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Abstract

We study a non-preemptive strictly periodic scheduling problem. This
problem arises for example in the avionic field where a set of N periodic
tasks (measure of a sensor, data presentation, etc.) has to be scheduled
on P processors distributed on the plane. In this article, we consider an
existing heuristic which is based on the notion of equilibrium. Following
a game theory analogy, each task tries successively to optimize its own
schedule and therefore to produce the best response, given the other sched-
ules. This iterative process continues until an equilibrium is reached. We
present a new method to compute the best response which significantly
improves the previously proposed heuristic, and compares favorably with
MILP solutions.

keywords Periodic scheduling equilibrium propagation mechanism

1 Introduction

The problem of scheduling a set of N periodic tasks on a set of P processors has
a long history. The preemptive case has received more attention, starting with
the work of Liu and Layland [12]. Under this hypothesis, good schedulability
conditions can be derived, and the problem is efficiently solved by the EDF
algorithm (Earliest Deadline First), at least in the uniprocessor context. In the
non-preemptive case, schedulability conditions are generally much weaker and
the problem becomes NP-complete in the strong sense, even with one processor,
as shown by Jeffay et al [9]. The latter still considers a loose notion of period-
icity in which the tasks have to execute in each time period, but not always at
the same relative position. In order to enforce regularity of the schedule, some
works have considered the problem of minimizing the jitter [5]. In the extreme
case where the jitter is imposed to be zero, the problem is qualified as a strictly
periodic problem. In the avionic field, a preemptive or loosely periodic sched-
ule is problematic because of the need to certify solutions. In this article, we
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consider a non-preemptive strictly periodic scheduling problem [10, 7, 8, 1]. In
this problem, each task i has a fixed period Ti and a processing time pi. They
are subject to non-overlapping constraints : no two tasks assigned to the same
processor can overlap during any time period (see Figure 1). A solution is given
by an assignment of the tasks to the processors and, for each task by the start
time ti (offset) of one of its occurrences, the other starting at ti + kTi by strict
periodicity.

T2 = 15

T3 = 20

T4 = 20

0

T1 = 12

60

Figure 1: N = 4 non-overlapping periodic tasks on P = 1 processor

As shown by Baruah et al [4] and Korst et al [10, 11], this is a strongly
NP-complete problem : with general processing times, it is NP-hard even with
only two distincts periods, one dividing the other (harmonic case, reduction
from 3-Partition). With general period, it remains NP-hard even with unitary
processing times (reduction from k-Coloring [3]). It is however trivially solved
in the monoperiodic case (Ti = T ) : there is a solution iff

∑
i pi ≤ T .

In the following, unlike the papers mentioned above, we adopt a more general
model in which processing times pi are generalized by positive latency delays
li,j ≥ 0 (or time lags). The former case is the particular case where li,j = pi for
all other tasks j. This last variant has been studied mostly in the monoperiodic
case [6, 16]. In this case, the problem becomes NP-hard even in the monope-
riodic case (reduction from Hamiltonian Circuit [16]). The proposed heuristic
adapts easily to this generalization.

Previous works of the authors can be found in [14, 15]. The first article
presents a simplified version of the heuristic (with a dual simplex method to
solve the local best offset problem of section 4.1.3, and without the propagation
mechanism of section 4.1.4). The second article presents the complete heuristic,
but only in the case of integral offsets. In addition to considering the case of
fractional offsets, the present paper gives much more details, especially regarding
the satisfiability problem and its MILP formulation (see section 2.1), as well
as about structural properties of the problem (see sections 3 and 5.2). Some
experimental results have also been improved (see section 6).

The rest of the paper is organized as follows: in section 2, we present the
periodic scheduling problem and its MILP formulation, as well as an additional
objective function. In section 3, we study a decomposition of the problem which
allows to deduce useful properties. Section 4 presents the best response problem
and a method to solve it efficiently, while section 5 describes the heuristic.
Results are presented in section 6.

2



2 Periodic scheduling problem and its MILP for-
mulation

2.1 Definition of the satisfiability problem

In this section, we present a mathematical formulation of the feasibility problem,
based on congruence inequations, as well as a natural translation into a mixed
integer linear program. We emphasize the difficulty linked with zero delays, and
in doing so, we show how to handle strict inequalities. In section 2.1.6, we also
briefly discuss a generalization to negative delays.

2.1.1 Non-overlapping constraints

In the formulation of a uniprocessor periodic scheduling problem, a latency de-
lay li,j ≥ 0 has to be respected whenever an occurrence of a task j starts after
an occurrence of a task i. Said differently, the smallest positive difference be-
tween two such occurrences has to be greater than li,j . Using Bézout identity,
the set
(tj + TjZ)− (ti + TiZ) of all the possible differences is equal to (tj − ti) + gi,jZ
where gi,j = gcd(Ti, Tj). The smallest positive representative of this set is
(tj − ti) mod gi,j (in particular, we consider a classic positive modulo, and not
a signed modulo). Therefore, we simply consider the following constraint :

(tj − ti) mod gi,j ≥ li,j , ∀(i, j), i 6= j (1)

1 + 6Z

5 + 9Z

2 + 3Z
0

i :

j :

Figure 2: (tj − ti) mod gi,j is the smallest positive difference between an oc-
currence of task j and one of task i. This quantity should be greater than a
prescribed delay li,j .

Since (tj − ti) mod gi,j is the only element of the form tj − ti + gi,jqi,j in the
interval [0, gi,j), we get the following reformulation :

li,j ≤ (tj − ti) + gi,jqi,j < gi,j , ∀(i, j), i 6= j (2)

Here, qi,j is an additional integer ‘quotient variable’. Most of the time, we
will define a solution only by its offsets, which are the only relevant variables.
In fact, quotients will be handled implicitely in the heuristic. They are mostly
artificial variables, which are completely determined by the offsets through equa-
tion :

qi,j = d(ti − tj)/gi,je (3)
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Classically, processing times are strictly positive. At first sight, allowing zero
delays seems obvious (see 2.1.6 for a discussion about negative delays). In fact,
if li,j = 0, then the constraint associated with (i, j) is trivially satisfiable; just
compute qi,j afterwards by expression (3). We could therefore only consider
constraints associated with arcs in R = {(i, j) | i 6= j, li,j > 0}. The problem is
however that equation (2) involves a strict inequality which makes it unsuitable
for MILP solving. As we will see, it can be removed easily only when R is
symmetric, i.e. when li,j and lj,i are either both strictly positive or none of
them.

For the moment, we can at least remove an arc (i, j) if both li,j and lj,i are
zero. We therefore define a symmetric graph G = {(i, j) | i 6= j, li,j + lj,i > 0}
and consider constraints (2) for each one of those couples. The two contraints
associated with arcs (i, j) and (j, i) work naturally together : by summing
them, we get (li,j + lj,i)/gi,j ≤ qi,j + qj,i < 2. This first gives us a necessary
schedulability condition : two tasks i and j can be scheduled on a processor
only if li,j + lj,i ≤ gi,j . Moreover, since li,j + lj,i > 0, and since the quotients
are integer, we have in fact qi,j + qj,i = 1. We obtain an equivalent formulation
for (2), from which we removed redundancy :

(tj − ti) + gi,jqi,j ≥ li,j , ∀(i, j) ∈ R (4)

(tj − ti) + gi,jqi,j > 0, ∀(i, j) ∈ G \ R (5)

qi,j + qj,i = 1, ∀(i, j) ∈ G, i < j (6)

The non-strict inequalities (4) are set only for
(i, j) ∈ R, i.e. when li,j > 0. The strict inequalities (5) only occur when
(i, j) ∈ G \ R, i.e. when li,j is zero, but lj,i is not1. In section 3.1.2, we show
how to discard these pathological cases by replacing constraints (5) by con-
straints (7) below (where γ = gcd((Ti)i, (li,j)i,j) is the gcd of all the periods
and delays) :

(tj − ti) + gi,jqi,j ≥
γ

N
, ∀(i, j) ∈ G \ R (7)

In the following, G will only contain strictly positive delays (G = R) and we will
only deal with non-strict inequalities.

2.1.2 Integral vs fractional offsets

It is common to additionally suppose that the offsets are integer. In this case,
we will also suppose that all the periods Ti are integer : this is not necessary
for the MILP to work, but it is mandatory if we want to maintain periodicity :
if ti is an integer solution then ti + Ti should also be an integer solution, hence
their difference Ti should be integer. In particular, the cœfficients gi,j will be
integer.

