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Capacity-aware back-pressure

traffic signal control
Jean Gregoire Xiangjun Qian Emilio Frazzoli Arnaud de La Fortelle Tichakorn Wongpiromsarn

Abstract—The control of a network of signalized intersections
is considered. Previous work demonstrates that the so-called
back-pressure control provides stability guarantees, assuming
infinite queues capacities. In this paper, we highlight the failing
of current back-pressure control under finite capacities by
identifying sources of non work-conservation and congestion
propagation. We propose the use of a normalized pressure
which guarantees work conservation and mitigates congestion
propagation, while ensuring fairness at low traffic densities, and
recovering original back-pressure as capacities grow to infinity.
This capacity-aware back-pressure control allows to improve
performance as congestion increases, as indicated by simulation
results, and keeps the key benefits of back-pressure: ability to be
distributed over intersections and O(1) complexity.

I. INTRODUCTION

Congestion is one of the major problems in today’s

metropolitan transportation networks. Before investigating in-

vestments in order to enhance the capacity of the network,

or policies to reduce the traffic load, one must wonder

whether the network is used at its maximum capacity. Vehicle

automation is expected to enable much more precise and

intelligent coordination between vehicles, possibly reducing

congestion [1]. However, automated cars are not currently

ready for large commercial deployment. Human-driven cars

can only be coordinated by traffic signals: more complex

scheduling at intersections would require automation to be

safe. That is why it is of high interest to study the theoretical

maximum throughput of a network of intersections coordi-

nated by traffic lights.

Traffic lights at intersections alternate the right-of-way of

users (e.g., cars, public transport, pedestrians) to coordinate

conflicting flows. A particular set of feasible simultaneous

rights of way, called a phase, is decided for a certain period of

time [2]. Controlling a traffic light consists of designing rules

to decide which phase to apply over time.

Pre-timed policies activate phases according to a time-

periodic pre-defined schedule. There is much previous work on

designing optimal pre-timed policies. However, such policies

are not efficient under changing arrival rates which require

adaptive control. Most used adaptive traffic signal control

systems include SCOOT [3], SCATS [4], PRODYN [5],

RHODES [6], OPAC [7] or TUC [8]. These systems update

some control variables of a configurable pre-timed policy

on middle term, based on traffic measures, and apply it on

short term. Control variables may include phases, splits, cycle

times and offsets [2]. Such algorithms may differ in the way

optimization is carried out (e.g., linear/dynamic programming,

exhaustive enumeration) and in the modeling approach (e.g.,

queuing network model [9], cell transmission model [10],

store-and-forward [11], petri nets [12]). Many major cities cur-

rently employ these systems which proved to be able to yield

various benefits, including travel time and fuel consumption

reduction, as well as safety improvements [13].

More recently, based on the seminal paper [14], feedback

controls have been proposed both in the case of deterministic

arrivals [15], or stochastic arrivals [16], [17]. Time is slotted

and at every time slot, a feedback controller decides the

phase to apply based on current queue length estimation.

This requires real-time queues estimation, but it enables to be

much more reactive than other traffic controllers and to have

stability guarantees. Reference [14] introduced the so-called

back-pressure control which computes the control to apply

based on queue lengths, and can achieve provably maximum

stability. This algorithm was originally applied to wireless

communication networks [18], [19], and some effort has been

required to apply the approach in the context of a network

of intersections [16], [17]. A key feature of this algorithm

is that it can be completely distributed over intersections, in

the sense that it can be implemented by running an algorithm

of complexity O(1), requiring only local information, at each

intersection.

However, the strong assumption of current back-pressure

traffic control algorithms is the unboundedness of queue ca-

pacities. Indeed, when the queue at the entry of an intersection

grows so much that it reaches the upstream intersection,

congestion will propagate: this is a non-negligible and easy to

observe phenomenon. The phenomenon is commonly referred

as blocking in queuing theory, and many blocking types can

be considered [20]. In worst-case scenario, blocking results in

deadlocks whose resolution can be of high complexity [21],

[22]. An off-line optimization of a pre-timed policy is pro-

posed in [9], [23]. The standard queuing network model with

fixed service times of servers [24] is modified to account

for blocking causing inter-queue interactions. The notion of

effective service rate aims at accounting for both service and

blocking. An expression of the blocking probability of each

queue, i.e., the probability of the queue to be full, can be

derived. The idea is to include in the optimized objective

function penalties for high blocking probability. The method

proved to be efficient to improve performance as congestion

increases. However, it is for off-line optimization of fixed-

cycle signals for a certain scenario (given arrival rates). In this

paper, we aim at building a feedback control that can adapt

on-line to varying situations. Some works applied to wireless

communication networks have proposed feedback controls that

can achieve maximum throughput under queue boundedness
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constraints [25]. However, they suppose the absence of arrivals

at internal nodes, cannot be easily implemented, and are thus

not suitable for our application.

