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The vehicle trajectories analysis on dangerous bends is an

important task to improve road safety. This paper propose a

new methodology to predict failure trajectories of light vehi-

cles in curve driving. It consists to use a stochastic modelling

and reliability analysis in order to estimate the failure proba-

bility of vehicle trajectories.

Firstly, we build probabilistic models able to describe real

trajectories in a given bend. The models are transforms of

scalar normalized second order stochastic processes which

are stationary, ergodic and non-Gaussian. The process is

characterized by its probability density function and its

power spectral density estimated starting from the experi-

mental trajectories. The probability density is approximated

by using a development on the basis of Hermite polynomials.

The second part is devoted to apply a reliability strategy in-

tended to associate a risk level to each class of trajectories.

Based on the joint use of probabilistic methods for modelling

uncertainties, reliability analysis for assessing risk levels and

statistics for classifying the trajectories, this approach pro-

vides a realistic answer to the tackled problem. Experiments

show the relevance and effectiveness of this method.

1 INTRODUCTION

In spite of road safety improvement in these last years,

the light vehicles accidents in bend have very serious con-

sequences in human term for road users [1]. The statistics

show that 18% of road accidents and 1/3 of mortals road

accidents in France took place in bend. The main types of

these accidents are road departures and vehicle loss control.

Currently, the practical solution to reduce these accidents is

∗Address all correspondence to this author.

not only the speed limit indicator via a road sign but also

the advanced driver assistance systems such as: ABS, ESP,

etc. There exist also several research works based on vehicle

dynamic system. These works are undertaken on the topic of

the detection and/or control of the vehicle path being able to

be dangerous in bend, [2], [3], [4]. Afterwards, we can cite

other works based on human factor models like [5], [6], [7],

etc. However, the diversity of proposed solutions gives the

level of complexity in curve driving.

For most drivers, driving in curves is a skill-based task,

but it actually requires combined control of both steering

and speed, taking into account the dynamic response and

the vehicle environment. Indeed, it is a complex task who

implies to consider all the interactions between vehicle and

its environment. These interactions can generate discontinu-

ities in the system parameters (or in their evolution). These

discontinuities result either by a bad perception of the road

for the driver, which then applies unsuited orders, or by large

road entries in high quantity to be corrected via the loop of

control. In both case, the driving system is disturbed and

consequently the risk of accident is high. Among the system

interactions, we quote perception, visibility or adherence

which are complex physical phenomena, not only, strongly

nonlinear but also presenting uncertainties in measurements.

All these reasons make that deterministic approaches are

not sufficient. We propose to use probabilistic approaches in

order to take into account uncertainties. These approaches

will permit to estimate failure probability of trajectory ac-

cording to each behaviour of control in curve driving. The

proposed approach operates on real observed trajectories.



1.1 Vehicle trajectory definition

The trajectory can be considered in several way accord-

ing to functional space in which we want to describe vehicle

dynamic. Either in space of parameters, where it is defined

as the graph of function :

{

T : T → R
6 :

t → T (t) = (x1(t),x2(t),x3(t),y(t),f(t),q(t))
T (1)

Where x1, x2 and x3 are cartesian coordinates of vehicle cen-

ter of mass and y, f and q the Euler angles.

Or in space of phasis, where it is defined in this form:

{

u : T → R
6 :

t → u(t) = (x1(t),x2(t),v1(t),v2(t),g1(t),g2(t))
T (2)

Where T ⊂ R+ is temporal observation interval of the ve-

hicle movement. The coordinates (x1, x2, v1, v2, g1 and g2)

describe vehicle movement in the Galilean coordinate sys-

tem noted R A
0 = (O,~e1,~e2,~e3). To define this coordinate sys-

tem, let BA
0 = (~e1,~e2,~e3) be the orthonormal basis associated

to R A
0 . The axis of R A

0 are noted Ox1, Ox2 and Ox3. R A
0

is fixed and vehicle movement takes place in the horizontal

plane (Ox1, Ox2). We make assumption that vehicle moves

on a plane roadway without unevenness in which case the

pumping effects are reduced. The trajectory u of the vehicle

center of mass G is oriented and the point V is chosen for the

origin of the curvilinear abscise s. At any time t, the position

of G is defined by this curvilinear abscise s(t), see Fig. 1.

Fig. 1. Galilean coordinate system and Serret-frénet frame

The use of powerful measuring instruments able to acquire

real observed trajectories with high-precision. However, we

have only experimental measurements of trajectories. This

one by nature contain uncertainties because the driving sys-

tem is an intrinsically random phenomena. It depends on

several factors, including the driver and vehicle environment,

acting on the trajectories (e.g. effects of random external

actions like wind, or unexpected reactions of drivers, or in-

teractions related to a dubious probabilist like an adherence

reduction, etc). In fact, in practice the trajectory u cannot

be predicted with certainty according to Eqn.(2). Thus, the

same driver circulating with the same vehicle on the same

road under the same conditions will not reproduce the same

trajectory twice. The better way to include such uncertainties

is to use stochastic approach.