1Note that if lj,i > 0, the tasks j and i are constrained not to start at the same time.
Therefore, it is natural to have at least (tj − ti) mod gi,j > 0 even when li,j = 0.
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Strict inequalities are more easily tackled when we make this assumption.
In this case, a general strict inequality tj − ti + gi,jqi,j > li,j can always be con-
verted into tj − ti + gi,jqi,j ≥ bli,jc+ 1, while a non-strict inequality (4) can al-
ways be converted into
tj − ti + gi,jqi,j ≥ dli,je . In particular, the original constraints (4) and (5) can
be captured together by :

(tj − ti) + gi,jqi,j ≥ max(1, dli,je), ∀(i, j) ∈ G (8)

This transformation does not change the set of feasible offsets, which is
stronger than what we get in the fractional case2. In the integral case, we can
therefore suppose that each delay on G is integer and greater than 1.

2.1.3 Multiprocessor problem

In order to reduce the number of variables, and thus obtain a more efficient
model, we remove variables qi,j for each i > j, and we use relation (6) to replace
contraint (4) by the following interval constraint3 :

li,j ≤ (tj − ti) + gi,jqi,j ≤ gi,j − lj,i, ∀(i, j) ∈ G, i < j (9)

In the multiprocessor context, this equation only has to hold between tasks
i and j on the same processor. If xi,j is a binary variable representing this fact,
then we get constraints (12) and (13). When i and j are on the same processor
(xi,j = 1), we get the original constraint, otherwise we get 0 ≤ (tj−ti)+gi,jqi,j ≤
gi,j , which is always satisfiable. In order to represent the assignment, we intro-
duce binary variables (ai,k) which indicate if a task i is assigned to a processor
k. These variables must satisfy (10) and are related to (xi,j) through equations
(11). Note that variables (xi,j) can be relaxed to be continuous variables (even
unbounded), instead of binary ones4. We obtain the following program [8] :∑

k

ai,k = 1, ∀i (10)

xi,j ≥ ai,k + aj,k − 1, ∀k, ∀(i, j) ∈ G, i < j (11)

tj − ti + gi,jqi,j − li,jxi,j ≥ 0, ∀(i, j) ∈ G, i < j (12)

tj − ti + gi,jqi,j + lj,ixi,j ≤ gi,j , ∀(i, j) ∈ G, i < j (13)

ti ∈ Q or ti ∈ Z, ∀i (14)

qi,j ∈ Z, ∀(i, j) ∈ G, i < j (15)

xi,j ∈ [0, 1], ∀(i, j) ∈ G, i < j (16)

ai,k ∈ {0, 1}, ∀k, ∀i (17)
2In the fractional case, it is obviously impossible to replace a (usefull) strict inequality by

a non-strict one without changing the set of feasible offsets. The best we have is that the set
of feasible quotients (in particular the feasibility of the system) is unchanged.

3Note that if G contained zero delays, we should add the following open interval constraints
0 < (tj − ti) + gi,jqi,j < gi,j .

4If there is a solution with continuous (xi,j), we can define an equivalent solution from the
assignment (ai,k) by xi,j = maxk ai,k + aj,k − 1, which is binary.
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2.1.4 Bounds on the offsets

Since G is symmetric, it can be seen as an undirected graph. In the following,
we will write G(i) for the set of neighbors of i, i.e. the set of tasks linked to i
through non-overlapping constraints.

The set of feasible offsets is periodic : if (ti) is feasible and if (ni) is a vector of
integers, then the solution (t′i) defined by t′i = ti+niTi is also feasible, provided

we define new quotients q′i,j = qi,j + ni
Ti

gi,j
− nj Tj

gi,j
. Here, the only important

fact is that q′i,j is again integer since gi,j divides Ti and Tj . If (θi) were different
periods, the reasoning would remain true as soon as gi,j would divide θi for each
(i, j) ∈ G. Hence, the smallest periods for which the set remains periodic are
given by :

T ∗i = lcm((gi,j)j∈G(i)) (18)

Since T ∗i = gcd(Ti, lcm((Tj)j∈G(i))), this updated period T ∗i always divides
Ti, and can be strictly smaller than Ti, for example if a prime factor occurs with
a given multiplicity in Ti but with strictly smaller multiplicities in any other
periods of a task j ∈ G(i). Indeed, even if the (Ti) are the initial parameters,
only the (gi,j) appear in the constraints. Therefore, if a prime factor occurs in
only one period, then it completely disappears in the (gi,j). By replacing the
initial periods (Ti) by the updated ones (T ∗i ), we simply remove some irrelevant
factors. In the following, we will suppose that the periods have been updated
to have no proper factors, i.e. Ti = T ∗i .

Since ti mod Ti = ti + niTi for some ni ∈ Z, we deduce that (ti mod Ti) is
also a solution. We can therefore impose ti to belong to [0, Ti).

2.1.5 Bounds on the quotients

Since we have 0 ≤ tj−ti+gi,jqi,j ≤ gi,j , these bounds on the offsets immediately
induce associated bounds on the quotients :

1− Tj
gi,j
≤ qi,j ≤

Ti
gi,j

(19)

In the harmonic case, either Tj divides Ti, or Ti
divides Tj . Hence, the quotient is either positive
(qi,j ∈ J0, Ti/TjK) or less than one (qi,j ∈ J1 − Tj/Ti, 1K). If Ti = Tj , then
qi,j ∈ {0, 1} which shows that the monoperiodic case correspond exactly to the
case of binary variables.

2.1.6 Allowing negative delays

Even if we generalized processing times by (possibly zero) latency delays, we
still considered positive delays. Indeed, equation (1) is trivially satisfied when
li,j ≤ 0, since by definition the modulo belongs to the reference interval [0, gi,j).
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In order to generalize, we can however bypass the modulo formulation and
directly consider a set of interval constraints of the form :

li,j ≤ tj − ti + gi,jqi,j ≤ ui,j , ∀(i, j) ∈ G, i < j (20)

Here, li,j and ui,j can be any values. In order to be feasible, we need at least
to have li,j ≤ ui,j . Moreover, the constraint is trivially satisfiable and can be
removed, unless ui,j − li,j < gi,j .

Note however, that we can always write ui,j in the form gi,j − lj,i. Hence,
we simply obtain constraint (9), but this time with arbitrary delays. Necessary
condition li,j ≤ ui,j gives li,j + lj,i ≤ gi,j , while non-triviality condition ui,j −
li,j < gi,j becomes li,j + lj,i > 0. Therefore we can still define graph G and
consider only the constraints associated with these arcs. On G, we still have
qi,j + qj,i = 1. We can still replace strict inequalities if there are some (see
section 3.1.2). In the multiprocessor context, we can still multiply the delays
by xi,j in order to make the contraints conditional. Offsets can still be choosen
in [0, Ti). Hence, most of the MILP model still works with arbitrary delays.
However, since we dropped the reference interval [0, gi,j), quotients cannot be
retrieved from the offsets by (3), and are not bounded anymore by (19). Instead,

we now have5 qi,j =
⌈
ti−tj+li,j

gi,j

⌉
and :⌊

li,j
gi,j

⌋
+ 1− Tj

gi,j
≤ qi,j ≤

Ti
gi,j
−
⌊
lj,i
gi,j

⌋
(21)

2.2 Definition of an optimization problem

In this section, we investigate an objective function. The α-criterion given below
amounts to maximizing space between tasks, and the heuristic presented in this
paper is based on this idea. In the following, we will suppose that all the delays
are strictly positive on G.

2.2.1 Objective to maximize

We opt for an objective useful in the context of robustness. The latter is con-
cerned with the problem of computing solutions which can withstand uncertain-
ties on the parameters. In the context of hard real-time systems, such as those
encountered in the avionics domain, the uncertainties on the delays (processing
times, latencies) are particularly critical. A task may last longer than expected,

5From equation (9), we obtain (ti − tj + li,j)/gi,j ≤ qi,j ≤ 1 + (ti − tj − lj,i)/gi,j . After

rounding, we deduce the smallest integer solution qi,j = d ti−tj+li,j
gi,j

e (and the largest 1 −

d tj−ti+lj,i
gi,j

e). However, when li,j + lj,i > 0, there is in fact at most one solution. Applying

the bounds ti ∈ [0, Ti), we further get (li,j − Tj)/gi,j < qi,j < 1 + (Ti − lj,i)/gi,j . After

rounding, we get b li,j−Tj

gi,j
c + 1 ≤ qi,j ≤ b

Ti−lj,i
gi,j

c, hence the desired expression, since gi,j

divides Ti and Tj .
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and therefore these parameters are generally overestimated a priori. Instead of
this, we define here a measure of the robustness of a schedule which captures
its capacity to handle increases of the durations. For this, we suppose that
the possible variations of the delays are proportional to their original values :
tasks with large processing times are more likely to be subject to large overrun.
Hence, all the delays li,j are made proportional to a common factor α ≥ 0 that
we try to optimize. In a uniprocessor context, this gives [1] :

max α (22)

s.t. li,jα ≤ tj − ti + gi,jqi,j ≤ gi,j − lj,iα
∀(i, j) ∈ G, i < j (23)

ti ∈ Q or ti ∈ Z ∀i (24)

qi,j ∈ Z ∀(i, j) ∈ G, i < j (25)

α ≥ 0 (26)

The resulting model always admits a trivial feasible solution (with α = 0).
Whenever a solution with α ≥ 1 is found, we have a solution for the feasibility
problem. If a factor larger than one is found, the schedule can handle critical
situations where all the delays have been multiplied by this factor.

