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Capacity-aware back-pressure
traffic signal control

Jean Gregoire Emilio Frazzoli Arnaud de La Fortelle Tichakorn Wongpiromsarn

Abstract—The control of a network of signalized intersections
is considered. A queuing network with exogenous arrivals is
used for modelling. Previous works demonstrate that the so-
called back-pressure control provides stability guarantees under
infinite queues capacities. In this paper, we highlight the failing
of state-of-the-art back-pressure control under finite capacities
by identifying sources of non work-conservation and congestion
propagation. We propose the use of a normalized pressure
which guarantees work-conservation and mitigates congestion
propagation while ensuring fairness at low traffic density and
recovering original back-pressure as capacities grow to infinity.
This capacity-aware back-pressure control enables to handle
higher arrival rates, as indicated by simulation results, and keeps
the key benefits of back-pressure: ability to be distributed over
intersections and O(1) complexity.

I. INTRODUCTION

Congestion is one of the major problems in today’s
metropolitan transportation networks. Before investigating in-
vestments in order to enhance the capacity of the network or
policies to reduce the traffic, one must wonder whether the
network is used at its maximum capacity. Cars automation is
expected to enable much more precise and intelligent coor-
dination between vehicles, reducing congestion [1]. However,
automated cars are not currently ready for large commercial
distribution. Human-driven cars can only be coordinated by
traffic signals: more complex scheduling at intersections would
require automation to be safe. That is why it is of high interest
to study the theoretical maximum throughput of a network of
intersections coordinated by traffic lights.

Traffic lights at intersections alternate the right-of-way of
users (e.g., cars, public transport, pedestrians) to coordinate
competing flows. A particular set of feasible simultaneous
rights of way, called a phase, is decided for a period of time
called the time slot [2]. Controlling a traffic light consists of
designing rules to decide which phase to apply over time. It is
convenient to use a fixed pre-defined time slot length, whose
size corresponds to the minimal duration of a phase. Indeed,
due to the dynamic constraints of the vehicles and to ensure
safety, a phase cannot last less than a few seconds. When
the time slot size is pre-defined, controlling the network only
consists of deciding which phase to apply at every time slot.

Pre-timed policies activate phases according to a time-
periodic pre-defined schedule. There is much previous work on
designing optimal pre-timed policies. However, such policies
are not efficient under changing arrival rates which require
adaptive control. Most used adaptive traffic signal control
systems include SCOOT [3], SCATS [4], PRODYN [5],
RHODES [6], OPAC [7] or TUC [8]. These systems update

some control variables of a configurable pre-timed policy
on middle term, based on traffic measures, and apply it on
short term. Control variables may include phases, splits, cycle
times and offsets [2]. Such algorithms may differ in the way
optimization is carried out (e.g. linear/dynamic programming,
exhaustive enumeration) and the modeling (e.g., queuing
network model [9], cell transmission model [10], store-and-
forward [11], petri nets [12]). Many major cities currently
employ these systems which proved to be able to produce
various benefits, including travel time and fuel consumption
reduction, as well as safety improvements [13].

More recently, based on the seminal paper [14], feedback
controls have been proposed both in the case of deterministic
arrivals [15], or stochastic arrivals [16], [17]. Control is not
limited to the control variables mentioned above and the phase
to apply at every time slot is computed based on queue length
estimation. This requires real-time queues estimation, but it
enables to be much more reactive than other traffic controllers
and to have stability guarantees. [14] has introduced the so-
called back-pressure control which computes the control to
apply based on queues lengths, and can achieve provably
maximum stability. This algorithm was originally applied
to wireless communication networks [18], [19], and some
effort has been required to apply the approach in the context
of a network of intersections [16], [17]. A key feature of
this algorithm is that it can be completely distributed over
intersections, it requires only local information and it is of
O(1) complexity.

However, the strong assumption of state-of-the-art back-
pressure traffic control is the infiniteness of queues capacities.
Indeed, when the queue at the entry of an intersection grows so
much that it reaches the upstream intersection, congestion will
propagate: this is a non-negligible and easy to observe phe-
nomenon. The phenomenon is commonly referred as blocking
in queuing theory, and many blocking types can be consid-
ered [20]. In worst-case scenario, blocking results in deadlocks
whose resolution can be of high complexity [21], [22]. The
pre-timed policy proposed in [9] takes into account queue
capacities in the optimization explicitly. Some works applied
to wireless communication networks have proposed feedback
controls that can achieve maximum throughput under queue
boundedness constraints. However, they suppose the absence
of arrivals at internal nodes, cannot be easily implemented [23]
and are thus not suitable for our application.

This paper proposes to keep the the fundamental idea of
back-pressure control, that is pressure computation at every
node of the network, in order to keep the resulting key
benefits: ability to be distributed over intersections and O(1)
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complexity. After identifying the sources of inefficiency of
state-of-the-art back-pressure control, we introduce capacity-
aware pressure functions to mitigate congestion propagation.

