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On the genericity of pseudo-Anosov braids I: rigid braids

Sandrine Caruso

Abstract
We prove that, in the l-ball of the Cayley graph of the braid group with n > 3

strands, the proportion of rigid pseudo-Anosov braids is bounded below independently
of l by a positive value.

1 Introduction
A natural question concerning the Nielsen-Thurston classification of braids is: what is the
most likely Nielsen-Thurston type of a “long random braid”? Different interpretations can
be given to this question, but in this paper we shall use the following setting. We consider
the Cayley graph of the braid group Bn (for a fixed number of strands n), with generators
the set of simple braids – this is the standard generating set when the braid group is studied
as a Garside group. A well-known conjecture since the work of Thurston is as follows.

Conjecture. The proportion of pseudo-Anosov braids among all elements in the ball of
radius l in the Cayley graph converges to 1 as l tends to infinity.

The best known results going into this direction were, to the best of our knowledge, the
classical paper of Fathi [9], and the article of Atalan and Korkmaz [1] which deals with the
case of three-strand braids. The present paper, together with the article in preparation [4],
contains a proof of the above conjecture. In this first part, we introduce some essential tools
needed for the proof in [4], and already prove a result of independent interest concerning
the proportion of rigid pseudo-Anosov braids (see Corollary 4.9):

Theorem. For sufficiently large l, the proportion of rigid pseudo-Anosov braids in the ball
of radius l in the Cayley graph of Bn is bounded below by a strictly positive constant which
does not depend on l (but might depend on n).

The proof is in two steps: we shall see that the proportion of so-called rigid braids is
bounded below independently of l, and among rigid braids the proportion of pseudo-Anosov
elements converges to 1.

Another possible interpretation of the original question should be pointed out: the
work of Maher [12] and Sisto [13] deals with braids obtained by a long random walk in
the Cayley graph. They prove that in this setting, as well, the probability of obtaining a
pseudo-Anosov braid converges to 1 as the length of the walk tends to infinity.
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2 Definitions
Throughout the article, we fix an integer n > 3. All the considered braids will be braids
with n strands.

2.1 Garside structure

A general introduction to Garside theory can be found in [7]. The reader can also consult
[8]. We shall only recall some facts which are useful for our purposes.

While the group Bn admits the well-known presentation of groups

Bn = 〈σ1, . . . , σn−1 ; σiσi+1σi = σi+1σiσi+1 and σiσj = σjσi for |i− j| > 2〉 ,

the monoid of positive braids B+
n , which is embedded in Bn, is defined by the same presen-

tation, interpreted as a presentation of monoids.
For i < j 6 n, we denote by ∆ij the element of B+

n defined by

∆ij = (σi · · ·σj−1)(σi · · ·σj−2) · · · (σiσi+1)σi

and we denote by ∆ = ∆1n ∈ B+
n .

The pair (B+
n ,∆) defines what we call a Garside structure on Bn. Without giving the

complete definition, here are some properties of such a structure. The group Bn is endowed
with a partial order 4 defined by x 4 y ⇔ x−1y ∈ B+

n . If x 4 y, we say that x is a prefix
of y. Any two elements x, y of Bn have a unique greatest common prefix.

We also define < by x < y ⇔ xy−1 ∈ B+
n . Note that x < y is not equivalent to y 4 x.

The elements of the set {x ∈ Bn, 1 4 x 4 ∆} are called simple braids.

Proposition 2.1. The set of simple braids is in bijection with the set Sn of permutations
of n elements, via the canonical projection from Bn to Sn.

Definition 2.2 (left-weighting). Let s1, s2 be two simple braids in Bn. We say that s1
and s2 are left-weighted, or that the pair (s1, s2) is left-weighted, if there does not exist any
generator σi such that s1σi and σ−1

i s2 are both still simple.

Definition 2.3 (starting set, finishing set). Let s ∈ Bn be a simple braid. We call starting
set of s the set S(s) = {i, σi 4 s} and finishing set of s the set F (s) = {i, s < σi}.