2.2.2 Upper bound on the α-value

Let i and j be two tasks on the same processor. Then, constraint (23) implies
the following upper bound :

α ≤ αi,jmax =
gi,j

li,j + lj,i
(27)

In the integral case, we can round the left and right terms of (23). Hence,
we have in fact dli,jαe+dlj,iαe ≤ gi,j . This gives an even tighter upper bound6 :

αi,jmax = max

(
1

li,j

⌊
gi,j li,j
li,j + lj,i

⌋
,

1

lj,i

⌊
gi,j lj,i
li,j + lj,i

⌋)
(28)

These bounds are illustrated on Figure 3. In the uniprocessor case, we deduce
that αmax = mini,j α

i,j
max is an upper bound on the value of α. In the multipro-

cessor case, we have at least the trivial upper bound αmax = maxi,j α
i,j
max (we

will see how to improve this value in the next section).

6Indeed, let αi,j
max = max {α | dli,jαe+ dlj,iαe ≤ gi,j} be the largest value satisfying this

condition. We easily see that we have either li,jα
i,j
max ∈ Z, or lj,iα

i,j
max ∈ Z. Suppose w.l.o.g.

that li,jα
i,j
max = n ∈ Z. Then n is the largest integer such that n + dnlj,i/li,je ≤ gi,j ,

i.e. nlj,i/li,j ≤ gi,j − n since the right term is integer, i.e. n ≤ gi,j li,j
li,j+lj,i

. This implies

n = b gi,j li,j
li,j+lj,i

c, which completes the proof.
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2.2.3 Multiprocessor MILP formulation

With this additional objective, it is now more convenient to define a variable xi,j
representing the fact that tasks i and j are on different processors. In this case,
these variables are related to the (ai,k) through (31) instead of (11). Since the
non-overlapping constraints have to hold whenever two tasks are on the same
processor, we replace the term li,jα by li,jα−li,jαmaxxi,j , which gives constraints
(32) and (33). When i and j are on the same processor (xi,j = 0), we get back
the original term li,jα. Otherwise, we obtain a negative term li,jα − li,jαmax

which makes the constraint trivially satisfiable.

max α (29)

s.t.
∑
k

ai,k = 1, ∀i (30)

xi,j ≤ 2− ai,k − aj,k, ∀k, ∀(i, j) ∈ G, i < j (31)

tj − ti + gi,jqi,j ≥ li,jα− li,jαmaxxi,j ,

∀(i, j) ∈ G, i < j (32)

tj − ti + gi,jqi,j ≤ gi,j − lj,iα+ lj,iαmaxxi,j ,

∀(i, j) ∈ G, i < j (33)

ti ∈ [0, Ti] or ti ∈ Z ∩ [0, Ti − 1], ∀i (34)

qi,j ∈
s

1− Tj
gi,j

,
Ti
gi,j

{
, ∀(i, j) ∈ G, i < j (35)

xi,j ∈ [0, 1], ∀(i, j) ∈ G, i < j (36)

ai,k ∈ {0, 1}, ∀k, ∀i (37)

α ∈ [0, αmax] (38)

Since αmax is used as a ‘big-M’ in this MILP formulation, we would like
the lowest possible value in order to improve the efficiency of the model. For
this, we can solve a preliminary model, dealing only with the assignment (hence
without variables (ti) and (qi,j)), in which non-overlapping constraints (32,33)
are replaced by the following weaker constraint :

α ≤ αi,jmax + (αmax − αi,jmax)xi,j , ∀(i, j) ∈ G, i < j (39)

Intuitively, this constraint indicates that α should be less than αi,jmax if i and j
are assigned to the same processor (xi,j = 0), otherwise it is bounded by αmax

which is the trivial upper bound. Solving this model is much faster than for the
original one (less that 1s for instances with 4 processors and 20 tasks). It gives
us a new value αmax which can be used in the original model.

3 Decomposition and structural properties

Even if the formulation of the periodic scheduling problem involves two distinct
sets of variables, the offsets (ti) and the quotients (qi,j), the two are related. We
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already saw how quotients are determined by offsets through equation (3). In the
following we will emphasize conversely that offsets can be efficiently recovered
from quotients. This subsequently allows to deduce several useful properties.

3.1 Decomposition of the satisfiability problem

3.1.1 Recovering the offsets from the quotients

In this section, we suppose generally that we want to solve a system composed
of strict inequalities (indexed by (i, j) ∈ S), and non-strict inequalities (indexed
by (i, j) ∈ L), with S ∩ L = ∅ :

(tj − ti) + gi,jqi,j ≥ li,j , ∀(i, j) ∈ L (40)

(tj − ti) + gi,jqi,j > li,j , ∀(i, j) ∈ S (41)

Note first that once the quotients are fixed, precedence constraints naturally
occur as a subproblem :

tj − ti ≥ li,j − gi,jqi,j , ∀(i, j) ∈ L (42)

tj − ti > li,j − gi,jqi,j , ∀(i, j) ∈ S (43)

As long as there are no strict inequalities (S = ∅), this subproblem is simply
the dual of a longest-path problem. Hence, compatible offsets can be recov-
ered from the quotients by the Bellman-Ford algorithm. In addition, not every
choice for (qi,j) produces a solution for (ti). It is well-know, using Farkas lemma,
that system (42) has a solution iff there is no elementary circuit with a strictly
positive cost, i.e. (44). If there are strict inequalities, we can use Motzkin
transposition theorem instead to define a set of constraints describing the fea-
sible quotients, i.e. the quotients associated with a feasible solution. Those are
defined by : ∑

(i,j)∈C

gi,jqi,j ≥
∑

(i,j)∈C

li,j , ∀ eltcircuit C ⊆ L (44)

∑
(i,j)∈C

gi,jqi,j >
∑

(i,j)∈C

li,j , ∀ eltcircuit C 6⊆ L (45)

In the previous constraints the elementary circuits C ⊆ L only involve non-
strict inequalities, while the circuits C 6⊆ L contain strict inequalities (C ∩ S 6=
∅).

Remark 1. The projection on the quotients space is naturally associated with a
Benders decomposition scheme7. However, until now, we did not get competitive

7There is an exponential number of circuit constraints (44). Therefore, in a Benders
approach, a master problem tries to find the hard quotients variables, initially considering
only a subset of these constraints. For example, it can start with constraints (6) (which
implies constraints associated with circuits of length 2). Given a first guess of the master, the
subproblem tries to find compatible offsets solving (42). If it succeeds, we obtain a solution to
the original problem. Otherwise, the subproblem ends with a circuit having a strictly positive
cost. The associated constraint is added in the master, which is then solved again. The loop
continues until the subproblem has a solution or the master has none.

10



results with such an approach.

3.1.2 Removing the strict inequalities

Let γ = gcd((Ti)i, (li,j)i,j) be the gcd of all the periods and delays. If we divide
constraint (45) by γ, we obtain a strict inequality with integer cœfficients on
integer variables. It can therefore be rounded, which gives an equivalent non-
strict inequality :∑

(i,j)∈C

gi,jqi,j ≥
∑

(i,j)∈C

li,j + γ, ∀ eltcircuit C 6⊆ L (46)

Proposition 1. The strict inequalities (41) can be replaced by the following
non-strict inequalities (47), while preserving the set of feasible quotients :

(tj − ti) + gi,jqi,j ≥ li,j +
γ

N
, ∀(i, j) ∈ S (47)

Proof. On one side, the set of quotients for system (40,41) is caracterized
(44,45), but also by (44,46). On the other side, system (40,47) only involves
non-strict inequalities, hence the feasible quotients for this system are caracter-
ized by : ∑

(i,j)∈C

gi,jqi,j ≥
∑

(i,j)∈C

li,j + γ
|C ∩ S|
N

, ∀ eltcircuit C

If C ⊆ L, the previous constraint simply reduces to (44) since |C ∩ S| = 0.
If C 6⊆ L, it is stronger than (45) since |C ∩ S| > 0, but it is weaker than (46)
because C is elementary, hence we have |C ∩S|/N ≤ 1. Therefore, the previous
constraints define the same set of quotients as (44,45) and (44,46).

