρy
2,1 ∈ P3γ1,γ2

3,2 , ρy
2,2 ∈ Pγ1,3γ2

2,3 and where b111;222 is dissected up to the term b11·1;22·2.

Step 5: Analysis of b1̂1;2̂2. We now go back to the term b1̂1;2̂2 introduced at equation (46).
Its analysis is very similar to the one we developed for b11;22, so that we only sketch the main
differences.

First of all, in order to get an equivalent to relation (38), we resort to the differential
element d1̂2̂x. This yields:

∫

1

∫

2

y3 d1̂2̂x = y2
∫

1

∫

2

d1̂2̂x+

∫

1

d1y
2

∫

2

d1̂2̂x+

∫

2

d2y
3

∫

1

d1̂2̂x+

∫

1

∫

2

d12y
3 d1̂2̂x, (51)

and we plug this relation into (46) in order to get

b1̂1;2̂2 = y3 x1̂1;2̂2 + b11̂1;02̂2 + b01̂1;22̂2 + b11̂1;22̂2

where

b11̂1;02̂2 =

∫

1

d1y
3

∫

2

d1̂2̂x d12x, b01̂1;22̂2 =

∫

2

d2y
3

∫

1

d1̂2̂x d12x,

and b11̂1;22̂2 =
∫

1

∫

2
d12y

3 d1̂2̂x d12x.

The 2 terms b11̂1;02̂2 and b01̂1;22̂2 can now be respectively handled similarly to b111;022 and
b011;222. We obtain that

b11̂1;02̂2 = Λ1(ρ
y3,1), and b01̂1;22̂2 = Λ2(ρ

y3,2).
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As far as b11̂1;22̂2 is concerned, we dissect it through the application of δ, which yields

δb11̂1;22̂2 = δy3 x11̂;22̂ + b1·1̂1;22̂·2 + b11̂·1;2·2̂2 + b11̂·1;22̂·2,

where b1·1̂1;22̂·2, b11̂·1;2·2̂2 and b11̂·1;22̂·2 are defined as in (49). In addition, as in Step 4, it can

be proven that δy3 x11̂;22̂ + b1·1̂1;22̂·2 + b11̂·1;2·2̂2 ∈ P3γ1,3γ2
3,3 . Similarly to (50), we thus end up

with a relation of the form

b1̂1;2̂2 = y2 x11̂;22̂ + Λ1(ρ
y3,1) + Λ2(ρ

y3,2) + b11̂1;22̂2, (52)

where ρy
2,1 ∈ P3γ1,γ2

3,2 , ρy
2,2 ∈ Pγ1,3γ2

2,3 and where b11̂1;22̂2 is conveniently decomposed up to the

term b11̂·1;22̂·2.

Step 6: Analysis of b11·1;22·2 and b11̂·1;22̂·2. Write b11·1;22·2 + b11̂·1;22̂·2 = ℓ δx, with

ℓ =

∫

1

∫

2

d12y
2 d12x+

∫

1

∫

2

d12y
3 d1̂2̂x.

We wish to show that b11·1;22·2 + b11̂·1;22̂·2 ∈ P3γ1,3γ2
3,3 , which amounts to check that ℓ lies into

P2γ1,2γ2
2,2 . In order to prove this claim, start again from a change of variable formula for

y = ϕ(x) plus elementary manipulations like those of relation (38). This yields

ℓ = δy1 −

∫

1

∫

2

y2 d12x−

∫

1

∫

2

y3 d1̂2̂x

= δy1 −
(

y2 x1;2 + a11;02(y2) + a01;22(y2) + a11̂;02̂(y3) + a01̂;22̂(y3)
)

,

where a11;02(y2), . . . , a01̂;22̂(y3) are defined similarly to (43), with either y2 or y3 instead of
y1. With the same calculations as for (44)–(45), we thus get

a11;02(y2) = y2 x11;02 + Λ1

(

ry
2,1 δx+ δ1y

3
x
11;02

)

a01;22(y2) = y3 x01;22 + Λ2

(

ry
2,2 δx+ δ2y

3
x
01;22

)

,

and

a11̂;02̂(y3) = y4 x11̂;02̂ + Λ1

(

ry
3,1

x
1̂;2̂ + δ1y

4
x
11̂;02̂

)

a01̂;22̂(y3) = y4 x01̂;22̂ + Λ2

(

ry
3,2

x
1̂;2̂ + δ2y

4
x
01̂;22̂

)

.

These identities easily yield the following claims:

(a) The increment ℓ is a continuous function of x1;1,x11;02,x01;22,x1̂;2̂,x11̂;02̂,x01̂;22̂ and y1.

(b) The fact that ℓ ∈ P2γ1,2γ2
2,2 is proven thanks to long and tedious Taylor type expansions.

We refer to the stability result [4, Theorem 7.13] for further details.

We now plug this information into (50) and (52) in order to write

b11;22 + b1̂1;2̂2 = y2 x11;22 + y2 x11̂;22̂ + Λ1(ρ
y2,1 + ρy

3,1) + Λ2(ρ
y2,2 + ρy

3,2) + Λ(ℓ δx).

Finally, we propagate this identity back into (46), (45), (44) and eventually (38), which
yields our identity (7). We leave the details of these last computations to the patient reader.
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Step 7: Conclusion. We have just obtained expression (7) for z1. As far as z2 is concerned,
we start by replacing relation (38) by:

∫

1

∫

2

y2 d1̂2̂x = y2
∫

1

∫

2

d1̂2̂x+

∫

1

d1y
2

∫

2

d1̂2̂x+

∫

2

d2y
2

∫

1

d1̂2̂x+

∫

1

∫

2

d12y
2 d1̂2̂x.

The expansion then proceeds exactly like in the expansion of z1, and details are omitted for
sake of conciseness. The claims (ii) and (iii) of Theorem 1.4 follow by a limiting procedure.

�

Lemma 5.2. Let b111;022 and b011;222 be the terms defined by (48). Then:

(i) The increment δ1b
111;022 is contained in P3γ1,γ2

3,2 and is a continuous function of the fol-

lowing elements of X: x
11;22,x11·1;022,x1⊗1;22,x11⊗1;022 and y.

(ii) The increment δ2b
011;222 is contained inPγ1,3γ2

2,3 and is a continuous function of the fol-
lowing elements of X: x

11;22,x011;22·2,x11;2⊗2,x011;02⊗2 and y.

Proof. Let us prove the result for δ1b
111;022, since δ2b

011;222 is analyzed exactly in the same
way.

Towards this aim, invoking Proposition 2.8 in direction 1 only we get

δ1b
111;022 = δ1y

2
x
11;22 + h11·1;022, with h11·1;022 =

∫

1

d1y
2

∫

2

d12x

∫

1

d12x. (53)

Now, under Hypothesis 5.1 the term δ1y
2
x
11;22 above is easily seen to lye into P3γ1,2γ2

3,2 .
However, the term h is more troublesome. In order to see this additional problem more
clearly, let us specify h a little: for s1, s2, s3 ∈ S3 and t1, t2 ∈ S2 it can be written as

h11·1;022s1s2s3;t1t2 =

∫ t2

t1

(∫ τ2

t1

∫ s2

s1

(∫ σ2

s1

d1y
2
σ1;t1

)

d12xσ2;τ1

∫ s3

s2

d12xσ3;τ2

)

=

∫ t2

t1

(∫ s2

s1

δ1y
2
s1σ2;t1

d1δ2xσ2;t1τ2

)

d2δ1xs2s3;τ2 , (54)

and the regularity of this last increment is far from being obvious to determinate. Further-
more, a closer look at h leads to the following conclusion: the problem in the regularity
analysis stems from the overlap in integrations for directions 1 and 2, apparent in the defini-
tion of h. In order to fix this new problem (which can obviously only occur when integrals of
order 3 or more are showing up), we introduce a third ingredient of our methodology, based
on the splitting operation of Definition 3.5:

(iii) The splitting operation can be applied to overlapping terms like h11·1;022, in order to
separate the term

∫

1
d1y

2
∫

2
d12x from the term

∫

1
d12x. This simple trick allows to solve the

intricate structure of integration in both directions 1 and 2. Unfortunately, the remaining
terms have to be defined separately now, and are not of order 3 anymore. This means that
another step of expansion might be necessary for their proper definition. In our running
example, this additional step concerns the term

∫

1
d1y

2
∫

2
d12x in (53).

Ingredient (iii) applied to our increment h11·1;022 yields the following developments: we
have

S1(h
11·1;022) =

∫

1

d1y
2

∫

2

d12x⊗1

∫

1

d12x, (55)

and let us add the following comments:
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(a) In direction 2, the quantity S1(h
11·1;022) can be simply expressed in terms of iterated

integrals of the driving process x and elementary increments of y1.

(b) The exact expression of S1(h
11·1;022) can be obtained from (54) by splitting the variables

s2, s3 into 3 variables s2, s3, s4:

[
S1(h

11·1;022)
]

s1s2s3s4;t1t2
=

∫ t2

t1

(∫ s2

s1

δ1y
2
s1σ2;t1

d1δ2xσ2;t1τ2

)

d2δ1xs3s4;τ2 .

We now set h11;02 =
∫

1
d1y

2
∫

2
d12x, which is the increment we shall further expand in (55).

This can be performed exactly as for a11;02 in Step 2, just replacing y by y2, and enables the
following expression which should be compared to equality (44):

h11;02 = y3 x11;02 + Λ1

(

ry
2,1 δx+ δ1y

3
x
11;02

)

,

where we recall that x
11;02 =

∫

1
d1x

∫

2
d12x. We plug this relation into (55) and we obtain

S1(h
11·1;022) = y3

∫

1

d1x

∫

2

d12x⊗1

∫

1

d12x+ h11·1;022;♯. (56)

In the last expression, h11·1;022;♯ is defined as follows: we have

η11·1;022;♯ ≡ [δ1 ⊗1 Id] h
11·1;022;♯

= ry
2,1

∫

1

∫

2

d12x⊗1

∫

1

d12x+ δ1y
3

∫

1

d1x

∫

2

d12x⊗1

∫

1

d12x

= ry
2,1

x
1⊗1;22 + δ1y

3
x
11⊗1;022, (57)

and notice that η11·1;022;♯ is only expressed in terms of elementary increments based on y
and iterated integrals of x. Furthermore, Hypothesis 5.1 guarantees that η11·1;022;♯ lies into
[C3γ1

2 ⊗ Cγ1
2 ](Cγ2

2 ), and thus h11·1;022;♯ = [Λ1 ⊗1 Id](η
11·1;022;♯). Going back to (56), we end up

with

S1(h
11·1;022) = y3

∫

1

d1x

∫

2

d12x⊗1

∫

1

d12x+ [Λ1 ⊗1 Id] (η
11·1;022;♯).

