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INCOMPRESSIBLE EULER AS A LIMIT OF COMPLEX FLUID MODELS WITH NAVIER BOUNDARY CONDITIONS

In this article we study the limit α → 0 of solutions of the α-Euler equations and the limit α, ν → 0 of solutions of the second grade fluid equations in a bounded domain, both in two and in three space dimensions. We prove that solutions of the complex fluid models converge to solutions of the incompressible Euler equations in a bounded domain with Navier boundary conditions, under the hypothesis that there exists a uniform time of existence for the approximations, independent of α and ν. This additional hypothesis is not necessary in 2D, where global existence is known, and for axisymmetric flows without swirl, for which we prove global existence. Our conclusion is strong convergence in L 2 to a solution of the incompressible Euler equations, assuming smooth initial data.

Introduction

The second grade fluid equations are a model for viscoelastic fluid flow depending on two parameters: the elastic response α and the viscosity ν. When ν = 0 this system is called the Lagrangian-averaged, or α-Euler equations. The main purpose of this article is to study the limiting behavior of solutions of these systems when the parameter α vanishes both for ν = 0 and for ν → 0, in the case of flows in a bounded domain in R n , n = 2, 3 with Navier boundary conditions. We will prove that, if a weak solution u α,ν is assumed to exist for a time independent of α and ν, then the limit lim α,ν→0 u α,ν exists and satisfies the incompressible Euler equations. Global in time existence is known for two dimensional flows, see [START_REF] Busuioc | The second grade fluid and averaged Euler equations with Navier-slip boundary conditions[END_REF]. In addition, we include three other results in our analysis: a) global in time existence for axisymmetric flows without swirl, both for ν > 0 and ν = 0, adapting the work [START_REF] Busuioc | Some remarks on a certain class of axisymmetric fluids of differential type[END_REF] to the case of Navier conditions, b) equivalence of the perfect slip Navier boundary conditions when written using the tangential stress or in terms of the symmetric part of Du. The second grade fluid equations were introduced by J. E. Dunn and R. L. Fosdick, see [START_REF] Dunn | Thermodynamics, stability and boundedness of fluids of complexity 2 and fluids of second grade[END_REF], as the simplest examples of non-Newtonian fluids of differential type. For viscoelastic fluids one expects the stress tensor to possess memory, or, in other words, to depend on the history of the flow. In fluids of differential type, it is assumed that this memory only applies to the infinitesimal past, so that the stress depends on time derivatives of the flow velocity.

If u is the velocity and p is the scalar pressure of a fluid in motion, the stress tensor for the second grade fluid model is given by

S = -pI + νA 1 + α 1 A 2 + α 2 A 2 1 , 1 
where A 1 = A 1 (u) = ∇u + (∇u) t , and

A 2 = A 2 (u) = (∂ t + u • ∇)A 1 + (∇u) t A 1 + A 1 ∇u.
Here ∇u denotes the Jacobian matrix of u, (∇u) i,j = ∂ x j u i . To simplify the notation, we will denote A 1 by A.

We restrict our analysis to the cases α 1 + α 2 = 0, α 1 0. The physical validity of differential fluid models in general, and of the last assumption in particular, are the subject of controversy in rheology, see [START_REF] Dunn | Fluids of differential type -critical review and thermodynamic analysis[END_REF] and references therein. However, the second grade fluid equations, with these hypothesis on the α i are a very simple model, mathematically interesting, with a large current literature, see for example [START_REF] Abboud | Upwind discretization of a time-dependent two-dimensional grade-two fluid model[END_REF][START_REF] Ahmad | Heat transfer in unsteady axisymmetric second grade fluid[END_REF][START_REF] Khan | Exact solutions for some oscillating flows of a second grade fluid with a fractional derivative model[END_REF][START_REF] Massoudi | Convection-Radiation Heat Transfer in a Nonlinear Fluid with Temperature-Dependent Viscosity[END_REF] with, at least, potential applicability in non-Newtonian fluid modeling. We denote in what follows α = α 1 , so that the second grade fluid stress tensor takes the form:

(1) S = -pI + νA -αA 2 + α(∂ t A + u • ∇A + (∇u) t A + A∇u).

The α-Euler equations came about in a different way, initially proposed as a desingularization of the incompressible 3D Euler equations with deep geometric significance and relevance in turbulence modeling, see [START_REF] Holm | Euler-Poincare models of ideal fluids with nonlinear dispersion[END_REF]. For some of the recent work concerning the α-Euler equations, see [START_REF] Fan | On the regularity criteria for the generalized Navier-Stokes equations and Lagrangian averaged Euler equations[END_REF][START_REF] Hou | On global well-posedness of the Lagrangian averaged Euler equations[END_REF][START_REF] Liu | Local existence and blowup criterion of the Lagrangian averaged Euler equations in Besov spaces[END_REF][START_REF] Liu | A note on the blowup criterion of the Lagrangian averaged Euler equations[END_REF].

We are concerned with the limit α → 0, both for ν = 0 and ν → 0, in the bounded domain case, i.e. where the fluid occupies a bounded, smooth region Ω ⊂ R N , N = 2, 3. The limit α → 0 for ν > 0 fixed, was studied by D. Iftimie in [START_REF] Iftimie | Remarques sur la limite α → 0 pour les fluides de grade 2[END_REF], and the result obtained is also conditional on finding a uniform time of existence for the approximations. The limit α → 0 for α-Euler was first considered by Bardos, Linshiz and Titi for the vortex sheet problem in 2D and then by Linshiz and Titi in 3D in [START_REF] Bardos | Global regularity for a Birkhoff-Rott-α approximation of the dynamics of vortex sheets of the 2D Euler equations[END_REF][START_REF] Linshiz | On the convergence rate of the Euler-α inviscid second-grade complex fluid, model to the Euler equations[END_REF], both in the absence of boundaries. It was also shown in [START_REF] Linshiz | On the convergence rate of the Euler-α inviscid second-grade complex fluid, model to the Euler equations[END_REF] that the time of existence of smooth solutions of α-Euler can be taken independent of α. The main purpose of the present article is to establish a baseline for the study of the limit α → 0 in the presence of boundaries. In this context, it is natural to consider ν = 0 and ν → 0 at the same time, because the problems are technically very similar.