3.1.3 Equivalence between the integral and the fractional variants

In previous works [14, 15], we only considered the integral case. This hypothesis
was important to prove convergence of the heuristic. In this article, we have also
considered the fractional case. Note however that, if there are only non-strict
inequalities, we easily move from one variant to the other, thanks to the fact
that subproblem (42) is a longest-path problem :

• If we can solve instances with fractional offsets, then we can solve instances
with integral offsets. Indeed, in the latter case, we saw in section 2.1.2
that all the data (periods and delays) can be supposed or made integer.
If we have a fractional solution, we can retain only the quotients and use
the subproblem to compute new offsets. Since the right-hand side of this
subproblem is integral, the Bellman-Ford algorithm will give an integral
solution.

• Conversely, if we can solve instances with integral offsets, then we can solve
instances with fractional offsets. Indeed, (ti) is a fractional solution for
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instance (Ti, li,j) iff (ti/γ) is one for instance
(Ti/γ, li,j/γ). But now, all the parameters Ti/γ and li,j/γ are integer.
Hence the instance can be solved with integral offsets.

This equivalence does not hold for the optimization problem (see section 3.2).

3.1.4 Schedulability conditions

A well-known necessary condition for the schedulability of two tasks is li,j+lj,i ≤
gi,j (see section 2.1.1). If zero delays are allowed, we must add the additional
conditions li,j < gi,j and lj,i < gi,j . If there are only two tasks, these conditions
are also sufficient8.

The following proposition goes one step futher (for simplicity, we suppose
that there are only non-strict inequalities). It is a modest consequence of de-
composition. As far as we know, the sufficiency of this condition with three
tasks is new. If C is a circuit, we write gC = gcd((gi,j)(i,j)∈C). We have :

Proposition 2. If N tasks are schedulable on the same processor, then we
have : ⌈∑

(i,j)∈C li,j

gC

⌉
+

⌈∑
(i,j)∈C lj,i

gC

⌉
≤
∑
i∈C gi,j

gC
,

∀ eltcircuit C

(48)

If there are at most three tasks, the converse is true.

Proof. Since, we only consider non-strict inequalities, the set of feasible quo-
tients for system (4,6) is defined by (44) and (6). From these two constraints,
we get

∑
(i,j)∈C li,j ≤

∑
(i,j)∈C gi,jqi,j ≤

∑
(i,j)∈C (gi,j − lj,i). We can divide

this expression by gC . Since the middle term remains integer, we can round
the left and the right term, and remove the middle term, which gives (48).
Conversely we want to show that, if there are only 3 tasks, and if this con-
dition is satisfied, system (44,6) is satisfiable. We need to consider only one
circuit C = (i, j, k) of size 3 (the reversed circuit is handled simultaneously). If
condition (48) is satisfied for this circuit, we can find an integer value q such
that

∑
(i,j)∈C li,j ≤ gCq ≤

∑
(i,j)∈C (gi,j − lj,i). Using Euclid algorithm, we

can find values qi,j , qj,k and qk,i such that gCq = gi,jqi,j + gj,kqj,k + gk,iqk,i.
The remaining variables qj,i, qk,j and qi,k are defined in order to satisfy (6).
By these choices, constraints (44) associated with C and its reverse are satis-
fied. Moreover, since condition (48) is satisfied for each circuit of size 2, we get
2d(li,j + lj,i)/gi,je ≤ 2, hence li,j + lj,i ≤ gi,j . This implies that all constraints
(44) associated with circuits of size 2 are satisfied.

In the case of processing times, a simple rearrangement gives the following
corollary :

8If both li,j and lj,i are zero, then ti = tj = 0 is a feasible solution. Otherwise, suppose
w.l.o.g. that li,j > 0 and define ti = 0 and tj = li,j . Then (tj − ti) mod gi,j = li,j (since
li,j ∈ [0, gi,j)) and (ti−tj) mod gi,j = gi,j−li,j ≥ lj,i. This shows that i and j are schedulable.
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Corollary 1. Let g be the gcd of all the periods. If N tasks are schedulable on
the same processor, then we have :∑

i

pi ≤ g ·
⌊

1

2
· g1,2 + g2,3 + · · ·+ gN,1

g

⌋
(49)

If there are at most three tasks, the converse is true.

Remark 2. We can compare the necessary condition given by (49) with the
obvious sufficient condition

∑
i pi ≤ g (in fact, if the latter condition is satisfied,

we can solve the monoperiodic instance with period g, and a fortiori the original
multiperiodic instance).

3.2 Decomposition of the optimization problem

3.2.1 Local optimum in the fractional case

Let us consider the optimization problem (22-26) with fractional offsets, defined
in section 2.2.1. In order to simplify, let us suppose that we kept the two
variables qi,j and qj,i, linked through (6). If these quotients are fixed, the
remaining problem has the following form :

max α (50)

s.t. tj − ti ≥ li,jα− gi,jqi,j ∀(i, j) ∈ G (51)

ti ∈ Q ∀i (52)

α ≥ 0 (53)

In a multiprocessor context, we suppose that the assignment (ai) is fixed
too. Hence, the resulting problem is similar, except that we only consider the
arcs (i, j) ∈ G such that ai = aj . An optimal solution to this problem will be
called a local optimum. This subproblem is in fact the dual of the minimum
cost-to-time ratio cycle problem. The resolution of this problem is out of the
scope of this paper, but we can sketch a polynomial algorithm which performs a
dichotomy on the α-value. Indeed, for a given value of α, constraints (51) define
the dual of a longest path problem. It can therefore be solved by the Bellman-
Ford algorithm. If the latter succeeds, we can use the solution to improve the
current lower bound on α (primal-dual step). Otherwise, it is well known, using
Farkas lemma, that there is an elementary circuit C with a strictly positive
cost :

∑
(i,j)∈C li,jα− gi,jqi,j > 0. We deduce that a feasible solution should

satisfy α ≤
∑

(i,j)∈C gi,jqi,j∑
(i,j)∈C li,j

. This gives us a new upper bound for the α-value.

From the previous reasoning, we also deduce a simple optimality criterion :

Proposition 3. A fractional feasible solution is locally optimal iff there is a

critical circuit C such that α =
∑

(i,j)∈C gi,jqi,j∑
(i,j)∈C li,j

.
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3.2.2 Local optimum in the integral case

If the offsets are integer, we first need to round the right-hand side of (51) before
we use a Bellman-Ford algorithm. Hence, we work on constraints of the form
tj − ti ≥ dli,jαe − gi,jqi,j . Given this, a dichotomous approach is still possible.
However, the optimality criterion is not valid anymore. Indeed, with integer
offsets, the above program is now equivalent to the following :

max α (54)

s.t.
∑

(i,j)∈C

gi,jqi,j ≥
∑

(i,j)∈C

dli,jαe, ∀ eltcircuit C (55)

α ≥ 0 (56)

This is not a linear program anymore. At least, fractional and ‘integral’ local
optima are related :

Proposition 4. If α∗ is the fractional local optimum, then the ‘integral’ local

optimum is at least mini,j
bli,jαc
li,j

. In particular, it belongs to (α∗ − 1
lmin

, α∗]

where lmin is the smallest delay9.

Proof. A sufficient condition for α to be feasible for the program with integer
offsets is given by dli,jαe ≤ li,jα∗, ∀(i, j). Indeed, in this case, all the circuit con-
straints (55) are satisfied. This is equivalent to
α ≤ bli,jα∗c/li,j , ∀(i, j). Hence mini,j bli,jα∗c/li,j is feasible for the program
with integer offsets. Note finally that α∗ − 1/li,j < bli,jα∗c/li,j ≤ α∗.

4 Optimizing the offset of one task

Since optimizing all the tasks together is hard, we first try to optimize the as-
signment ai and offset ti of one task i, while the other assignments and offsets
(a∗j , t

∗
j )j 6=i are fixed. Because of its obvious analogy with game theory, where

agents try to optimize their actions given the actions of other agents, the prob-
lem studied in this section is called the best response problem [1, 2]. In the
following, we first present a method, called the best offset procedure, which
allows to find the best location for a task on a given processor. Using this pro-
cedure, we then easily define the best response procedure, which both finds the
best processor and the best location.