We propose to consider the vehicle trajectory as a realization

of R6-valued stochastic process U = (U(t), t ∈R) defined on

(W,Á,P). We obtain u(t) =U(t,w), ∀t ∈ T where w ∈W:

∀w ∈W, u =U (.,w) : T → R
6 : t → u(t) =U(t,w) (3)

Starting from this definition, the main objective is to identify

stochastic process by using the real trajectories and to apply

a reliability analysis in order to estimate failure trajectory.

One calls failure trajectory, any trajectory not respecting the

safety conditions defined by legislator.

1.2 Suggested methodology

Initially, we propose to acquire experimental trajectories

in real site and to use statistical analysis in order to identify

several classes of trajectories. A Class of trajectories is char-

acterized by a subset of trajectories having the sufficiently

homogeneous statistical properties.

Starting from the trajectories of each class, we build a prob-

abilistic model based on stochastic process identification.

Each process will permit to simulate the dynamic of driv-

ing system according to failure criteria. These criteria relate

to functional projection of vectorial stochastic process in R.

This approach of modeling is a major contribution in road

safety because it makes abstraction to all the nonlinear inter-

actions which are not modeled preciously.

Then, we will use simulations of stochastic processes in the

reliability analysis application in order to evaluate the prob-

ability of failure according to each class of trajectories.

Lastly, a recognition model of trajectory was developed in

earlier study, see [8]. It uses the data observations in bend’s

entry to assign each trajectory u to a membership class. This

result associate to the knowledge of the failure probability is

an indication to predict failure trajectory in curve driving.

Fig. 2. Concept of failure trajectory prediction in curve driving



2 STATISTICAL ANALYSIS OF TRAJECTORIES

The collected discrete observations constitute a sample

of trajectories. It is a L-family in this form:

D =
(

u
(l)
k

)1<l≤L

k∈I(l)
(4)

Where u
(l)
k = u(l)(tk), L is the number of observed trajec-

tories, I(l) = {1l ,2l , . . . ,Kl} and Kl ∈ N
∗ is the number of

discretizations. For each l ∈ L = {1, . . . ,L} is associated a

single course of the driver during the bend:

u
(l)
k =

(

x
(l)
1,kl

,x
(l)
2,kl

,v
(l)
1,kl

,v
(l)
2,kl

,g
(l)
1,kl

,g
(l)
2,kl

)T

∈ R
6 ; (5)

For any kl ∈ I(l), the vector u
(l)
kl

is an observation of vehicle

trajectory at instant tk. This vector is constituted of the po-

sitions, velocity and accelerations of center of mass G in R A
0 .

It is not obvious, in advance that we can attach all

the L trajectories of D to the same process taking into

account for example the habituation effects or the drivers

heterogeneity. However, it is very difficult to create ex-

perimental observations conditions to obtain the same

stochastic process U . For that, it is judicious to seek simi-

lar classes of trajectories on the totality of the course in bend.

Each class noted Cp is made up of Lp experimental

trajectories derived from the same stochastic process. This

R
6-valued process noted Up is defined on probability space

(W,Á,P). With p ∈ P = {1, . . . ,P}, where P is the number

of identified classes. To distribute the trajectories of D in P

classes having homogeneous statistical properties, we used

robust clustering algorithms.

2.1 Trajectories clustering methods

Clustering is based on the measure of proximity or dis-

similarity between the trajectories in dataset D . It consists

to find subsets of D wich are homogeneous and/or well-

separated. Homogeneity means that trajectories in the same

cluster (or class) must be similar. The separation between

trajectories in different clusters must differ one from the

other. In general, clustering methods use machine learning

techniques. We consider it as a function fq from D to the

output space Y :

fq : D → Y (6)

Where Y ⊂ N is classes Cp index of the partition D , and fq
is a function which depend on the chosen clustering algo-

rithm. Several algorithms exist such as k-means: [9], mean

shift [10] and Self Organizing Maps [11], etc. In this study,

we choose the k-means algorithm because it gives better re-

sults than any other methods for our observations data.

2.1.1 k-means clustering algorithm

The k-means [9] is one of the simplest unsupervised

learning algorithms that solve the well known clustering

problem. It uses P centroids noted Np where p ∈ P . Each

class Cp is characterized by its centroid. It corresponds to the

barycenter or the average of the elements which compose

it. This algorithm aims to find clusters centers. These

centers should be placed them as much as possible far away

from each other, see [12]. In this study, the particularity of

this algorithm is to introduce a specific distance between

trajectories.