Remark 2.4. Two simple braids s1 and s2 are left-weighted if and only if S(s2) ⊂ F (s1).
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Remark 2.5. Let s be a simple braid, and π be the permutation associated to s. Then
i ∈ S(s) if and only if π(i) > π(i+ 1), and i ∈ F (s) if and only if π−1(i) > π−1(i+ 1).

Proposition 2.6. Let x ∈ Bn. There exists a unique decomposition x = ∆px1 · · ·xr such
that x1, . . . , xr are simple braids, distinct from ∆ and 1, and such that xi and xi+1 are
left-weighted for all i = 1, . . . , r − 1.

Definition 2.7 (left normal form). In the previous proposition, the writing x = ∆px1 · · ·xr
is called the left normal form of x, p is called the infimum of x and is denoted by inf x,
p + r is the supremum of x and is denoted by supx, and r is called the canonical length
of x.

Furthermore, if r > 1, we denote by ι(x) = ∆px1∆−p the initial factor of x (ι(x) = x1
if p is even, ι(x) = ∆x1∆−1 if p is odd), and φ(x) = xr its final factor.

Definition 2.8 (rigidity). A braid x of positive canonical length is said to be rigid if φ(x)
and ι(x) are left-weighted.

2.2 Braids and mapping class group of the punctured disk

Definition 2.9 (Mapping class group of the punctured disk). Let Dn be the closed unit
disk in C, with n punctures regularly spaced on the real axis. The mapping class group of
Dn, denoted Mod(Dn), is the group of homeomorphisms ofDn, modulo the isotopy relation.
We also denote Mod(Dn, ∂Dn) the group of homeomorphisms of Dn fixing pointwise the
boundary ∂Dn of Dn, modulo the isotopy relation.

The Artin braid group with n strands is isomorphic to the group Mod(Dn, ∂Dn).
Recall that the classification theorem of Nielsen and Thurston states that a map-

ping class f ∈ Mod(Dn) is exactly one of the following: periodic, or reducible non-
periodic, or pseudo-Anosov. A braid x ∈ Mod(Dn, ∂Dn) can be projected on an element
of Mod(Dn). We call Nielsen-Thurston type of x the Nielsen-Thurston type of its pro-
jection. The definition of periodicity is then transformed as follows: a braid x ∈ Bn is
periodic if and only if there exist nonzero integers m and l such that xm = ∆l, where
∆ = (σ1 · · ·σn−1)(σ1 · · ·σn−2) · · · (σ1σ2)σ1. (Geometrically ∆ corresponds to the half-twist
around the boundary of the disk).

2.3 Round curves and almost round curves

Let us consider a braid as a mapping class in the mapping class group Mod(Dn, ∂Dn).

Definition 2.10 (curve). We call closed curve in Dn the image of the circle S1 by a
continuous map with values in Dn. The curve is said to be simple if this map is injective.
It is said to be non degenerated if it is neither homotopic to a point, nor to the boundary
of the disk, and it bounds a least two punctures.
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In the following, we simply call curve a homotopy class of non degenerate simple closed
curves.
Definition 2.11 (round curve). A curve is said to be round if it is represented by a circle
in Dn.
Definition 2.12 (almost round curve). A curve is said to be almost round if it is not
round, and is the image by a simple braid of a round curve.

3 Properties of the left-weighting graph
Definition 3.1 (Left-weighting graph). We call left-weighting graph, denote by Glw, the
following finite oriented graph. The vertices are indexed by the simple braids except 1 and
∆, and there is an edge from the vertex x1 to the vertex x2 if and only if the pair (x1, x2)
is left-weighted.

We call path a sequence (x1 → x2 → · · · → xl) such that there is an edge from the
vertex xi to the vertex xi+1, and the length of such a path means the number of edges in
the path.

The objective of this section is to study some properties of the graph Glw, especially
some asymptotic properties of the number of paths of length l, with l tending to infinity.
We introduce the following notations, for all l ∈ N∗:
• N(l) is the number of paths (x1 → x2 → · · · → xl+1) of length l in Glw;

• N◦(l) is the number of loops of length l + 1, with marked base vertex, in Glw. The
quantity N◦(l) can also be seen as the number of paths of length l, such that there
is an edge from the last to the first vertex.