In order to study the limit α → 0 in domains with boundary, we must supplement the basic evolution equations with boundary conditions. It is natural to consider first the no-slip case u = 0 at ∂Ω, but this is not technically within reach, due to the formation of boundary layers. It is well-known, however, that replacing the no-slip condition by the Navier boundary condition for the classical Navier-Stokes equations makes the vanishing viscosity limit analytically treatable, see [START_REF] Clopeau | On the vanishing viscosity limit for the 2D incompressible Navier-Stokes equations with the friction type boundary conditions[END_REF][START_REF] Iftimie | Inviscid limits for the Navier-Stokes equations with Navier friction boundary conditions[END_REF][START_REF] Lopes Filho | On the inviscid limit for 2D incompressible flow with Navier friction condition[END_REF][START_REF] Xiao | On the vanishing viscosity limit for the 3D Navier-Stokes equations with a slip boundary condition[END_REF]. That makes considering first problems with the Navier friction condition, at least mathematically, natural. The α-Euler equations have no precise physical meaning as a model, and therefore it is not clear what would be the physically meaningful boundary conditions. For viscoelastic fluids, the occurrence of wall slip is a well documented experimental phenomenon, see [START_REF] Le Roux | Existence and uniqueness of the flow of second-grade fluids with slip boundary conditions[END_REF] and references therein, specifically with thresholding, where slip occurs once tangential stresses at the boundary exceed some critical magnitude. In a small viscosity regime, the formation of a boundary layer implies large tangential stresses along the boundary, which makes it natural to consider boundary slip for the study of this limit. In this article, we focus on the special case of perfect slip Navier conditions, where the surface shear stress is assumed to vanish.

We must compare the results obtained here with those obtained by Linshiz and Titi in [START_REF] Linshiz | On the convergence rate of the Euler-α inviscid second-grade complex fluid, model to the Euler equations[END_REF]. They prove convergence from α-Euler solutions to Euler solutions in 3D up to the time of existence of the Euler solution, in the initial data norm, which means strong convergence in H 5 . Their proof is based on an idea of N. Masmoudi and it is rather involved. Our main result is convergence of α-Euler and of second grade fluids to Euler in a bounded domain with Navier boundary conditions, with initial data in H 3 , assuming the existence of a weak solution in H 1 for a time which is independent of α. We obtain convergence of the solutions in L 2 -norm, not strong convergence in H 3 . The uniform time of existence is guaranteed for 2D by a result by Busuioc and Ratiu, see [START_REF] Busuioc | The second grade fluid and averaged Euler equations with Navier-slip boundary conditions[END_REF], and for axisymmetric flow without swirl by an adaptation of another result by the same authors, see [START_REF] Busuioc | Some remarks on a certain class of axisymmetric fluids of differential type[END_REF]. The difficulty in proving the uniformity in α of the time of existence is due to the presence of the boundary. To illustrate that, we include the proof of a result in full space where we prove convergence in L 2 for some time independent of α (smaller than the blow-up time for the limit solution) for initial data in H 5 . This is a weaker version of the result in [START_REF] Linshiz | On the convergence rate of the Euler-α inviscid second-grade complex fluid, model to the Euler equations[END_REF], but the proof is much simpler.

The remainder of this paper is divided into five sections. In Section 2, we study two different formulations of the Navier boundary conditions for α-Euler and for second-grade fluids and we show that one of them implies the other. In Section 3 we propose a new weak formulation of the α-Euler and the second grade fluid equations with velocity in H 1 . We prove our main convergence result in the Section 4. In Section 5 we prove global existence of solutions for the axisymmetric flow equations without swirl. In Section 6 we add a remark concerning full space flow, and list a few open problems and conclusions.

The Navier friction condition

There are two natural ways of extending the Navier friction conditions to the complex fluid models under consideration in the present work: by using the same mathematical condition as in the Newtonian case, which gives a linear boundary condition, or by formulating it in terms of the shear stress at the boundary, using [START_REF] Abboud | Upwind discretization of a time-dependent two-dimensional grade-two fluid model[END_REF], which gives a rather complicated nonlinear boundary condition. In the perfect slip case (see below), these two boundary conditions turn out to be largely equivalent. The proof of this fact is the subject of the present section.

The Navier boundary conditions, first introduced by Navier himself, see [START_REF] Navier | Mémoire sur les lois du mouvement des fluides[END_REF], consist of assuming that the velocity is tangent to the boundary and that the tangential component of the surface velocity is proportional to the surface shear stress at the boundary, i.e., [START_REF] Ahmad | Heat transfer in unsteady axisymmetric second grade fluid[END_REF] (Sn + γu) tan = 0, where n denotes the unit exterior normal to Ω and where the subscript tan refers to the tangential component at the boundary.

In this article, we focus on the special case γ = 0, which is called "perfect slip" Navier boundary condition. Condition 2 is still rather complicated, and we find it more convenient to work with the much simpler condition:

(3) (An) tan = 0, at the boundary, which is the Newtonian Navier condition. Previous work on second grade fluids with Navier conditions has used (3) as the boundary condition, instead of (2), see [START_REF] Busuioc | The second grade fluid and averaged Euler equations with Navier-slip boundary conditions[END_REF].

In the following result we will show that (3) is equivalent to (2) with γ = 0, at least for smooth solutions.

Theorem 1. Let u ∈ C ∞ ([0, T ]; Ω) be a divergence free vector field satisfying u • n = 0 on ∂Ω, for every t 0.

If (4) (An) tan = 0 on [0, T ] × ∂Ω then (5) (S n) tan = 0 on [0, T ] × ∂Ω
The converse also holds if we require, in addition to [START_REF] Busuioc | A non-Newtonian fluid with Navier boundary conditions[END_REF], that [A(u 0 )n] tan = 0 on ∂Ω where u 0 (x) = u(0, x).

Proof. We extend n to a smooth vector field, also denoted by n, defined on the whole Ω.