The paper is organized as follows. Section II describes the
queuing network model. Section III presents the state-of-the-
art back-pressure traffic signal control of [17] and proves its
non work-conservation and its inability to avoid congestion
propagation. Section IV proposes the use of normalized pres-
sures and proves the benefits in terms of work-conservation
and congestion mitigation. Simulations of Section V show the
efficiency of the approach proposed in this paper and Section
VI concludes and opens perspectives.

II. MODEL

A. Queuing network topology

The network of intersections is modelled as a directed graph
of nodes (Na)a∈N and links (Lj)j∈L. The graph is referred
as the network graph. Nodes represent lanes with queuing
vehicles, and links enable transfers from node to node. This
is a standard queuing network model.
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Fig. 1. A junction with 4 incoming nodes and 4 outgoing nodes which
corresponds to the intersection depicted in Figure 2.

A key point for our application in traffic signal control is
that it is a multiple queues one server queuing network. Every
signalized intersection is modelled as a server managing a
junction which consists of set of links. Junctions (Ji)i∈J are
supposed to form a partition of links. For every junction J ,
I(J) and O(J) denote respectively the inputs and the outputs
of J . Inputs (resp.outputs) of junction J are nodes N such
that there exists a link L ∈ J pointing from (resp. to) N .
The reader should consider the introduction of junctions in
the model as an overlay of the queuing network model.

For the sake of simplicity, we do not represent links in the
queuing network representation of Figure 1 and we assume
that at every junction, there exists a link from any input to any
output. If the link does not exist physically, the flow through
this link will be constrained to zero.

Every server maintains an internal queue for every in-
put/output, and server work enables to transfer vehicles from
an input to an output of the junction. Due to routing of
vehicles, the internal queue at node Na is a vector Qa and
Qab(t) denotes the number of vehicles in the queue of node
Na entering Nb upon leaving Na. Time is slotted: t ∈ N, and
the aggregated queue length Qa(t) =

∑
bQab(t) denotes the

total number of vehicles at node Na considering all possible
routings after exiting Na.

In this paper, queues are supposed to have finite capacities.

Definition 1 (Queue capacity, Congested node). Every node
Na is supposed to have an intrinsic queue capacity, denoted
Ca. We say Ca is the capacity of Na.

If Qa > Qlim
a = Ca − ∆Qmax

a , we say Na is congested,
where ∆Qmax

a denotes the maximum endogenous input trans-
fer to Na in a time slot. We assume Ca ≥ ∆Qmax

a , and Qlim
a

is referred as the congestion threshold.

The definition of a congested node ensures that when a
node is not congested, it can always accept vehicles entries,
because the margin ∆Qmax

a equals the maximum endogenous
input transfer. Indeed, even if the output flow is zero, Qa will
not grow over Ca.

B. Phase-based control

At every time slot t, servers work, resulting in vehicles
transfers. It is convenient to consider the service matrix µ
defined below:

Definition 2 (Service rate, Flow). For all a, b ∈ N ,
• the service rate µab represents the transmission rate

offered by servers to transfer vehicles from Na to Nb, i.e.
the maximum number of vehicles transferred from Na to
Nb during the next time slot;

• the endogenous flow variable fab represents the actual
number of vehicles leaving Na and entering Nb.

Since the number of vehicles transferred is less or equal
to the transmission rate offered by the servers, the following
inequality holds:

fab ≤ µab (1)

Assumption 1 (Feasible vehicles transfers). Only the vehicles
which are currently at a node at the beginning of time slot t
can be transferred from that node to another node during slot
t.

Let define the input/output rate with regards to a given node
Na associated to a matrix g.

Definition 3 (Input rate, Output rate). Given a matrix g, for
all a ∈ N , the input rate gina and the output rate gouta with
regards to Na are defined as follows:

gina =
∑
b

gba (2)

gouta =
∑
c

gac (3)
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If µ is the service matrix, and f the flow matrix, the
following inequalities hold:

f ina ≤ µin
a (4)

fouta ≤ µout
a (5)

Under phase-based control, service rates are set by acti-
vating a given signal phase pi at every junction Ji from a
predefined finite set of feasible phases Pi at every time slot
t. Each global phase p = (pi)i∈J ∈ P results in a different
service µ(p) where P =

∏
i∈J Pi denotes the set of feasible

global phases.
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Fig. 2. A typical set of feasible phases at a junction. For example, supposing
that service rates equal 0 or 1, the non zero service rates for phase (a) are
µ31, µ36, µ24 and µ27

Assumption 2 (Phase-controlled service). If Na ∈ I(Ji) and
Nb ∈ O(Ji), the service rate µab satisfies:

µab ∈ {µab(pi) : pi ∈ Pi} (6)

The service matrix µ satisfies:

µ ∈ {µ(p) : p ∈ P} (7)

The abuse of notation in the above assumption is justified
by the fact that the service rate depends only on the applied
phase p, i.e. can also be considered as a function of p.

Figure 2 depicts the 4 typical phases of a 4 inputs/4 outputs
junction. We define linked nodes as nodes such that there exists
a feasible phase transferring vehicles from one node to the
other one:

Definition 4 (Linked nodes). Na and Nb are linked at junction
Ji if there exists a phase pi ∈ Pi such that µab(pi) > 0.