• Let w be a path of length k ∈ N∗ in Glw. We denote by N (w)(l) the number of paths
of length l in Glw that do not pass through w (ie that do not contain w as a subpath),
and N (w)

◦ (l) the number of loops of length l+ 1 with marked base vertex in Glw, that
do not pass through w.

Furthermore, if (ul) and (vl) are two sequences of real numbers, we write ul = Θ(vl) if
and only if there exist constants c1, c2 > 0 such that for all large enough l, c1vl < ul < c2vl.
We say that ul is of the order of vl.

We also use the usual notations ul ∼ vl when ul is equivalent to vl, that is when for all
ε > 0, there exists an integer L such that for all l > L, |ul − vl| < ε|vl|, and ul = O(vl)
when there exists c2 > 0 such that for all large enough l, ul < c2vl.

We will prove some properties of the left-weighting graph by using the notion of adja-
cency matrix. For more details on graph theory and adjacency matrices, the reader can
consult [11]. We recall the following definition and proposition, together with the theorem
of Perron-Frobenius.
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Definition 3.2 (adjacency matrix). Let G be an oriented finite graph, whose vertices
are numbered. We call adjacency matrix of G the matrix whose (i, j)-entry contains the
number of edges from the vertex i to the vertex j.

Proposition 3.3. Let G be an oriented finite graph and A its adjacency matrix. Let l ∈ N.
The (i, j)-entry of the matrix Al contains the number of paths of length l in G linking the
vertex i to the vertex j.

Theorem (Perron-Frobenius). Let A be a matrix such that there exists k ∈ N∗, such
that all entries of Ak are positive. Then the spectral radius of A is positive, is a simple
eigenvalue of A, and is the unique eigenvalue of maximal module.

Lemma 3.4. Each pair of vertices in Glw is linked by at least one path of length exactly 5.

Proof. Let us recall that two simple braids s and t are left-weighted if and only if S(t) ⊂
F (s). Let s1 and s2 be two simple braids distinct from 1 and ∆. There exist i1 and i2 in
{1, . . . , n− 1} such that F (s1) ⊃ {i1} and S(s2) ⊂ {1, . . . , n− 1}\{i2}. We will construct
some simple braids x1, x2, x3, x4 satisfying:

• S(x1) = {i1},

• F (x1) = S(x2) = {bn2 c},

• F (x2) = S(x3) = {1, 3, . . . , 2bn2 c − 1} (the set of odd numbers between 1 and n− 1),

• F (x3) = S(x4) = {1, . . . , n− 1}\{bn2 c},

• F (x4) = {1, . . . , n− 1}\{i2}.

Thus, s1 → x1 → x2 → x3 → x4 → s2 will be a path of length 5 in the graph Glw.
Here is how we choose the braids x1, x2, x3, x4. We set x1 = σi1 · · ·σbn

2 c. The simple
braid x2 is the braid corresponding to following permutation:

π2 =
(

1 2 · · · bn2 c bn2 c+ 1 bn2 c+ 2 · · · n
2 4 · · · 2bn2 c 1 3 · · · 2dn2 e − 1

)

As to the braid x3, it is equal to x̄2∆1,bn
2 c∆bn

2 c+1,n, where x̄2 is the simple braid of permu-
tation π−1

2 . Finally, x4 = ∆σ−1
dn

2 e
· · ·σ−1

i2
is the left complement of σi2 · · ·σdn

2 e. The braids
x1 to x4 are represented for n = 6 in Figure 1.

Of course S(x1) = {i1} and F (x1) = {bn2 c}. For x2, the permutation π2 is increasing
on {1, . . . , bn2 c} and on {bn2 c + 1, . . . , n}, and we have π2(bn2 c + 1) < π2(bn2 c), so S(x2) =
{bn2 c}. On the other hand, π−1

2 (i) > π−1
2 (i + 1) if and only if i is odd, hence F (x2) =

{1, 3, . . . , 2bn2 c−1}. The permutation π3 associated with x3 first applies π−1
2 , then reverses

the order, on the one hand, of the elements from 1 to bn2 c, and on the other hand, of bn2 c+1
to n. It follows that π3(i) > π3(i+ 1) if and only if i is odd, and that π−1

3 (i) > π−1
3 (i+ 1)
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i1

i2

x1

x2

x3

x4

Figure 1: Braids x1 to x4

for all i except i = bn2 c. So S(x3) = {1, 3, . . . , 2bn2 c−1} and F (x3) = {1, . . . , n−1}\{bn2 c}.
Finally, x4 is the left complement of σi2 · · ·σdn

2 e, and thus satisfies S(x4) = {1, . . . , n −
1}\{n− dn2 e} = {1, . . . , n− 1}\{bn2 c} and F (x4) = {1, . . . , n− 1}\{i2}.