We can now go back to an expression for h11·1;022 itself by applying the inverse map G1 of
S1. This gives

h11·1;022 = y3
∫

1

d1x

∫

2

d12x

∫

1

d12x+G1

(
[Λ1 ⊗1 Id] (η

11·1;022;♯)
)

= y3 x11·1;022 +G1

(
[Λ1 ⊗1 Id] (η

11·1;022;♯)
)
.

Plugging this relation back in equation (53), we end up with

δ1b
111;022 = δ1y

2
x
11;22 + y2 x11·1;022 +G1

(
[Λ1 ⊗1 Id] (η

11·1;022;♯)
)
, (58)

which is now clearly an element of P3γ1,γ2
3,2 and a continuous function of the increments

x
11;22,x11·1;022,x1⊗1;22,x11⊗1;022 and y as claimed in our proposition.
In the same spirit, we also have

b011;222 = Λ2

[
δ2y

2
x
11;22 + y3 x011;22·2 +G2

(
[Λ2 ⊗2 Id] (η

011;22·2;♯)
)]
,

where η011;22·2;♯ is defined similarly to η11·1;022;♯ in (57).
�
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Lemma 5.3. Let b1·11;22·2 and b11·1;2·22 be the terms defined by (49). Then:

(i) The increment δ1b
1·11;22·2 is an element of P3γ1,3γ2

3,3 and is a continuous function of x11·1;022,

x
11·1;2·22, x1⊗1;22, x11⊗1;022, x11⊗1;222 and y.

(ii) The increment δ2b
11·1;2·22 is an element of P3γ1,3γ2

3,3 and is a continuous function of x011;22·2,

x
1·11;22·2, x11;2⊗2, x011;22⊗2, x111;22⊗2 and y.

Proof. Those two terms contain overlapping integrations in direction 1 and 2 again, and we
thus proceed to their dissection through ingredient (iii). In the case of b11·1;2·22 we will use
an additional expansion in direction 1 only, and thus write

S1

(
b11·1;2·22

)
=

∫

1

∫

2

d12y
2

∫

2

d12x⊗1

∫

1

d12x, and set c11;2·2 =

∫

1

∫

2

d12y
2

∫

2

d12x. (59)

In order to expand c11;2·2 one step further in direction 1, observe that
∫

1

∫

2

d12y
2 =

∫

1

δ2d1y
2 =

∫

1

δ2
(
y3d1x

)
=

∫

1

δ2y
3 d1x+

∫

1

y3 δ2d1x.

Plugging this identity into the definition of c11;2·2 we get a decomposition as

c11;2·2 = k1 + k2, where k1 =

∫

1

δ2y
3 d1x

∫

2

d12x, k2 =

∫

1

y3 δ2d1x

∫

2

d12x.

We now apply ingredients (i) and (ii) to analyze those terms. First, one can compute δ1c
11;2·2

as

δ1c
11;2·2 =

∫

2

δ1d2y
2

∫

2

δ1d2x = δy2 δx. (60)

Next expand y3 in direction 1 in both k1 and k2, which yields

k1 = δ2y
3
x
11;02 + ρ1, and k2 = y3 x11;2·2 + ρ2,

where ρ1 and ρ2 are two remainder terms morally lying in P3γ1,2γ2
2,2 . Setting ρc = ρ1 + ρ2, we

have thus obtained the following relation:

c11;2·2 = δ2y
3
x
11;02 + y3 x11;2·2 + ρc =⇒ ρc = c11;2·2 − δ2y

3
x
11;02 − y3 x11;2·2

Applying δ1 to both sides of the last identity plus relation (60) and Hypothesis 5.1, we end
up with:

δ1ρ
c =

(
δy2 − δ2y

3 δ1x− y3δx
)
δx+ δy3 x11;02 + δ1y

3
x
11;2·2.

Furthermore, an elementary Taylor type computation shows that (δy1 − δ2y
3 δ1x− y3δx) ∈

P2γ1,∗
2,2 and thus it is readily checked that δ1ρ

c ∈ P3γ1,γ2
3,2 . We now plug the decomposition of

δ1ρ
c back into the relation (59) defining S1(b

11·1;2·22) in order to obtain

S1

(
b11·1;2·22

)
= δ2y

3

∫

1

d1x

∫

2

d12x⊗1

∫

1

d12x+ y3
∫

1

∫

2

d12x

∫

2

d12x⊗1

∫

1

d12x

+ h11·1;2·22;♯,

where h11·1;2·22;♯ is defined in the following way: setting η11·1;2·22;♯ ≡ [δ1 ⊗1 Id]h
11·1;2·22;♯, we

have

η11·1;2·22;♯ =
(
δy3 − δ2y

3 δ1x− y3δx
)
x
1⊗1;22 + δy3 x11⊗1;022 + δ1y

3
x
11⊗1;222.
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As in the proof of Lemma 5.2, notice that η11·1;2·22;♯ is only expressed in terms of elementary
increments based on y and X, and belongs to the domain of Λ1 ⊗1 Id. Hence, applying the
gluing operator G1 we end up with the relation

b11·1;2·22 = δ2y
3
x
11·1;022 + y3 x11·1;2·22 +G1

(
[Λ1 ⊗1 Id] η

11·1;2·22;♯
)
.

In the same manner, we obtain

b1·11;22·2 = δ1y
3
x
011;22·2 + y3 x1·11;22·2 +G2

(
[Λ2 ⊗2 Id] η

1·11;22·2;♯
)
,

where

η11·1;2·22;♯ =
(
δy2 − δ1y

3 δ2x− y3δx
)
x
11;2×2 + δy3 x22⊗2;011 + δ2y

3
x
111;22⊗2,

which ends the proof.
�

6. Skorohod’s calculus in the Young case

This section is devoted to relate the Young type integration theory introduced at Section 4
and the Skorohod integral in the plane handled in [17]. Specifically, we shall first generalize
the Skorohod change of variables formula given in [17] for a fractional Brownian sheet with
Hurst parameter greater than 1/2 to a fairly general Gaussian process. We shall then compare
this formula with Theorem 1.1 item (v).

Before going on with our computations, let us label some notations for further use:

Notation 6.1. We write X .a,b,... Y if there exist a constant c depending on a, b, ... such
that the quantities X, Y satisfy X ≤ cY . For a partition {(si, tj)i,j} of a rectangle ∆ =
[s1, s2]× [t1, t2], ∆ij denotes the rectangle [si, si+1]× [tj , tj+1].

6.1. Malliavin calculus framework. We consider in this section a centered Gaussian pro-
cess {xs;t; (s, t) ∈ [0, 1]2} defined on a complete probability space (Ω,F ,P), with covariance
function E[xs1;t1xs2;t2 ] = Rs1s2;t1t2 . We now briefly define the basic elements of Malliavin
calculus with respect to x and then specify a little the setting under which we shall work.

6.1.1. Malliavin calculus with respect to x. We first relate a Hilbert space H to our process x,
defined as the closure of the linear space generated by the functions {1[0,s]×[0,t], (s, t) ∈ [0, 1]2}
with respect to the semi define positive form 〈1[0,s1]×[0,t1], 1[0,s2]×[0,t2]〉 = Rs1s2;t1t2 . Then the
map I1 : 1[0,s]×[0,t] → xs;t can be extended to an isometry between H and the first chaos
generated by {xs;t; (s, t) ∈ [0, 1]2}.

Starting from the space H, a Malliavin calculus with respect to x can now be developped
in the usual way (see [10, 14] for further details). Namely, we first define a set of smooth
functionals of x by

S := {f(I1(ψ1), . . . , I1(ψn)); n ∈ N, f ∈ C∞
b (Rn), ψ1, . . . , ψn ∈ H}

and for F = f(I1(ψ1), . . . , I1(ψn)) ∈ S we define

DF =

n∑

i=1

∂if(I1(ψ1), . . . , I1(ψn))ψi.
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Then D is a closable operator from Lp(Ω) into Lp(Ω,H). Therefore we can extend D to the
closure of smooth functionals under the norm

‖F‖1,p = (E[|F |p] + E[‖DF‖pH])
1
p

The iteration of the operator D is defined in such a way that for a smooth random variable
F ∈ S the iterated derivative DkF is a random variable with values in H⊗k. The domain
D

k,p of Dk is the completion of the family of smooth random variables F ∈ S with respect
to the semi-norm :

‖F‖k,p =

(

E[|F |p] +
k∑

j=1

E[‖DjF‖pH⊗j ]

) 1
p

.

Similarly, for a given Hilbert space V we can define the space D
k,p(V ) of V -valued random

variables, and D
∞(V ) = ∩k,p≥1D

k,p.

Consider now the adjoint δ⋄ of D. The domain of this operator is defined as the set of
u ∈ L2(Ω,H) such that E[|〈DF, u〉H|] . ‖F‖1,2, and for this kind of process δ⋄(u) (called
Skorohod integral of u) is the unique element of L2(Ω) such that

E[δ⋄(u)F ] = E[〈DF, u〉H], for F ∈ D
1,2.

Note that E[δ⋄(u)] = 0 and

E[|δ⋄(u)|2] ≤ E[‖u‖2H] + E[‖Du‖2H⊗H].

The following divergence type property of δ⋄ will be useful in the sequel:

δ⋄(Fu) = Fδ⋄(u)− 〈Du, F 〉H, (61)

and we also recall the following compatibility of δ⋄ with limiting procedures:

Lemma 6.2. let un be a sequence of elements in Dom(δ⋄), which converges to u in L2(Ω,H).
We further assume that δ⋄(un) converges in L2(Ω) to some random variable F ∈ L2(Ω). Then
u ∈ Dom(δ⋄) and δ⋄(u) = F .

6.1.2. Wick products. Some of our results below will be expressed in terms of Rieman-Wick
sums. We give a brief account on these objects, mainly borrowed from [10, 11].

Among functionals F of x such that F ∈ D
∞, the set of multiple integrals plays a special

role. In order to introduce it in the context of a general process x indexed by the plane,
consider an orthonormal basis {en; n ≥ 1} of H and let ⊗̂ denote the symmetric tensor
product. Then

fn =
∑

finite

fi1,··· ,inei1⊗̂ · · · ⊗̂ein , fi1,··· ,in ∈ R (62)

is an element of H⊗̂n satisfying the relation:

‖fn‖
2
H⊗̂n =

∑

finite

|fi1,··· ,in|
2 . (63)

Moreover, H⊗̂n is the completion of the set of elements like (62) with respect to the norm (63).

