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ABSTRACT

Cerebrovascular atlases can be used to improve medical tasks

requiring the analysis of 3D angiographic data. The gener-

ation of such atlases remains however a complex and infre-

quently considered issue. The existing approaches rely on

information exclusively related to the vessels. We alterna-

tively investigate a new way, consisting of using both vascu-

lar and morphological information (i.e., cerebral structures) to

improve the accuracy and relevance of the obtained vascular

atlases. Experiments emphasize improvements in the main

steps of the atlas generation process impacted by the use of

morphological information. An example of cerebrovascular

atlas obtained from a dataset of 56 MRAs acquired from sev-

eral acquisition devices is finally provided.

Index Terms— Vascular atlas, brain atlas, magnetic res-

onance angiography, spatial relationship.

1. INTRODUCTION

3D angiographic imaging, and in particular magnetic res-

onance angiography (MRA), provides solutions for non-

invasive and non-irradiant exploration of cerebrovascular net-

works. The specificities of MRA data (sparseness, low SNR,

artifacts), together with their usefulness in crucial issues (de-

tection, quantification and follow-up of vascular pathologies)

have motivated the development of specific image analysis

techniques devoted to vascular structures [1].

In this context, the design of cerebrovascular atlases

[2], and in particular statistical ones [3], provides solutions

for several applications including, e.g., vessel segmentation,

identification of vascular abnormalities, or vessel labeling.

Contrary to most of vascular networks (e.g., coronary ar-

teries [4], that show a simple geometrical and topological

structure), the cerebrovasculature presents challenging speci-

ficities for atlas generation purposes. The complexity of its

topology, the closeness and parallel paths of veins and arter-

ies, their tortuosity, or the heterogeneity of their size, all make

cerebrovascular model generation a difficult task.
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Very few works have been devoted to statistical cere-

brovascular atlases (able to handle interindividual variabil-

ity). Among them, the ones leading to the richest atlases

[3] provide information about vascular presence probability,

vessels size and orientation. Such as their predecessors [5, 6],

they only rely on vascular information directly gathered from

angiographic data. In particular, they do not take advantage

of the information provided by the relations between vessels

and the neighboring cerebral structures.

In this article, we improve the cerebrovascular atlas gen-

eration process developed in [3] by using both vascular and

morphological information, carried out by MRA and standard

MRI data, respectively. To reach that goal, we introduce a

brain atlas as additional input of the process. We then use the

supplementary anatomical information, in particular about the

relations between vessels and cerebral structures, to improve

the accuracy and richness of the proposed methodology.

This article is organized as follows. Sec. 2 summarises the

enriched atlas generation methodology, and its specificities

w.r.t. [3]. Sec. 3 describes more precisely the improvements

induced by the use of a morphological atlas. Sec. 4 provides

experimental validations. An example of cerebrovascular at-

las, such as perspective works, are proposed in Sec. 5.

2. OUTLINE OF THE METHODOLOGY

The pipeline proposed in [3] took as input k 3D angiographic

images Ai : Ω → V , and k morphological images Mi : Ω →

V , each Mi being associated to Ai. (The pairs (Mi, Ai) were

chosen as the magnitude and phase images of phase-contrast

(PC) MRAs.) It relied on four successive steps: (i) vessel seg-

mentation; (ii) skeletonisation and size evaluation; (iii) regis-

tration; and (iv) information fusion. It provided as output an

arteriovenous atlasA, modelling statistical information: vas-

cular probability density; vessels size and absolute orienta-

tion. This atlas was mapped on a mean morphological image

M : Ω → V obtained from the registered images Mi. In this

former protocol, the sole use of morphological information

lied in the registration step (iii), performed on the Mi, to avoid

the ill-posed problem of angiographic image registration [7].



Fig. 1. 3D visualization of the morphological (brain) atlas B

used as input of the proposed pipeline (see Sec. 3.1).

The proposed new pipeline more strongly relies on mor-

phological information. Indeed, we consider as additional in-

put a morphological atlas B, that models the main brain struc-

tures presenting spatial relations with the vascular ones ob-

served in MRA data. The successive steps of this new pipeline

are then the following ones:

(i) Segmentation: Arterial (ai) and venous (vi) 3D volumes

are extracted from the Ai images.

(ii) Skeletonisation: 1D vessel centerlines (as
i
, vs

i
) are ex-

tracted from (ai, vi) volumes.