Then, it is necessary to calculate the distance D(u,Np) be-

tween each trajectory u(l) and cluster center Np:

D(u,Np) =
1

Lp
å

u(2)∈Np

d2(u(1),u(2)) (7)

Where d is an application of D×D in R+ verifying the prop-

erties of symmetry, separation and triangular inequality. The

distance d between an object u
(1)
p to another object u

(2)
p must

be selected. Several distances are used for similarity mea-

surement. The concept of distance between trajectories u be-

comes complicated compared to Euclidean distance because,

on the one hand, the dimension of phasis space, on the other

hand, the dependence of the coordinates of u. In this study,

we chose Mahalanobis distance (cf. Koita et al. [13]) in

order to take into account the correlation between the param-

eters of u. This distance defined by:

dM(u(1),u(2)) =

√

(u
(1)
k −u

(2)
k )T S̃−1(u

(1)
k −u

(2)
k ) (8)

Where S̃ is the estimate of covariance matrix of random vec-

tor:

(Up(t1), . . . ,Up(tK))
T = (Up,1, . . . ,Up,K)

T
(9)

The use of this distance will permit to assign each trajectory

u to the cluster center Np whose distance D(u,Np) from the

center Np is minimum of all the Np with p ∈ P . An object

u ∈ Cp if:

D(u,Np) = min{D(u,Nr) ; r = 1, . . . , p} (10)

The class Cp is then defined as follow:

Cp = {u ∈ D ; D(u,Np)≤ D(u,Nr) , ∀p 6= r} (11)

For each Cp generated in the previous step, its centroid Np

is recalculated. After we have these P new centroids, a new

binding has to be done between the same subset and the

nearest new center. A loop has been generated. As a result



of this loop, we may notice that the Np centers change their

location, step by step until no more changes are done or in

other words centers do not move any more.

The P identified classes of trajectories are stable against

the number of iterations. Each Cp is regarded as a different

behavior of control. It is necessary to identify all the classes,

and for each Cp must be representative. The use of the valid-

ity criteria is an effective way to ensure the algorithms con-

vergence and classes stability. Because the unstable classes

can generate homogeneity problems and consequently a bad

identification of stochastic processes Up. We recall that the

elements of each Cp are regarded as discrete realizations of

the same Up.

3 STOCHASTIC MODELING OF V-I-D SYSTEM

The objective of this section is to develop stochastic

models able to simulate the vehicle dynamic according to cri-

teria of failure. These models are specific to the classes Cp

and consist to identify stochastic processes Up [14]. How-

ever, observations data shown that, it is not judicious techni-

cally to model the vectorial stochastic process Up.

3.1 Vectorial stochastic process Up

For each Cp, p ∈ P , previously defined, we associate

a unique R
6-valued stochastic process Up = (Up(t), t ∈ R)

defined on (W,Á,P) such as ∀t ∈ R:

U p(t) = (X1(t),X2(t),V1(t),V2(t),G1(t),G2(t))
T (12)

The process Up describes the random behavior of the vehicle

dynamic system. It is partially known through the trajecto-

ries of Cp to which it is associated. The components X1, X2,

V1, V2, G1 and G2 are indexed processes on R in values of R.

They describe respectively the vehicle positions, velocities

and acceleration in the basis BA
0 . For reasons of notations

simplification, we consider :

U =Up (13)

However, the objective of this work is to predict the failure

trajectory by using reliability analysis. This analysis requires

to choose criteria of failure. These criteria relate on the pro-

cesses of control resulting from the translation of studied

problem in reliability analysis language. It consists to make

a functional projection of U on R in order to obtain Z.

3.2 Formulation of the process Z

A process of control associated with the stochastic pro-

cess U is a R-valued process Z = (Z(t), t ∈ R) defined on

(W,Á,P) such as:

Z(t) = F(U(t)) , ∀t ∈ R (14)

Where F is a functional of R
6 in R. We suppose subse-

quently that Z is a second order stochastic process. F is

relating to the criterion chosen to characterize the failure tra-

jectory. In this paper, we choose the vehicle lateral acceler-

ation as a failure criterion because several studies show that

it plays an important role in the vehicle lane crossing acci-

dents.

3.2.1 Failure criterion definition

Lateral acceleration and its variation (Jerk) are criteria often

used in the literature to estimate the dangerousness of

trajectory. For example, Rasmussen [15] proposed that

the speed choice strategy of drivers in curves is based on

dynamically adjusting a safety margin of lateral acceler-

ation. When entering a given curve, the driver reduces

the initial speed to avoid reaching some maximum value

in lateral acceleration inside the curve. This maximum

lateral acceleration is estimated subjectively by individual

drivers, depending on their own driving experience, the

road handling performance of their car, road and weather

conditions, and personal level of acceptable risk.

Then, under normal driving conditions, a vehicle is

able to turn without skidding, provided that its lateral

acceleration (usually referred to as ”‘centrifugal force”’ by

drivers) is kept below the saturation threshold of its tires

(i.e., the maximum grip force defined by the road adherence

conditions). This threshold value depends very little on

vehicle speed [16]. If drivers actually tried to maximize

the performance of vehicle, they would indeed adapt the

speed in curves so as to systematically reach this maximum

cornering acceleration.