We need to make this extension because the following calculations involve derivatives of n (and not only tangential derivatives).

We decompose An ∂Ω into normal component and tangential component:

(6) An = β n + w on [0, T ] × ∂Ω
where w is tangent to ∂Ω and β : [0, T ] × ∂Ω → R. Clearly

β = An • n ∈ C ∞ ([0, T ] × ∂Ω; R) so w = An -(An • n)n ∈ C ∞ ([0, T ] × ∂Ω).
We also have that

A 2 n = β 2 n + βw + Aw.
We compute now

S n = -pn + νAn -αA 2 n + α(∂ t A + u • ∇A + (∇u) t A + A∇u)n = (-p + νβ -αβ 2 + α∂ t β)n + νw -αβw -αAw + α∂ t w + α(u • ∇A + (∇u) t A + A∇u)n (7) 
Let us first consider the term [(u

• ∇)A]n. We use that u • ∇ is a tangential derivative to write [(u • ∇)A]n = (u • ∇)(An) -A(u • ∇)n = (u • ∇)(β n + w) -A(u • ∇)n = (u • ∇β)n + u • ∇w + (βI -A)[(u • ∇)n].
Next, we consider the term (∇u) t An + A∇un. We find:

(∇u) t An + A∇un = (∇u) t (β n + w) + A(A -(∇u) t )n = (∇u) t w + βw + Aw + β 2 n + (βI -A)[(∇u) t n]. so that (8) (u • ∇A + (∇u) t A + A∇u)n = (u • ∇β + β 2 )n + u • ∇w + (∇u) t w + βw + Aw + (βI -A)[(u • ∇)n + (∇u) t n].
We identify (∇u) t n by examining its components:

[(∇u) t n] i = j (∂ i u j )n j = j ∂ i (u j nj ) - j u j ∂ i nj , so that (u • ∇)n + (∇u) t n = ∇(u • n) + (u • ∇)n - j u j ∇n j .
We recall a result established in [5, Lemma 3], namely that j u j ∇n j -(u • ∇)n is normal to the boundary of Ω whenever u is tangent to the same boundary. Furthermore, since u • n = 0 on ∂Ω, we also have that ∇(u • n) is normal to the boundary of Ω. We conclude that there exists some δ :

[0, T ] × ∂Ω → R such that (9) (u • ∇)n + (∇u) t n = δn. Clearly δ = δn • n = (u • ∇)n • n + (∇u) t n • n = 1 2 u • ∇(|n| 2 ) + (∇u) t n • n = (∇u) t n • n.
From ( 6) and ( 9) we obtain that

(βI -A)[(u • ∇)n + (∇u) t n] = δ(βI -A)n = -δw
Using this relation in [START_REF] Dunn | Thermodynamics, stability and boundedness of fluids of complexity 2 and fluids of second grade[END_REF] and plugging the result in [START_REF] Busuioc | Some remarks on a certain class of axisymmetric fluids of differential type[END_REF] results in

S n = (-p + νβ -αβ 2 + α∂ t β + αu • ∇β + αβ 2 )n + νw + α∂ t w + αu • ∇w + α(∇u) t w -αδw.
We conclude that

(10) 1 α (S n) tan = ∂ t w + ( ν α -δ)w + [u • ∇w + (∇u) t w] tan on [0, T ] × ∂Ω.
If (4) holds true then w ≡ 0, so (10) implies [START_REF] Busuioc | A non-Newtonian fluid with Navier boundary conditions[END_REF].

Conversely, suppose that (5) holds true. Then from [START_REF] Fan | On the regularity criteria for the generalized Navier-Stokes equations and Lagrangian averaged Euler equations[END_REF] we get that

∂ t w + ( ν α -δ)w + [u • ∇w + (∇u) t w] tan = 0 on [0, T ] × ∂Ω.
We multiply this relation by w and integrate on ∂Ω to obtain 1 2

d dt w 2 L 2 (∂Ω) = ∂Ω (δ - ν α )|w| 2 - ∂Ω (∇u) t w • w ( ν α + C ∇u L ∞ (∂Ω) ) w 2 L 2 (∂Ω) .
Given that w 0 = 0, the Gronwall lemma implies that w ≡ 0, that is (4). This completes the proof of the lemma.

Remark 2. One of the uses of Theorem 1 is to convert solutions of a boundary value problem satisfying condition (4) to one which satisfies condition [START_REF] Busuioc | A non-Newtonian fluid with Navier boundary conditions[END_REF]. This is relevant because known global existence results, see [START_REF] Busuioc | The second grade fluid and averaged Euler equations with Navier-slip boundary conditions[END_REF][START_REF] Busuioc | Some remarks on a certain class of axisymmetric fluids of differential type[END_REF], assume condition (4). This discussion raises a natural question, as follows. Using Theorem 1, we only know existence of smooth solutions to the second grade fluid equations, or to the α-Euler equations with condition (5) if the initial data satisfies (4), a somewhat unnatural hypothesis. In fact, the space of divergencefree vector fields, tangent to the boundary and satisfying the Newtonian friction condition (4) is dense in the space of all divergence-free vector fields tangent to the boundary in suitable topologies (see [START_REF] Lopes Filho | On the inviscid limit for 2D incompressible flow with Navier friction condition[END_REF]). However, if one tries to remove this unnatural boundary condition on the initial data by approximation, we do not obtain enough estimates to prove that the limiting flow satisfies the complex fluid equations. Therefore, existence of a smooth solution to the second-grade or α-Euler equations in a bounded domain, satisfying [START_REF] Busuioc | A non-Newtonian fluid with Navier boundary conditions[END_REF], with smooth initial data that does not satisfy (4), is an interesting open problem.

Weak formulation for H 1 solutions

Our next step is to present a weak formulation of the complex fluid models which requires only H 1 spatial regularity for the weak solutions, and incorporates the nonlinear boundary conditions [START_REF] Busuioc | A non-Newtonian fluid with Navier boundary conditions[END_REF] in a natural way.

First let us fix additional notation. Let Ω ⊂ R N , N = 2, 3, be a smooth, bounded, simply connected domain. For two matrices M = (m ij ) and N = (n ij ) we define the dot product M : N ≡ i,j m ij n ij . The divergence of a matrix is the vector of the divergences of the rows.