This paper proposes to keep the fundamental idea of back-

pressure control, that is pressure computation at every node of

the network, in order to keep the resulting key benefits: ability

to be distributed over intersections and O(1) complexity.

However, we propose to take into account the queue capacities

for the computation of pressures. The idea is to normalize

pressures, so that full queues all exert the same normalized

maximal pressure independently from their capacity. Follow-

ing the idea of [25], this normalization is expected to decrease

the blocking probability.

The paper is organized as follows. Section II describes

the phase-based queuing network model. Section III presents

the current back-pressure traffic signal control of [17] and

proves its lack of work conservation and its inability to avoid

congestion propagation under finite queue capacities. Sec-

tion IV proposes the use of normalized pressures and proves

the benefits in terms of work-conservation and congestion

mitigation. Simulations of Section V show the efficiency of

the approach proposed in this paper and Section VI concludes

and opens perspectives.

II. MODEL

A. Queuing network topology

The network of intersections is modelled as a directed graph

of nodes (Na)a∈N and links (Lj)j∈L. Nodes represent roads

with queuing vehicles, and links enable transfers from node

to node. This is a standard queuing network model.
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Fig. 1: A junction with 4 incoming nodes and 4 outgoing nodes

which corresponds to the intersection depicted in Figure 2.

Every signalized intersection is modelled as a server manag-

ing a junction which consists of set of links. Junctions (Ji)i∈J

are supposed to form a partition of links. For every junction J ,

I(J) and O(J) denote respectively the inputs and the outputs

of J . Inputs (resp.outputs) of junction J are nodes N such

that there exists a link L ∈ J pointing from (resp. to) N .

The reader should consider the introduction of junctions in

the model as an overlay of the queuing network model.

For the sake of simplicity, we do not represent links in the

queuing network representation of Figure 1 and we assume

that at every junction, there exists a link from any input to any

output. If the link does not exist physically, the flow through

it will be always zero.

Every server maintains an internal queue for every in-

put/output, and server work enables to transfer vehicles from

an input to an output of the junction. As standard in queuing

network control, time is slotted, and each (time) slot k ∈ N

maps to a certain period of time. Due to routing of vehicles,

there are several queues at node Na and Qab(k) denotes the

number of vehicles at node Na in slot k waiting to leave node

Na for Nb. Qa(k) :=
∑

b Qab(k) denotes the total number of

vehicles waiting at node Na.

B. Arrival and routing processes

Let Aa(k) denote the number of vehicles that exogenously

arrive at node Na during slot k. We assume that the arrival

process Aa(k) is rate-convergent with rate λa which represents

the expected number of arrivals per time slot at node Na

in the long-term. The arrival process is not controlled, it is

an exogenous process. There are also endogenous vehicle

transfers allowed by links at junctions. We let fca(k) denote

the number of vehicles leaving Nc for Na during slot k. When

a vehicle enters node Na at slot k endogenously (originating

from another node), or exogenously (inserted into the network

through the arrival process), it increments one of the queues

Qab(k), unless it leaves the network at Na. We assume that the

ratio of vehicles added to Qab(k) is rate-convergent with rate

rab ∈ [0, 1]. Rates rab represent the long-term routing ratios of

vehicles entering Na. Because some vehicles leave the network

at Na and are not added to some queue, the routing ratios do

not necessarily sum to 1 and 1 −
∑

b rab ≥ 0 represents the

exit rate at node Na. The queue dynamics is as follows:

Qab(k+1) = Qab(k)−fab(k)+rab(k)

(

∑

c

fca(k) +Aa(k)

)

,

(1)

where rab(k) is rate-convergent with rate rab.

C. Phase-based control

At every time slot, the service offered by servers at junctions

is controlled by activating a given signal phase pi at every

junction Ji from a predefined finite set of feasible phases Pi.