This parameter GN is used as failure criterion because

the going beyond a safety threshold (d∗) can generate vehicle

loss of control, see Revue [17]. This function must be limited

by d∗ to ensure vehicle stability on the road. This criterion is

defined by:

supt∈T |GN(t)|> d∗ (15)

This criterion relates on the R-valued process of control

GN = (GN(t), t ∈R) defined on (W,Á,P) . Note that GN(t) is

easy to determine because it is a coordinate of the trajectory

u(t) in the Serret-Frenet frame. We have a relation between

the Galilean coordinate system R A
0 and Serret-Frenet frame

R SF
G in this form:

GN =−g1sin(y)+ g1cos(y) (16)

Where y is yew angle, g1 and g2 are vehicle acceleration in

Galilean coordinates system. We suppose that GN is a rele-

vant criterion to analyse the failure of driving system. This

criterion is represented by Z for following steps in this paper.

Z = GN (17)



Now, we need to simulate Z but experimental observations

of GN show that Z is not a stationary process. We will build

a representation allowing to express Z like an affine function

of stationary process by using normalization techniques to

obtain a process X . We recall that the process X is obtained

via different steps in this section. The logical sequence of

these steps is illustrated in Fig. 3.

Fig. 3. Approach of stochastic modelling of driving system.

3.3 Scalar process X

We consider the R-valued stochastic process X =
(X(t), t ∈ R) defined on (W,Á,P) such as:

X(t) = s−1
Z (t)(Z(t)−µZ(t)) (18)

Where µZ(t) = E[Z(t)] and sZ(t) = E[(Z(t)−E[Z(t)])2] are

respectively the temporal mean and standard deviation of Z.

A process is second order stationary if three properties are

checked. The first two properties imply that the mean func-

tion µX (t) and standard deviation function sX (t) must be

constant. The third property means that the autocorrelation

function RX depends only on the difference between t1 and

t2 and only needs to be indexed by one variable rather than

two variables. This also implies that RX depends only on

t= (t1 − t2):







E[X(t)] = µX (constant) ; ∀t ∈ T

E[(X(t)−E[X(t)])2] = sX (constant) ; ∀t ∈ T

Cov(X(t1),X(t2)) =CXX (t); ∀t1∀t2;

(19)

By constructing, the stochastic process X is such as

µX (t) = 0 and sX (t) = 1. A statistical study of X , for

the considered example shown that these assumptions are

approximately checked and therefore X can be reasonably

considered as a second-order stationary process. Now, we

are going to describe the characterization of X . For that,

it is necessary to calculate the first order marginal density

function pX and power spectral density function SX by using

real observations data. The marginal density was estimated

by standard estimator and gaussian kernel estimator. The

power spectral density was estimated by Welch estimator

with Hamming window, [18]. For autocorrelation function,

we used estimator based on the periodogram [19].

Then, we approximate the estimate of pX , FX and SX by the-

oretical laws. These approximations are necessary to sim-

ulate the stochastic process X = (X(t), t ∈ R). For the first

order margin density approximation of X , two great ways

exist. Firstly, we use an approximation in the class of usual

laws [20]. The experimental data are shown that this tech-

nique is not sufficient for laws approximation. Secondly, we

build an hilbertian approximation on a functional basis. We

choose the basis of Hermite polynomials, see [19].

3.3.1 Approximation of X on Hermite polynomial basis

To define Hermite polynomials, we consider the Hilbert

space L2(R,n). It is the real function space defined n−almost

everywhere on R and square-integrable by report to the

canonical spectral measure n(dx) = f (x)dx, bearing of scalar

product:

((j1,j2)) =
∫
R

j1(x)j2(x) f (x)dx (20)

Where f (x) = 1√
2p

exp
(

−x2/2
)

, x ∈ R is probability density

function of the standard gaussian law.

The Hermite polynomial Ha(x) in R, index a∈N are defined

by the recurrence relation:

{

H0(x) = 1

Ha+1(x) = xHa− d
dx

Ha(x)
(21)

The derivate of Ha(x) by report to x can be written :

d

dx
Ha(x) = aHa−1(x) (22)

The Hermite polynomials are also defined by:

Hm(x) =
∫
R

(x+ iy)m f1(x)dx (23)

Let pX : R → R+ be the probability density of target. We

seek pX in this form :

pX (x) = f (x)
+¥

å
a=0

qaha(x) (24)



Where qa ∈ R and (ha)a represent the orthonormal basis of

normalized Hermite polynomials, with for each a ∈ N:

ha(x) = (a!)−1/2Ha(x) (25)

They form a orthonormal basis of L2(R,n) and (a!)−1/2 is a

normalization factor such that ((h j,hk)) = d jk.

From Eqn.(24), we can carry out an approximation at order

N in this form :

pN
X (x) = f (x)

N

å
a=0

qaha(x) (26)

Where N is an integer ≥ 0 to determine.