The complex fluid models under consideration take the form:

(11)      ∂ t u + u • ∇u = div S, div u = 0, u(0) = u 0 ,
where u is the fluid velocity, u 0 is the initial velocity, p is the pressure and S is the second grade fluid stress tensor, given by (1). We will assume (5) throughout this section. We insert the expression for the stress tensor S and expand, so that the conservation of momentum equation becomes:

∂ t (u -α∆u) + u • ∇(u -α∆u) + j (u j -α∆u j )∇u j = -∇p + ν∆u.
We give now a weak formulation for H 1 solutions of the second grade fluid equations. Assume for the moment that u is sufficiently smooth and let us do some formal calculations. Let ϕ be a sufficiently regular vector field which is divergence free and tangent to the boundary. We multiply the first line of (11) by ϕ, integrate in space and time and use an integration by parts to obtain

(12) - t 0 Ω u • ∂ t ϕ + Ω u(t) • ϕ(t) - Ω u 0 • ϕ 0 + t 0 Ω u • ∇u • ϕ = t 0 Ω div S • ϕ = - t 0 Ω S : ∇ϕ + t 0 ∂Ω Sn • ϕ = - 1 2 t 0 Ω S : A(ϕ).
We used above the boundary condition ( 5) and the fact ϕ is tangent to the boundary to deduce that Sn • ϕ vanishes on the boundary. We also used that S is a symmetric matrix to write that S : ∇ϕ = 1 2 S : A(ϕ). The stress tensor is given by

S = -pI + νA -αA 2 + α∂ t A + αu • ∇A + α(∇u) t A + αA∇u.
Replacing in [START_REF] Hou | On global well-posedness of the Lagrangian averaged Euler equations[END_REF] this formula for the stress tensor and performing a couple of integrations by parts we find

- t 0 Ω [u • ∂ t ϕ + α 2 A : ∂ t A(ϕ)] + Ω [u(t) • ϕ(t) + α 2 A(t) • A(ϕ(t))] - Ω [u 0 • ϕ 0 + α 2 A(u 0 ) • A(ϕ 0 )] + t 0 Ω u • ∇u • ϕ + ν 2 t 0 Ω A : A(ϕ) - α 2 t 0 Ω A 2 : A(ϕ) (13) - α 2 t 0 Ω u • ∇A(ϕ) : A + α 2 t 0 Ω [(∇u) t A + A∇u] : A(ϕ) = 0,
for all times t. We used above that u is divergence free and tangent to the boundary to perform an integration by parts in the term u • ∇A.

We wish to use [START_REF] Iftimie | Remarques sur la limite α → 0 pour les fluides de grade 2[END_REF], for arbitrary smooth test vector fields ϕ which are divergence free and tangent to the boundary, as a weak formulation for the equation [START_REF] Holm | Euler-Poincare models of ideal fluids with nonlinear dispersion[END_REF] with boundary condition [START_REF] Busuioc | A non-Newtonian fluid with Navier boundary conditions[END_REF]. As with any new weak formulation, we should verify consistency, i.e., that any smooth solution of [START_REF] Holm | Euler-Poincare models of ideal fluids with nonlinear dispersion[END_REF] verifying the boundary condition (5) satisfies the weak formulation (13) and, conversely, any smooth vector field u, divergence free, tangent to the boundary, satisfying [START_REF] Iftimie | Remarques sur la limite α → 0 pour les fluides de grade 2[END_REF], will solve [START_REF] Holm | Euler-Poincare models of ideal fluids with nonlinear dispersion[END_REF] with the perfect slip boundary condition [START_REF] Busuioc | A non-Newtonian fluid with Navier boundary conditions[END_REF]. Now, the calculations leading to (13) already show that any smooth solution of (11) verifying the perfect slip Navier boundary conditions (5) satisfies the variational formulation given in [START_REF] Iftimie | Remarques sur la limite α → 0 pour les fluides de grade 2[END_REF] for arbitrary test vector fields.

To verify the converse, let u be a smooth vector field which is divergence free, tangent to the boundary and assume that u satisfies (13) for any smooth vector field ϕ which is divergence free and tangent to the boundary. Then u verifies [START_REF] Holm | Euler-Poincare models of ideal fluids with nonlinear dispersion[END_REF] as well as the perfect slip Navier boundary conditions [START_REF] Busuioc | A non-Newtonian fluid with Navier boundary conditions[END_REF]. Indeed, choosing first ϕ to be compactly supported in Ω we get [START_REF] Holm | Euler-Poincare models of ideal fluids with nonlinear dispersion[END_REF]. Next, consider a test vector field, denoted again by ϕ, which is not necessarily compactly supported in Ω. Multiply the first equation in [START_REF] Holm | Euler-Poincare models of ideal fluids with nonlinear dispersion[END_REF] by ϕ and integrate by parts in time, using the initial data for u, to obtain the first equality in [START_REF] Hou | On global well-posedness of the Lagrangian averaged Euler equations[END_REF]. Integrating by parts in space we deduce the second equality in [START_REF] Hou | On global well-posedness of the Lagrangian averaged Euler equations[END_REF]. Now, equation [START_REF] Iftimie | Remarques sur la limite α → 0 pour les fluides de grade 2[END_REF] expresses precisely the equality between the first and last terms in [START_REF] Hou | On global well-posedness of the Lagrangian averaged Euler equations[END_REF] (and hence the third equality in ( 12)), which can only hold if the boundary term t 0 ∂Ω Sn • ϕ vanishes for any smooth vector field ϕ which is divergence free and tangent to the boundary. This implies that the tangential part of Sn must vanish, i.e. we get [START_REF] Busuioc | A non-Newtonian fluid with Navier boundary conditions[END_REF]. This concludes the proof of consistency.