For an element fn ∈ H⊗̂n, the multiple Itô integral of order n is well-defined. First, any
element of the form given by (62) can be rewritten as

fn =
∑

finite

fj1···jme
⊗̂k1
j1

⊗̂ · · · ⊗̂e⊗̂km
jm , (64)
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where the j1, . . . , jm are different and k1 + · · ·+ km = n. Then, if fn ∈ H⊗̂n is given under
the form (64), define its multiple integral as:

In(fn) =
∑

finite

fj1,··· ,jmHk1(I1(ej1)) · · ·Hkm(I1(ejm)), (65)

where Hk denotes the k-th normalized Hermite polynomial given by

Hk(x) = (−1)ke
x2

2
dk

dxk
e−

x2

2 =
∑

j≤k/2

(−1)jk!

2j j! (k − 2j)!
xk−2j.

It holds that the multiple integrals of different order are orthogonal and that

E
[
|In(fn)|

2
]
= n! ‖fn‖

2
H⊗̂n .

This last isometric property allows to extend the multiple integral for a general fn ∈ H⊗̂n

by L2(Ω) convergence. Finally, one can define the integral of fn ∈ H⊗n by putting In(fn) :=

In(f̃n), where f̃n ∈ H⊗̂n denotes the symmetrized version of fn. Moreover, the chaos expan-
sion theorem states that any square integrable random variable F ∈ L2(Ω,G,P), where G is
the σ- field generated by x, can be written as

F =
∞∑

n=0

In(fn) with E[F 2] =
∞∑

n=0

n!‖fn||
2
H⊗̂n . (66)

With these notations in mind, one way to introduce Wick products on a Wiener space is
to impose the relation

In(fn) ⋄ Im(gm) = In+m(fn⊗̂gm) (67)

for any fn ∈ H⊗̂n and gm ∈ H⊗̂m, where the multiple integrals In(fn) and Im(gm) are defined

by (65). If F =
∑N1

n=1 In(fn) and G =
∑N2

m=1 Im(gm), we define F ⋄G by

F ⋄G =

N1∑

n=1

N2∑

m=1

In+m(fn⊗̂gm).

By a limit argument, we can then extend the Wick product to more general random variables
(see [11] for further details). In this paper, we will take the limits in the L2(Ω) topology.

Some corrections between ordinary and Wick products will be computed below. A simple
example occurs for products of f(x) by a Gaussian increment. Indeed, for a smooth function
f and g1, g2 ∈ H, it is shown in [11] that

f(I1(g1)) ⋄ I1(g2) = f(I1(g1)) I1(g2)− f ′(I1(g1)) 〈g1, g2〉H . (68)

We now state a result which is proven in [10, Proposition 4.1].

Proposition 6.3. Let F ∈ D
k,2 and g ∈ H⊗k. Then

(1) F ⋄ Ik(g) is well defined in L2(Ω).
(2) Fg ∈ Dom δ⋄k.
(3) F ⋄ Ik(g) = δ⋄k(Fg).



30 KHALIL CHOUK AND SAMY TINDEL

6.1.3. Further assumptions and preliminary results. In order to simplify our computations,
let us introduce some additional assumptions on the covariance R:

Hypothesis 6.4. The covariance R of our centered Gaussian process x belongs to the space
C1-var([0, 1]4), and satisfies a factorization property of the form

E[xs1;t1xs2;t2 ] = Rs1s2;t1t2 = R1
s1s2R

2
t1t2 ,

for two covariance functions R1, R2 on [0, 1]. In addition, setting Ri
a = Ri

aa for a ∈ [0, 1]
and i = 1, 2, we assume that a 7→ Ri

a is differentiable and we suppose that

|2Ri
ab − Ri

aa − Ri
bb| . |a− b|γi (69)

for all a, b ∈ [0, 1], with γi > 1. Finally we suppose that (Ri)′a = ∂aR
i
aa ∈ L∞([0, 1]).

The first consequence of our Hypothesis 6.4 is that the regularity of x corresponds to the
Young type regularity of Section 4. Indeed, it is readily checked that relation (69) yields

E
[
(δxs1s2;t1t2)

2
]
. |s− s′|γ1 |t− t′|γ2 .

Since x is Gaussian, an easy application of Kolmogorov’s criterion ensures that

x ∈ Pα1,α2

1,1 , with α1 =
γ1
2

− ǫ1 >
1

2
, α2 =

γ2
2

− ǫ2 >
1

2
, (70)

for arbitrarily small ǫ1, ǫ2 > 0. This enables us to appeal to Young’s integration theory in
order to define integrals of the form

∫

1

∫

2
ϕ(x) d12x.

Let us quote two lemmas concerning Hölder norms in the plane which will feature in our
comparison between Stratonovich and Skorohod integrations. The first one deals with the
composition of a Hölder process with a nonlinearity f :

Lemma 6.5. Let f ∈ C2(R), θ1, θ2 > 0 and a rectangle ∆ ⊂ [0, 1]2. Then on ∆ we have
that

‖δ1y‖θ1,0 ≤ ‖y1‖0;∆ ‖δ1x‖θ1,0

and

‖δy‖θ1,θ2 .
(
‖y1‖0;∆ + ‖y2‖0;∆

)
‖δx‖θ1,θ2(1 + ‖δx‖θ1,θ2),

where ‖ · ‖0;∆ stands for the supremum norm on ∆ and yj still denotes ϕ(j)(x).

Next we also need an integral semi-norm dominating Hölder’s norms in the plane. This is
given by the following Garsia type result:

Lemma 6.6. Let p > 1, θ1, θ2 > 0 and y ∈ P1,1. The following relation holds true:

‖δy‖pθ1,θ2 .θ1,θ2,p

∫

[0,1]4

|δyu1u2;v1v2 |
p

|u2 − u1|θ1p+2|v2 − v1|θ2p+2
du1du2dv1dv2. (71)

We now turn to a consequence of our additional Hypothesis 6.4 on embedding properties
of the Hilbert space H defined above:

Lemma 6.7. Under Hypothesis 6.4, we have ‖f‖H ≤ ‖f‖∞‖R‖1-var;[0,1]4.
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Proof. Consider a step function f =
∑

ij aij1∆ij
related to a partition (∆ij)ij of [0, 1]2. We

have

‖f‖2H =
∑

i,j,l,k

aijalkR
1
sisl
R2

tjtk
=
∑

i,j,k,l

aijakl

∫ si

0

∫ sl

0

∫ tj

0

∫ tk

0

d12R
1
s1s2

d12R
2
t1t2

=

∫

[0,1]4
fs1;t1 fs2;t2d12R

1
s1s2

d12R
2
t1t2

≤ ‖f‖2∞ ‖R‖1-var;[0,1]4. (72)

The general case now easily follows by density of the step functions in H.
�

Let us now recall that we work under the usual assumptions for Skorohod type change of
variables formulae given at Definition 1.6 and referred to as (GC) condition in the sequel.
Notice that maxs,t∈[0,1](R

1
sR

2
t ) = maxs,t∈[0,1] E[|xs;t|2]. Thus condition (GC) implies that

E

[

sup
s,t∈[0,1]

|f(xs;t)|
r
]

<∞, for all r ≥ 1. (73)

We now state an approximation result in H which proves to be useful in order to get our
Itô type formula.

Proposition 6.8. Let x be a centered Gaussian process on [0, 1] satisfying Hypothesis 6.4
and f ∈ C1(R) such that the growth condition (GC) is fulfilled for ϕ and ϕ(1). Consider a
rectangle ∆ = [s1, s2] × [t1, t2] and π1 = (si)i, π2 = (tj)j two respective dissections of the
intervals [s1, s2] and [t1, t2]. Then

lim
|π1|,|π2|→0

E

[
∥
∥
∥y·1∆ −

∑

i,j

ysi;tj1∆i,j

∥
∥
∥

2

H

]

= 0,

where we have used Notation 6.1 for the rectangles ∆i,j.

Proof. Observe first that

ys;t1∆(s, t)−
∑

i,j

ysi;tj1∆ij
(s, t) =

∑

i,j

(ys;t − ysi;tj )1∆i,j
(s, t)

from which the following estimation is easily obtained:

|(ys;t − ysi;tj )1∆i,j
(s, t)| ≤

(

sup
(s,t)∈∆

|y1s;t| max
|s1−s2|≤|π1|,|t1−t2|≤|π2|

|xs1;t1 − xs2;t2 |

)

1∆i,j
.

Hence if we take expectations in this last estimation and resort to Hölder’s inequality, we
obtain that

E

[
∥
∥
∥y·1∆ −

∑

i,j

ysi;tj1∆i,j

∥
∥
∥

2

∞

]

≤ E
1/2

[

sup
(s,t)∈∆

|y1s;t|
4

]

E
1/2

[

max
|s−s′|≤|π1|,|t−t′|≤|π2|

|xs;t − xs2;t2 |
4

] ∥
∥
∥

∑

i,j

1∆ij

∥
∥
∥
∞
.
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Now the r.h.s of this inequality goes to zero when the mesh of the partitions π1, π2 goes
to zero by continuity properties of x (see (70)). Our claim thus easily stems from the
embedding (72).

�

6.2. Itô-Skorohod type formula. We now turn to one of the main aim of this article,
namely the proof of a Skorohod type change of variable formula for a general Gaussian
process x defined on [0, 1]2, under our assumptions 6.4. Our starting point is the relation
between z1 and its Skorohod equivalent.

Proposition 6.9. Assume x is a centered Gaussian process on [0, 1]2 with a covariance
function satisfying (9). Consider a function ϕ ∈ C2(R) satisfying condition (GC) and a
rectangle ∆ = [s1, s2] × [t1, t2]. Then we have that y1· 1∆ ∈ Dom(δ⋄), and if we define the
increment z1,⋄ ≡ δ⋄(y1· 1∆) the following relation holds true:

z1,⋄s1s2;t1t2 = z1s1s2;t1t2 −
1

4

∫ s2

s1

∫ t2

t1

y2s;t d1R
1
sd2R

2
t , (74)

where z1 is given by Proposition 4.3 and the second integral in the right hand side of (74) is
of Riemann-Stietjes type. Moreover, relation (12) holds true in the L2(Ω) and almost sure
sense.

Proof. Consider a sequence of partitions πn = (π1
n, π

2
n) whose mesh go to 0 as n → ∞. The

generic elements of πn will be denoted by (si, tj). Owing to formula (61), we have that

∑

πn

δ⋄(y1si;tj1∆ij
) =

∑

πn

y1si;tjδxsisi+1;tjtj+1
−
∑

πn

y2si;tjE[xsi;tjδxsisi+1;tjtj+1
]

=
∑

πn

y1si;tjδxsisi+1;tjtj+1
−
∑

πn

y2si;tj (R
1
sisi+1

− R1
sisi

)(R2
tj tj+1

− R2
tjtj

) ≡ An
1 − An

2 .

We now treat those two terms separately.

Step 1: Estimation of An
1 . The term An

1 =
∑

πn
y1si;tjδxsisi+1;tjtj+1

is a Riemann type sum.