(iii) Differential analysis: A multiscale Hessian-based anal-

ysis is applied on the Ai images to determine the vessels size

(si) and orientation (oi).

(iv) (Co)registration: A deformation field Di : Ω → Ω is

computed for each Ai (based on Mi), in order to map the gath-

ered information into a unique spatial reference.

(v) Atlas formation: The ai, vi, si and oi are fused (with re-

spect toDi) to finally lead to the vascular atlasA.

Note that each of these generic steps can be instantiated by

any (segmentation, registration, etc.) method using/providing

adequate inputs and outputs. This new pipeline (see Fig. 5, in

Appendix) leads to enriched vascular atlases
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A : Ω → P × P × P × S × T

x 7→ (δ, α, τ, σ, ω)
(1)

where P = [0, 1] and S = R+ × R+ are probability and mean

value/standard deviation information, and T is a tensor space.

It provides, for each x ∈ Ω of an anatomical reference (M):

vascular presence (δ); vein/artery (α) and tubular/junction (τ)

discrimination; vessel sizes (σ) and relative orientations (ω).

This pipeline presents novelties w.r.t. [3]: (i) the estima-

tion of vessels size and orientation does no longer rely on seg-

mented/skeletonised data, but from the images Ai, via Hessian

analysis [8] performed at as
i
, vs

i
, and are thus robust to seg-

mentation errors; (ii) deformation fields used to fuse morpho-

logical information of the Mi images are now obtained by a

coregistration process [9], then avoiding to use a given Mi as

(possibly biased) reference; (iii) fusion of vessel orientations

is now performed by using translation, but also rotation in-

formation, provided by the 3D deformation fields, leading to

more accurate relative orientations, instead of absolute ones.

In addition to these improvements –deriving from pro-

gress, e.g., in registration or filtering– some other ones,

strongly linked to the relationships between vascular and

morphological structures, have been obtained by involving a

brain atlas in the process, as discussed in the sequel.

3. MORPHOLOGICAL APPROACH FOR

CEREBROVASCULAR ATLAS GENERATION

3.1. Morphological brain atlas

The brain atlas considered in this work models morpholog-

ical structures involved in the determination of specific ves-

sel properties. In particular, it divides the intracranial vol-

ume into 13 regions (Fig. 1): brain hemispheres (divided into

lobes), cerebellum, brain stem, ventricles and corpus callo-

sum. Indeed, vessels visualized in MRA data (of size larger

than 0.5 mm) do not intersect these regions, but generally re-

main adjacent to the associated morphological structures.

This atlas was created by combining information provided

by two state-of-the-art statistical atlases, namely the MNI152

atlas [10] and the Harvard-Oxford atlas [11]. The regions of

interest were processed by mathematical morphology oper-

ators (not described here due to lack of space). In particu-

lar, the fuzzy regions provided by the two native atlases were

turned into binary ones, separated by gaps, thus authorizing

remaining space for vessel positioning (generally not consid-

ered in standard morphological atlases) and for fuzzy relation-

ships processing, related to some of the steps of the pipeline.

3.2. Morphology-based methodological improvements

3.2.1. Spatial guidance of segmentation and labelling

While vessels were segmented as a whole in [3], we now pro-

pose to discriminate veins from arteries. This can be done

by using a competitive seeded region-growing (in our case,

based on grey-scale connectedness [12]). In this context, the

usefulness of B is twofold: (i) the determination of seeds can

be automated by the localization of specific arterious or ve-

nous loci (see Sec. 3.2.2); (ii) the grey-scale connectedness

associated to Ai images can be enriched by the use of B. In

particular, by labeling the brain structures as non-vascular ar-

eas, thus forbidding therein the by-pass of vessels, grey-scale

connectedness can by involved in a geodesic approach, thus

improving the robustness of vessel detection.

3.2.2. Determination of landmarks and blood flow direction

As stated above, B can be used to identify vascular land-

marks. The modelling of spatial relationships between brain

regions and neighbouring vessels can in particular be per-

formed thanks to fuzzy mathematical models [13] (e.g., “in

direction of”, “between”, “close to” , “above”). Besides the



only determination of such landmarks, these spatial relation-

ships can be efficiently involved in two tasks: (i) the charac-

terisation of junctions/bifurcations areas (e.g., Willis polygon,

confluens sinuum, etc.) vs. the remaining “tubular” parts of

the vascular networks (this can guide the further computation

of vessel orientations, that can be restricted to the tubular re-

gions, and further propagated); (ii) the information provided

by B also enable the determination of blood flow direction.