In this paper, for the sake of simplicity, we do not take
into account any exogenous variable z which would affect
the flow matrix associated to each phase, yielding a service
matrix µ(z, p). However, as proved in previous works [17],

[19], back-pressure properties can be extended to this case.
As a result, we assume that for each phase the service rate
from one node to another node is zero or equals the saturation
rate:

Assumption 3 (Binary service rates). For all a, b ∈ N , there
exists sab, the saturation rate from Na to Nb, such that for all
p ∈ P , µab(p) ∈ {0, sab}.

Finally, we make the following assumption which enables
to switch on/off the service from Na to Nb independently:

Assumption 4 (Service rates independence). For all phase
p ∈ P and for all a, b ∈ N ,

• there exists a phase p̃1 ∈ P such that µab(p̃1) = 0 and
for all (c, d) 6= (a, b), µcd(p̃1) = µcd(p),

• and there exists a phase p̃2 ∈ P such that µab(p̃2) = sab
and for all (c, d) 6= (a, b), µcd(p̃2) = µcd(p).

C. Exogenous arrivals

We assume that there is no exogenous arrival at nodes Na
for all a ∈ N . However, every node Na is associated to a node
N ′a of infinite capacity where exogenous arrivals occur, and
there is a link from N ′a to Na transferring exogenous arrivals
at N ′a into Na. Q′a denotes the length of the queue at N ′a and
the dynamics of the link from N ′a to Na is described below.
N ′a maintains a queue, and when an exogenous arrival

occurs during slot t,

• if Na is not congested at the end of slot t, the vehicle is
directly transferred into Na;

• otherwise, the vehicle stays in N ′a, until Na gets non-
congested at the end of time slot t′ > t.

Let Aa(t) denote the number of vehicles that exogenously
arrive at node N ′a during slot t.

Definition 5 (Rate convergent process). A process X(t) is rate
convergent with rate x if:

• limt→+∞
1
t

∑T−1
t=0 X(t) = x

• For any δ > 0, there exists an interval size T such that
for any initial time t0 and regardless of pas history, the
following condition holds: |E{ 1t

∑T−1
t=0 X(t)} − x| ≤ δ

Assumption 5 (Rate convergent arrival process). For all a ∈
N , the process Aa(t) is rate convergent with rate λa ≥ 0. For
all t, Aa(t) is independent from {Q(τ)}τ≤t.

Finally, we assume that controllers do not have access to
buffer queues lengths Q′a and can only rely on the internal
queue matrix Q to compute the control to apply. This is a
realistic assumption in the absence of vehicle-to-infrastructure
communications.

D. Blocking

We assume that only balanced flows with regards to a node
are admissible as soon as this node is congested, as stated
in the definition below. Basically, if a node is congested, the
incoming flow must be lower than the outgoing flow.
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Definition 6 (Admissible flow). The flow f is admissible if
for all congested nodes Na,

f ina ≤ fouta (8)

Algorithm 1 transforms any flow matrix f into a feasible
flow matrix while minimizing flow variables removals as stated
by Property 2. The principle of flow reduction is depicted in
Figure 3.

Algorithm 1 Optimal flow reduction
Require: Flow vector f

function OPTIMALFLOWREDUCTION
do

recall← false
for a s.t. Na is congested do

5: while f ina > fouta do
Choose any b such that fba > 0
fba ← fba −min(fba, f

in
a − fouta )

recall← true
end while

10: end for
while recall
return f

end function

Property 1 (Flow reduction algorithm termination and cor-
rectness). Algorithm 1 terminates and the returned flow is
admissible.

Proof. As long as Algorithm 1 is running, at every iteration of
the do loop there exists a congested node Na such that f ina >
fouta . Since flow variables are integers, at every iteration, at
least one flow variable fba is decreased of one unit at Line
7. As a result, after at most

∑
ab fab iterations, Algorithm 1

necessarily terminates, because f would be zero and for all
nodes Na, 0 = f ina ≤ fouta = 0. Moreover, if Algorithm 1
terminates, then for all congested nodes Na, f ina ≤ fouta , so
the returned flow is admissible.

Property 2 (Optimal flow reduction). For any flow f , Al-
gorithm 1 returns an optimally reduced admissible flow f?

associated to f :
Assume a flow matrix f̃ satisfies:

f̃ 6= f̃? (9)
∀a, b ∈ N , f̃ab ≤ fab (10)
∀a, b ∈ N , f̃ab ≥ f?ab (11)

Then f̃ is not admissible.

Proof. If f? = f , the returned flow is obviously optimally
reduced. Suppose f? 6= f and there exists an admissible flow
f̃ satisfying Equations 9, 10 and 11. Say f̃ab > f?ab. Equation 9
implies that f?ab 6= fab. Then, Nb is necessarily congested, the
flow variable from Na to Nb has necessarily been reduced at
Line 7 of Algorithm 1, and by construction, we have f?b

out =
f?b

in. As a consequence, if Equations 10 and 11 are satisfied,
we necessarily have f̃ inb > f̃outb and f̃ is not admissible. Note

that there is not a unique optimally reduced flow, but several,
and Algorithm 1 returns one of them.