Since x ∈ Pα1,α2
1,1 with α1, α2 > 1/2, it converges a.s to

∫∫
y1 d12x as n goes to ∞, according

to (6).

The L2(Ω) convergence of the Riemann sums defining An
1 is more cumbersome, and we

have to go back to the definition of the Young integral given by Theorem 4.3. Indeed one
can write

∫ s2
s1

∫ t2
t1
y1s;td12xs;t =

∑

πn

∫

∆ij
y1s;td12xs;t, and thanks to (36) we get that

∫ s2

s1

∫ t2

t1

y1s;td12xs;t = An
1 +

∑

πn

(Id− Λ2δ2)(Λ1δ1)(y
1δx)sisi+1;tjtj+1

+
∑

πn

(Id− Λ1δ1)(Λ2δ2)(y
1δx)sisi+1;tjtj+1

−
∑

πn

Λδ(y1δx)sisi+1;tjtj+1
.
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Furthermore, some partial summations can be performed on the terms Id− Λiδi for i = 1, 2
and setting Dn

1 ≡
∫ s2
s1

∫ t2
t1
y1s;td12xs;t − An

1 we deduce that

Dn
1 =

∑

π2
n

[(Id− Λ1δ1)(Λ2δ2)] (y
1δx)s1s2;tjtj+1

+
∑

π1
n

[(Id− Λ2δ2)(Λ1δ1)] (y
1δx)sisi+1;t1t2 −

∑

πn

Λδ(y1δx)sisi+1;tjtj+1
.

Recalling the Hölder regularity (70) of our process x, we thus obtain

|Dn
1 | . |s2 − s1|

α1‖δ2y
1‖0,α1‖δx‖α1,α2

∑

j

|tj+1 − tj |
2α2

+ |t2 − t1|
α2‖δ1y

1‖α1,0‖δx‖α1,α2

∑

π1
n

|si+1 − si|
2α1

+ ‖δy1‖α1,α2‖δx‖α1,α2

∑

πn

|si+1 − si|
2α1 |tj+1 − tj |

2α2 .

Now taking expectations in the last relation and using Hölder’s inequality we end up with

E[|Dn
1 |

2] .s1,s2,t1,t2,α1,α2

(
|π1|

4α1−2 + |π2|
4α2−2

)
E
1/2[‖δx‖4α1,α2

]

×
(
E
1/2[‖δ1y

1‖40,α1
] + E

1/2[‖δ2y
1‖4α2

] + E
1/2[‖δy1‖4α1,α2

]
)
, (75)

for n large enough.

We are now going to prove that one can recast (75) into

E[|Dn
1 |

2] .s1,s2,t1,t2,α1,α2

(
|π1|

4α1−2 + |π2|
4α2−2

)
. (76)

Indeed, applying Lemma 6.6 to y = x, θ1 = α1, θ2 = α2 and p large enough, one can easily
check that E[‖δx‖4α1,α2

] < +∞. In addition, combining the fact that E[‖δx‖4α1,α2
] < +∞

with Lemma 6.5 plus condition (GC) on the function f , we obtain that

E[‖δx‖4α1,α2
]1/2
(
E[‖δ1y

1‖40,α1
]1/2 + E[‖δ2y

1‖4α2
]1/2 + E[‖δy1‖4α1,α2

]1/2
)
< +∞.

Hence inequality (76) is easily deduced from (75), and this proves that An
1 converges in L2(Ω)

to
∫ s2
s1

∫ t2
t1
y1s;td12xs;t as n→ ∞.

Step 2: Estimation of An
2 . Recall that An

2 is defined by

An
2 =

∑

πn

y2si;tj (R
1
si+1si

−R1
sisi

)(R2
tj+1tj

− R2
tjtj

).

In order to treat this term, first remark that for k = 1, 2 we have

Rk
sisi+1

− Rk
sisi

=
1

2
(Rk

si+1si+1
−Rk

sisi
) + ρksisi+1

,



34 KHALIL CHOUK AND SAMY TINDEL

where ρksisi+1
= 1

2
(2Rk

sisi+1
− Rk

sisi
− Rk

si+1si+1
). Injecting this relation in the definition of the

term An
2 and recalling that we have set Rk

a ≡ Rk
aa, we obtain

An
2 = 1/4

∑

πn

y2si;tj (R
1
si+1

− R1
si
)(R2

tj+1
− R2

tj
)

+1/2
∑

πn

y2si;tj

[

(R2
tj+1

−R2
tj
)ρ1sisi+1

+ (R1
si+1

−R1
si
)ρ2tjtj+1

+ ρ1sisi+1
ρ2tjtj+1

]

≡ An
21 + An

22 + An
23 + An

24.

We will now show that

lim
n→∞

An
21 =

1

4

∫ s2

s1

∫ t2

t1

y2s;t d1R
1
sd2R

2
t , and lim

n→∞

4∑

j=2

An
2j = 0, (77)

where the limits are understood in the almost sure and L2 sense.

Indeed, it is easily understood that the terms An
22, A

n
23, A

n
24 are remainder terms: according

to Hypothesis 6.4 we have that |ρiab| . |a− b|γi , and we get the following inequality for An
22:

An
22 . |π1|

γ1−1 sup
(s,t)∈∆

|y2s;t|
∑

πn

(si+1 − si) |R
2
tj+1

− R2
tj
|

≤ |π1|
γ1−1 sup

(s,t)∈∆

|y2s;t| (s2 − s1)

∫ t2

t1

|d2R
2
t |.

This relation, plus the condition (GC) on f , obviously entails that limn→∞An
22 = 0 in the

almost sure and L2(Ω) sense. The case of An
23, A

n
24 follow exactly along the same lines.

We now focus on the term An
21: observe that

∣
∣
∣
∣
a1 − 1/4

∫ s2

s1

∫ t2

t1

y2s;td1R
1
sd2R

2
t

∣
∣
∣
∣

. sup
(s,t)∈∆

|y2s;t| max
|s−s′|≤|π1|,|t−t′|≤|π2|

|xs;t − xs2;t2 |

∫ s2

s1

∫ t2

t1

|d1R
1
s‖d2R

2
t |.

Invoking the same estimates as before for the Hölder norm of x and condition (GC) on f ,
the proof of our assertion (77) is now completed.

Step 3: Conclusion. Let us summarize the results obtained in the last two steps: plugging
relation (77) into the definition of An

2 and recalling the limiting behavior of An
1 established

at Step 1, we have obtained that

lim
n→∞

∑

πn

δ⋄(y1si;tj1∆ij
) =

∫ s2

s1

∫ t2

t1

y1s;td12xs;t −
1

4

∫ s2

s1

∫ t2

t1

y2s;td1R
1
sd2R

2
t .

where the convergence is understood in both a.s and L2(Ω) sense. Furthermore, Proposi-
tion 6.8 asserts that

∑

πn
y1si;tj1∆ij

converges in L2(Ω,H) to y1· 1∆. This finishes our proof of

relation (74) thanks to a direct application of Lemma 6.2.

As far as expression (12) with Wick-Riemann sums is concerned, recall that we have proved
that

δ⋄(y1· 1∆) = lim
|π1|,|π2|→0

∑

πn

δ⋄(y1si;tj1∆ij
).
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Now invoke Proposition 6.3 for k = 1 in order to state that

δ⋄(y1si;tj1∆ij
) = y1si;tj ⋄ δ

⋄(1∆ij
) = y1si;tj ⋄ δxsisi+1;tjtj+1

,

which ends the proof.
�

Proposition 6.9 gives a meaning to the increment z1,⋄ and compares them to the corre-
sponding Stratonovich increment z1. In order to compare change of variables formulae, we
still have to define Skorohod integrals of the form z2,⋄, which is what we proceed to do now.

To this aim, let us start by some formal considerations: it is easily conceived that
∫ s

0

∫ t

0

y2u;vd
⋄
1xu;vd

⋄
2xu;v =

∫ s

0

∫ t

0

∫ u

0

∫ v

0

y2u;vd
⋄
12xu′vd

⋄
12xuv′ = δ⋄,2(N(y)) (78)

where, similarly to [17], we set

N(y)u′u;vv′ := y 1[0,s]×[0,v](u, v
′) 1[0,u]×[0,t](u

′, v),

where we integrate firstly in (u′, v) and then in (u, v′), and where the notation δ⋄,2 specifies
that we perform double integrals in the Skorohod sense. Our objective in what follows is to
give a rigorous meaning to equation (78).

Lemma 6.10. Take up the notation of Proposition 6.9, and consider f ∈ C3(R) satisfying
condition (GC). For a sequence of partitions (πn)n≥1 whose mesh goes to 0 define

aπn

u′u;vv′ =
∑

i,j

y2si;tj 1[0,si]×[tj ,tj+1](u
′, v) 1[si,si+1]×[0,tj ](u, v

′). (79)

Then aπn converges to N(y) in L2(Ω,H⊗2) as n goes to infinity.

Proof. First notice that the tensor norm of an element K ∈ H⊗2 can be bounded as:

‖K‖H⊗2 =

∫

[0,1]8
Ka1a′1;b1b

′
1
Ka2a′2;b2b

′
2
d12R

1
a1a′1

d12R
1
a2a′2

d12R
2
b1b′1

d12R
1
b2b′2

≤

∫

[0,1]8
|Ka1a′1;b1b

′
1
Ka2a′2;b2b

′
2
| |d12R

1
a1a′1

||d12R
1
a2a′2

||d12R
2
b1b′1

||d12R
1
b2b′2

|. (80)

Furthermore, a simple computation shows that

aπn

u′u;vv′ −N(y2)u′u;vv′ =
∑

πn

[

y2si;tj − y2u;v

] [
1[0,u]×[tj ,tj+1](u

′, v)1[si,si+1]×[0,v](u, v
′)
]

+
∑

πn

y2si;tj
[(
1[0,si]×[0,tj ](u

′, v′)− 1[0,u]×[0,v](u
′, v′)

)
1[si,si+1]×[tj ,tj+1](u, v)

]
,

and thus,

∣
∣aπn

u′u;vv′ −N(y2)u′u;vv′
∣
∣ ≤

(

sup
(a,b)∈[0,s]×[0,t]

|y3a;b| sup
|a2−a1|≤|π1|,|b2−b1|≤|π2|

|xa2;b2 − xa1;b1|

+max
i,j

(1[si,si+1](u
′) + 1[tj ,tj+1](v

′)) sup
(a,b)∈[0,s]×[0,t]

|y2a;b|
)

. (81)

Our claims are now easily derived: on the one hand the right hand side of (81) converges to
zero when n→ ∞ if u′ 6= si and v′ 6= tj for all i, j. Then using inequality (80) and dominated
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convergence we obtain that aπn converges a.s to N(y) in H⊗2. On the other hand, in order
to obtain the convergence in L2(Ω,H⊗2) it suffices to use the fact that f satisfies condition
(GC) and apply once again dominated convergence.