4.1 The best offset procedure on a given processor

For each task i, and each processor p, we first define a method BestOffsetpi
which returns the best possible offset for task i on processor p. More formally,

9The difference between the two values can be reached asymptotically : take N unitary
tasks (lmin = 1) with the same period T = 2N − 1. Then the optimal fractional solution is
α∗ = 2− 1/N (hence α∗ − 1/lmin = 1− 1/N), and the optimal integral solution is α = 1.
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the BestOffsetpi procedure consists in solving the following program :

(BOpi ) max αi (57)

s.t. lj,iαi ≤ (ti − t∗j ) mod gi,j ≤ gi,j − li,jαi
∀j ∈ G(i), a∗j = p (58)

ti ∈ Q or ti ∈ Z (59)

αi ≥ 0 (60)

Here, instead of using a binary vector (ai,k), we represent an assignment more
compactly by a variable ai ∈ [1, P ]. Contraints (58) are the non-overlapping
contraints of task i with other tasks j currently on this processor (a∗j = p). We
define Np to be the number of such contraints. In particular, when optimizing
the offset of a task, we do not consider constraints linking two other tasks. Note
that we deliberately use a formulation involving a modulo : in the following,
quotients will be handled completely implicitely. This amounts to working on a
two-dimensional projection : the only relevant variables are ti and αi, since the
other offsets and assignments (t∗j , a

∗
j )j∈G(i) are parameters. Moreover, following

the discussion in sections 2.1.4 and 2.2.2, we can add the following bounds :

T pi = lcm((gi,j)j∈G(i)
a∗j =p

) and αpi,max = min
j∈G(i)
a∗j =p

αi,jmax (61)

Since (BOpi ) is T pi -periodic (if ti is a solution, then ti + T pi is also a solution),
we can impose ti to belong to [0, T pi ).

4.1.1 Structure of the solution set

If we try to draw the function αi = (ti−t∗j ) mod gi,j/lj,i representing the optimal
value of αi respecting one constraint (ti − t∗j ) mod gi,j ≥ lj,iαi, we obtain a
curve which is piecewise increasing and discontinuous since it becomes zero on
t∗j + gi,jZ. In the same way, if we draw αi = (t∗j − ti) mod gi,j/li,j , we obtain
a curve which is piecewise decreasing and becomes zero at the same points. It
is therefore more natural to consider the two constraints jointly, which gives a
continuous curve10. Hence, the set of points (ti, αi) satisfying one constraint
(58) consists in all the points between this curve and the horizontal axis (see
Figure 3).

Given some fixed offsets (t∗j )j∈G(i), the set of solutions (ti, αi) of (BOpi ) is the
intersection of the sets decribed above for each j ∈ G(i), a∗j = p (see Figure 4).

It is composed of several adjacent polyhedra. We can give an upper bound
on the number npoly of such polyhedra. A polyhedron starts and ends at zero
points. For a given constraint j, there are T pi /gi,j zero points in [0, T pi ), hence
npoly is bounded by T pi

∑
j∈G(i)
a∗j =p

1
gi,j

. This upper bound can be reached when

10Note that if G was not symmetric, we would need to consider some degenerate cases were
one of the slopes (increasing or decreasing) would be infinite (since li,j = 0 or lj,i = 0).
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Figure 3: Possible values for (ti, αi) when constrained by a single task j

Figure 4: Possible values for (ti, αi) constrained by all tasks j ∈ G(i), a∗j = p

the offsets are fractional, since in this case, we can always choose the offsets t∗j
such that the sets of zero points (t∗j + gi,jZ)j∈G(i) are all disjoint. In the case of
integer offsets, there are obviously at most T pi zero points in the interval [0, T pi )
and therefore, at most T pi polyhedra.

4.1.2 Solving the best offset problem

When solving the best offset problem, we try to find the new location ti which
maximizes the associated αi-value. In the case of integral offsets, we can trivially
solve this program by computing the αi-values for each of the offsets J0, Ti−1K,
using the following expression, and selecting the best one.

αi = min
j∈G(i)
a∗j =p

min

(
(ti − t∗j ) mod gi,j

lj,i
,

(t∗j − ti) mod gi,j

li,j

)
(62)

We aim at finding a faster procedure as the best response problem has to
be solved repeatedly inside a local search method. In [2], the authors propose
a method, which also works in the case of fractional offsets, consisting in com-
puting the αi-values only for a set of precomputed intersection points (since a
fractional optimum always lies at the intersection of an increasing and a de-
creasing line). Here, we present a much more efficient method which relies on
the fact that (BOpi ) is locally a two-dimensional linear program.

In order to solve (BOpi ), we need to check all the possibilities in the interval
[0, T pi ). More generally we can start at any initial offset tstart

i , for example the
current position of task i, and run on the right until we reach the offset tend

i =
tstart
i + T pi . Starting with tref

i = tstart
i , we can compute the local polyhedron

which contains this reference offset (see Figure 5).
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Figure 5: Selection of the polyhedron containing a reference offset tref
i

Using a dedicated linear programming algorithm, we can then find the op-
timal solution in this local polyhedron (see section 4.1.3). After this local opti-
mization, we obtain a current best incumbent tlbi with value αlb, which becomes
a lower bound. In the rest of the procedure, we are only interested by the
polyhedra which could improve this value. In order to reach the next reference
offset, we solve another problem which can be implemented as a propagation
procedure (see section 4.1.4). We obtain a new polyhedron and we restart the
local optimization at this point, which gives us a better value. We continue until
the propagation mechanism reaches tend

i (see Figure 6). In the end, we obtain
a best offset ti ∈ [tstart

i , tend
i ). If needed, we can consider ti mod T pi which is an

equivalent solution in [0, T pi ).

1 2

Figure 6: Propagating up to the next strictly improving offset

We will see in section 4.1.4 that the overall propagation on the interval
[tstart
i , tend

i ) runs in O(Npnpoly). During this process, there are at most npoly

additional local optimizations. Using Megiddo algorithm [13], each one of these
optimizations can be performed in O(Np). Hence the overall procedure runs in
O(Npnpoly). Note that in practice the number of local optimizations is much
lower : as αlb is improved, more and more polyhedra lie completely below this
level and are skipped (see the lighter polyhedra in Figure 6).

4.1.3 Solving the local best offset problem

In the following, we will need a simple result about modulo equations :

Proposition 5. (1) The largest y ≤ a such that (y − b) mod c = 0 is given by
y = a − (a − b) mod c. (2) The smallest y > a such that (y − b) mod c = 0 is
given by y = a+ c− (a− b) mod c.

Proof. We want to find the largest y ≤ a in the set b + cZ. Hence a − y is the
smallest positive representative of the set a − b + cZ, which is (a − b) mod c.
Therefore y = a−(a−b) mod c. Since y+c is the next solution in the set b+cZ,
it is the smallest solution strictly greater than a.
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We want to compute the local polyhedron which contains a reference offset
tref
i (see Figure 5). Locally, the constraint (ti − t∗j ) mod gi,j ≥ lj,iαi is linear,

of the form ti − oj ≥ lj,iαi. Here, oj is the largest τ ≤ tref
i such that (τ −

t∗j ) mod gi,j = 0. In the same way, we can compute the decreasing constraint

o′j − ti ≥ li,jαi where o′j is the smallest τ > tref
i such that (t∗j − τ) mod gi,j = 0.

By Proposition 5, we have :

oj = tref
i − (tref

i − t∗j ) mod gi,j and o′j = oj + gi,j (63)

Note that when (tref
i − t∗j ) mod gi,j = 0, we have implicitely choosen the

polyhedron on the right because it corresponds to the moving direction (see Fig-
ure 7).

Figure 7: The polyhedron on the right is choosen in the degenerate case αi = 0

Once the local polyhedron has been defined, the problem is now to solve the
following problem :

(Loc−BOpi ) max αi (64)

s.t. ti − lj,iαi ≥ oj ,
∀j∈G(i)
a∗j =p (65)

ti + li,jαi ≤ o′j ,
∀j∈G(i)
a∗j =p (66)

ti ∈ Q or ti ∈ Z (67)

In the fractional case, we can use any available
method of linear programming. However, since the problem is a particular two
dimensional program, we can use special implementations of these methods.
From a theoretical perspective, the best approach is given by Megiddo algo-
rithm [13], which allows to find a solution in O(Np). However, in practice, it is
outperformed by the following primal simplex approach, which runs in O(N2

p )
in the worst case (this theoretical extra cost is cheap in practice especially as
most of the polyhedra are skipped by the propagation mechanism which still
runs in O(Npnpoly)). Note first that a local polyhedron is delimited by increas-
ing and decreasing lines. Hence, the fractional optimum is at the intersection
of two such lines. Therefore a natural way to find the optimum is to try all the
possible intersections between an increasing line, of the form ti − lj,iαi = oj ,
and a decreasing line, of the form ti+ li,kαi = o′k, and to select the one with the
smallest αi-value. The coordinates of these intersection points are given by11 :

ti =
lj,io

′
k + li,koj

lj,i + li,k
and αi =

o′k − oj
lj,i + li,k

(68)

11Note that in the computation only the αi-coordinate is needed since the ti-coordinate of
the selected intersection point can be computed afterwards by ti = oj + lj,iαi
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Since there are Np lines of each kinds, this algorithm runs in O(N2
p ). In

practice, a better approach is to start with a couple of increasing and decreasing
lines, and alternatively to try to improve the decreasing line (see Figure 8), then
the increasing one (see Figure 9), and so on, until no improvement is made.