In reality, if the traffic signal gives the right-of-way to
vehicles going to a congested node, and if the node is still
congested at the end of the time slot, some vehicles could
stay stuck in the intersection area with huge consequences on
the flow in the next time slot. This can be partly prevented
by rules of the road. That is why Algorithm 1 should also be
considered as an operation which should be carried out on the
service matrix at the beginning of every time slot in order to
remove the right-of-way to vehicles which risk to get stuck in
the intersection at the end of the time slot.

Fig. 3. Optimal flow reduction by Algorithm 1. Since the red colored middle
node is congested and not emptied by the phase at the right junction, the flow
filling this node at the left junction is removed.

In the remainder of the paper, we assume that the service
µ(p(t)) associated to a control p(t) can be non-admissible, but
the flow f(t) applied at junctions will be reduced by Algorithm
1 to be admissible. Note that Algorithm 1 does not specify a
deterministic way to choose the order to browse congested
nodes at Line 4, nor the way to choose b at Line 6. In the
remainder of the paper, we assume that the implementation
of the algorithm is deterministic and the flow returned by
Algorithm 1 is fixed for a given input.

Note that the above model gives priority to endogenous flow
since exogenously arriving vehicles are accepted to "really
enter" the network if and only if the node is non-congested at
the end of the time slot, i.e. after endogenous arrivals.

E. Routing model and network dynamics

When a quantity of vehicles arrives at node Na ∈ I(Ji)
during slot t, exogenously and endogenously, it is split and
added into queues Qab, b ∈ O(Ji), according to an exogenous
routing process R(t)

ab , defined for all a, b ∈ N .

Assumption 6 (Rate convergent routing process). The arrival
process and the routing process are independent, and for all
t, R(t)

ab is independent from {Q(τ)}τ≤t. R
(t)
ab takes an integer,

returns an integer, and for X ∈ N,
∑
bR

(t)
ab (X) ≤ X .

For all process X(t) such that for all t, R(t)
ab is independent

from {X(τ)}τ≤t, there exists a rate rab ≥ 0 for all a, b ∈ N
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such that R(t)
ab (X(t)) − rabX(t) is rate convergent with rate

0. As a consequence of the above assumptions:∑
b

rab ≤ 1 (12)

Note that 1 −
∑
b rab represents the exit rate of vehicles

entering node Na. One could consider an additional node ω
representing the external world playing the role of sink of the
exit flow from Na at rate raω = 1−

∑
b rab

The latter routing assumption closes our model, and the
dynamics of the network is now fully described. Since service
rates depend only on the phase applied at every junction,
controlling the network consists of controlling the phase
applied at every junction.

Definition 7 (Control). A control p(t) for the queuing network
returns the phase to apply at every junction during slot t. If
p(t) depends only on the state Q(t) of the network at time
slot t, p(t) is a feedback control.

The network dynamics under control p follows:

Q′a(t+ 1) = max(0,

Qa(t) + µin
a (p(t))− µout

a (p(t)) +Q′a(t) +Aa(t)− Ca)
(13)

Qab(t+ 1) = Qab(t)

+R
(t)
ab

(
Q′a(t) +Aa(t)−Q′a(t+ 1) + f ina (t)

)
− fab(t)

(14)

The flow f(t) is the optimally reduced flow returned by
Algorithm 1 taking as input flow g(t) defined below:

∀a, b ∈ N , gab(t) = min(Qab(t), µab(p(t))) (15)

If p(t) is a feedback control, i.e. a function of Q(t), the
process (Q(t), Q′(t)) is a Markov chain with long-term sta-
tionary transition probabilities, which depend on the feedback
control.

III. FAILING OF BACK-PRESSURE CONTROL UNDER
BOUNDED QUEUES CONSTRAINTS

A. Back-pressure control

[16] proposes a stability-optimal back-pressure control un-
der infinite capacities. However, the proposed control requires
complete knowledge of the queues lengths matrix Q(t) and
knowledge of the routing rates. In contrast, the back-pressure
control proposed in [17] uses only the aggregated queues
lengths Qa(t) =

∑
bQab(t). For our application, a complete

knowledge of the queues lengths matrix Q(t) is not realistic
because dedicated lanes for turning vehicles are only at the
proximity of the junction. Farther, all vehicles are gathered
and the controller does not have access to the direction
of every vehicle in the absence of vehicle-to-infrastructure
communications.

The back-pressure control with unknown routing rates of
[17] is defined by Algorithm 2. It computes the phase to apply
at every time slot without requiring neither routing rates nor

complete knowledge of queues lengths matrix Q(t) and takes
as inputs the aggregated queues lengths Qa(t) =

∑
bQab(t).

However, it still requires vehicle detectors variables dab(t) ∈
[0, 1] defined below:

dab(t) =
max (sab, Qab(t))

sab
(16)

The variable dab(t) is easier to measure than Qab(t) because
it only requires the knowledge of Qab(t) in the range [0, sab],
i.e. at proximity of the junction. Note that given the binary
service rate assumptions, the following equality holds in the
absence of blocking:

fab(t) = dab(t)µab(p(t)) (17)

Algorithm 2 Back-pressure control
Require:

Aggregated queues lengths Qa(t) for all a ∈ N ,
Pressure functions Pa(Qa) for all a ∈ N ,
vehicle detectors variables dab(t),
Phase selection policy φ in case of equality.