To estimate the coefficients (qa)1<a<N , we used the projec-

tion of pX on the basis of Hermite polynomials.

3.3.2 Estimation of coefficients qa by margin law inte-

gration.

The marginal law PX can be written:

pX (x)dx = q(x)n(dx) (27)

Where q(x) = pX f−1(x). In the particular case where q ∈
L2(R,n), the development of q can be written on hilbertian

basis (ha)a.

q(x) =
+¥

å
a=0

qaha(x) (28)

The series of right member of the Eqn. (24) is convergent

in L2(R,n). For each index a ∈ N, the real qa is obtain by

projection on the basis (ha)a in the form:

qa = ((q,ha))
=

∫
RN q(x)ha(x) f (x)dx (29)

With ha(x) = 1 for a = 0, the normalization condition∫
R

pX (x)dx = 1 implies qa = 1 for a= 0.

Using a formula (29), the coefficients (qa)1<a<N can be ex-

pressed as follow :

q̄a =
∫
R

p̂X (x)ha(x)dx (30)

Where p̂X is an estimate of the density pX , obtained from

the experimental statistical sample of process X marginal

law. To get the numerical values of (qa)1<a<N , we used

numerical scheme for integrating such as Simpson technique.

Then, after having truncated the development of probability

density on Hermite polynomials basis with a reasonable

order N, we obtained an approximation pN
X of the first order

marginal density pX of X . In the large majority of treated

cases the truncation order of the Hermite development did

not exceed N = 7.

The approximation result of pX could be better or less

better which is due to the regularity and/or the smoothness

of the estimated density of pX . If it presents too many fluc-

tuations, the Hermite method of approximation can not give

good performance in spite of a high order a of truncation. If

the development on the basis of Hermite polynomials would

not be sufficient, to improve the quality of approximations,

we will use the method of Edgeworth basis. It consists

to gather the terms (qa)0<a<N having the same order of

magnitude to approximate the target probability density pX

as well as possible, [21].

We note p̃X , F̃X , S̃X , R̃X the estimate functions obtained

from approximation of the functions pX , FX and SX . From

these quantities previously, we can simulate the process X by

using the stochastic process simulation methods, (as in [22]

and [23]).

3.4 Simulation of process X

Let us recall that our aim is to simulate a good approxi-

mation of X . We use a simulation method for non-Gaussian

stochastic process based on the use of Hermite polynomials.

This method requires only the knowledge of FX and RX .

This step is fundamental and the main steps of this method

is described:

Let FN be the cumulative distribution function of a

R−valued standard Gaussian random variable. We suppose

that F−1
N ◦FN belongs to the Hilbert space:

L2(R) = f : R→ R|
∫
R

| f (x)|2 dx <+¥ (31)

Equipped with the scalar product:

< f ,g >=
∫
R

f (x)g(x)
exp(−x2/2)√

2p
dx (32)

∀ f ∈ L2(R),∀g ∈ L2(R)

F−1
X ◦FN can be projected on the basis (hn)n∈N of L2.

This basis is constituted by the normalized polynomials

of Hermite. Thus we have:

F−1
X ◦FN = å

n∈N
fnhn (33)



With ∀n ∈ N:

fn =
∫
R

(F−1
X ◦FN )(x)hn(x)

exp(−x2/2)√
2pn!

dx (34)

Let G be a R−valued zero mean stationary standard Gaus-

sian process on (W,Á,P). Let FG be the cumulative distribu-

tion function associated with G. Let RG be the autocorrela-

tion function associated with G. Let L = (L(t), t ∈ R) be a

R−valued second order stationary stochastic process defined

on (W,Á,P) such that:

L(t) = (F−1
X ◦FN )(G(t)),∀t ∈ R (35)

This process possesses the following properties:

1. The probability distribution of L has FX for cumulative

distribution function

2. L has the first and second same moment than X

3. L(t) = ån∈N fnhn(G(t)), ∀t ∈ R

4. RL(t) = ån∈N f 2
n (n!)(RG(t))

n, ∀t ∈ R

Consequently, L is an approximation of X .

In practice we approach X by a process LM = (LM(t), t ∈
R) whose autocorrelation function is R̃X . This process is

defined on (W,Á,P) and:

LM(t) =
M

å
n=0

fnhn(G(t)),∀t ∈ R (36)

With M ∈ N
∗ fixed, ( fn)n=0,...,M given by Eqn. (34) and G is

previous Gaussian process.

To make an approximation of X we shall simulate LM

by using Eqn. (36). The problem becomes the simulation

of process G. For it, we use a classical method [18] based

on the use of the PSD SG of G. We chose to take SG = S̃X .