Figure 8: The lowest intersection
point of a fixed increasing line with
decreasing lines

Figure 9: The lowest intersection
point of a fixed decreasing line with
increasing lines

The overall solving process is illustrated on Figure 10. We call this a primal
approach since this is essentially the application of the primal simplex algorithm.
However the primal simplex is not applied on (Loc−BOpi ) but on its dual. A
dual approach is illustrated on Figure 11 and presented in a technical report [14].

Figure 10: Finding the fractional op-
timum with a primal simplex ap-
proach

Figure 11: Finding the fractional op-
timum with a dual simplex approach

Remark 3. Suppose we just improved the decreasing line (Figure 8) and we get
a new intersection point. We know that the whole local polyhedron lies inside
the cone oriented below and defined by the increasing and the decreasing line.
Then all the decreasing lines with a smaller slope than the new decreasing line,
i.e. with a larger delay li,j, lie completely outside this cone, and therefore cannot
be active at the optimum. We can therefore drop these lines in the subsequent
phases. In other words, the delay li,j of the decreasing line strictly decreases
with time (except for the first improvement, since the initial decreasing line can
be any line). The same is true for the increasing line.

If we define a phase to be the computation of a new increasing or decreasing
line, then the previous remark implies that the number of “decreasing” phases
(resp. “increasing” phases) is bounded by the number of distinct delays li,j
(resp. lj,i). Since a phase runs in O(Np), the method runs in O(N2

p ) in the
worst case of distinct delays. However, the number of phases can be much lower.
In particular, in the case of processing times, all the delays li,j are identical (to
pi), which means that all the decreasing lines have the same slope −1/pi (see
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Figure 12). Hence, the primal simplex method runs in O(Np) since it stops
after three phases : even if initially there are Np decreasing lines with equations
o′j − ti = αpi, the one with the smallest o′j will be selected after the first phase.
At the end of the second phase, we are at the optimum : the third phase can
be dropped since no better decreasing line will be found.

Figure 12: All the decreasing lines are parallel in the case of processing times

In the integral case, we obtain a method with the same complexity, since
once a fractional solution has been found, we can deduce an integral solution
with an additional computation in O(Np). Indeed, if ti is integer, then (ti, αi)
is the desired solution. Otherwise we can compute the αi-values α−i and α+

i

associated with btic and dtie and take the largest one. Note that since btic (resp.
dtie) is on the increasing phase (resp. decreasing phase), only the corresponding
constraints are needed to compute α− (resp. α+) :

α−i = min
j∈G(i)
a∗j =p

btic − oj
lj,i

and α+
i = min

k∈G(i)
a∗k=p

o′k − dtie
li,k

(69)

4.1.4 Finding the next improving offset

After a local optimization, we obtain a solution tlbi with value αlb, which becomes
a lower bound. We want to find a new solution ti greater than tlbi which strictly
improves its value. Hence, this solution should satisfy :

αlblj,i < (ti − t∗j ) mod gi,j < gi,j − αlbli,j ,
∀j∈G(i)
a∗j =p (70)

Moreover, among all the possible solutions, we would like to find the smallest
one. In the case of integral offsets, the middle expression gives an integer value.
Hence we can round the bounds and obtain the equivalent interval constraint
(72). Therefore, we want to solve :

min ti (71)

s.t. blj,iαlbc+1 ≤ (ti − t∗j ) mod gi,j ≤ gi,j−bli,jαlbc−1

∀j ∈ G(i), a∗j = p (72)

ti ∈ Jtlbi , t
end
i − 1K (73)

In the case of fractional offsets, there is no such smallest solution to equation
(70), because the left inequality is strict. We can however change the latter into
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a non-strict inequality, which amounts to searching for the first offset greater
than tlbi with value at least αlb :

min ti (74)

s.t. lj,iαlb ≤ (ti − t∗j ) mod gi,j < gi,j − li,jαlb

∀j ∈ G(i), a∗j = p (75)

ti ∈ [tlbi , t
end
i ) (76)

If ti is the resulting offset, the point (ti, αlb) will be on an increasing line (at
least one left inequality will be active). But since the right inequality remains
strict, we forbid this point to be on a decreasing line. Thus, we know that ti
will not be the local optimum of the new polyhedron. Therefore, this new local
polyhedron will contain a solution with value strictly greater than αlb.

In the following, we will focus on the resolution of the fractional case (the
integral case is completely similar and explained in detail in [15]). In order
to solve this program, we will start with ti = tlbi and propagate on the right
until we find a feasible solution. On a given iteration, we choose a constraint j
and check if it is satisfied. We could check the two inequalities of the interval
constraint (75), however we can also remark that this is equivalent to :

(ti − t∗j − lj,iαlb) mod gi,j < gi,j − (li,j + lj,i)αlb (77)

Therefore we can compute r = gi,j − (ti − t∗j − αlblj,i) mod gi,j . If r ≤ (li,j +
lj,i)αlb, the constraint is violated. In this case, we compute the smallest offset τ
strictly greater than the current one, and which satisfies the current constraint,
i.e. we compute τ > ti such that (τ−t∗j−lj,iαlb) mod gi,j = 0. By Proposition 5,
we have τ = ti + r. For this offset τ , the current constraint is now satisfied.
We set ti = τ and continue the process with the next constraint. We cycle
along the constraints, until no update is made during Np successive rounds or
the offset ti becomes greater than tend

i . In the former case, all the constraints
are satisfied by the current offset, otherwise there is no solution (αlb is optimal)
and we return the special value ∅. This procedure is summarized in Algorithm
1. For convenience, we suppose here that the constraints j ∈ G(i), a∗j = p are
numbered from 0 to Np − 1.

Proposition 6. The overall propagation from tstarti to tendi runs in O(Npnpoly).

Proof. We will show that the propagation progresses by one polyhedron every
Np iterations, hence the end of the period is reached after at most Npnpoly

iterations, each running in O(1). Let us define a cycle to be Np consecutive
iterations and let us show that after two cycles, the current offset ti does not
lie in the same local polyhedron. Note that after a cycle, the algorithm either
stops or an update has been made. Consider a constraint j updated during the
second cycle. If j was not updated during the first cycle, then this contraint was
satisfied during the first cycle (hence the current offset was in a given polyhedron
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Algorithm 1 A propagation procedure to find an improving fractional solution

1: procedure FindImprovingFractionalSolution(αlb, t
lb
i , t

end
i )

2: ti ← tlbi . The current offset
3: Nsat ← 0 . The number of satisfied constraints
4: j ← 0 . The current evaluated constraint
5: while Nsat < Np do
6: r ← gi,j − (ti − t∗j − lj,iαlb) mod gi,j
7: if r > (li,j + lj,i)αlb then . If constraint j is satisfied
8: Nsat ← Nsat + 1 . One more constraint is satisfied
9: else

10: ti ← ti + r . We go to the first feasible offset
. If we reach the end without solution, we stop

11: if ti ≥ tend
i then return ∅

12: Nsat ← 1 . We restart counting the satisfied constraints
13: end if
14: j ← (j + 1) mod Np . We consider the next constraint
15: end while
16: return ti . We return an improving offset

17: end procedure

of Figure 3), but violated during the second. Therefore, at the end of second
cycle, the offset has been pushed to the next polyhedron of Figure 3. If j was
already updated during the first cycle, then the current offset has been pushed
forward to the next feasible solution two times for this constraint. Therefore,
the local polyhedron has also changed.

4.2 The multiprocessor best response method

Given the BestOffsetpi procedure, we define a method BestResponsei which
returns the best assignment and offset for the task i, given the current assign-
ments and offsets (t∗j , a

∗
j ) of all the tasks. In order to choose the assignment,

an agent simply computes the best offset on each processor and select the best
one. It starts with the current processor ai, which has priority in case of equal-
ity. Some of the next processors can sometimes be skipped. Indeed, for a given
processor p, equation (61) defines an upper bound αpmax on the objective. There-
fore, if the current best solution found on previous processors is already better
than this upper bound, there is no way to improve the current solution with
processor p, which can be skipped.

Since the BestOffsetpi method runs inO(TiNp), and since we have
∑
pNp =

|G(i)| ≤ N − 1, the
BestResponsei method runs in O(TiN).

5 An equilibrium-based heuristic

By moving the tasks round after round, we increase the space between them.
Iterating this process, we expect to reach an equilibrium. This is essentially the
principle of the heuristic presented in this section.