Lemma 3.5. The following properties are true.

(i) There exists a constant λ such that N◦(l) ∼ λl+1.

(ii) We have N(l) = Θ(λl). In particular, for large enough l, the proportion N◦(l)/N(l)
is bounded below, independently of l, by a positive constant.
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(iii) For all path w, there exists a constant µ(w) < λ such that N (w)(l) = O(µl(w)) and
N

(w)
◦ (l) = O(µl(w)).

The reader can also consult [6], which contains results and proofs similar to those of
this lemma.

Proof of Lemma 3.5. Let A be the adjacency matrix of the graph Glw. According to Propo-
sition 3.3, N◦(l) = tr(Al+1) and N(l) = |Al|1, where | · |1 is the sum of all entries in the
matrix.

(i) According to Lemma 3.4, the matrix A5 has positive entries. So we can apply the
Perron-Frobenius theorem to A, and deduce that A has a unique eigenvalue of maximal
module. This value is real and positive, and the associated eigenspace has dimension 1.
We denote by λ this eigenvalue, and by λi (i = 1, . . . , n! − 3) the others (not necessarily
distinct and not necessarily real). We have tr(Al+1) = λl+1 + λl+1

1 + · · · + λl+1
n!−3, hence

N◦(l) ∼ λl+1 when l tends to infinity.
(ii) There exists an invertible matrix P such that PAP−1 is in Jordan normal form,

and we can calculate
|PAlP−1|1 = λl +

∑
pi(λi)

where the pi are some polynomials of degree l. We deduce again the equivalence |PAlP−1|1 ∼
λl. Furthermore, |PAlP−1|1 = Θ(|Al|1), so N(l) = Θ(λl).

We deduce that N◦(l)/N(l) = Θ(1), and in particular, that for large enough l, this
ratio is bounded below, independently of l, by a positive constant.

(iii) We construct from Glw a graph G(k)
lw (where, we recall, k is the length of the path

w) as follows: the vertices in G
(k)
lw are the paths of length k − 1 in Glw, and two paths

w1 = (s1 → · · · → sk) and w2 = (t1 → · · · → tk) are linked by an edge if and only if
s2 = t1, s3 = t2, . . . , sk = tk−1. Thus, the edges of G(k)

lw correspond to the paths of length
k in Glw. We denote by Ak the adjacency matrix of G(k)

lw .
If s and t are two vertices in Glw, a path of length l > k from s to t in Glw corresponds

to a path of length l − k + 1 from (s→ s2 → · · · → sk) to (t1 → · · · → tk → t) in G(k)
lw for

some s2, . . . , sk−1, t1, . . . , tk−2. This leads to the following consequences. As each pair of
vertices in Glw is linked by a path of length 5 (Lemma 3.4), each pair of vertices in G(k)

lw

is linked by a path of length exactly k+ 4. Furthermore, as the number of paths of length
l in Glw is a Θ(λl), it is the same for the number of paths of length l in G

(k)
lw . As Ak+4

k

has positive entries, Ak satisfies the hypothesis of the Perron-Frobenius theorem, and we
deduce, as in (ii), that the number of paths of length l in G(k)

lw is a Θ(λl(k)) where λ(k) is
the spectral radius of Ak. The two asymptotic estimates obtained ensure that λ(k) = λ.

Moreover, avoiding a path of length k in Glw is equivalent to avoiding an edge in G(k)
lw .

Let G̃(k)
lw be the graph obtained from G

(k)
lw by removing the edge aw corresponding to w.