Now, we call back the steps of the method to simulate SG:

In practice, the PSD SG is only known at the points

l j = −lL + ( j + 1/2)Dl, j ∈ 0,1, . . . ,N −1 of a regular

N−partition of [−lL,lL]. We have:

SG ≡ (SG(l j), j = 0,1, . . . ,N −1) (37)

Where l j and Dl (time increment) are imposed by the

Shannon’s rule.

The proposed algorithm of simulation is based on

the spectral representation of G. Let (f j) j=0,1,...,N−1 be a

family of R−valued independent uniform on [0,2p] random

varaibles on (W,Á,P). Then, we have the following result:

The R−valued process GN = (GN(t), t ∈ R) defined on

(W,Á,P) such as:

GN(t) =
√

2DlRe

[

N−1

å
j=0

eil jteif j

√

SG(l j)

]

(38)

Converge in distribution to G. The algorithm of sim-

ulation is obtained by sampling the approximation GN of

G at the points t j = jDt, j = 0, . . . ,N − 1 of the domain T

of simulation. It appeals to the notion of FFT (Fast Fourier

Transform). With this result, we obtain the simulation

results of LM . We point out that LM is an approximation of

the process X .

Now the use of the simulations of X and Eqn. (39) al-

lowed to obtain the simulations of Z. We point out that the

estimate of µZ(t) and sZ(t) are available by using observa-

tions data of GN . The Eqn. (39) is obtained by taking into

account the relation (18).

Z(t) = µZ(t)+sZ(t)X(t) (39)

The simulations of Z are necessary in reliability analysis

section.

4 RELIABILITY ANALYSIS OF V-I-D SYSTEM

The objective of this secion is to evaluate the risk of fail-

ure trajectory according to each class Cp. For that, the ve-

hicle lateral acceleration GN is chosen as a criterion of fail-

ure. This criterion relates to the function GN =(GN(t), t ∈R).
This function represented by Z is a R-valued process of con-

trol defined on (W,Á,P). The process Z was partially iden-

tified in previous section. From Z, we define the variable

of control, the safety margin and the associated limit state.

Then, we identify the law for maxima according to each Z.

Finally, we will estimate the probability of failure noted Pf

relating to each Cp.

4.1 Variable of control

It is a variable such as the values it takes with beyond

an acceptable threshold d∗ characterizes a failure trajectory

of driving system. Let Y be a variable of control defined on

(W,Á,P) in values of R such as:

Y = supt∈T |Z(t)| (40)

We remember that Z(t) =F(U(t)), ∀t ∈R+, where F :R6 →
R+ is a functional who operates on the stochastic process U .

The simulations resulting from Z enable to obtain the real-

izations of Y through the relation (40). From Y , we associate

a safety margin.



4.2 Margin of safety

For each criterion of safety is associated a margin of

safety noted M. It’s a random variable define on (W,Á,P)
in values of R. This variable is a scalar which measures in

a point of the mechanical system, the difference between Y

and an acceptable value d∗ of Y . When d∗ is fixed, we obtain

the observations of M by the relation :

M = d∗−Y (41)

These observations are known because, one had previously

the realizations of Y . The safety margin is also used to define

the events of safety noted ES and of failure EF as we will

define.

4.3 Limit state function G

The limit state function G is defined as linear or non-linear

separation between safe and failure domains. It defines the

events Es and E f associated with the states reliable and fail-

ing such as:

G(y) = d∗− y (42)

For each y ∈ R,G(y) > 0 characterise reliable state and

G(y) < 0 failing state. Consequently, Es and E f are defined

by :

{

Es = {w ∈W : G(Y (w))> 0}
E f = {w ∈W : G(Y (w))< 0} (43)

and check :

Es ∪E f =W ; Es ∩E f =⊘ (44)

With these two events are associated the domains of safety

DS and failure DF of the model, such as :

{

Ds = {y ∈ R : G(y)> 0}
D f = {y ∈ R : G(y)< 0} (45)

and who check :

Ds ∪D f = R ; Ds ∩D f =⊘ (46)

We make assumption that limit state G(Y )= 0 is not included

in the failure domain and G(Y ) = M. The margin M associ-

ated to a limit state function represents an indicator of safety.

The next step will consist to identify the law of M, necessary

to estimate the probability of failure Pf .

4.4 Identification of the law of M

The random variable M is defined by the law PM on (R,b),
which will be supposed to admit a density pM by report to

measure of Lebesgue dy on (R,b):

PM(dy) = pM(y)dy (47)

That is

∀B ∈ B , PM(B) =
∫

B
pM(y)dy (48)

For obvious reasons to do with (48), this density must verify:

Supp(pM)⊂ DG (49)

Where Supp(pM) indicates the support of pM , DG the do-

main of definition. We estimate the probability density func-

tion pM of M by using the realizations of M. It is necessary

to find a good approximation of pM . It can be approximated

by extreme values laws such as: Gumbel, Weibull or Frechet.