5: function BACKPRESSURECONTROL
for i ∈ J do

for a ∈ Ni do
Πa(t) = Pa [Qa(t)]

end for
10: for a ∈ Ni do

Wab(t) = dab(t) max (Πa(t)−Πb(t), 0)
end for
p?i (t)← argφ max

pi∈Pi

∑
a,b∈Ni

Wab(t)µab(pi)

end for
15: return Phase p?(t) to apply in time slot t

end function

Algorithm 2 is a generic version of back-pressure. Indeed,
it does not specify neither pressure functions, nor the policy
φ that decides which phase to select at the arg max of Line
13 when an equality holds. For example, the policy φrandom

consists of selecting randomly any phase which maximizes the
weighted sum.

The two below properties expose two key benefits of back-
pressure control: ability to be distributed over junctions and
O(1) complexity.

Property 3 (Distribution over junctions). Back-pressure con-
trol computation can be distributed at every junction, requiring
only inputs/outputs queues lengths.

Property 4 (O(1) complexity). Algorithm 2 computes back-
pressure control in O(1) complexity.

State-of-the-art back-pressure traffic signal control [17] uses
Algorithm 2 with linear pressure functions Pa(Qa) = Qa.
It is proved in [16] and [17] that stability guarantees of
back-pressure control can be obtained under infinite queues
capacities.

However, under bounded queues constraints, pressure at Na
saturates at Pa = Ca for Qa = Ca. In the following, we
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show that this saturation at different levels for every node may
result in non work-conservation and congestion propagation as
presented in this section.

B. Non work-conservation

First of all, let define the notion of work and work-
conservation in our context.

Definition 8 (Work). We say that the server at junction Ji
works during slot t if flow variables at the junction are not
all zeros during the slot.

Definition 9 (Work-conserving control). A control is work-
conserving if a sufficient condition for the server of a junction
to work during slot t is the existence of an input Na and an
output Nb such that Qab(t) > 0 and Qb(t) < Qlim

b .

Note that this definition does not mean that every server
will work if there exists one control under which it works.
Indeed, if all outputs are congested, it is still possible for the
server to work, at the condition that other servers empty one
of the congested outputs in the same time.

Non work-conservation is a sign of inefficiency for a
given control. Due to limited queues capacities, back-pressure
control under linear pressure functions is not work-conserving
as stated in Theorem 1, with a concrete example depicted in
Figure 4.

Theorem 1 (Non work-conservation under back-pressure).
Under bounded queues constraints, the back-pressure control
with unknown routing rates as defined by Algorithm 2 is not
work-conserving in the general case.

Proof. Consider the network of Figure 4. Suppose that the
middle junction has two feasible phases: pab with a unique
non zero service rate from Na to Nb, and pcd with a unique
non zero service rate from Nc to Nd (assume similarly that the
right junction has two feasible phases pbg and pef ). Suppose
that Nb is congested, Nd is non-congested, Qa > Cb, Qc <
Qd, Qe > Qf and Cb < Qg . Then,

∑
a′b′ Wa′b′µa′b′(pab) =

Wabµab(pab) and
∑
a′b′ Wa′b′µa′b′(pcd) = Wcdµcd(pcd) =

0. So, the phase to apply at the middle junction computed
by Algorithm 2 is pab. Similarly, the phase to apply at the
right junction computed by Algorithm 2 is pef . Since, Nb
is congested and not emptied by the right junction, the flow
reduction to an admissible flow will remove the flow variable
from Na to Nb. As a result, the middle junction will not work.
However, choosing phase pcd would have enabled the server
to work.

The proved non work-conservation is an important property
since the subsequent inefficiency results in congestion propa-
gation as highlighted in the following.

C. Congestion propagation and deadlocks

As depicted in Figure 5, if the phase returned by the control
is not admissible, it will result in congestion propagation, both
to the node which has the right-of-way but cannot empty
because of downstream congestion, and to the node which
has not the right-of-way.

Qa > Qb Qb

Qd

Qc < Qd
Qe > Qf

Qf

Qg

Fig. 4. Example of non work-conservation. Nb is congested so its occupancy
Qb is bounded to Cb. Na is not congested and has a higher capacity that
Na, so its occupancy Qa is greater than Qb. Given current queues lengths,
the phase p computed by 2 using linear pressures is such that µoutb (p) = 0
and µab(p) > 0. Nb being congested, the reduction to an admissible flow
will remove flow µab(p) and the middle node of the drawing will not work.

Qa > Qb Qb

Qd

Qc < Qd
Qe > Qf

Qf

Qg

Fig. 5. Congestion propagation due to non work-conservation. Since Nb is
congested and not emptied, flow µab(p) is removed, Na is not emptied, so
congestion propagates to Na. Moreover, Nc is also not emptied, so congestion
propagates to both nodes Na and Nc.

In worst-case scenario, such congestion propagation can
lead to deadlocks, as depicted in Figure 6.