We denote by Ãk its adjacency matrix, and by µ(w) the spectral radius of this matrix.
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Then, the number of paths of length l− k+ 1 in G(k)
lw is a O(µl(w)): indeed, as in (ii), there

exists an invertible matrix Q such that |QÃl−k+1
k Q−1|1 is a sum of polynomials of degree

l−k+1 in the eigenvalues of Ãk. As these eigenvalues are, in module, not greater than the
spectral radius µ(w), we deduce that |QÃl−k+1

k Q−1|1 = O(µl−k+1
(w) ) = O(µl(w)), and then,

that N (w)(l) = |Ãl−k+1
k |1 = O(µl(w)).

As for the number of loops of length l+ 1 with marked base point in Glw, their number
is not greater than the number of paths of length l, and so we have also N (w)

◦ (l) = O(µl(w)).
It remains to prove that µ(w) < λ.
Given two vertices w1 = (s1 → · · · → sk) and w2 = (t1 → · · · → tk) of G(k)

lw , there
always exists a path of length l0 = 2k + 9 in G(k)

lw from w1 to w2 passing through the edge
aw: indeed, it suffices to go with a path of length k + 4 until the starting vertex of aw, to
go through the edge aw, and to go again with a path of length k+ 4 until w2. This means
that there are strictly more paths of length l0 from w1 to w2 in G(k)

lw than in G̃(k)
lw . That is

to say, the matrix Al0k − Ã
l0
k has positive entries. Let ε > 0 be such that Al0k − (Ãl0k + εI)

has still positive entries (where I is the identity matrix). The spectral radius of Al0k is λl0 ,
the one of Ãl0k + εI is µl0(w) + ε. Recall that the spectral radius of a matrix B is the limit of
‖Bk‖

1
k when k tends to infinity, where ‖ · ‖ is any matrix norm. By choosing for ‖ · ‖, for

example, the infinity-norm, we deduce that, as the entries of Al0k are all greater than those
of (Ãl0k + εI), we have λl0 > µl0(w) + ε, and thus λ > µ(w).

Remark 3.6. By similar arguments, we obtain finer results, on the number of paths that do
not contain w in a more localized area of the path. More precisely, if β is a path of length
l, and if a1, a2, a3 are functions of l taking values in N, with a1 + a3 and a2 nondecreasing
functions that tends to infinity when l tends to infinity, and such that a1(l)+a2(l)+a3(l) = l,
we can cut the path β into three path β1, β2 and β3 of respective lengths a1(l), a2(l) and
a3(l). The number of paths β of length l whose “middle part” β2 does not contain the path
w is a Θ(µa2(l)

(w) λ
a1(l)+a3(l)) = Θ(µa2(l)

(w) λ
l−a2(l)).

4 Genericity of pseudo-Anosov braids

4.1 Proportion of rigid braids

Proposition 4.1. Let l ∈ N∗. Among the braids β such that inf β = 0 and supβ = l, the
proportion of rigid braids is bounded below independently of l by a positive constant.

Proof. According to the unicity of the left normal form of a braid, the set of all braids
β such that inf β = 0 and supβ = l is in bijection with the set of paths of length l in
the left-weighting graph Glw. The set of rigid braids of infimum 0 and supremum l is in
bijection with the set of paths of length l, for which there is an edge from the last to the
first vertex. Hence, the proposition is a corollary of Lemma 3.5, (ii).
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4.2 Proportion of non pseudo-Anosov braids with infimum 0

The aim of this section is to show that, among the rigid braids of some fixed infimum and
canonical length l, the proportion of non pseudo-Anosov braids tends to 0 when l tends to
infinity. For this, we can use the following theorem, due to González-Meneses and Wiest
[10] (Theorem 5.16):

Theorem 4.2. Let β be a non-periodic, reducible braid which is rigid. Then there is some
positive integer k 6 n such that one of the following conditions holds:

(1) βk preserves a round curve, or

(2) inf(βk) and sup(βk) are even, and either ∆− inf(βk)βk or β−k∆sup(βk) is a positive
braid which preserves an almost round curve whose corresponding interior strands do
not cross.