These extreme values laws are stable. However, these 3 types

of extreme values law are not exhaustive. Other laws not

checking the stability principle can exist in some cases (rare

in practice). Their interest would be limited because of in-

stability of their form. If extreme values laws would not be

adapted, one can make an approximation by a development

on the Hermite polynomial basis. From a good approxima-

tion of pM , we estimate the failure probability Pf = P(EF).

4.5 Estimation of the failure probability Pf

The probability of failure requires the simulation of M and

consequently of model Z. Note that the simulation of Z was

made previously. By fixing d∗ ∈ R
∗
+, we can estimate Pf by:

Pf = P(M < 0) =
∫ 0

−¥
pM(x)dx (50)

The estimation of Pf may be made by using Monte Carlo

methods. We can also obtain Eqn.50 by using distribution

function of M, see [24]. Note that one of the difficulties for

application part is to choose the threshold d∗. We propose to

vary d∗ in an acceptable values interval and to estimate Pf .

It is the function pp(d
∗) corresponding with the probability

to accept a class Cp containing a number of trajectories

exceeding the safety threshold d∗. This variation allows to

identify geometrical rupture (linear and nonlinear zone of

variation) for each Cp. From pp(d
∗), we will compare the

failure probability Pf for the classes Cp, with p ∈ P . This

comparison will permit to show that risk level of failure

trajectory is different according to classes. We will use real

observed trajectories to build abacuses pp(d
∗) of failure

probability per class Cp.

By using recognition model necessary to assign each tra-

jectory u to its membership class Cp, we obtain the risk level

of failure trajectory in bend’s entry.



5 APPLICATION ON IFSTTAR/Nantes BEND

The objective of this section is to apply the proposed

methodology. After experiment conditions description, we

will present clustering results, stochastic models validation,

reliability analysis result and discussion.

5.1 Experiment conditions

Experiment took place on the IFSTTAR test track,

located in Nantes (France). We used a test car to record

vehicle kinematics and dynamic parameters at discrete

time (frequency 100Hz). On board the test car, a set of

high-precision accelerometers, gyrometers, GPS sensors

were used. In order to avoid obstructing the road traffic

circulation, the test car was used on a closed road.

We acquire a set of trajectories physically carried out

with various instructions and various drivers. We mobi-

lized 35 voluntary drivers with 10 trajectories per driver,

which makes a set of 350 trajectories to be analyzed. The

participants are selected by the following criteria (age,

gender, driving experience). To carry out these tests, 2

instructions were given to drivers: a fast driving in order

to minimize run time and a normal driving in order to

maximize passenger comfort. For each instruction, the

driver is supposed to be on an open road and must adhere to

the highway code. To avoid habituation effects with a given

instruction, the two instructions are alternated.

The reader will find in Koita [25] more information on

experimental data acquisition. The collected data is repre-

sented by the dataset D .

5.2 Trajectories clustering result

From the real trajectories in D , a statistical analysis

(clustering) was used to identify 4 classes of trajectories with

an optimal separability between classes. These classes are

stable with regard to the number of iterations. The Fig. 4

illustrates the projection of clustering result on two compo-

nents (or axis) of u.
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Fig. 4. The four identified classes obtained by k-means algorithm.

The result in Tab. 1 shows that the dynamic of classes is

very different. Consequently, the behaviour of control is not

the same according to classes.

Table 1. Identified classes description.

Classes Number DCmax Gmax Vmax

C1 35 7 km−1 2.9m/s2 18m/s

C2 125 5.1 km−1 3.80m/s2 20.5m/s

C3 72 3.4 km−1 5.1m/s2 24m/s

C4 107 2.9 km−1 6.5m/s2 26m/s

Starting from the real trajectories, we built stochastic

models X specific to each Cp by respecting the procedure

describe in section 3.

5.3 Validation of stochastic models X

The processes U and Z are not stationary, hence the need

to use the process X . In this study, the lateral acceleration is

chosen to characterize failure criterion. The Fig. 5 represents

evolution of w-realization of X . It is specific to the class C2.
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Fig. 5. Evolution of w-realization of X

We are going to check stationarity assumptions of X .

The Fig. 6 shows a fast decrease of the autocorrelation func-

tion RX (t). The variation of RX depends on t= (t1 − t2). In

addition, stationarity tests are used. We conclude that X is

Second-order stationary process.

10 20 30 40 50 60 70 80 90

0

0.2

0.4

0.6

0.8

τ

Au
to

co
rré

la
tio

n 
fu

nc
tio

n 
R X(τ)

 

 

C
1

C
2

C
3

C
4

Fig. 6. Autocorrelation function RX for each class Cp.

Afterwards, we estimate the probability density function

pX . After this statistical estimation, we made an approxima-

tion by usual laws and the development of pX in the basis



of Hermite polynomials. Whereas, the usual laws give less

precise approximations in tail of distribution than Hermite

method of approximation. The precision of the models

X = (X(t), t ∈ R) depends as well on the central tendency

than tails of distribution. In this study, the Hermite method

is used but one does not guarantee a positive approximation

of pX to a high-order of truncation a due to the multiplicity

of the Hermite polynomials ha(x).