The notion of weak solution we will propose is inspired on the Leray weak solutions for the incompressible Navier-Stokes equations, which includes an energy inequality. As motivation for the appropriate energy inequality in our setting we observe that choosing ϕ = u in (13) yields the following H 1 a priori estimate ( 14)

Ω (|u| 2 + α 2 |A| 2 )(t) + ν t 0 Ω |A| 2 = Ω (|u 0 | 2 + α 2 |A(u 0 )| 2 ).
We 

∈ C 0 ([0, T ]; H 2 (Ω)) ∩ C 1 ([0, T ]; H 1 (Ω))
which are divergence free and tangent to the boundary; d) the following energy inequality holds true

(15) Ω (|u| 2 + α 2 |A| 2 )(t) + ν t 0 Ω |A| 2 Ω (|u 0 | 2 + α 2 |A(u 0 )| 2 ) ∀t ∈ [0, T ].
Remark 4. The properties listed in the previous definition are automatically verified for solutions obtained with a standard approximating procedure, like for instance the Galerkin approximation. This is obvious for b) and c). In fact, relation ( 13) is stated in general only for t = T . But if it is true for t = T , then it must hold true for all t ∈ [0, T ]. This can be shown by taking ϕχ [0,t] as test function after a mollification in time and a passage to the limit. To show a), we observe that from the a priori estimate (14) and using the Korn inequality, the sequence of approximating solutions is bounded in L ∞ (0, T ; H 1 (Ω)). So the limit solution must belong to L ∞ (0, T ; H 1 (Ω)). But from the equation we obtain an estimate for ∂ t u implying that u ∈ C 0 ([0, T ]; D ′ (Ω)). By density of smooth functions in L 2 (Ω), we have that L ∞ (0, T ;

H 1 (Ω)) ∩ C 0 ([0, T ]; D ′ (Ω)) ⊂ C 0 w ([0, T ]; H 1 (Ω)
) so we get a). Finally, to get the energy inequality we proceed in the following manner. Denoting by u n the approximating solution, one has [START_REF] Iftimie | Inviscid limits for the Navier-Stokes equations with Navier friction boundary conditions[END_REF] with u replaced by u n :

Ω (|u n | 2 + α 2 |A(u n )| 2 )(t) + ν t 0 Ω |A(u n )| 2 = Ω (|u n (0)| 2 + α 2 |A(u n (0))| 2 ).
(with possibly just an inequality instead of an equality, depending on the method of approximation). In the process of passing to the limit, one uses time derivative estimates to obtain equicontinuity, and therefore uniform convergence, in time with values in some negative local Sobolev space. In particular one has that, for all t ∈ [0, T ],

u n (t) → u(t) in D ′ (Ω). But u n (t) is bounded in H 1 (Ω)
, so it possesses a subsequence weakly convergent in H 1 (Ω). By uniqueness of limits in D ′ (Ω), we have that u n (t) ⇀ u(t) weakly in H 1 (Ω). We can now deduce (15) from the weak lower semicontinuity of the L 2 -norm.

Limiting behavior when α and ν vanish

It is well-known that, for sufficiently smooth initial velocities u 0 , there exists a unique (smooth) solution of the incompressible Euler equations up to some non-zero time T > 0. We assume, more precisely, that u 0 ∈ H 3 (Ω) is divergence-free and tangent to ∂Ω. Then there exists T > 0 and a unique velocity

u = u(x, t) ∈ C 0 ([0, T ]; H 3 (Ω)) ∩ C 1 ([0, T ]; H 2 (Ω))
that solves the incompressible Euler equations with initial velocity u 0 .

We are now ready to state and prove our convergence result.

Theorem 5. Let u 0 ∈ H 3 (Ω) be a divergence-free vector field which is tangent to ∂Ω and which satisfies the boundary condition (4). Let T > 0 be a time during which the incompressible Euler equations are well-posed with this initial data. Suppose, additionally, that there exists u ν,α a H 1 weak solution of (11) with perfect slip Navier boundary conditions in the sense of Definition 3 with initial data u 0 , up to time T . Then lim ν,α→0

u ν,α -u L ∞ (0,T ;L 2 (Ω)) = 0.
Proof. We can assume without loss of generality that α 1. During this proof, we denote by C a constant which does not depend on ν and α. The proof is performed through energy estimates. Set w = u ν,αu. To simplify notation, we will write u instead of u ν,α and A for A(u). Moreover, we will write w 2

H 1 α (Ω) = Ω (|w| 2 + α 2 |A(w)| 2 ).
By the Korn inequality, w H 1 α (Ω) is equivalent to w H 1 (Ω) (with constants depending on α). Moreover, w H 1 (Ω) Cα -1 2 w H 1 α (Ω) with C independent of α. Formally, the following equation holds for w:

(16) ∂ t w + (w • ∇)w + (w • ∇)u + (u • ∇)w = div(S) + ∇p,
where p is the pressure associated to the Euler solution. We would like to multiply ( 16) by w and integrate over Ω. However, w is only H 1 so we don't have enough regularity to perform this. Nevertheless, it is still possible to get the desired conclusion using the variational formulation ( 13) coupled with the energy inequality [START_REF] Khan | Exact solutions for some oscillating flows of a second grade fluid with a fractional derivative model[END_REF]. Indeed, multiplying the equation of w by w is, at least at the formal level, equivalent to multiplying the equation of u by u, adding the result to the equation of u multiplied by u and subsequently subtracting the result of this addition from the equation of u multiplied by u added to the equation of u multiplied by u. All these operations are permitted except for the multiplication of the equation of u by u. But the multiplication of the equation of u by u results in the energy equality and we can use the energy inequality instead; this results in an inequality instead of an equality at the end. More precisely, the rigorous argument is the following. We multiply the Euler equation satisfied by u with u to obtain (17

) t 0 Ω ∂ t u • u + t 0 Ω u • ∇u • u = 0.
We recall next the conservation of energy that holds true for the Euler equation:

(18) u(t) 2 L 2 (Ω = u 0 2 L 2 (Ω .
We add [START_REF] Liu | Local existence and blowup criterion of the Lagrangian averaged Euler equations in Besov spaces[END_REF] to the energy inequality [START_REF] Khan | Exact solutions for some oscillating flows of a second grade fluid with a fractional derivative model[END_REF] and subtract (17) multiplied by 2 and ( 13) multiplied by 2 and with ϕ replaced by u. We obtain after some straightforward calculations the following inequality