This information is of precious use to enrich the orientation

fields, provided by Hessian analysis, into vector fields, that

can unambiguously be averaged during the final fusion step.

3.2.3. Spatial guidance of anisotropic information fusion

Once correctly registered (based onDi), the information com-

puted for each Ai must be fused into a single entity. Large

vessels –which present low variability– are then globally

superimposed, and their averaging is globally straightfor-

ward. In contrast, for smaller vessels –which present higher

variability– the registration step leads, in general, to un-

satisfactory spatial correlations. To deal with the induced

sparseness, it is then required to propagate the information

carried out by such vessels in their neighborhood. In partic-

ular, this can be done by Gaussian diffusion. However, since

isotropic diffusion may lead to spreading of vascular informa-

tion in non-relevant areas, the considered kernels should be

designed in accordance to the anatomical structures. Based

on the hypothesis that the vessels are located along brain

structure surfaces, the considered kernels are then defined

as “geodesic” ellipsoids (mostly, oblate spheroids parallel to

these surfaces), thus leading to more accurate results.

4. EXPERIMENTAL VALIDATIONS

In this section, we experimentally validate some of the most

crucial steps supposed to be improved by the morphology-

based approach. These validations are completed by more

qualitative (and subjective) ones, in Fig. 6 (in Appendix).

4.1. Vein/artery segmentation and labelling

In order to validate the morphology-based strategy consid-

ered for vein/artery segmentation, we have carried out the

proposed method (Sec. 3.2.1) with and without geodesic con-

straints related to B. This was done on two (low resolu-

tion PC, and high resolution time-of-flight (TOF)) MRAs for

which ground-truth was provided by a medical expert. The

chosen seeds were the Willis polygon and confluens sinuum,

for arteries and veins, respectively. It has been experimentally

observed that the size of these seeds did not actually influ-

ence the results; this size was then set to XX voxels. Fig. 2(a)

compares the geodesic/non-geodesic version of the method

in terms of global vessel segmentation. Fig. 2(b) focuses on

the vein/artery discrimination errors inside the true positives,

(a) (b)

Fig. 2. Segmentation and labelling with/without geodesic

constraints. (a) ROC curves for vessel segmentation. (b)

Vein/artery labelling error ratio according to the true positive

computed fraction.

Fig. 3. Comparison of vessel orientations spreading, accord-

ing to the vessel sizes.

during their computation from the seeds. These results em-

phasize the better accuracy of the geodesic approach.

4.2. Vessel/vascular flow orientations

As stated in Sec. 3.2.2, the supplementary information pro-

viding blood flow direction enables to fuse information about

vessel orientation without ambiguity (by opposition to [3],

where the fusion of two orthogonal direction was an ill-posed

problem). The accuracy of the obtained result, can be as-

sessed in particular w.r.t. the spreading of orientations over

their mean values. In particular, this spreading should be low

for larger vessels (which are globally invariant). Following

this paradigm, the orientations obtained with the proposed

methodology have been compared with those obtained from

[3]. Fig. 3 tends to show that the orientations are now better

modeled than in [3]. This analysis provides indirect clues

of the relevance of methodological novelties related, e.g., to

Hessian analysis, anisotropic diffusion and registration.

To better emphasise the relative importance of these method-

ological novelties, complementary validations are currently

in progress. They consist of testing independently each part

of the process on synthetic data, for which the expected re-

sults are known a priori. The first results of these validations

(that will be exhaustively presented in an extended version of

this article) confirm those provided here on real data.



(a) (b) (c) (d)

Fig. 4. Vascular atlas A (b–d, MIP visualisation) and its morphological referenceM (a, sagittal view). (b) Vessel probability

density δ. (c) Vein/artery probability α. (d) Vessel sizes (d).

5. RESULTS

In order to qualitatively illustrate the proposed methodology,

it was applied on a dataset of 56 MRA images (Ai), including

both (millimetric) PC and (submillimetric) TOF MRAs. Con-

cerning the Mi images, the PC (phase) MRA were associated

to their magnitude image, while the TOF MRA were associ-

ated to T1 MRI acquired during the same exam. The com-

puted atlas is illustrated in Fig. 4 (see Fig. 7, in Appendix, for

complementary illustrations).