�

Now we are able to define our mixed integral in the Skorohod sense and connect it to the
equivalent integral in the Young theory:

Proposition 6.11. Assume x is a centered Gaussian process on [0, 1]2 with a covariance
function satisfying (9). Consider a function ϕ ∈ C4(R) satisfying condition (GC) and a
rectangle ∆ = [s1, s2] × [t1, t2]. Then we have that N(y) ∈ Dom(δ⋄,2), and if we define
z2,⋄ = δ⋄,2(N(y)) the following relation holds:

z2,⋄s1s2;t1t2 = z2s1s2;t1t2 −
1

4

∫ s2

s1

∫ t2

t1

y2u;vd1R
1
u d2R

2
v −

1

2

∫ s2

s1

∫ t2

t1

y3u;vR
1
u d2R

2
v d1xu;v

−
1

2

∫ s2

s1

∫ t2

t1

y3u;vR
2
v d1R

1
u d2xu;v +

1

4

∫ s2

s1

∫ t2

t1

y4u;vR
1
uR

2
v d1R

1
u d2R

2
v, (82)

where
∫ s2
s1

∫ t2
t1
y3u;vR

1
u d2R

2
v d1xu;v and

∫ s2
s1

∫ t2
t1
y3u;vR

2
v d1R

1
u d2xu;v are defined according to Propo-

sition 4.6. Moreover, relation (13) holds true in the L2(Ω) and almost sure sense.

Proof. Like for Proposition 6.9, our strategy is as follows: consider a sequence πn = (π1
n, π

2
n)

whose mesh go to 0 as n → ∞ and set an ≡ aπn defined by (79). We have seen at Lemma
6.10 that limn→∞ an = N(y) in L2(Ω,H⊗2). We shall now study the convergence of δ⋄(an) by
means of Wick-Stratonovich corrections. Then we will conclude by invoking Proposition 6.2.

Step 1: Wick-Stratonovich corrections. According to relation (67) and Proposition 6.3 for
k = 2 we obtain

δ⋄,2(an) =
∑

πn

δ⋄,2(y2si;tj1[0,si]×[tj ,tj+1] ⊗ 1[si,si+1]×[0,tj ])

=
∑

πn

y2si;tj ⋄ δ2xsi;tjtj+1
⋄ δ1xsisi+1;tj . (83)

We now use Theorem 4.10 in [11] in order to get that δ⋄,2(an) can be decomposed as:
∑

πn

y2si;tj (δ2xsi;tjtj+1
⋄ δ1xsisi+1;tj)−

∑

πn

y3si;tjR
1
si
(R2

tjtj+1
−R2

tj tj
)δ1xsisi+1;tj

−
∑

πn

y3si;tjR
2
tj
(R1

sisi+1
−R1

si,si
)δ2xsi;tjtj+1

(84)

+
∑

πn

y4si;tjR
1
si
R2

tj
(R1

sisi+1
− R1

sisi
)(R2

tj tj+1
−R2

tj tj
) ≡ Bn

1 − Bn
2 −Bn

3 +Bn
4 .

Like in the proof of Proposition 6.9, we treat those 4 terms separately.

Step 2: Estimation of Bn
1 , . . . , B

n
4 . The term Bn

1 can be decomposed as

Bn
1 =

∑

πn

y2si;tjδ1xsisi+1;tjδ2xsi;tjtj+1
−
∑

πn

y2si;tj (R
1
sisi+1

− R1
sisi

)(R2
tjtj+1

−R2
tjtj

).
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Moreover, the second term in the r.h.s is the same as An
2 in the proof of Proposition 6.9,

while the convergence for
∑

πn
y2si;tjδ1xsisi+1;tjδ2xsi;tjtj+1

follows exactly along the same lines
as An

1 in the same proof. We thus leave to the patient reader the task of showing that

lim
n→∞

Bn
1 =

∫ s2

s1

∫ t2

t1

y2s;t d1xs;td2xs;t −
1

4

∫ s2

s1

∫ t2

t1

y2s;t d1R
1
sd2R

2
t , (85)

and we concentrate now on the other terms in (84).

The term Bn
2 =

∑

πn
y3si;tjR

1
si
(R2

tjtj+1
−R2

tjtj
)δ1xsisi+1;tj can be decomposed as Bn

2 = Bn
21 +

Bn
22, with

Bn
21 =

1

2

∑

πn

y3si;tjR
1
si
(R2

tj+1
−R2

tj
)δ1xsisi+1;tj , Bn

22 =
∑

πn

y3si;tjR
1
si
ρ2tjtj+1

δ1xsisi+1;tj ,

where we recall that we have set ρktj tj+1
= 1

2
(2Rk

tjtj+1
−Rk

tjtj
−Rk

tj+1tj+1
) for k = 1, 2.

It is now easily seen that the almost sure and L2 convergence of Bn
2 are obtained with the

same kind of considerations as for An
2 in the proof of Proposition 6.9. We get that

lim
n→∞

Bn
2 =

1

2

∫ s

0

∫ t

0

y3u;vR
1
u d2R

2
v d1xu;v,

and Bn
3 , B

n
4 are also handled in the same way.

Step 3: Conclusion. Thanks to Step 1 and Step 2, we have obtained that δ⋄(an) converges
to the right hand side of relation (82) as n → ∞, in both almost sure and L2 senses. As
mentioned before, this limiting behavior plus the convergence of an to N(y) established at
Lemma 6.10 yield relation (82) by a direct application of Proposition 6.2. Furthermore,
relation (13) is also a direct consequence of relation (83).

�

Notice that our formula (82) involves some mixed integrals of the form
∫ s

0

∫ t

0
y3u;vR

2
vd1R

1
u

d2xu;v, which are defined as Young type integrals. The following proposition, whose proof is
similar to Propositions 6.9 and 6.11 and is left to the reader for sake of conciseness, gives a
meaning to the analogue integrals in the Skorohod setting.

Proposition 6.12. Let f ∈ C4(R) be a function satisfying condition (GC). Then for every
fixed u ∈ [0, s] we have that v 7→ y3u;vR

2
v ∈ Dom(δ⋄,u) where δ⋄,u is the divergence operator

associated to the process (xu;v)v∈[0,t]. We can thus define
∫ s

0

∫ t

0
y3u;vR

2
vd1R

1
ud

⋄
2xu;v by :

∫ s

0

∫ t

0

y3u;vR
2
v d1R

1
u d

⋄
2xu;v := lim

|π|→0

∑

πn

δ⋄,si(y3si;tj1[tj ,tj+1])R
2
tj
(R1

si+1
− R1

si
)

where the convergence holds in both L2(Ω) and almost sure senses. In addition, we have the
following identity:
∫ s

0

∫ t

0

y3u;vR
2
v d1R

1
u d

⋄
2xu;v =

∫ s

0

∫ t

0

y3u;vR
2
v d1R

1
u d2xu;v −

1

2

∫ s

0

∫ t

0

y4u;vR
1
uR

2
v d1R

1
u d2R

2
v.

Finally, the integral
∫ s

0

∫ s

0
y3u;vR

1
ud2R

2
vd

⋄
1xu;v is defined similarly.
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Remark 6.13. We have defined all the integrals we needed in order to prove our Skorohod
change of variable formula (14). Indeed, the proof of formula (14) is now easily deduced by
injecting the identities of Propositions 6.9, 6.11 and 6.12 in the Stratonovich type formula (3).

7. Skorohod’s calculus in the rough case

Our goal in this section is to extend the formulae given in Propositions 6.9 and 6.11
to rougher situations, namely for Gaussian processes in the plane with Hölder regularities
smaller than 1/2. This is however a harder task than in the Young case, and this is why we
introduce 2 simplifications in our considerations:

(1) Instead of dealing with a general centered Gaussian process whose covariance admits the
factorization property of Hypothesis 6.4, we handle here the case of a fractional Brownian
sheet (xs;t)(s,t)∈[0,1]2 with Hurst parameters γ1, γ2 ∈ (1/3, 1/2].

(2) The definition of our Skorohod integrals with respect to x is obtained in the following way:
we first regularize x as a smooth process xn. For this process we can still use the formulae
of Propositions 6.9 and 6.11 like in the Young case. We shall then perform a limiting
procedure on these formulae (this is where the specification of a concrete approximation is
important), which will give our Stratonovich-Skorohod corrections. Notice however that the
interpretation in terms of Riemann-Wick sums will be lost with this strategy.

As in the previous section, we start our considerations by specifying the Malliavin frame-
work in which we are working.

7.1. Further Malliavin calculus tools. Recall that the covariance function of our frac-
tional Brownian sheet x is given by (8). We can thus consider a Hilbert space Hx related
to x exactly as in Section 6.1, where we now stress the dependence in x of Hx in order to
differentiate it from the Hilbert space related to white noise. In particular we denote by Ix1
the isometry between Hx and the first chaos generated by x.

However, the Malliavin structure related to the harmonizable representation of x will
also play a prominent role in the sequel. Namely, it is well known (see e.g. [16]) that for
s, t ∈ [0, 1], x can be represented as

xs;t = cγ1,γ2 Ŵ (Qs;t) = cγ1,γ2

∫

R2

Qs;t(ξ, η) Ŵ (dξ, dη), (86)

where cγ1,γ2 is a normalization constant whose exact value is irrelevant for our computations,
W is the Fourier transform of the white noise on R

2, and Qs;t is a kernel defined by

Qs;t(ξ, η) =
eısξ − 1

|ξ|γ1+
1
2

eıtη − 1

|η|γ2+
1
2

. (87)

This induces us to consider the canonical Hilbert space related to Ŵ , that is HŴ = L2(R2).

The relations between Malliavin calculus with respect to Ŵ and x are then summarized in
the next lemma:

Lemma 7.1. Denote by D
x,k,p (resp. D

Ŵ ,k,p) the Sobolev spaces related to x (resp. Ŵ ), and

recall the notation L
1,2 = D

Ŵ ,1,2(L2(R)) borrowed from [14]. For φ : [0, 1]2 → R, set

Kφ(ξ, η) =

∫

[0,1]2
φs;t ∂s∂tQs;t(ξ, η) dsdt, (88)
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where we recall that Q is defined by (87). Then the following holds true:

(i) We can represent the space Hx as the closure of the set of step functions under the norm
‖φ‖Hx = ‖Kφ‖L2(R2).

(ii) We have D
x,1,2(Hx) = K−1(L1,2). In addition, for any smooth function F and any

Hx-valued square integrable random variable u the following identity holds:

〈u,DxF 〉Hx = 〈Ku,DŴF 〉L2(R2).