Let us also state the following theorem of Bernadete, Gutierrez and Nitecki (Theo-
rem 5.7 in [2]) as given in [3] (Theorem 1):

Proposition 4.3. Let x ∈ Bn, seen as a mapping class in Mod(Dn, ∂Dn), with left normal
form x = ∆px1 · · ·xr. Let C be a round curve in Dn. If x(C) is round, then ∆px1 · · ·xm(C)
is round for all m = 1, . . . , r.

Notation 4.4. In what follows we shall use the following two braids, written in normal
form as follows:

γ1 = σ1σ3 · · ·σ2bn
2 c−1 . σ1σ3 · · ·σ2bn

2 c−1σ2σ4 · · ·σ2dn
2 e−2 (length 2)

γ2 = ∆2,nσ1 . σ1 . σ1σ2 · · ·σn−1 . σn−1 (length 4)

(see Figures 2 and 3.)

or

n even n odd

Figure 2: A braid sending no round curve to a round curve

Proposition 4.5. A rigid braid whose normal form contains both γ1 and γ2 as subwords
is pseudo-Anosov.
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Figure 3: A braid where each pair of strands crosses in some factor, and does not cross in
some other factor

Proof. Let us study a rigid braid β, denoting inf(β) = ε and the canonical length of β as l.
First, we remark that there is no periodic rigid braid except ∆ε. Indeed, if a braid β is

rigid and has canonical length at least 1, then its left normal form is of the shape

β = ∆εs1s2 · · · sl

where (si, si+1) (i = 1, . . . , l − 1) and (sl, τ−εs1) are left-weighted. Therefore, the normal
form of a power of this braid is of the shape

βk = ∆kεs
(1)
1 s

(1)
2 · · · s

(1)
l s

(2)
1 s

(2)
2 · · · s

(2)
l · · · · · · s

(k)
1 s

(k)
2 · · · s

(k)
l

where s(j)
i = τ (k−j)ε(si), which is never a power of ∆ when l > 1.

Let us now deal with the possibility that β might be reducible. According to Theo-
rem 4.2, there are three possible cases.

The first case correspond to the case (1) of the theorem. A power of β preserves a
round curve. The rigidity of β implies that the normal form of a power of β contains the
normal form of β (except the initial factors ∆) as a subword. According to Proposition 4.3,
we deduce that there exists a round curve whose image by β is still a round curve.

The second case is the case where a k-th power of β is such that ∆− inf(βk)βk = ∆−kεβk
preserves an almost round curve whose interior strands do not cross. If the normal form
of β is ∆εs1s2 · · · sl, then, as before, ∆−kεβk has normal form

∆−kεβk = s
(1)
1 s

(1)
2 · · · s

(1)
l s

(2)
1 s

(2)
2 · · · s

(2)
l · · · · · · s

(k)
1 s

(k)
2 · · · s

(k)
l

This word has two strands that never cross, and hence so does the word s1s2 · · · sl repre-
senting ∆−εβ.
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Let us look at the third case. This time, it is the braid β−k∆sup(βk) = β−k∆k(l+ε) which
has two strands that do not cross. Note that this braid has infimum 0 and supremum k · l.
Therefore in the braid

∆k·l ·
(
β−k∆k(l+ε)

)−1
= ∆−kεβk

(whose normal form was given in the previous paragraph) there are two strands which cross
in every single factor. Hence the same is true for the word s1s2 · · · sl representing ∆−εβ:
it has two strands which cross in every factor.

Now, a braid β whose normal form contains γ1 cannot send any round curve to a round
curve. The reason for this is that no round curve is sent to a round curve by this sequence
of two simple braids (see Figure 2), and according to Proposition 4.3, this is also the case
for the whole braid β. Similarly, a braid containing γ2 cannot contain two strands that
do not cross at all, or that cross in every single factor (see Figure 3). This completes the
proof.

We now restrict our attention temporarily to the case of braids with infimum 0.

Lemma 4.6. The number of braids of infimum 0 and supremum l, which are rigid and
pseudo-Anosov, is a Θ(λl), where λ is the constant of Lemma 3.5.

Proof. Let us denote by Ω the set of rigid braids of infimum 0 and supremum l. We also
denote by E1 ⊂ Ω the subset of the braids that do not contain, in their normal form, the
normal form of γ1 as a subword. We denote by E2 ⊂ Ω the subset of the braids that do
not contain, in their normal form, the normal form of γ2 as a subword.