Definition 1. A solution (ti, ai)i∈I is an equilibrium iff no task i can improve
its assignment or offset using the BestResponsei procedure.
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5.1 Equilibrium in the integral case

In order to find an equilibrium, the heuristic uses a counter Nstab to count
the number of tasks known to be stable, i.e. which cannot be improved. It
starts with an initial solution (for example randomly generated) and tries to im-
prove this solution by a succession of unilateral optimizations. On each round,
we choose cyclically a task i and try to optimize its schedule, i.e. we apply
BestReponsei. If no improvement was found, then one more task is stable,
otherwise we update the assignment and offset of task i and reinitialize the
counter of stable tasks. We continue until N tasks are stable. This is summa-
rized in Algorithm 2 (the ε value is used in the fractional case; choose ε = 0 in
the integral case).

Algorithm 2 The heuristic
1: procedure ImproveSolution(ε, (tj)j∈I , (aj)j∈I)
2: Nstab ← 0 . The number of stabilized tasks
3: i← 0 . The task currently optimized
4: while Nstab < N do . We run until all the tasks are stable
5: (t′i, a

′
i, α
′
i)← BestResponsei((tj)j∈I , (aj)j∈I)

6: if α′i > αi + ε then . We have a strict improvement
7: ti ← t′i; ai ← a′i; αi ← α′i
8: Nstab ← 1 . We restart counting the stabilized tasks
9: α← αi

10: else . We do not have a strict improvement
11: Nstab ← Nstab + 1 . One more task is stable
12: α← min(αi, α)
13: end if
14: i← (i+ 1) mod N . We consider the next task
15: end while
16: return (α, (tj)j∈I , (aj)j∈I)

17: end procedure

Remark 4. In this procedure, randomness only occurs in the construction of
the initial solution. The tasks are cyclically moved in a fixed order. While this
choice seems to favor the first tasks, so far, we did not find improvements by
introducing randomness in this order.

If the algorithm stops, all the tasks are stable, hence we have reached an
equilibrium. The problem is to prove the convergence of the heuristic. The
main reason for the use of integers is that it ensures the convergence in a finite
number of steps. The termination proof relies on the fact that the underlying
game is an ordinal potential game. Given a solution (tj , aj)j∈I , we define the
values (αi)i∈I by expression (62), i.e. αj = mink∈G(j)

ak=aj
αj,k where :

αj,k = min

(
(tk − tj) mod gj,k

lj,k
,

(tj − tk) mod gk,j
lk,j

)
(78)

Let σ : J1, NK → I be a permutation sorting these values by increasing order.
Then, the potential of the solution is the vector :

V ((tj , aj)j∈I) = (ασ(1), · · · , ασ(N)) (79)
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Proposition 7. When an update is made, the potential (79) strictly increases
for the lexicographic order, preventing the algorithm from cycling.

Proof. Let (αj , tj , aj)j∈I (resp. (α′j , t
′
j , a
′
j)j∈I) be the data before (resp. after)

the improvement of a task i. Consider first a task j such that αj < αi. There
is a task m ∈ G(j) such that am = aj and αj = αj,m. If ai = aj , we have αj,i ≥
αi > αj , hence this task m cannot be i. Note that for all k 6= i (in particular for
k = m), the offsets and assignments are unchanged (t′k = tk and a′k = ak), hence
α′j,k = αj,k. Moreover, if a′i = aj , we have α′j,i ≥ α′i > αi > αj = αj,m. This
shows that α′j = mink∈G(j)

a′k=aj

α′j,k = αj,m = αj . In other words, the values strictly

smaller than αi are unchanged. Suppose now that αj > αi. For each task
k ∈ G(j) \ {i} such that aj = ak, we have α′j,k = αj,k ≥ αj > αi. Moreover, if
a′i = aj , we also have α′j,i ≥ α′i > αi. This shows that α′j = mink∈G(j)

a′k=aj

α′j,k > αi :

the values strictly greater than αi remain so. Finally, consider the set of tasks j
such that αj = αi. The same reasoning shows that these values remain at least
greater or equal than αi. Since i is one of these tasks, and since α′i > αi, at
least one of them becomes strictly greater. Hence, there are strictly less values
equal to αi among (αj) than among (α′j). These three points allow to conclude
that the potential (79) has increased.

In the integral case, αi is bounded and belongs to 1
lZ for some delay l = li,j

or l = lj,i. Therefore, the potential can only take a finite number of values, and
the algorithm converges after a finite number of steps (we refer to [1] for the
original proof of termination and correction).

5.2 Equilibrium in the fractional case

In the fractional case, Proposition 7 remains valid. However, the number of
different values for αi is not finite. To ensure the finiteness of the process, we
introduce a small quantity ε > 0 such that a task i can be moved only if its
value αi is improved by at least ε (see Algorithm 2). Given this modification,
we easily see that when an update is made, the following potential (which only
admits a finite number of values) strictly increases for the lexicographic order :

Vε((tj , aj)j∈I) = (εbασ(1)/εc, · · · , εbασ(N)/εc) (80)

Without this trick, i.e. with ε = 0, the following example shows that, the
heuristic is in fact unlikely to converge in a finite number of steps. Let us
define three tasks with period T = 4 and unitary processing times. Initially,
we set t01 = 0, t02 = 2 and t03 = 3 (see Figure 13). Note that it is an integral
equilibrium, but not a fractional one : we can improve position of task 1 by
moving it 1/2 clockwise. Then task 2 can be moved 1/4 counterclockwise, and
task 3 1/8 clockwise. After the first improvement, task 1 was in equilibrium,
but since then, task 2 is now closer by 1/4 and task 3 is closer by 1/8. Hence
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task 1 compensates by moving 1/16 counterclockwise, task 2 by moving 1/32
clockwise and task 3 by moving 1/64 counterclockwise, and so on. A careful
analysis shows that the offsets of the tasks follow the following sequences :

tn1 = 0 +
1

2

n−1∑
k=0

(−1/8)k =
4

9
− 4

9
(−1/8)n

tn2 = 2− 1

4

n−1∑
k=0

(−1/8)k =
16

9
+

2

9
(−1/8)n

tn3 = 3 +
1

8

n−1∑
k=0

(−1/8)k =
28

9
− 1

9
(−1/8)n

These sequences converge to 4/9, 16/9 and 28/9 respectively, and these
values form a fractional equilibrium.

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

0

Figure 13: Convergence to an equilibrium in the fractional case

Remark 5. This example shows that rational numbers are inappropriate to
implement the heuristic, which is confirmed by experiments. Indeed, the term

tn1 has the form (8n−(−1)n)
32·23n−2 . The numerator is always odd, therefore the term

23n−2 in the denominator cannot be simplified. Hence whatever the size of the
representation we select for the rational numbers, we quickly reach maximum
capacity. The heuristic is therefore implemented with floating point numbers,
even when all the data are rationals.

In the previous example, the offsets of the tasks converge. However, a vari-
ation on this example shows that this is not always the case (at least when we
consider latency delays and not simply processing times). Let us consider the
same three tasks, with unitary delays between them, and let us add a fourth
task at initial position t04 = 1 (see Figure 14), such that all the delays to and
from this task are small enough (less than 1/3). Because of this choice, we can
check inductively that task 4 has no impact on the other tasks. Their offsets
still follow the same trajectories. When task 4 is improved, it can go either
between tasks 1 and 2 (whose mutual distance is tn2 − tn1 = 4

3 + 2
3 (−1/8)n), or

between tasks 2 and 3 (tn3 − tn2 = 4
3 −

1
3 (−1/8)n), or between tasks 3 and 1

(tn1 + 4 − tn3 = 4
3 −

1
3 (−1/8)n). Hence, when n is even, it goes between tasks 1

and 2, at offset tn4 = (tn1 + tn2 )/2 and when n is odd, it goes between tasks 2 and
3, at offset tn4 = (tn2 + tn3 )/2.

At least, we can garantee the following :
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Figure 14: Offsets can diverge in the fractional case

Proposition 8. If the offsets converge, then the result is an equilibrium.

Proof. This is a simple consequence of Berge maximum theorem. Let BRi :∏
j 6=i[0, Tj ] → P([0, Ti]) be the best offset correspondence, i.e. the map which

associates with each parameters (t∗j )j 6=i the set of optimal solutions for the best
offset problem. Then, the maximum theorem tells us that this correspondence
is upper hemicontinuous. In particular, its graph is closed. Hence, if the offsets
converge to a solution (tj), this solution satisfies ti ∈ BRi((tj)j 6=i) for all i, and
therefore, this is an equilibrium.

5.3 Final improvement and multistart

The following proposition shows that in the fractional case, an equilibrium is
always at least locally optimal :

Proposition 9. A fractional equilibrium is a local optimum.