When phase pi is activated during one slot, µab(pi) represents

the maximum number of vehicles transferred from Na to Nb

during that slot. Figure 2 depicts the 4 typical phases of a

4 inputs/4 outputs junction. Each global phase p = (pi)i∈J

results in a different service µ(p).
Two phenomena may affect the actual number of vehicles

being transferred. First, only the vehicles which are currently

at a queue at the beginning of the time slot can leave the

queue during that slot. Second, and this is the phenomenon

highlighted in this paper, above a certain queue length, a node

is full and cannot accept vehicles any more.
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Fig. 2: A typical set of feasible phases at a junction. For phase

(c), we have µ26(p
(c)) > 0 and µ37(p

(c)) > 0.

Let p(k) denote the phase control through time (the only

controlled variable), the number of vehicles transferred from

Na to Nb during slot k is:

fab(k) = δ(Qb(k), Cb)min(Qab(k), µab(p(k)) (2)

The function δ(q, c) models blocking due to downstream

congestion, and returns 1 if q < c, and 0 else. Cb is referred

as the capacity of node Nb: it is the maximum queue length

from which the node cannot accept vehicles any more. We say

that node Nb is full at time slot k if Qb(k) ≥ Cb. The blocking

phenomenon is illustrated in Figure 3. Note that this simple

binary model is conservative because in reality, even if a node

is full at the beginning of the time slot, some vehicles may be

able to enter this node if the downstream junction gives the

right-of-way to vehicles in that node. This effect will not be

considered in this paper.

Fig. 3: Since the red-colored middle node is full, it cannot

accept vehicles any more, even if the traffic light gives the

right-of-way to vehicles going to this node.

III. FAILING OF BACK-PRESSURE CONTROL UNDER

BOUNDED QUEUES CONSTRAINTS

A. Back-pressure control

Back-pressure control consists of a feedback control law

that decides the phase to apply at every time slot based on

current queues lengths. Let φ denote the control law, the phase

control p satisfies at every time slot k:

p(k) = φ(Q(k)) (3)

where Q(k) denotes the network state at slot k, that is the

queues lengths matrix [Qab(k)]a,b∈N . The control law maps

the current network state to the phase to apply. The back-

pressure control law is defined component-wise for each junc-

tion as described by Algorithm 1. It only requires aggregated

queues lengths Qa(k) and binary variables dab(k) ∈ {0, 1}
indicating the presence of vehicles waiting at Na to leave Na

for Nb. The latter can be measured using loop detectors on

the dedicated lanes at the entry of the junction.

Algorithm 1 Back-pressure control law at junction Ji

for Na ∈ I(Ji) ∪ O(Ji) do

Πa(k)← Pa (Qa(k))
end for

for Na ∈ I(Ji), Nb ∈ O(Ji) do

5: Wab(k)← dab(k)max (Πa(k)−Πb(k), 0)
end for

pi(k)← arg max
pi∈Pi

∑

a,b

Wab(k)µab(pi)

return Phase pi(k) to apply in time slot k at junction Ji

The idea of back-pressure control is to compute pressures at

every node of the network based on queue lengths and to allow

flows with a high upstream pressure and a low downstream

pressure, like opening a tap. Current back-pressure traffic

signal control [17], [16] uses Algorithm 1 with linear pressure

functions Pa(Qa) = Qa: the pressure exerted by a node equals

its queue length. Algorithm 1 proceeds as follows:

• First, pressures at input/output nodes are computed. If

linear pressures are used, the pressure exerted by node

Na at slot k is Pa(Qa(k)) = Qa(k)
• Then, the pressure difference associated to each flow from

an input Na to an output Nb of the junction is computed,

it equals max (Πa(k)−Πb(k), 0), and it is multiplied by

dab(k) to account for the presence/absence of vehicles

waiting at Na willing to leave Na for Nb.

• For each phase pi ∈ Pi, the total pressure release

allowed by pi is computed: it equals the sum of pressure

differences through each link of the junction weighted

by the flow of vehicles that can be transferred through

the corresponding link when phase pi is activated, that is
∑

a,b

Wab(k)µab(pi)

• Finally, the returned phase pi(k) is the phase pi maxi-

mizing the weighted sum
∑

a,b

Wab(k)µab(pi).