Ω (|w(t)| 2 + α 2 |A(w)| 2 ) + ν t 0 Ω |A - A 2 | 2 α 2 Ω (|A| 2 -|A(u 0 )| 2 ) -α t 0 Ω A : ∂ t A + ν 4 t 0 Ω |A| 2 + 2 t 0 Ω u • ∇u • u + 2 t 0 Ω u • ∇u • u -α t 0 Ω (u • ∇A) : A -α t 0 Ω A 2 : A + α t 0 Ω [(∇u) t A + A∇u] : A. ( 19 
)
We continue by estimating the second line of ( 19):

α 2 Ω (|A| 2 -|A(u 0 )| 2 ) -α t 0 Ω A : ∂ t A + ν 4 t 0 Ω |A| 2 Cα u 2 L ∞ (0,t;H 1 (Ω)) + u 0 2 H 1 (Ω) + t A L ∞ (0,t;L 2 (Ω)) ∂ t A L ∞ (0,t;L 2 (Ω)) + Cνt u 2 L ∞ (0,t;H 1 (Ω)) Cα u 2 L ∞ (0,T ;H 1 (Ω)) + u 0 2 H 1 (Ω) ) + Cα 1 2 T u 0 H 1 (Ω) u C 1 ([0,T ];H 1 (Ω)) + Cνt u 2 L ∞ (0,T ;H 1 (Ω)) . (20) 
where we used the energy inequality [START_REF] Khan | Exact solutions for some oscillating flows of a second grade fluid with a fractional derivative model[END_REF] to deduce the last line.

Next, we make an integration by parts and write

(21) 2 t 0 Ω u • ∇u • u + 2 t 0 Ω u • ∇u • u = -2 t 0 Ω w • ∇u • u = -2 t 0 Ω w • ∇u • w C t 0 w 2 L 2 (Ω) ∇u L ∞ (Ω) C u L ∞ (0,T ;H 3 (Ω)) t 0 w 2 H 1 α (Ω)
Moreover,

-α t 0 Ω (u • ∇A) : A = -α t 0 Ω (u • ∇A) : A(w) Cα t 0 u H 1 (Ω) ∇A H 1 (Ω) A(w) L 2 (Ω) Cα t 0 ( u H 1 (Ω) + w H 1 (Ω) ) ∇A H 1 (Ω) A(w) L 2 (Ω) (22) Cα t 0 u 2 H 3 (Ω) A(w) L 2 (Ω) + C u L ∞ (0,T ;H 3 (Ω)) t 0 w 2 H 1 α (Ω) Cαt u 3 L ∞ (0,T ;H 3 (Ω)) + C u L ∞ (0,T ;H 3 (Ω)) t 0 w 2 H 1 α (Ω)
We bound now the last line in [START_REF] Liu | A note on the blowup criterion of the Lagrangian averaged Euler equations[END_REF]. We observe that

[(∇u) t A + A∇u] : A -A 2 : A = [(∇u) t A + A∇u -A 2 -(∇u) t A -A∇u + A 2 ] : A so |[(∇u) t A + A∇u] : A -A 2 : A| C|∇u||∇w|(|∇u| + |∇w|)
We infer the following bound for the last line in ( 19)

-α t 0 Ω A 2 : A + α t 0 Ω [(∇u) t A + A∇u] : A Cα t 0 Ω |∇u||∇w|(|∇u| + |∇w|) C ∇u L ∞ ([0,T ]×Ω) t 0 w 2 H 1 α (Ω) + Cαt ∇u 3 L ∞ ([0,T ]×Ω) (23) 
Using estimates ( 20)-( 23) in [START_REF] Liu | A note on the blowup criterion of the Lagrangian averaged Euler equations[END_REF] implies that (24) w(t) 2

H 1 α (Ω) Cα u 2 L ∞ (0,T ;H 1 (Ω)) + u 0 2 H 1 (Ω) ) + Cα 1 2 T u 0 H 1 (Ω) u C 1 ([0,T ];H 1 (Ω)) + CνT u 2 L ∞ (0,T ;H 1 (Ω)) + CαT u 3 L ∞ (0,T ;H 3 (Ω)) + C u L ∞ (0,T ;H 3 (Ω)) t 0 w 2 H 1 α (Ω) .
Applying the Gronwall lemma to (24) implies that lim ν,α→0

w L ∞ (0,T ;H 1 α (Ω)) = 0. This completes the proof of Theorem 5.

A first corollary of Theorem 5, together with Theorem 1 and Theorem 1 in [START_REF] Busuioc | The second grade fluid and averaged Euler equations with Navier-slip boundary conditions[END_REF] is convergence of the vanishing viscosity limit in the two-dimensional case.

Axisymmetric flow without swirl

Another situation where the uniform time of existence of solutions of the second-grade fluid equations may be established, and we can conclude convergence of the vanishing viscosity limit is for axisymmetric flows without swirl. Global-in-time existence of smooth solutions for the viscous equation was established in [START_REF] Busuioc | Some remarks on a certain class of axisymmetric fluids of differential type[END_REF] with Dirichlet boundary conditions. For the present work, we require the same result with Navier friction conditions, which should actually be easier to prove, but it is not available in the literature. The purpose of this section is to outline an adaptation of Theorem 1 in [START_REF] Busuioc | Some remarks on a certain class of axisymmetric fluids of differential type[END_REF] to the case of Navier friction conditions.