(iii) As far as divergence operators are concerned, the relation is

Dom(δx,⋄) = K−1Dom(δŴ ,⋄), and δx,⋄(u) = δŴ ,⋄(Ku).

Proof. Let φ =
∑

i,j φi,j1[si,si+1]×[tj ,tj+1] be a step function. We have that:

Ix1 (φ) =
∑

i,j

φi,jδxsisi+1;tjtj+1
=
∑

i,j

φi,jŴ (δQsisi+1tjtj+1
)

= Ŵ

(
∑

i,j

φi,jδQsisi+1;tjtj+1

)

= Ŵ (Kφ),

(89)

which easily yields our first claim (i).

Let now F be a smooth functional of x of the form F = f(xs1;t1 , . . . , xsn;tn). Then

E [〈u,DxF 〉Hx ] = E

[ ∑

l∈{1,...,n}

∂lf(xs1t1 , . . . , xsntn)〈u, 1[0,sl]×[0,tl]〉Hx

]

= E

[ ∑

l∈{1,...,n}

∂lf(xs1t1 , . . . , xsntn)〈Ku,K1[0,sl]×[0,tl]〉L2(R)

]

,
(90)

and since K1[0,sl]×[0,tl] = Qsl,tl we end up with

E [〈u,DxF 〉Hx ] = E

[

〈Ku,
∑

l∈{1,...,n}

∂lf(Ŵ (Qs1t1), . . . , Ŵ (Qsntn))Qsl,tl〉L2(R)

]

= E

[

〈Ku,DŴF 〉L2(R)

]

,

which gives our assertion (ii) by density of smooth functionals. Relation (iii) is easily derived
from (ii) by duality.

�

Notice that the preceding result can be extended to second order derivatives thanks to a
simple tensorization trick. We label here the result for further use:

Lemma 7.2. Under the conditions of Lemma 7.1, set

[
K⊗2φ

]
(ξ1ξ2; η1η2) =

∫

[0,1]4
φs1s2;t1t2 ∂stQs1;t1(ξ1, η1)∂stQs2;t2(ξ2, η2) ds1ds2dt1dt2. (91)

Then for any smooth functional F and any (Hx)⊗2-valued square integrable random variable
u we have:

〈u,D2,xF 〉Hx = 〈K⊗2u,D2,ŴF 〉L2(R4).
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7.2. Embedding results. Similarly to [2], we now give an embedding result for the space
Hx which proves to be useful for further computations.

Lemma 7.3. Let γ1, γ2 ∈ (0, 1
2
]. Then the following inequality is satisfied:

‖u‖2H .

∫

R2

(∫

R2

|δũs1s2;t1t2 |
2

|s2 − s1|2−2γ1 |t2 − t1|2−2γ2
ds1dt1

)

ds2dt2

+

∫

R2

1

|s2 − s1|2−2γ1

(∫ 1

0

|ũs2;t − ũs1;t|
2 dt

)

ds1ds2 (92)

+

∫

R2

1

|t2 − t1|2−2γ2

(∫ 1

0

|ũs;t2 − ũs;t1|
2 ds

)

dt1dt2 +

∫

[0,1]2
|ũs;t|

2dsdt,

where we have set ũs;t = us;t1[0,1]2(s, t).

Proof. In this proof we only consider the case γ1, γ2 < 1/2. Indeed, if γ1 = 1/2 or γ2 = 1/2
then our process x is simply a Brownian motion in the first or in the second direction, and
this situation is handled by L2 norms.

For γ1, γ2 < 1/2, definitions (87) and (88) entail:

‖u‖2H =

∫

R2

|ξ|1−2γ1|η|1−2γ2

∣
∣
∣
∣

∫

[0,1]2
us;te

ısξ+ıtηdsdt

∣
∣
∣
∣

2

dξdη,

from which one deduces that H is isometric to H1/2−γ1 ⊗H1/2−γ1 , where H1/2−γ1 stands for
the Sobolev space W 1/2−γ1,2. Now we use the fact that 1/2 − γ1 ∈ (0, 1/2), and recall that
the norm defined by

N 2
1/2−γ1

(φ) =

∫

R2

|φs1 − φs2|
2

|s2 − s1|2−2γ1
ds1ds2 +

∫

R

|φs|
2ds

is equivalent to the usual norm in H1/2−γ1 . This yields (92) by tensorization.
�

Let us now introduce two more semi-norms:

‖f‖α,1 = sup
(s1,s2,t)∈[0,1]2×[0,1]

|δ1fs1s2;t|

|s2 − s1|α
, and ‖f‖β,2 = sup

(s,t1,t2)∈[0,1]2

|δ2fs;t1t2 |

|t2 − t1|β
.

With these notations in hand, the following embedding result is easily deduced from Lem-
ma 7.3.

Corollary 7.4. Let γ1, γ2 ∈ (0, 1/2) and u ∈ Pα1,α2

1,1 such that 0 < 1
2
− αi < γi. Then we

have the following embedding:

‖u‖H . Nα1,α2(u), where Nα,β(f) = ‖f‖α,β + ‖f‖α,1 + ‖f‖β,2 + ‖f‖∞. (93)

7.3. Strategy and preliminary results. The strategy we shall develop in order to extend
Proposition 6.9 (and also Proposition 6.11) to the rough case is based on a regularization of
x. Specifically, for a strictly positive integer n, set

xns;t = cγ1,γ2

∫

|ξ|,|η|≤n

Qs;t(ξ, η) Ŵ (dξ, dη), (94)
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where we recall that x and Q are respectively defined by (86) and (87). For fixed n, it is
readily checked that xn is a regular Gaussian process. Its covariance function is given by
Rn

s1s2;t1t2
= R1,n

s1s2
R2,n

t1t2 , where

Ri,n
ab = cγi

∫

|ξ|≤n

(eıaξ − 1)(e−ibξ − 1)

|ξ|2γi+1
dξ, for i = 1, 2, (95)

and hence Rn is a regular function which satisfies Hypothesis 6.4. One can thus apply
Proposition 6.9 and obtains the following Skorohod-Stratonovich comparison:

z1,n,⋄s1s2;t1t2 ≡ δx
n,⋄(yn,1· 1∆) =

∫

∆

yn,1s;t d12x
n
s;t −

1

4

∫

∆

yn,2s;t d1R
1,n
s d2R

2,n
t , (96)

for ϕ ∈ C6(R) satisfying condition (GC), and where we set again ∆ = [s1, s2] × [t1t2]. Our
goal is now to take limits in equation (96).

A first observation in this direction is that equation (96) involves Skorohod integrals with
respect to xn. The fact that a different integral has to be defined for each n is somehow
clumsy, and this is why we have decided to express all integrals with respect to Ŵ in the re-
mainder of our computations. Namely, the same computations as for equations (89) and (90)

entail that δx
n,⋄(yn) = δŴ ,⋄(Knyn), where Kn is the operator defined by

Knφ(ξ, η) = 1(|ξ|,|η|≤n)

∫

[0,1]2
φs;t ∂s∂tQs;t(ξ, η)dsdt. (97)

With this representation in hand, our limiting procedure can be decomposed as follows:

• Take L2 limits in the right hand side of equation (96) by means of rough paths techniques.

• Show that Knyn converges in L2(Ω, L2(R)) to Ky.

Thanks to the closability of δŴ ,⋄, this will show the convergence of δx
n,⋄(yn1[0,1]2) to δx,⋄(y1[0,1]2)

and our Skorohod-Stratonovich correction formula will be obtained in this way.

We now state and prove 3 useful lemmas for our future computations. The first one deals
with convergence of covariance functions:

Lemma 7.5. For i = 1, 2, set Ri
u = u2γi. Then for all ε > 0 we have

lim
n→+∞

‖Ri,n −Ri‖2γi−ǫ = 0,

where Ri,n is defined by (95).

Proof. We recall that cγi
∫

R

|eıaξ−1|2

|ξ|2γi+1 dξ = a2γi . Then an elementary computation shows that

|δi(R
i,n − Ri)ab| =

∣
∣
∣
∣
cγi

∫

|ξ|≥n

cos(aξ)− cos(bξ)

|ξ|2γi+1
dξ

∣
∣
∣
∣
.γi,ǫ |a− b|2γi−ǫ

∫

|x|≥n

|ξ|−1−ǫdξ,

which gives ‖Rn,i −Ru‖2γi−ǫ .γi,ǫ

∫

|ξ|≥n
|ξ|−1−ǫdξ, and this finishes the proof.

�

Our second preliminary result ensures that xn is an accurate approximation of x:

Proposition 7.6. Let p > 1 and 0 < ε < min(γ1, γ2). Then we have the following conver-
gence:

lim
n→∞

E
[
‖xn − x‖pγ1−ǫ,γ2−ǫ

]
= 0.
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In addition, there exists λ > 0 such that

sup
n∈N

E

[

eλ sup(s,t)∈[0,1]2 |xn
s;t|

2
]

< +∞. (98)

Proof. The definitions (86) of x, (94) of xn plus formula (87) for Q allow to write, for all
n ≥ 1:

E[|δ(xn − x)s1s2;t1t2 |
2] =

∫

|x|,|y|≥n

|eıs2x − eıs1x|2|eıt2y − eıt1y|2

|x|2γ1+1|y|γ2+1
dxdy

.γ1,γ2 |s1 − s1|
2(γ1−ǫ/2)|t2 − t1|

2(γ2−ǫ/2)In

(99)

where we have set In =
∫

|x|,|y|≥n
dx dy

|x|1+ǫ|y|1+ǫ (this quantity is obviously finite). Hence by

Gaussian hypercontractivity and Lemma 6.6 we obtain

E[[‖xn − x‖pγ1−ǫ,γ2−ǫ] .p,γ1,γ2,ǫ

∫

[0,1]4

E[|δxs1s2;t1t2 |
2]p/2

|s2 − s1|(γ1−ǫ)p+2|t2 − t1|(γ2−ǫ)p+2
dt2ds2dt1ds1

. (In)
p/2

∫

[0,1]4
|s2 − s1|

pǫ/2−2|t2 − t1|
pǫ/2−1dt2ds2dt1ds1 . (In)

p/2.

Since limn→∞ In = 0, we thus get limn→∞E[[‖xn − x‖pγ1−ǫ,γ2−ǫ] = 0, which is our first claim.

We now focus on the exponential integrability of sup xn. Notice that for a fixed n one can
easily get those exponential estimates thanks to Fernique’s lemma. However, we claim some
uniformity in n here, and we thus come back to uniform estimates of moments in order to
prove (98). Let then r = max(⌊ 1

γ1−ǫ
⌋, ⌊ 1

γ2−ǫ
⌋)+1 and remark that ‖xn‖∞ ≤ ‖xn‖ǫ,ǫ. We thus

use a decomposition of the form E[eλ sup(s,t)∈[0,1]2 |xn
s;t|

2

] = I1,n(λ) + I2,n(λ), where

I1,n(λ) =

r−1∑

l=0

λl

l!
E[‖xn‖2l∞], and I2,n(λ) =

+∞∑

l=r

λl

l!
E[‖xn‖2l∞].