This control law is proved to be stability-optimal under infinite

capacities, i.e., the queuing network is stabilized for all arrival
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rates that can be stably handled considering all control poli-

cies. The two key properties of back-pressure control are its

ability to be distributed over junctions and itsO(1) complexity.

Under bounded queues constraints, with linear pressure

functions, pressure at Na saturates at Pa = Ca for Qa = Ca.

In the following, we show that this saturation at different levels

for every node may result in a loss of work conservation and

congestion propagation as presented in the sequel.

B. Loss of work conservation

First of all, the notion of work and work-conservation is

defined in our context. We say that the server at junction

Ji works during slot k if there are transfers through links

of the junction during the slot. A control is work-conserving

if the existence of an input Na and an output Nb such that

Qab(k) > 0 and Qb(k) < Cb is sufficient to ensure that the

server of the junction works during slot k. A loss of work-

conservation is clearly a sign of inefficiency. Due to limited

queues capacities, back-pressure control under linear pressure

functions is not work-conserving as stated in Theorem 1, with

a concrete example depicted in Figure 4.

Theorem 1 (Loss of work-conservation under back-pressure).

Under bounded queues constraints, back-pressure control is

not work-conserving in the general case.

Proof. Consider the network of Figure 4. Suppose that the

middle junction has two feasible phases: pab with µab(pab) >
0, and pcd with µcd(pcd) > 0. Suppose that at time slot

k, Qb(k) = Cb, Qa(k) > Cb and Qc(k) < Qd(k). Then,

Wab(k)µab(pab) > 0 and Wcdµcd(pcd) = 0. Hence, the phase

to apply at the middle junction computed by Algorithm 1 is

pab. Since, Qb(k) = Cb, Equation (2) implies that fab(k) = 0.

As a result, the middle junction will not work, because the

selected phase is pab, but due to downstream congestion,

transfers to Nb are not feasible. However, choosing phase pcd
would have enabled the server to work.

Qa > Qb
Qb

Qd

Qc < Qd

Fig. 4: Example of loss of work conservation of back-pressure

control with linear pressure functions.

The proved loss of work conservation is an important

property since the subsequent inefficiency results in congestion

propagation as highlighted in the following.

C. Congestion propagation and deadlocks

As depicted in Figure 5, loss of work conservation may

result in congestion propagation, both to the node which has

the right-of-way but cannot empty because of downstream

congestion, and to the node which has not the right-of-way.

Qa > Qb Qb

Qd

Qc < Qd

Fig. 5: Congestion propagation due to a loss of work conser-

vation. Since Nb is full fab(k) = 0 and Na is not emptied,

so congestion propagates to Na. Moreover, Nc is also not

emptied because vehicles do not have the right-of-way under

the selected phase, so congestion propagates to both nodes Na

and Nc.

In worst-case scenario, such congestion propagation can

lead to deadlocks, as depicted in Figure 6.

Qa
1
 > 2Qb

1

Qa
2
 > 2Qb

2

Qa
3
 > 2Qb

3

Qb
3

Qb
2Qb

1

Fig. 6: A deadlock for back-pressure control. Q1
a, Q2

a and Q3
a

will be ever growing.

IV. CAPACITY-AWARE TRAFFIC CONTROL

The following presents our approach to take into account

the limited queues capacities by using normalized pressures

in back-pressure control to enforce work-conservation and

mitigate congestion propagation. First of all, the reasons that

motivate devising convex normalized pressures are introduced

in the sequel.

A. Purpose of a convex normalized pressure and criteria

1) Purpose of a convex pressure: When a node approaches

full occupancy, every additional vehicle is more and more

problematic as the queue grows. That is why it makes sense

to define a pressure such that the marginal pressure, i.e., the

increase in pressure due to an additional vehicle, rises as

the queue grows. This remark justifies the use of a convex

pressure.
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2) Purpose of a normalized pressure: When a node Nb

is full, it does not make sense to have a node Na such that

Pa − Pb > 0, since the "tap" associated to the flow from Na

to Nb cannot be opened. That is why we propose to normalize

the pressures so that any full node will exert a pressure that

equals 1, while an empty node does not exert any pressure.

The simplest normalization that could be carried out would

consist of using relative pressure functions Pa(Qa) = Qa/Ca.