Qa
1 > 2Qb

1

Qa
2 > 2Qb

2

Qa
3 > 2Qb

3

Qb
3

Qb
2Qb

1

Fig. 6. A deadlock for back-pressure control. All applied phases are
inadmissible and Q1

a, Q2
a and Q3

a will be ever growing.

One must distinguish between weak deadlocks as the one
depicted in Figure 6 that can be easily locally resolved by
applying an appropriate phase control, and strong deadlocks
that cannot be resolved at all due to routing decisions of
vehicles. The two sorts of deadlocks are formally defined
below:
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Definition 10 (Weak/Strong deadlock). A state Q0 is a strong
deadlock if for all possible controls p, the Markov chain with
initial state Q0 under null arrival process A(t) = 0 doest not
reach zero in finite time, i.e.:

∀t ≥ 0, (Q,Q′)(t) 6= 0 (18)

A state Q0 is a weak deadlock for the control p̃ if the Markov
chain under control p̃ with initial state Q0 and null arrival
process A(t) = 0 doest not reach zero in finite time.

Note that a state can be a weak deadlock for a given control
and not for another one. In this paper, we modify state-of-the-
art back-pressure control to mitigate congestion propagation
by ensuring work-conservation. Congestion mitigation is ex-
pected to inhibit deadlocks to occurs due to less blocking.

IV. CAPACITY-AWARE TRAFFIC CONTROL

The following presents our approach for taking into account
the limited queues capacities by using normalized pressures in
back-pressure control. First of all, let introduce the reasons that
motivate devising convex normalized pressures.

A. Purpose of a convex normalized pressure and criteria

1) Purpose of a convex pressure: When a node approaches
full occupancy, every additional vehicle is more and more
problematic as the queue grows. That is why it makes sense
to define a pressure such that the marginal pressure, i.e. the
increase in pressure due to an additional vehicle, rises as
the queue grows. This remarks justifies the use of a convex
pressure.

2) Purpose of a normalized pressure: When a node Nb is
congested, it does not make sense to have a node Na such that
Pa − Pb > 0, since the "tap" associated to the flow from Na
to Nb cannot be opened. That is why we propose to normalize
the pressures so that any congested node will exert a pressure
that equals 1, while an empty node does not exert any pressure.

The most simple normalization that could be carried
out would consist of using relative pressure functions
Pa(Qa) = Qa/Q

lim
a . However, in order to have convex pres-

sures and to respect the fairness requirement proposed below,
the normalization will be slightly more complex.

3) Requirement for fairness at low traffic density: At low
traffic density, there is no reason to be unfair. Indeed, even
a random choice of phases would stabilize the network. So,
unfairness would not be justified by any global stabiliza-
tion goal. Suppose that we use relative pressures functions
Pa(Qa) = Qa/Q

lim
a , then an additional vehicle causes an in-

crease in pressure of 1/Qlim
a , i.e. as high as capacity decreases.

That is why we define fair pressure functions, so that at low
traffic density the marginal pressure should be uniform over
nodes.

Definition 11 (Fair pressure functions at low traffic density).
We say that pressure functions {Pa(Qa) : a ∈ N} are fair at
low traffic density if:

∃K > 0 : ∀a ∈ N , dPa
dQa

(0) = K (19)

4) Requirements for stability guarantees conservation:
Finally, it is important to ensure that as capacities grow to
infinity, the original back-pressure control is recovered, to take
advantage of the stability guarantees in the context of infinite
capacities. That is why a requirement for the pressure function
Pa(Qa) is to be linear for Qa/Ca → 0. If pressure functions
are fair, Pa(Qa) = KQa+oa(Qa/Ca) in Landau notation, and
the pressure function is linear at low occupancy. As a result, if
the queues are always much under maximum occupancy, i.e.
if the infinite queues capacities assumption is valid, the back-
pressure control and its stability guarantees are recovered.

Now we have presented criteria that should respect the
modified pressure in order to be capacity-aware and fair at
low traffic density, we propose in the following a convex
normalized pressure which respects the above criteria.

B. Example of normalized pressure

The proposed pressure function should just be considered
as an example of a pressure function fulfilling the presented
requirements:

Pa(Qa) = min

1,

Qa

C∞
+
(

2− Qlim
a

C∞

)(
Qa

Qlim
a

)m
1 +

(
Qa

Qlim
a

)m−1
 (20)

At low occupancy, the pressure at node Na is linear:
Pa(Qa) ' Qa/C∞, so pressure functions are fair and re-
spect the requirement for stability guarantees conservation.
The function is convex: the slope of the pressure increases
as occupancy grows. Pressure over congestion threshold is
normalized: ∀a ∈ N ,∀Qa ≥ Qlim

a , Pa(Qa) = 1. The shape
of pressure functions for two different capacities is depicted
in Figure 7. One can observe that the pressure function leaves
the initial linear behaviour at lower occupancy as capacity
decreases.
m and C∞ are two parameters of the pressure functions. m

configures the shape of the transition from the linear regime.
C∞ configures the slope of the pressure at low occupancy and
is such that a node which capacity is C∞ will have a linear
pressure. We assume that all capacities are lower than C∞ and
m > 1.