We now bound those 2 terms separately: one the one hand, it is readily checked that

I1,n(λ) ≤ max
i=0,...,r

sup
n∈N

E[‖xn‖2iǫ,ǫ] < +∞,

for ǫ < min(γ1, γ2). On the other hand, the bound on I2,n(λ) is obtained invoking Lemma 6.6
again. Indeed, starting from expression (71) and introducing a standard Gaussian random
variable N , it is easily seen that

E[‖xn‖2lǫ,ǫ] ≤ C2l,ǫ,ǫE[N
2l]

∫

[0,1]2×[0,1]2

E[|δxns1s2t1t1 |
2]l

|s2 − s1|2lǫ+2|t2 − t1|2lǫ+2
ds1ds2dt1dt2

with N is a Gaussian random variable N (0, 1). Now we have

sup
n∈N

E

[

|δxns1s2;t1t2 |
2
]

≤

∫

R2

|eıs2x − eıs1x|2|eıt2y − eıt1y|2

|x|2γ1+1|y|γ2+1
dxdy

≤ |s2 − s1|
2γ1 |t2 − t1|

2γ2

∫

R2

|eıx − 1|2|eıy − 1|2

|x|2γ1+1|y|γ2+1
dxdy . |s2 − s1|

2γ1 |t2 − t1|
2γ2 .

Furthermore, it can be shown that C2l,ǫ,ǫ is of the form M l for a given M > 1. Thus

sup
n∈N

E[‖xn‖2lǫ,ǫ] .M l
E
[
N 2l

]
,
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from which the relation I2,n(λ) <∞ is easily obtained. This finishes the proof of (98).
�

With classical considerations concerning compositions of Hölder functions with non linear-
ities, we finally get the following result which is labelled for further use. Its proof is omitted
for sake of conciseness.

Lemma 7.7. Let ρ1, ρ2 ∈ (0, 1), x1, x2 two increments lying in Pρ1,ρ2
1,1 , and f ∈ C3(R)

satisfying condition (GC). Then we have:

Nρ1,ρ2(f(x
1)− f(x2)) . cx1,x2 Nρ1,ρ2(x

1 − x2)
[
1 +Nρ1,ρ2(x

1) +Nρ1,ρ2(x
2)
]2

(100)

where we recall that Nα1,α2(f) has been defined at equation (93). In the relation above we
have also set cx1,x2 = exp(θ(sup(s,t)∈[0,1]2 |x

1
s;t|

2 + sup(s,t)∈[0,1]2 |x
2
s;t|

2)), where θ is the constant
featuring in condition (GC).

7.4. Itô-Skorohod type formula. We now turn to the limiting procedure in equation (96),
beginning with the term involving covariances only:

Proposition 7.8. Let f ∈ C6(R) be a function satisfying condition (GC) with a small
parameter λ > 0, and xn be the regularized version of x defined by (94). Then the following
convergence:

lim
n→+∞

∫

[0,1]2
yns;t d1R

1,n
s d2R

2,n
t = γ1γ2

∫

[0,1]2
ys;ts

2γ1−1t2γ2−1dsdt (101)

holds in L2(Ω).

Proof. The integrals involved in (101) are all of Young type. Owing to Proposition 4.6, we
thus have:

∫

[0,1]2
yns;td1R

1,n
s d2R

2,n
t = [(Id− Λ1δ1)(Id− Λ2δ2)] (y

nδ1R
1,nδ2R

2,n).

By continuity of the sewing map, the desired convergence will thus stem from the relations
limn→0A

1,n = 0 and limn→0A
2,n = 0, where for ǫ > 0 we set:

A1,n :=

2∑

i=1

‖δiR
i,n − δiR

i‖2γi−ǫ, and A2,n := Nγ1−ǫ,γ2−ǫ(y
n − y).

Now the relation limn→0A
1,n = 0 is obviously a direct consequence of Lemma 7.5. As far

as A2,n is concerned, we start from relation (100) and apply Hölder’s inequality. This yields

E[(Nγ1−ǫ,γ2−ǫ(y
n − y))2]

. E
1/4[(cx1,x2)8]E1/2[‖xn − x‖4γ1−ǫ,γ2−ǫ]E

1/4[(1 +Nρ1,ρ2(x
n) +Nρ1,ρ2(x))

16].

Then according to Proposition 7.6 we see that the r.h.s of this last equation vanishes when
n goes to infinity, which proves our claim.

�

We now compute the correction terms in z1, that is the equivalent of Proposition 6.9.
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Proposition 7.9. Let x be a fBs with Hurst parameters γ1, γ2 > 1/3. Consider a function
ϕ ∈ C8(R) satisfying condition (GC) and a rectangle ∆ = [s1, s2] × [t1, t2]. Then we have
that y1· 1∆ ∈ Dom(δ⋄), and if we define the increment z1,⋄ ≡ δ⋄(y1· 1∆) the following relation
holds true:

z1,⋄s1s2;t1t2 = z1s1s2;t1t2 − γ1γ2

∫

∆

y2s;ts
2γ1−1t2γ2−1dsdt, (102)

where z1 is the rough integral given by Theorem 1.4.

Proof. Let us start from the corrections for the regularized process xn, for which we can
appeal to Proposition 6.9. We obtain relation (96), written here again for convenience:

z1,n,⋄s1s2;t1t2 ≡ δx
n,⋄(yn,1· 1∆) =

∫

∆

yn,1s;t d12x
n
s;t −

1

4

∫

∆

yn,2s;t d1R
1,n
s d2R

2,n
t . (103)

Now putting together Proposition 7.8 and the continuity of the rough path integral, we get
convergence of the r.hs of (103) in L2(Ω). Thus one can write, in the a.s and L2(Ω) sense:

lim
n→+∞

δx
n,⋄(yn) =

∫

∆

y1s;td12xs;t − γ1γ2

∫

∆

y2s;ts
γ1−1tγ2−1 dtds,

where the integral with respect to x is interpreted in the sense of Theorem 1.4.

Let us further analyze the convergence of δx
n,⋄(yn): recall that this quantity can be written

as δŴ ,⋄(Knyn), where Kn is defined by (97) or specifically as

(Knyn)(ξ, η) =
ıξ ıη

|ξ|γ1+1/2|η|γ2+1/2

(∫

∆

ynuve
ıξu+ıηvdudv

)

1(|ξ|,|η|≤n) (104)

Hence, owing to closability of the operator δŴ ,⋄, the proof of (102) is reduced to show that
Knyn,1 converges in L2(Ω;L2(∆)) to Ky1. Now expression (104) easily entails that

∣
∣
∣
∣Knyn,1 −Ky

∣
∣
∣
∣
L2(R)

≤ ‖yn,1 − y1‖H

+

∫

|ξ|,|η|≥n

|ξ|1−2γ1|η|1−2γ2

∣
∣
∣
∣

∫

∆

y1u;ve
ıξu+ıηvdudv

∣
∣
∣
∣

2

dξdη,

and we shall bound the 2 terms on the r.h.s of this inequality.

Indeed, on the one hand we consider γ1, γ2 > 1/4 and ǫ > 0 small enough. This gives

E

[
∫

‖(ξ,η)‖∞≥n

|ξ|1−2γ1 |η|1−2γ2

∣
∣
∣
∣

∫

∆

yu;ve
ıξu+ıηvdudv

∣
∣
∣
∣

2

dξdη

]

. n−ǫ
E
[
(Nγ1−ǫ,γ2−ǫ(y))

2
] n→+∞

−→ 0.

On the other hand, Corollary 7.4 asserts that ‖y − yn‖H . Nγ1−ǫ,γ2−ǫ(y
n − y), and the r.h.s

of this relation vanishes as n→ ∞ thanks to Proposition 7.6. This concludes our proof.
�

In order to complete our comparison between Itô and Stratonovich formulae, we still have
to compare the Skorohod type increment z2,⋄ and the rough integral z2. As a previous step,
let us give an intermediate result concerning some mixed integrals in R, x:
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Proposition 7.10. Let ϕ ∈ C6(R) and recall that for the fractional Brownian sheet x we
have Ri

u = u2γi for i = 1, 2. Then the integral
∫

y1R1 d1x d2R
2 = [(Id− Λ1δ1)(Id− Λ2δ2)]

(
y1R1δ1xδ2R

2 + 1/2y2R1(δ1x)
2δ2R

2
)

(105)

is well defined a.s, in the sense of Proposition 3.3. Moreover the following convergence takes
place in L2(Ω):

lim
n→+∞

∫

∆

y1,nuv R
1,n
u d2x

n
uvd2R

2,n
v =

∫

∆

y1u;vR
1
ud2xu;vd2R

2
v. (106)

Finally, the same kind of result is still verified when one interchanges directions 1 and 2 in
relation (105).

Proof. Let us first check that the integral in (105) is well-defined in the sense of Proposi-
tion 4.6. To this aim, set A = y1R1δ1x δ2R

2+1/2y2R1(δ1x)
2δ2R

2. Then a simple application
of Proposition 2.7 yields δ1A = z δ2R

2, with

z =
(
y2δ1x− δ1y

1
)
R1δ1x− 1/2δ1(y

2R1)(δ1x)
2 − y1δ1R

1δ1x.

It is thus easily seen that δ1A ∈ P3γ1−ǫ,2γ2
3,2 for an arbitrary small ǫ, thanks to the fact that

x ∈ Pγ1−ǫ,γ2−ǫ
1,1 and δ1y

1 − y2δ1x ∈ P2γ1−ǫ,γ2
2,1 almost surely. Notice that with the same kind of

considerations we also have that δ2A ∈ Pγ1,3γ2−ǫ
2,3 .

Let us now compute δA: we have

δA = −δ2z δ2R
2 = − (A1 + A2) δ2R

2,

where

A1 = g R1δ1x, with g = δy1 − δ2y
2δ1x− y2δx,

and where setting (δ1x ◦1 δx)s1s2;t1t2 = δ1xs1s2t1δxs1s2;t1t2 similarly to Definition 3.6, we have

A2 = δ2y
1δ1R

1δ1x− {δ1y
1 − y2δ1x}R

1δx− 1/2δy2(δ1x)
2

− 1/2δ1y
2{δx ◦1 δ1x+ δ1x ◦1 δx}.