However, in order to have strictly convex pressures and to

respect the fairness requirement proposed below, the normal-

ization will be slightly more complex.

3) Requirement for fairness at low traffic density: At low

traffic density, there is no reason to be unfair. Indeed, even

a random choice of phases would stabilize the network. So,

unfairness would not be justified by any global stabiliza-

tion goal. Suppose that we use relative pressures functions

Pa(Qa) = Qa/Ca, then an additional vehicle causes an in-

crease in pressure of 1/Ca, i.e., as high as capacity decreases.

However, at low traffic density the marginal pressure should be

uniform over nodes. We say that pressure functions {Pa(Qa) :
a ∈ N} are fair at low traffic density if:

∃K > 0 : ∀a ∈ N ,
dPa

dQa

(0) = K (4)

4) Requirements for stability guarantees conservation:

Finally, it is important to ensure that as capacities grow to

infinity, the original back-pressure control is recovered, to take

advantage of the stability guarantees in the context of infinite

capacities. That is why a requirement for the pressure function

Pa(Qa) is to be linear for Qa/Ca → 0. If pressure functions

are fair, Pa(Qa) = KQa+oa(Qa/Ca) in Landau notation, and

the pressure function is linear at low occupancy. As a result, if

the queues are always much under maximum occupancy, i.e.,

if the infinite queues capacities assumption is valid, the back-

pressure control and its stability guarantees are recovered.

Now we have presented criteria that should respect the

modified pressure in order to be capacity-aware and fair at

low traffic density, we propose in the following a convex

normalized pressure which respects the above criteria.

B. Example of normalized pressure

The proposed pressure function should just be considered

as an example of a pressure function fulfilling the presented

requirements:

Pa(Qa) = min






1,

Qa

C∞

+
(

2− Ca

C∞

)(

Qa

Ca

)m

1 +
(

Qa

Ca

)m−1






(5)

At low occupancy, the pressure at node Na is linear:

Pa(Qa) ≃ Qa/C∞, so pressure functions are fair and re-

spect the requirement for stability guarantees conservation.

The function is convex: the slope of the pressure increases

as occupancy grows. Pressure over congestion threshold is

normalized: ∀a ∈ N , ∀Qa ≥ Ca, Pa(Qa) = 1. The shape of

pressure functions for two different capacities is depicted in

Figure 7. One can observe that the pressure function leaves

the initial linear behavior at lower occupancy as capacity

decreases.

The parameters m and C∞ determine the shape of pressure

functions; m locates the transition from the linear regime,

while C∞ determines the slope of the pressure at low oc-

cupancy, and is such that a node which capacity is C∞ will

have a linear pressure. We assume that all capacities are lower

than C∞ and m > 1.

 0

 0.5

 1

 0  25  50  75  100

P
a

Qa

Ca=50
Ca=100

saturation

Fig. 7: Plot of the convex normalized pressure function with

parameters C∞ = 500 and m = 4 for two different congestion

thresholds Ca = 50 and Ca = 100.

C. Work-conservation

As expected, pressure normalization enables to ensure work-

conservation. This can be easily visualized in Figure 8 where

one can observe that the deadlock of Figure 6 is resolved.

In the following, we prove Theorem 2 which states work-

conservation under convex normalized pressure.

Theorem 2 (Work-conservation under normalized pressures).

Assume that pressure functions Pa are increasing functions

taking values in [0, 1], Pa(0) = 0 and Pa(Ca) = 1. Assume

also that in case of equality, the argmax of Line 7 in

Algorithm 1 privileges phases pi such that there exists a, b
with Qab(k) > 0, Qb(k) < Cb and µab(pi) > 0. Then,

back-pressure control using normalized pressures is work-

conserving.

Proof. Suppose that back-pressure control using normalized

pressure functions is not work-conserving. Then, there exists

a server at a junction Ji which does not work during some

slot k, while there exists a phase p̃i such that for some a, b,
µab(p̃i) > 0, Qab(k) > 0 and Qb(k) < Cb.

Let pi(k) denote the phase at junction Ji computed by

Algorithm 1. If the server at the junction does not work

during slot k under phase pi(k), then for all c, d such that
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µcd(pi(k)) > 0 we have either Qcd(k) = 0, or Qd(k) ≥
Cd (otherwise, the server would work). In the first case,

dcd(k) = 0, and in the second case, Πd(k) = 1. Since

Wcd(k) = dcd(k)max (Πc(k)−Πd(k), 0) and Πc(k) ≤ 1, we

necessarily have Wcd(k) = 0. As a result, for phase pi(k), we

have
∑

cd Wcd(k)µcd(pi(k)) = 0.