To validate the models X , we compared the statistical

characteristics (pX ,SX ) of real measurements and simula-

tions data. The Fig. 7 shows the superposition of the graphs

of pX between data measurements and simulations.
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Fig. 7. Comparison of the pX graph for class C2.

In addition to the graphic comparison in Fig. 7, statisti-

cal tests of law conformity are used. The null hypothesis H0

is not rejected for a p−value of 5%, [26].

In the Fig. 8, we note again a superposition of power

spectral density SX between measurements and simulations.

This superposition is still more precise for C2 and C4 than

C1 and C3. This is still with the representativeness of these

classes in real trajectories.
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Fig. 8. Comparison of the SX graph for C2.

These results made it possible to validate the identifica-

tion of the process X and consequently the validation of the

model Z. We can consider that the data simulated from Z

have the similar statistical properties like the real trajectories

in each Cp. This result checks also an assumption posed at

the beginning of this study. It consists to suppose that all

trajectories in each Cp are resulting from the same stochastic

process Up. Then, the simulations of Z are used to identify

the law of pM in reliability analysis.

5.4 Reliability analysis result

The objective is to evaluate the failure probability of tra-

jectories. Starting from an estimate of pM , we can approx-

imated pM by the Gumbel law for C2, see Fig. 9. By using
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Fig. 9. Target law approximation pM by Gumbel law.

the Kolmogorov-Smirnov test, the null hypothesis H0 is not

rejected for a p−value of 5%, see Tab. 2.

Table 2. Statistical test results for extreme law approximation.

C1 C2 C3 C4

H0 0 0 0 0

p− value 0.10 0.52 0.08 0.166

The Gumbel distribution function is used to calculate the

failure probability Pf . The Fig. 10 represents the evolution

of Pf as function of the safety threshold d∗ according to 4

identified classes.
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Fig. 10. Evolution of Pf (d
∗) as function of d∗.



5.5 Discussion

The classes of trajectories have different levels of risk.

We note that Pf decrease quickly with an increase in the

value of d∗ for C1 and C2 corresponding to a normal driving.

Whereas it decrease less quickly with an increase in the value

of d∗ for C3 and C4 corresponding to a fast driving. This re-

sult makes it possible to conclude that according to the fail-

ure criterion (lateral acceleration for this application), C1 is

protected of all the identified classes, C4 is riskiest and C3 has

a risk more high than C2. An order relation is noted between

identified classes, in this form :

C1 ≺ C2 ≺ C3 ≺ C4 (51)

We note that the graphs in Fig. 10 are the abacuses

functions p(d). From these functions, when the membership

class Cp of each trajectory u is known, one cans obtain its

probability of failure Pf .

In the earlier study, we describe the implementation of

a robust recognition model. This model makes it possible

to predict the membership class Cp of each trajectory u in

the bend’s entry. In this paper, a relation was established

between Cp and Pf according to d∗. The classes are ho-

mogeneous in probability of failure. The prediction of the

membership class will make it possible to know Pf for each

trajectory u. The results showed contrary to the vehicle dy-

namic modeling where parameters identification is difficult

that it is possible to model the vehicle trajectory parameters

with high-precision by using some real observed trajectories.

This new approach based on observations data makes a bet-

ter use of reliability analysis of failure trajectory. The readers

can find more description of this work in Koita [27].

6 CONCLUSION

The objective of this study was to predict failure

trajectory, starting from a given bend configuration and

representative observations of real trajectories.

For this application, we have identified 4 classes of

trajectories by using clustering methods on experimental

data. The trajectories of each class Cp are regarded as

realizations of stochastic process Up. This process offers a

realistic description for the observed random variability of

driving system. Through the observations data, we checked

that the processes U and Z are not stationary. However,

stationary assumptions on second-order of the process

X = (X(t), t ∈ R) are checked.

Then, adequate approximations were made for X .

From simulations of X , the models Z are validated. And

the simulations of Z permitted also to estimate the failure

probability Pf for each Cp. The comparison of Pf function

allowed to associate a risk level to each Cp.

Lastly, by using the trajectories recognition model, each

trajectory u is assigned to its membership class Cp of which

one calculated its probability Pf beforehand. With this

methodology and in this bend configuration, we are able to

predict a dangerous trajectory according to its lateral accel-

eration. This information is an indication for driver to con-

trol his vehicle or at least to be vigilant on its control. It

cans also concern an infrastructure manager to identify dan-

gerous drivers in the traffic. So the present results of this

new approach are promising for road safety. This proposed

methodology is related to the data acquisition system qual-

ity and not to the studied mobile. Consequently, it can be

extended almost to all kinds of mobile objects (motorcycles,

pedestrians,...). At the same time, it is relatively flexible and

thus able to adapt to an evolving environment (bend, inter-

section,...).
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