The reader can now easily check that A2 ∈ P3γ1−ǫ,γ2−ǫ
2,2 . In order to check the regularity of

A1, observe that g is of the form g = δ2h, with

hs1s2;t := (δ1y
1
s1s2;t

− y2s1;t)δ1xs2s2;t

=

(∫ 1

0

dθ θ

∫ 1

0

dθ′y2(xs1;t + θθ′δ1xs1s2;t)

)

(δ1xs1s2;t)
2. (107)

Computing δ2h with formula (107), one obtains that A1 = δ2hR
1δ1x ∈ P3γ1−ǫ,γ2−ǫ

2,2 .

Let us summarize our last considerations: we have seen that both A1 and A2 lye into
P3γ1−ǫ,γ2−ǫ

2,2 , and recalling that δA = −(A1 + A2)δ2R
2, we obtain δA ∈ P3γ1−ǫ,3γ2−ǫ

3,3 . We have

also checked that δ1A ∈ P3γ1−ǫ,2γ2
3,2 and δ2A ∈ P2γ1,3γ2−ǫ

2,3 . Gathering all this information,
we have checked the assumptions of Proposition 3.3 for the increment A, which justifies
expression (105).



46 KHALIL CHOUK AND SAMY TINDEL

Now we focus on the convergence formula (106). We start by observing that for all n ≥ 1
the following representation holds true:

∫

∆

yn,1uv R
1,n
u d2x

n
uvd2R

2,n
v = [(Id− Λ1δ1)(Id− Λ2δ2)]A

n

with An = yn,1R1,nδ2R
2,n + 1/2yn,1R1,n(δ1x

n)2δ2R
2,n. Hence, owing to the continuity of the

planar sewing-maps (Λi)i=1,2 and Λ, our claim (106) is reduced to prove that the sequences
‖An −A‖γ1−ǫ,2γ2−ǫ, ‖δ1(An−A)‖3γ1−ǫ,2γ2−ǫ, ‖δ2(An −A)‖γ1−ǫ,3γ2−ǫ and ‖δ(An−A)‖3γ1−ǫ,3γ2−ǫ

converge in L2(Ω) and almost surely to 0. Furthermore, it is readily checked that those
convergences all stem from the relations

lim
n→0

‖Ri,n − R‖2γi−ǫ +

5∑

i=0

Nγ1−ǫ,γ2−ǫ(y
n,i − yi) + ‖(δ1x

n)2 − (δ1x)
2‖2γ1−ǫ,1 = 0 (108)

and

lim
n→0

‖δ2 (h− hn) ‖2γ1−ǫ,γ2−ǫ = 0, with hn = δ1y
n,1 − yn,2δ1x

n, (109)

where the limits take place in some Lp(Ω) with a sufficiently large p, and where we recall
that h is defined by (107). We now turn to the proof of those two relations.

To begin with, note that the convergence (108) easily stems from Lemma 7.5 for the terms
R, Proposition 7.6 for the terms x and Lemma 7.7 for the terms y. In order to prove (109),
we invoke again the integral representation (107) for both hn and h. Then some elementary
considerations (omitted here for sake of conciseness) allow to reduce the problem to the
following relation:

Lp(Ω)− lim
n→∞

(

E[N p
γ1−ǫ,γ1−ǫ(x

n − x)] +

3∑

i=0

E[N p
γ1−ǫ,γ2−ǫ(y

n,i − yi)]

)

= 0.

This last relation is a direct consequence of Proposition 7.6 and composition with non lin-
earities, whenever f satisfies the growth condition (GC) with a small parameter λ > 0. The
proof is now finished.

�

We can now state our result concerning the Itô-Stratonovich correction for the mixed
stochastic integral

∫
yd1xd2x:

Theorem 7.11. Let x be a fBs with Hurst parameters γ1, γ2 > 1/3. Consider a function
ϕ ∈ C8(R) satisfying condition (GC) and a rectangle ∆ = [s1, s2]×[t1, t2]. Then we have that
N(y2) ∈ Dom(δ⋄,2), and if we define the Skorohod integral z2,⋄ as δ⋄,2(N(y2)), the following
particular case of relation (82) holds:

z2,⋄s1s2;t1t2 = z2s1s2;t1t2 − γ1γ2

∫

∆

y2u;vu
2γ1−1v2γ2−1dudv − γ2

∫

∆

y3u;vu
2γ1v2γ2−1dvd1xu;v

− γ1

∫

∆

y3u;vu
2γ1−1v2γ2dud2xu;v + γ1γ2

∫

∆

y4u;vu
4γ1−1v4γ2−1dudv. (110)



SKOROHOD AND STRATONOVICH IN THE PLANE 47

Proof. We follow the same strategy as for Theorem 7.9: apply first Proposition 6.11 for the
regularized process xn, which yields:

∫

∆

yn,2u;vd
⋄
1x

n
uvd

⋄
2x

n
uv =

∫

∆

yn,2u;vd1x
n
u;vd2x

n
uv − 1/4

∫

∆

yn,2u;vd1R
1,n
u d2R

2,n
v

− 1/2

∫

∆

yn,3u;vR
1,n
u d2R

2,n
v d1xu;v − 1/2

∫

∆

yn,3u;vR
2,n
v d1R

1,n
u d2x

n
uv

+ 1/4

∫

∆

yn,4u;vR
1,n
u R2,n

v d1R
1,n
u d2R

n,2
v . (111)

Now our preliminary results allow to take limits in relation (111). Indeed, owing to Propo-
sitions 7.8 and 7.10 plus the continuity of the rough increment z2 given at Theorem 1.4,
we obtain the convergence in L2(Ω) for the four first terms in the r.h.s of equation (111).
Moreover the last term also converges in L2(Ω), thanks to the same arguments as in the
proof of the Proposition 7.8. We thus get the convergence of the r.h.s of equation (111) to
the r.h.s of equation (110), and also the fact that z2,⋄ converges in L2(Ω). Like in the proof of
Theorem 7.9, the proof of (110) is thus reduced to show the L2 convergence of the integrand
defining z2,⋄.

However, mimicking again the proof of Theorem 7.9, it is easily seen that

∫ 1

0

∫ 1

0

yn,2u;vd
⋄
1x

n
uvd

⋄
2x

n
uv := δx

n,⋄,2
(
N(yn,2)

)
= δŴ ,⋄,2

(
Kn,⊗2N(yn,2)

)
,

where we recall that K⊗2 is defined by (91) and

[
Kn,⊗2φ

]
(x1x2; y1y2) = 1{|x1|,|x2|,|y1|,|y2|≤n}

[
K⊗2φ

]
(x1x2; y1y2).

It thus remains to show that Kn,⊗2(N(yn,2)) converges to K⊗2(N(y2) in L2(Ω, L2(R4)).
Towards this aim, we introduce the further notation us;t(ξ, η) = y2s;t(e

ısξ − 1)(eıtη − 1),

uns;t(ξ, η) = yn,2s;t (e
ısξ − 1)(eıtη − 1) and

û(ξ1, ξ2; η1, η2) =

∫

∆

us;t(ξ1, η1)e
ısξ2+ıtη2dsdt

ûn(ξ1, ξ2; η1, η2) =

∫

∆

uns;t(ξ1, η1)e
ısξ2+ıtη2dsdt.

Then note that

‖(Kn)⊗2(N(yn))−K⊗2(N(y)‖2L2(R4) ≤ In1 + In2 + In3 ,

where

In1 =

∫

|ξ1|,|η1|≥n

(∫

R2

|ξ2|
1−2γ1 |η2|

1−2γ2 |û(ξ1, ξ2; η1, η2)|
2 dξ2dη2

)
dξ1dη1

|ξ1|2γ1+1|η1|2γ2+1

In2 =

∫

R2

(∫

|ξ2|,|η2|≥n

|ξ2|
1−2γ1 |η2|

1−2γ2 |û(ξ1, ξ2; η1, η2)|
2 dξ2dη2

)
dξ1dη1

|ξ1|2γ1+1|η1|2γ2+1
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and

In3 =

∫

R2

(∫

R2

|ξ2|
1−2γ1 |η2|

1−2γ2 |û(ξ1, ξ2; η1, η2)− ûn(ξ1, ξ2; η1, η2)|
2 dξ2dη2

)

×
dξ1dη1

|ξ1|2γ1+1|η1|2γ2+1
.

In order to bound those 3 terms, observe that

Nγ1−ǫ,γ2−ǫ(u(ξ, η)) . Nγ1−ǫ,γ2−ǫ(y)(1 + |ξ|γ1−ǫ + |η|γ2−ǫ + |ξ|γ1−ǫ|η|γ2−ǫ)

and thus Corollary 7.4 entails that

E[In1 ] . E[N 2
γ1−ǫ,γ2−ǫ(y

2)2]

∫

|ξ|,|η|≥n

1

|ξ|ǫ+1|η|ǫ+1
dξdη

n→+∞
−→ 0,

and

E[In2 ] . n−ǫ
E[N 2

γ1−ǫ,γ2−ǫ(y
2)]

n→+∞
−→ 0.

As far as In3 is concerned, we remark that

Nγ1−ǫ,γ2−ǫ(u(ξ, η)− un(ξ, η)) . Nγ1−ǫ,γ2−ǫ(y
2 − yn,2)(1 + |ξ|γ1−ǫ + |η|γ2−ǫ + |ξ|γ1−ǫ|η|γ2−ǫ)

and then we can conclude along the same lines as in Theorem 7.11 that E[In3 ] vanishes as n
goes to infinity. This finishes the proof.

�

The last step in order to go from Theorem 7.11 to Theorem 1.8 is to convert Stratonovich
into Skorohod type integrals in the right hand side of relation (110). To this aim, let us first
recall the following one-parameter result:

Proposition 7.12. Let B a fractional brownian motion with hurst parameters 1/2 ≥ γ > 1/3
then we have that u 7→ ϕ(Bu)u

2γ ∈ Dom(δ⋄,B) and we have that
∫

[0,1]

ϕ(Bu)u
2γd⋄Bu =

∫

[0,1]

ϕ(Bu)u
2γdBu − γ

∫

[0,1]

ϕ′(Bu)u
4γ−1du

Proof. Use exactly the same arguments of the Proposition (7.9) for the one parameters
setting. �

Now the Corollary below is the key to the conversion of Theorem 7.11 into Theorem 1.8:

Corollary 7.13. For γi > 1/3 and ϕ ∈ C6(R) then for every v ∈ [0, 1] u 7→ y3u;vu
2γ1 ∈

Dom(δ⋄,x.;v) and the following formula hold true
∫

∆

y3u;vu
2γ1v2γ2−1d⋄1xu;vdv =

∫

δ

y3u;vu
2γ1v2γ2−1d1xu;vd2v − γ1

∫

∆

y4u;vu
4γ1−1v4γ2−1dudv

Proof. we recall that xu,v =law vγ2Bu with B is a fBm with hurst parameter γ1 and then it
suffice to use the proposition (7.4) �
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