C. Effect on queues length distribution

Suppose we apply back-pressure to a network of infinite
queues capacities using pressure functions of Equation 20, Ca
being only considered as positive numbers associated to every
node. Assume the network is stabilized. Then, compared to
the behaviour under linear pressure functions Pa(Qa) = Qa,
the effect of the normalized pressures is a modification of
the distribution of queues lengths over nodes. In particular,
time averaged queues lengths can be expected to be smaller
than under linear pressure for low capacity nodes, and higher
for high capacity nodes. This modification of queues lengths
distribution is expected to decrease the probability of conges-
tion at low capacity nodes, resulting in less blocking and thus
higher flows.
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Fig. 7. Plot of the convex normalized pressure function with parameters
C∞ = 500 and m = 4 for two different congestion thresholds Qlim

a = 50
and Qlim

a = 100.

Of course, we cannot claim that the proposed control
stabilizes the system under finite capacities constraints. Such a
stability guarantee is out of the scope of this paper. However,
since the control is equivalent to state-of-the-art back-pressure
control as capacities grow to infinity, stability properties under
infinite capacities are conserved. The control proposed in
this paper improves the behaviour of the queuing network
under finite capacities, as work-conservation property and
simulations in the following of the paper tend to indicate, while
conserving stability properties under infinite capacities.

D. Work-conservation

As expected, pressure normalization enables to ensure work-
conservation. This can be easily visualized in Figure 8 where
one can observe that the weak deadlock of Figure 6 is resolved.
In the following, we prove Theorem 2 which states work-
conservation under convex normalized pressure.

Theorem 2 (Work-conservation under normalized pressures).
Assume that pressure functions are normalized, i.e. satisfy the
below conditions for all a ∈ N (as the example of Equation
20):
• Pa is an an increasing function taking values in [0, 1],
• Pa(Qlim

a ) = 1.
Assume also that the phase selection policy φ in case of

equality privileges phases with a non zero service rates from
Na to Nb if Qab(t) > 0 and Qb(t) ≤ Qlim

b .
Then, under finite capacities constraints, the back-pressure

control defined by Algorithm 2 is work-conserving.

Proof. Suppose that back-pressure control using normalized
pressure functions is not work-conserving for a given network
at a given state. Then, there exists a server at a junction which

does not work during some slot t, while it has an input Na
and an output Nb satisfying Qab(t) > 0 and Qb(t) ≤ Qlim

b .
Let p̃ denote the phase computed by Algorithm 2 using

normalized pressure functions and let p denote a phase such
that µab(p) > 0 (p exists due to service rates independence
asserted in Assumption 4). If the server at the junction does
not work after flow reduction by Algorithm 1, then for all non
zero service rates µa′b′(p̃(t)), there are two options:

1) Qb′(t) > Qlim
b′ : the flow from Na′ to Nb′ is removed by

flow reduction of Algorithm 1,
2) or, Qa′b′(t) = 0, there is no flow, because no vehicle in

Na enters Nb upon leaving Na.
In the first case, Pb′(Qb′(t)) = 1 and since Pa′ takes values in
[0, 1], we necessarily have Wa′b′(t) = 0. In the second case,
da′b′(t) = 0, and we also have Wa′b′(t) = 0. As a result,∑
a′b′ Wa′b′µa′b′(p̃) = 0.
On the other hand, by positivity of flow variables

and weights, we have
∑
a′b′ Wa′b′µa′b′(p) ≥ 0. If∑

a′b′ Wa′b′µa′b′(p) > 0, it is absurd because p
should have been output by Algorithm 2 instead of
p̃. If

∑
a′b′ Wa′b′µa′b′(p) = 0, it is absurd because∑

a′b′ Wa′b′µa′b′(p) =
∑
a′b′ Wa′b′µa′b′(p̃) and p should have

been output by Algorithm 2 instead of p̃ because an equality
holds but contrary to p̃, there exists for p a non zero service
rate from Na to Nb with Qab(t) > 0 and Qb(t) ≤ Qlim

b (t).

P = 1

P = 1

P = 1

P < 1

P < 1

P < 1

P < 1

P < 1 P < 1

Fig. 8. Work conservation and deadlock resolution using normalized pressure
functions. The pressure at congested nodes equals 1, while it is strictly lower
than 1 at non-congested nodes. As a result, the phase computed by Algorithm
2 is in favor of congested nodes emptying.

One can expect the work-conservation property to improve
the efficiency of back-pressure control in terms of stability
because servers at junctions are more likely to work, even in
congested conditions. The next section presents simulations
results which confirm this expectation, and performance is
increased by almost 50% in the particular conditions of the
presented simulations.
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V. SIMULATION RESULTS

A. The simulation platform

The model and the algorithms presented in this paper have
been implemented into a simulator coded in Java.
• The simulator simulates a grid network, as the one

depicted in Figure 9. Every junction has 4 inputs, 4
outputs, and 4 feasible phases as depicted in Figure 2.

• The capacity of the nodes can be set as desired. For the
presented simulations, all nodes have a capacity of 120
vehicles, except at three regions where capacities equal
40, as depicted in Figure 9. This enables to observe the
effect of non uniform capacities.

• Every individual flow allowed by phases of Figure 2
equals 10, and the slot size is 10, so that ∆Qmax

a = 10
for all nodes.