Let Ω be a bounded smooth axisymmetric domain of R 3 with axis of rotation R(0, 0, 1). A flow is said to be axisymmetric if the velocity has cylindrical symmetry:

(25) u(t, x) = a(t, r, x 3 )(x 1 , x 2 , 0) + b(t, r, x 3 )(x 2 , -x 1 , 0) + c(t, r, x 3 )(0, 0, 1) ≡ u r + u θ + u 3
where a, b, c are scalar functions and r = (

x 2 1 + x 2 2 ) 1 2
. The flow is said axisymmetric without swirl if the swirl velocity u θ vanishes. Due to the invariance by rotation of the second grade fluids equations, the special structure expressed in (25) is preserved by the flow. We will show below that an axisymmetric second grade fluid verifying the perfect slip Navier boundary conditions preserves the no swirl condition. We have the following proposition. Proposition 6. Suppose that u 0 is axisymmetric without swirl, belongs to H 3 (Ω), is divergence free and tangent to the boundary and verifies the boundary conditions [START_REF] Clopeau | On the vanishing viscosity limit for the 2D incompressible Navier-Stokes equations with the friction type boundary conditions[END_REF]. Suppose in addition that 1 r curl(u 0 -α∆u 0 ) ∈ L 2 (Ω). Then there exists a global H 3 no swirl solution. Proof. As was proved in [START_REF] Busuioc | The second grade fluid and averaged Euler equations with Navier-slip boundary conditions[END_REF], there exists a local H 3 solution. If this solution blows up in finite time, then the H 3 (Ω) norm must become infinite. We will show that this cannot happen, so that the solution is global.

We show first that the swirl velocity vanishes. We observe first that u θ is divergence free and tangent to the boundary. Indeed, the vector field (x 2 , -x 1 , 0) is tangent to the boundary and any vector field of the form f (r, x 3 )(x 2 , -x 1 , 0) is divergence free. We show now that u θ verifies the perfect slip Navier boundary conditions [START_REF] Clopeau | On the vanishing viscosity limit for the 2D incompressible Navier-Stokes equations with the friction type boundary conditions[END_REF].

Computing An using relation (25) shows after some straightforward calculations that the swirl component of An is exactly A(u θ )n (they are both equal to (n • ∇b)(x 2x 1 , 0)). Given that the swirl component is always tangent to the boundary, we infer from (4) that we must have that A(u θ )n = 0 at the boundary. In particular, the swirl velocity must verify the perfect slip Navier boundary conditions (4). We recall next the second grade fluid equation can be written under the form (26)

∂ t v -ν∆u + u • ∇v + j v j ∇u j = -∇p
where v = u -α∆u. We multiply the above equation by the swirl velocity and integrate in space to get

Ω ∂ t v • u θ -ν Ω ∆u • u θ + Ω u • ∇v • u θ + Ω j v j ∇u j • u θ = 0.
Recall next the following identity: if u is a divergence free tangent to the boundary vector field that verifies the Navier boundary conditions (4) and w is a vector field tangent to the boundary, then we have that ( 27)

Ω ∆u • w = - 1 2 Ω A(u) : A(w).
It is easy to check that the swirl component of ∆u is ∆u θ . Using also relation ( 27) we can write

Ω ∂ t v • u θ -ν Ω ∆u • u θ = Ω ∂ t (u θ -α△u θ ) • u θ -ν Ω ∆u θ • u θ = 1 2 d dt Ω (|u θ | 2 + α 2 |A(u θ )| 2 ) + ν 2 Ω |A(u θ )| 2 .
Next, we make an integration by parts to write

Ω u • ∇v • u θ + Ω j v j ∇u j • u θ = Ω (u θ • ∇u -u • ∇u θ ) • v
A straightforward calculation using relation (25) shows that the vector field u θ • ∇uu • ∇u θ is a multiple of (x 2 , -x 1 , 0). More precisely,

u θ • ∇u -u • ∇u θ = -u • ∇b(x 2 , -x 1 , 0). We infer that Ω (u θ • ∇u -u • ∇u θ ) • v = Ω (u θ • ∇u -u • ∇u θ ) • v θ = Ω (u θ • ∇u -u • ∇u θ ) • (u θ -α∆u θ ) = Ω u θ • ∇u • u θ -α Ω (u θ • ∇u -u • ∇u θ ) • ∆u θ .
We estimate now

Ω u θ • ∇u • u θ u θ 2 L 2 (Ω) ∇u L ∞ (Ω) C u θ 2 L 2 (Ω) u H 3 (Ω) .
We use next relation ( 27) and the fact that the vector field u θ • ∇uu • ∇u θ is tangent to the boundary to write ( 28)

Ω (u θ • ∇u -u • ∇u θ ) • ∆u θ = - 1 2 Ω A(u θ • ∇u -u • ∇u θ ) : A(u θ ).
When expanding A(u θ • ∇uu • ∇u θ ) we get the terms u θ • ∇A(u)u • ∇A(u θ ) plus other terms which are of the following form: a first order derivative of u multiplied by a first order derivative of u θ . Putting these other terms back in (28) we see that they can be bounded by C ∇u L ∞ (Ω) ∇u θ 2 L 2 (Ω) . We infer that we can bound

α Ω (u θ • ∇u -u • ∇u θ ) • ∆u θ - α 2 Ω u θ • ∇A(u) : A(u θ ) + α 2 Ω u • ∇A(u θ ) : A(u θ ) + C u θ 2 H 1 (Ω) u H 3 (Ω)
. The middle term on the right-hand side above vanishes. We bound the first one as follows:

- α 2 Ω u θ • ∇A(u) • A(u θ ) α 2 u θ L 2 (Ω) ∇A(u) L 4 (Ω) u θ L 4 (Ω) C u θ L 2 (Ω) ∇A(u) H 1 (Ω) u θ H 1 (Ω) C u θ L 2 (Ω) u H 3 (Ω) u θ H 1 α (Ω)
Putting together all these relations we obtain in the end the following differential in-

equality d dt u θ 2 H 1 α (Ω) + ν Ω |A(u θ )| 2 C(α) u θ 2 H 1 α (Ω) u H 3 (Ω)
. Since u θ vanishes at the initial time, the Gronwall inequality implies that u θ vanishes for all times. This completes the proof that the swirl velocity vanishes. Now that we know that the velocity is axisymmetric without swirl, the proof continues in the same manner as the proof of [7, Theorem 1] as presented on pages 110-112. The only difference is that in [START_REF] Busuioc | Some remarks on a certain class of axisymmetric fluids of differential type[END_REF] the authors consider Dirichlet boundary conditions, while here we deal with perfect slip Navier boundary conditions. Fortunately, the required tools to work with perfect slip Navier boundary conditions are available in [START_REF] Busuioc | The second grade fluid and averaged Euler equations with Navier-slip boundary conditions[END_REF]. We shall only sketch the proof, highlighting the places where the perfect slip Navier boundary conditions come into play.