On the other hand, by positivity of flows and weights, we

have
∑

cd Wcdµcd(p̃i) ≥ 0. If
∑

cd Wcd(k)µcd(p̃i) > 0, it is

absurd because p̃i should have been selected by Algorithm 1

instead of pi(k). If
∑

cd Wcd(k)µcd(p̃i) = 0, it is also absurd

because
∑

cd Wcd(k)µcd(p̃i) =
∑

cd Wcd(k)µcd(pi(k)), and

again, p̃i should have been selected by Algorithm 1 instead of

pi(k) because an equality holds but contrary to pi(k), there

exists for p̃i an input Na and an output Nb with µab(p̃i) > 0,

Qab(k) > 0 and Qb(k) < Cb (see the second assumption in

the theorem).

P = 1

P = 1

P = 1

P < 1

P < 1

P < 1

P < 1

P < 1 P < 1

Fig. 8: Work-conservation and deadlock resolution using nor-

malized pressure functions. The pressure at full nodes equals

1, while it is strictly lower than 1 at non-full nodes. As a

result, the phase computed by Algorithm 1 enables to empty

full nodes.

V. SIMULATION RESULTS

In this section, we compare the performance of our pro-

posed capacity-aware back-pressure control with current back-

pressure [17], [16] and a non-optimized fixed cycle traffic light

given as reference.

A. Simulation setup

We have implemented our traffic signal control schemes on

the top of the traffic simulator SUMO (Simulation of Urban

MObility) [26]. SUMO is a widely recognized open-source

traffic simulation package including a traffic simulator as well

as supporting tools. The simulator is microscopic, inter- and

multi-modal, space-continuous and time-discrete, providing a

fair approximation of real world traffic scenarios.

We adopt a non-uniform network with several types of roads

and intersections (Figure 9). All roads are bi-directional. Roads

V2, V4, V6, V8, H1, H3, H5 and H7 possess only one lane on

each direction while the rest of roads have two lanes. Close to

the intersection, each road has an additional dedicated left-turn

lane. Due to the difference in the number of lanes, there are

four types of intersections (Figure 10). Each intersection has

four phases, as described in Figure 2. The network is open as

vehicles may leave and enter the system at all roads.

V1 V2 V3 V4 V5 V6 V7 V8

H1

H2

H3

H4

H5

H6

H7

H8

Fig. 9: The road network used for simulations.

Fig. 10: Four intersection types depending on the number of

lanes of incoming roads.

We generate traffic flows using ActivityGen available in
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SUMO supporting tools. ActivityGen considers the road net-

work as a city. It takes as inputs, in particular, the city pop-

ulation, the spatial distribution of the population, the working

zones, and produces traffic flows with on/off peak patterns.

In our network, we set the habitation area to northern city

(area in blue rectangle in Figure 9) and the working zone

resides in the southern city (area in red dashed rectangle in

Figure 9). We design the test scenarios with a city population

ranging from 10000 to 39000 people. We simulate the traffic

during a typical 3-hour morning peak (7 am to 9 am). An

exemplary histogram of vehicle arrivals in the morning peak

is given in Figure 11. All Vehicles adopt the default vehicle

model of SUMO. A python interface, called TraCI, is provided

Fig. 11: Vehicle arrivals histogram during the morning peak

hour (7 am to 9 am) when the city population is set to 33000.

in SUMO package which enables real-time traffic control. In

particular, queues lengths can be retrieved by deploying loop

detectors and the phase of traffic lights (more precisely the

program) can be updated. We implemented control schemes

as a python application. The application interacts with SUMO

through TraCI to retrieve queue lengths and to control traffic

lights. Three control schemes have been implemented:

1) Current back-pressure of [17], [16]: the duration of a time

slot is set to 15 seconds, including 4 seconds of yellow

phase.

2) Capacity-aware back-pressure: the capacity of roads is

computed using the lane length retrieved through TraCI

and the vehicle length and minimum gap. The length

of the default vehicle in SUMO is 5 meters and the

minimum gap is 2.5 meters. As a result, the capacity

of a lane is its length in meters divided by 7.5. The time

slot setting is the same as in back-pressure: 15 seconds,

and the parameters of the convex normalized pressure of

Equation (5) are m = 2 and C∞ = 200.