• We delay transfers from node to node with the most
simple model: a delay proportional to the distance to
reach the queue. This delay shifts queues up, so that the
effect of congestion is easier to observe.

• Vehicles are generated at every node with the same arrival
rate which can be set as desired. The arrival process
generates individual arrivals as well as batches of 10
vehicles. Then, their routing decision at every junction
is probabilistic as well as the number of travelled nodes.

Fig. 9. The 21× 21 grid network used for the presented simulations. Nodes
in the dashed surrounded regions have a capacity of 40. Other nodes have a
capacity of 120 vehicles.

B. Evaluation of the capacity-aware back-pressure control

Simulations have been carried out for the grid network of
Figure 9, composed of three regions of smaller capacities, with
the following parameters:
• Turn left probability at a junction: 0.1
• Turn right probability at a junction: 0.1
• Probability of a batch: 0.05
• Pressure functions of Equation 20 with m = 2 and
C∞ = 500.

Vehicles are generated with a constant arrival rate during
1500 time slots, then arrivals stop and there are only en-
dogenous flows and exits. Three experiments are carried out
at four different uniform arrival rates over nodes: 0.2, 0.25,

0.3 and 0.35 vehicles per time slot. For each arrival rate,
simulations are run 10 times with back-pressure control under
linear pressure functions and 10 times with back-pressure
control under normalized pressure functions.

At arrival rate 0.2, both controls are efficient and at the
end of the simulations, the queuing network is empty. For
arrival rates 0.25 and 0.3, the queuing network gets unstable
over the simulation when back-pressure control under linear
pressure functions is applied. At the end of the simulation,
congestion has propagated and the system is stuck in a dead-
lock. In contrast, if back-pressure under normalized pressure
functions is applied, the queuing network is stable over the
ten simulations and the network gets empty at the end, as
depicted in Figure 10. However, note that it is very likely
that more simulation runs would have enabled to observe
that even using normalized pressures, the queuing network
can get unstable and stuck in a deadlock over the simulation,
because it is a non zero probability event. The key benefit of
normalized pressure functions, as simulations tend to indicate,
is that its probability of occurrence is strongly decreased.
Figure 11 depicts the global queue of the network over time,
i.e.

∑
aQa, for one of the simulations runs with an arrival

rate of 0.3 vehicles per time slot under both linear/normalized
pressure functions. For an arrival rate of 0.35 vehicles per
time slot, back-pressure under both linear/normalized pressure
are unable to mitigate congestion propagation. In conclusion,
for the particular case of the network used for the presented
simulations, the performance in terms of "statistical stability"
has been increased by almost 50%.

Fig. 10. Evolution of the queuing network using back-pressure control under
linear pressure functions (top plots) and normalized convex pressure functions
(bottom plots) with an exogenous arrival rate of 0.3 vehicles per time slot. The
left (resp. right) drawing depicts the state of the network after 200 (resp. 400)
time slots. Under linear pressure functions, congestion propagates very fast
and the queuing network gets stuck in a deadlock. Under normalized pressure
functions, congestion propagation is mitigated, and the queuing network will
eventually completely empty when arrivals will stop.
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Fig. 11. Evolution of the global queue length over time with an exogenous
arrivals rate of 0.3 vehicles per time slot using back-pressure control un-
der linear pressure functions (triangles), and normalized pressure functions
(squares). Under linear pressure functions, the queuing network gets unstable
very fast and the global queue length does not go back to zero after arrivals
stop, because the network is stuck in a strong deadlock due to congestion
propagation. Under normalized pressure functions, the queuing network is
stable over the simulation, it eventually gets empty after several time slots
when arrivals stop.

VI. CONCLUSIONS AND PERSPECTIVES

In this paper, we propose to adapt state-of-the-art back-
pressure control to take into account bounded queues con-
straints. Non work-conservation of current back-pressure con-
trol is proved, and identified as a source of congestion propa-
gation through the network. This phenomenon is caused by
pressure saturation at queues that have reached maximum
capacity.

Normalized pressure functions are proved to ensure work-
conservation and this property tends to indicate that conges-
tion propagation will be mitigated. Simulations confirm the
efficiency of the approach. It is remarkable that performance
have been increased under bounded queues constraints as
indicated by simulations, while the ability to distribute the
control over junctions and O(1) complexity properties have
been conserved.

However, for very high arrival rates, and in particular above
the capacity region, congestion will necessarily eventually
propagate through the network. In this case, vast areas of
the network will be congested and inter-junctions interactions
due to blocking tend to indicate that phase control should be
carried out on groups of junctions belonging to the same con-
gested region. Nevertheless, this task is of high complexity due
to the exponential complexity of inter-junctions interactions.

Finally, future works on back-pressure signal control should
consider the feedback loop between traffic signal control
and driver behaviour, and in particular driver routing choice.

One can expect drivers at a junction to change their routing
choice if the traffic light gives the right of way in favour of
some particular output nodes due to traffic conditions, and
in particular due to congestion at some nodes. It is of high
interest to take into account such behaviours, since they may
stabilize or unstabilize the queuing network.
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