Proof. Suppose that (ti) is an equilibrium : for each task i, there is some αi
such that (ti, αi) is the optimal solution for the best offset problem (BOi). Let
us define α = mini αi and let us choose a task i1 such that αi1 = α. Since
(ti1 , α) is optimal for (BOi1), there is a decreasing line active at ti1 . Hence,
there is a task i2 such that :

ti2 − ti1 = αli1,i2 − gi1,i2qi1,i2 (81)

Since (ti2 , αi2) is optimal for (BOi2), there is a task i3 such that ti3 − ti2 =
αi2 li2,i3 − gi2,i3qi2,i3 . Moreover, since (ti2 , αi2) is feasible for (BOi2), we have in
particular ti2 − ti1 ≥ αi2 li1,i2 − gi1,i2qi1,i2 . Combined with (81), we deduce that
α ≥ αi2 , and since α is minimal, we have in fact αi2 = α. Therefore :

ti3 − ti2 = αli2,i3 − gi2,i3qi2,i3 (82)

Iterating this process, we find a sequence of tasks (in) such that tin+1 − tin =
αlin,in+1 − gin,in+1qin,in+1 . After a finite number of steps, we reach a node ik
already visited. Therefore, we obtain a circuit C. When summing the previous
equations for all the couples of the circuit, the left part becomes zero and we
obtain

∑
(i,j)∈C gi,jqi,j = α

∑
(i,j)∈C li,j . By Proposition 3, we are at a local

optimum.

In the fractional case, the result of the heuristic is only an ε-equilibrium.
We can however expect to be near an equilibrium, hence near a local optimum.
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We can therefore complete the heuristic by computing the local optimum in the
polyhedron containing the current solution (first compute the quotients with
(3) and then solve the problem in section 3.2.1). Note that contrary to the
heuristic, this procedure can be implemented with rational numbers when all
the data are rationals.

In the integral case, as Propositions 4 and 9 suggest, an equilibrium is not
far from a local integral optimum (see section 3.2.2). But no concept implies
the other. Therefore, when an equilibrium is reached, we can also complete the
heuristic by computing the local integral optimum in the polyhedron currently
containing the solution. The result is not necessarily an equilibrium anymore,
but we can restart the heuristic with this new point. We continue until the
equilibrium returned by the heuristic is also a local optimum. This process also
converges in a finite number of steps since the computation of the local optimum
strictly increases the potential used to prove the convergence of the heuristic.

An equilibrium is only an approximate notion of optimum. Hence, in order to
find a real optimum, the idea is now to run the previous heuristic several times
with different randomly generated initial solutions, and to keep the best result,
following a standard multistart scheme.

6 Results

We have tested the method on non-harmonic instances generated using the
procedure described in [8] : the periods were choosen in the set {2x3y50 | x ∈
[0, 4], y ∈ [0, 3]} and the processing times were generated following an inverse
exponential distribution and averaging at about 20% of the period of the task.
The experiments were performed on an AMD Athlon 64 X2 5200+ 2.7GHz with
2GB of memory. Note that, compared to [15], the results are different mainly for
two reasons : we changed the hardware, and we added the small improvement
described in section 5.3 (a solution of the heuristic is now both an equilibrium
and a local optimum, hence, individually, each execution of the heuristic is a bit
slower, but less iterations are needed in order to obtain the best solution). To
obtain more reproducible results, we have also forced the use of a single thread,
both for the MILP and for the heuristic.

Table 1 presents the results of our heuristic (in the integral case), the MILP
formulation and the original heuristic [2], on 15 instances with N = 20 tasks
and P = 4 processors. Columns 6-10 contain the results of our new version of
the heuristic. The value start10s represents the number of times the heuristic
was launched with different initial solutions during 10s. From this value, we
compute timesingle = 10/start10s which represents the average time needed
for one execution of the heuristic. The value startsol represents the number of
starts needed to obtain the best result, and timesol is the corresponding time.

Column timesol of the MILP formulation (columns 2-5) represents the time
needed by the Gurobi solver to obtain the best solution during a period of 600s
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(10min)12. We have tested two versions of the MILP : one with continuous
variables xi,j (see (36) in section 2.2.3), the other with binary variables xi,j ∈
{0, 1}. In addition to being much faster, the heuristic sometimes obtains better
results (see instances 1, 3 and 11).

This table also includes the results of the original heuristic presented in [1, 2]
(columns 11-12). The field timesingle represents the time needed for a single run
of their version of the heuristic. Averaging at 1.95s, these values are compatible
with the results presented in [2]. The field gainspeed, which is the ratio of the
two values timesingle, shows that our version of the heuristic is incomparably
faster (about 1550 times on these instances).

These good results have encouraged us to perform additional tests on large
instances (50 processors, 1000 tasks). Table 2 presents the results (in the integral
case) for 10 instances, where starts is the number of runs started during 1800s
(30min), timetotal is the actual time needed to perform these runs (since we do
not stop a run once it is started), timesingle = timetotal/starts is the average
time for one run, startssol is the round during which the best solution was
found, and timesol is the corresponding time. This shows that our heuristic
can give feasible solutions (α ≥ 1) in about 1min, while these instances cannot
even be loaded by the MILP solver (since they involve millions of variables and
constraints). In order to evaluate the contribution of the propagation mechanism
to the solving process, we also present results where the propagation of section
4.1.4 has been replaced by a simpler mechanism : once we are at a local optimum,
we follow the decreasing line active at this point, until we reach the horizontal
axis; this gives us a next reference offset and therefore a next polyhedron. While
the impact of the propagation is quite small in the case of small instances, we
see on these large instances that the propagation mechanism accelerates the
process by a factor of 23 (average ratio of the two timesingle values).

7 Conclusion

In this paper, we have proposed an enhanced version of a heuristic, first pre-
sented in [1, 2], and allowing to solve a NP-hard strictly periodic scheduling
problem. More specifically, we have presented an efficient way to solve the best
response problem. This procedure alternates between local optimizations and
an efficient propagation mechanism which allows to skip most of the polyhedra.
The results show that the new heuristic greatly improves the original one and
compares favorably with MILP solutions. In particular, it can handle instances
out of reach of the MILP formulation.

12We fixed a timeout of 600s because the solver almost never stopped even after 1h of CPU
time. In the case of binary variables xi,j , the only exceptions were instances 5 and 8, for which
optimality has been proved in 71s and 470s respectively. In the case of continuous variables
xi,j , optimality has been proved for instances 5 and 9 in 47s and 543s respectively.
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Appendix on monoperiodic and disjunctive sche-
duling

In this section, we highlight the difficulty of the problem by showing the link
with disjunctive scheduling. Compared to a classical system of precedence con-
straints, our scheduling problem is made hard by the introduction of additional
integer quotients variables. Minimally, these quotients induce an order between
tasks. Indeed, given offsets (ti), we can forget the absolute positions and only
retain their relative order : i � j ⇐⇒ ti > tj . On G, this relation can be
defined by the quotients alone : i � j ⇐⇒ qi,j ≥ 1. Property qi,j + qj,i = 1
simply says that � defines an orientation on G : we have either i � j or j � i
but not both. Contraints (44) and (45) imply in particular that for each circuit
C, we have

∑
(i,j)∈C gi,jqi,j > 0. This implies in turn that the orientation given

by � is acyclic13. For example, if G is the complete graph, then � simply de-
fines a total order. Generally, quotients code for more than an order. However
there is a special case for which they do no more. In the monoperiodic case,
we saw that the variables (qi,j) can be supposed to be binary. Moreover circuit
contraints (44) have the following form [16] :∑

(i,j)∈C

qi,j ≥
1

T

∑
(i,j)∈C

li,j , ∀ eltcircuit C (83)

If the period T is large enough, then the right-hand side is always less than 1.
Hence this is equivalent to

∑
(i,j)∈C qi,j ≥ 1, which simply forbids circuits. In

this case, (qi,j) is a binary vector representing an acyclic orientation.
The previous case is related to the disjunctive scheduling problem. In this

problem, starting dates are subject to the following disjunctive constraints tj −
ti ≥ li,j ∨ ti − tj ≥ lj,i. However, once an order has been defined among the
tasks, only one of the two inequalities remains. A natural way to express this
disjunctive constraint as a MILP is to introduce a binary variable qi,j with value
1 if i starts after j. Then the first contraint is written tj − ti + Tqi,j ≥ li,j ,
while the second one is written ti − tj + T (1− qi,j) ≥ lj,i. In terms of modulo,
the disjunction is represented by the two constraints (tj − ti) mod T ≥ li,j and
(ti − tj) mod T ≥ lj,i. Here, T is simply a big-M constant choosen to be large
enough, but it plays the role of a period. Graphically, this choice amounts to
transforming a disjunctive problem into a monoperiodic problem (see Figure 15).
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Table 1: Results of the MILP, the heuristic of [2], and the new version of
the heuristic on instances with P = 4 processors and N = 20 tasks, with
timeout = 10s
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Table 2: Results of the new version of the heuristic on instances with P = 50
processors and N = 1000 tasks, with timeout = 1800s (30min)
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