3) Non-optimized fixed cycle control: traffic lights periodi-

cally switch the applied phase following the sequence (a)-

(c)-(b)-(d) of Figure 2. A complete cycle lasts 60 seconds,

in which phase (a) and (b) last 16 seconds and phase

(c) and (d) last 6 seconds. The yellow time between two

phases is set to 4 seconds. The duration of phases is fixed

arbitrarily, it is not optimized.

A complete test run compares the three control schemes under

4 different populations. To ensure comparability, the same

random seed is given to ActivityGen module for all simulations

of a test run.

B. Results and analysis

Figure 12 depicts the evolution of the number of vehicles in

the network under four population scenarios. We also measure

periodically the total time spent by vehicles averaged over

vehicles currently in the network, which is a good performance

indicator, since users of the network want to minimize their

travel time. The evolution of the total time spent is depicted in

Figure 13. We observe that for a small population of 10000,

all control schemes have a similar performance, even if the

queue is slightly greater under the non-optimized fixed cycle

control scheme. For a population of 27000, back-pressure

and capacity-aware back-pressure have similar performance,

while they both outperform the fixed-cycle control scheme.

As population grows (leading to a growth of flows through the

network), for a population of 33000 and 39000, capacity-aware

back-pressure outperforms back-pressure control. Therefore,

the performance gain of capacity-aware back-pressure mainly

occurs at heavy load. Figure 14 presents a typical configuration

that may occur under back-pressure control, while it is alle-

viated in capacity-aware back-pressure control. Figure 14(a)

provides a bird eye view on the intersection between H5 and

V4. H5 is a 2-lane main street and V4 has only one lane. V4

has reached its full capacity downstream. Figure 14(b) offers

a closer look on the intersection. Since back-pressure control

does not consider the capacity of roads, the left turn phase

(phase (c) of Figure 2) of H5 is always activated because

the queue difference of corresponding lanes is among the

largest. However, it is inefficient and not work-conservative to

activate this phase as no vehicle can join the downstream node

of V4. Under the same situation, with capacity-aware back-

pressure control scheme, the pressure on the downstream node

of V4 will be 1, and phase (a) would be activated instead of

phase (c) allowing vehicles on H5 going straight to continue

their journey (work-conservation is recovered). This qualitative

analysis on the example of Figure 14 is in accordance with

quantitative results that show an increase in the average total

time spent for back-pressure for a population of 33000 and a

drift for a population of 39000 (see Figure 13).

VI. CONCLUSIONS AND PERSPECTIVES

In this paper, we adapt current back-pressure control to take

into account bounded queues constraints. The lack of work-

conservation of current back-pressure control is proved, and

identified as a source of congestion propagation through the

network. This phenomenon is caused by pressure saturation at

queues that have reached maximum capacity.

Normalized pressure functions are proved to ensure work-

conservation and this property tends to indicate that conges-

tion propagation will be mitigated. Simulations confirm the

efficiency of the approach. It is remarkable that performance

have been increased under bounded queues constraints as

indicated by simulations, while the ability to distribute the
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Fig. 12: Comparison of the total queue length in the network

through time under different population scenarios: 10000,

27000, 33000 and 39000. Time is in seconds. FC refers to

the fixed-cycle control scheme, BP to back-pressure and BPC

to capacity-aware back-pressure.

control over junctions and O(1) complexity properties have

been conserved.

However, for very high arrival rates, and in particular above

the capacity region, congestion will necessarily eventually

propagate through the network. In this case, vast areas of

the network will be congested and inter-junctions interactions

due to blocking tend to indicate that phase control should be

carried out on groups of junctions belonging to the same con-

gested region. Nevertheless, this task is of high complexity due

to the exponential complexity of inter-junctions interactions.

Finally, future works on back-pressure signal control should

consider the feedback loop between traffic signal control and

driver behaviour, and in particular driver routing choice. One

can expect drivers at a junction to change their routing choice

if the traffic light gives the right-of-way in favour of some

particular output nodes due to traffic conditions. It is of high

interest to take into account such behaviours, since they may

stabilize or unstabilize the queuing network.
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