According to Lemma 3.5, with the same notations, the cardinality #(Ω) is equivalent
to λl+1.

Still from Lemma 3.5, we also have estimates #(E1) = O(µl(γ1)) where µ(γ1) < λ

and #(E2) = O(µl(γ2)) where µ(γ2) < λ. Thus the cardinality of the set E1 ∪ E2, whose
cardinality is less than c(µl(γ1) + µl(γ2)) for a suitable constant c > 0, and this set contains
all rigid braids of infimum 0 and supremum l which are non pseudo-Anosov.

As µ(γ1) < λ and µ(γ2) < λ, the number of braids of infimum 0 and supremum l which
are rigid and pseudo-Anosov, is still of the order of λl.

4.3 Arbitrary infimum

Let us consider the Cayley graph of the braid group, with generators the simple braids.
The following lemma, which is an immediate consequence of Lemma 3.1 in [5], gives the
possible left normal forms for a braid that is at distance l from the neutral element in this
graph.

Lemma 4.7. Let β be a braid at distance l from the neutral element in the Cayley graph.
Then the left normal form of β has one of the following shapes:

11



(i) β = ∆−ls1 · · · sk, k ∈ {0, . . . , l − 1},

(ii) β = ∆−ks1 · · · sl, k ∈ {0, . . . , l},

(iii) β = ∆ks1 · · · sl−k, k ∈ {1, . . . , l}.

The following theorem is a generalization of the results previously obtained in the
particular case of a zero infimum.

Theorem 4.8. For large enough l, among all braids at distance l from the neutral element
in the Cayley graph, the proportion of rigid pseudo-Anosov braids is bounded below by a
positive constant.

Proof. First, let us make a remark: a braid β is pseudo-Anosov if and only if ∆2β is
pseudo-Anosov. The same is true when we replace “pseudo-Anosov” by “rigid”. Thus, a
braid with left normal form ∆ps1 · · · sr with p even is pseudo-Anosov (respectively rigid)
if and only if s1 · · · sr is.

According to Lemma 4.6, there exists a constant c1 > 0 such that for all large enough l,
the number of rigid pseudo-Anosov braids of the form s1 · · · sl is bounded below by c1λ

l.
Consequently, the number of rigid pseudo-Anosov braids of the form ∆−ks1 · · · sl with
k ∈ {0, . . . , l} and k even is bounded below by c1

l
2λ

l.
Furthermore, let us bound above the total number of braids at distance l of the neutral

element. According to Lemma 3.5, there exists a constant c2 such that the number of
braids with normal form s1 · · · sk is bounded above by c2λ

k. So:

(i) the number of braids with normal form ∆−ls1 · · · sk (0 6 k < l) is bounded above by
c2(1 + · · ·+ λl−1),

(ii) the number of braids with normal form ∆−ks1 · · · sl (0 6 k 6 l) is bounded above by
c2lλ

l,

(iii) the number of braids with normal form ∆ks1 · · · sl−k (0 < k 6 l) is bounded above
by c2(1 + · · ·+ λl−1).

As c2(1 + · · ·+ λl−1) ∼ c2
λ−1λ

l, if we replace c2 by an even larger constant, we can suppose
that, in the cases (i) and (iii), the number of braids is bounded above by c2

λ−1λ
l. Finally,

the proportion of rigid pseudo-Anosov braids among all braids of length l is bounded below
by

c1
l
2λ

l

c2
λ−1λ

l + c2lλl + c2
λ−1λ

l
= c1

2c2
· 1

1 + 2
l(λ−1)

>
c1
2c2
· 1

1 + 2
λ−1

> 0,

which completes the proof.

Corollary 4.9. For large enough l, in the l-ball of the Cayley graph, the proportion of
rigid pseudo-Anosov braids is bounded below independently of l by a positive constant.
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Proof. The number of braids in the k-sphere is of the order of kλk, and the l-ball is the
union of the k-spheres for k 6 l. We deduce that the number of braids in the l-ball is of
the order of lλl, that is to say, of the order of the number of braids in the l-sphere. So the
proportion of rigid pseudo-Anosov braids remains of the order of a constant.
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