Based on these results, further works will consist of em-

bedding symbolic models of cerebrovasculature in the current

statistical atlases, in order to lead to more complete vascular

models, with perspectives in vessel labeling, e.g., for com-

puter aided diagnosis of cerebrovascular malformations.

6. REFERENCES

[1] O. Tankyevych, H. Talbot, N. Passat, M. Musacchio, and

M. Lagneau, “Angiographic image analysis,” in Medical

Image Processing: Techniques and Applications, chap-

ter 6, pp. 115–144. Springer, 2011.

[2] W. Nowinski, I. Volkau, Y. Marchenko,

A. Thirunavuukarasuu, T. Ng, and V. Runge, “A

3D model of human cerebrovasculature derived from

3T magnetic resonance angiography,” NeuroInformat-

ics, vol. 7, pp. 23–36, 2009.

[3] N. Passat, C. Ronse, J. Baruthio, J.-P. Armspach, and

C. Maillot, “Magnetic resonance angiography: From

anatomical knowledge modeling to vessel segmenta-

tion,” Medical Image Analysis, vol. 10, pp. 259–274,

2006.

[4] C. Lorenz and J. von Berg, “A comprehensive shape

model of the heart,” Medical Image Analysis, vol. 10,

pp. 657–670, 2006.

[5] D. Cool, D. Chillet, J. Kim, J.-P. Guyon, M. Foskey, and

S. R. Aylward, “Tissue-based affine registration of brain

images to form a vascular density atlas,” in MICCAI,

2003, pp. 9–15.

[6] B. Naegel, C. Ronse, and L. Soler, “Using grey-scale

hit-or-miss transform for segmenting the portal network

of the liver,” in ISMM, 2005, pp. 429–440.

[7] S. R. Aylward, J. Jomier, S. Weeks, and E. Bullitt, “Reg-

istration and analysis of vascular images,” International

Journal of Computer Vision, vol. 55, pp. 123–138, 2003.

[8] Y. Sato, S. Nakajima, N. Shiraga, H. Atsumi, S. Yoshida,

T. Koller, G. Gerig, and R. Kikinis, “Three-dimensional

multi-scale line filter for segmentation and visualization

of curvilinear structures in medical images,” Medical

Image Analysis, vol. 2, pp. 143–168, 1998.

[9] V. Noblet, C. Heinrich, F. Heitz, and J.-P. Armspach,

“An efficient incremental strategy for constrained group-

wise registration based on symmetric pairwise registra-

tion,” Pattern Recognition Letters, vol. 33, pp. 283–290,

2012.

[10] D. L. Collins, C. J. Holmes, and T. M. Peters, “Auto-

matic 3-D model-based neuroanatomical segmentation,”

Human Brain Mapping, vol. 3, pp. 190–208, 1995.

[11] R. S. Desikan, F. Ségonne, B. Fischl, B. T. Quinn, B. C.

Dickerson, D. Blacker, R. L. Buckner, A. M. Dale, R. P.

Maguire, B. T. Hyman, M. S. Albert, and R. J. Killiany,

“An automated labeling system for subdividing the hu-

man cerebral cortex on MRI scans into gyral based re-

gions of interest,” NeuroImage, vol. 31, pp. 968–980,

2006.
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Fig. 5. Morphology-guided atlas generation pipeline (see Secs. 2 and 3.2). In green: new inputs and new steps. In orange:

modified/improved steps.

(a) (b) (c) (d)

Fig. 6. (a,b) Effects of the (an)isotropic diffusion on the information fusion, illustrated on the arterial part of the vascular

density field (coronal view, MIP visualisation): (a) isotropic and (b) anisotropic diffusion. (c,d) Orientation spreading (from

low, in green, to high, in red) illustrated in the venous part of the atlas (sagittal slice): (c) with skeleton-based orientation and

translation-based registration [3], and (d) with Hessian-based analysis and translation/rotation-based registration.

(a) (b)

Fig. 7. 3D visualization of vessel orientations in the atlas A (see Sec. 5): arteries (a) and veins (b). The orientations are

represented by vector fields, with additional color encoding in the axial (a) and sagittal plane (b).