Let ω = curl u. For axisymmetric flows without swirl, one has that

ω = ω(t, r, x 3 )(x 2 , -x 1 , 0) and ω -α△ω = ω(t, r, x 3 )(x 2 , -x 1 , 0)
where ω, ω are scalar functions. As observed in [START_REF] Busuioc | Some remarks on a certain class of axisymmetric fluids of differential type[END_REF], ω verifies the following equation:

∂ t ω + ν α (ω -ω) + u • ∇ω = 0.
By hypothesis, we have that ω(0) ∈ L 2 (Ω). Performing L 2 estimates and using that u is tangent to the boundary implies that

d dt ω 2 L 2 (Ω) + ν α ω 2 L 2 (Ω) ν α ω 2 L 2 (Ω) C u 2 H 2 (Ω) , so that sup [0,t] ω 2 L 2 (Ω) C + C sup [0,t] u 2 H 2 (Ω)
Using the regularity result proved in [6, Proposition 6] we have that

u H 3 (Ω) C ω -α∆ω L 2 (Ω) + C u H 1 (Ω) .
By the H 1 energy estimates, the quantity u H 1 (Ω) is uniformly bounded in time. Moreover, since the domain is bounded we also have that ω -α∆ω L 2 (Ω) C ω L 2 (Ω) . We infer that sup

[0,t] u 2 H 3 (Ω) C + C sup [0,t] u 2 H 2 (Ω) C + C sup [0,t] u H 1 (Ω) u H 3 (Ω) .
Given that u H 1 (Ω) is uniformly bounded the above relation implies a bound for u(t) H 3 (Ω) for all times. This completes the proof.

Conclusions

There are several natural questions that arise from the analysis presented in this article. A first issue is the need to assume a uniform time of existence for the family of weak solutions of the complex flow equations in Theorem 5. In the Newtonian case such a hypothesis is not needed, since we have global existence of Leray solutions. Global-in-time existence of H 1 -weak solutions both for the second-grade fluid model and for α-Euler, in 3D are natural, and rather interesting open problems. An easier problem in this direction is to obtain a finite time of existence of the weak solutions for the complex fluid models which is independent of α and ν. In fact, such a result is known in the full-space case, see [START_REF] Linshiz | On the convergence rate of the Euler-α inviscid second-grade complex fluid, model to the Euler equations[END_REF]. Below we outline a simple argument which obtains such a uniform time of existence in the full space. The result is weaker than the one in [START_REF] Linshiz | On the convergence rate of the Euler-α inviscid second-grade complex fluid, model to the Euler equations[END_REF], but the proof is much simpler.

Suppose that u 0 ∈ H 5 (R 3 ). Let σ be a multi-index of order 3. We apply ∂ σ to (26), we multiply by ∂ σ v and sum over |σ| 3 to obtain

1 2 d dt v 2 H 3 (R 3 ) + |σ| 3 ν ∇∂ σ u 2 L 2 (Ω) + αν ∆∂ σ u 2 L 2 (Ω) = - |σ| 3 ∂ σ (u • ∇v)∂ σ v + j ∂ σ (v j ∇u j )∂ σ v .
We have the classical inequality

∂ σ (u • ∇v)∂ σ v K 1 u H 3 (R 3 ) v 2 H 3 (R 3 )
where K 1 is a universal constant. We also have that u

H 3 (R 3 ) v H 3 (R 3 ) so ∂ σ (u • ∇v)∂ σ v K 1 v 3 H 3 (R 3 ) .
One can show in a similar manner that

∂ σ (v j ∇u j )∂ σ v K 2 v 3 H 3 (R 3 )
where K 2 is another universal constant. We deduce from the above relations that d dt v 2

H 3 (R 3 ) K v 3 H 3 (R 3 ) .
where K is a universal constant. This implies that v is bounded in H 3 (R 3 ) on a time interval that depends only on v 0 H 3 (R 3 ) = u 0 -α∆u 0 H 3 (R 3 ) . Note that the argument above shows that, in the full plane case, the velocity u is bounded in H 3 (R 3 ) on a time interval independent of α. We observe that this should not be true in the case of a bounded domain. Indeed, suppose that there is a sequence of solutions uniformly bounded in H 3 (Ω) on a time interval independent of α. Then by Theorem 5 this sequence of solutions converges to the solution of the Euler equation. But given the boundedness in H 3 (Ω), this would imply that the solution of the Euler equation verifies the perfect slip Navier boundary conditions. This is of course not true in general even though the initial velocity verifies these boundary conditions. The question of existence of a solution for a time independent of α, ν in the case of a 3D bounded domain with Navier friction condition remains open, and, as we have seen, the answer cannot be obtained by means of a simple energy argument as above.

Another interesting open question is the existence of a solution to the second-grade fluid equations with physical boundary condition (2), if the initial data does not satisfy the nonphysical boundary condition [START_REF] Bardos | Global regularity for a Birkhoff-Rott-α approximation of the dynamics of vortex sheets of the 2D Euler equations[END_REF]. Other natural lines of inquiry include investigating the vanishing viscosity limit in the two-dimensional case, with more irregular initial data and also in the case of threshold slip data of the type studied in [START_REF] Le Roux | Existence and uniqueness of the flow of second-grade fluids with slip boundary conditions[END_REF].

Definition 3 .

 3 used above the identity [A(B + C)] : A = (AB) : A + (CA) : A that holds true for any symmetric matrix A and arbitrary matrices B and C to deduce thatA 2 : A = [(∇u) t A + A∇u] : A.In view of the discussion above we introduce the following definition of a weak H 1 solution of the second grade fluid equations. We say that u is a weak H 1 solution of the second grade fluid equations with perfect slip Navier boundary conditions on the time interval [0, T ] if and only if a) u ∈ C 0 w ([0, T ]; H 1 (Ω)); b) u is divergence free and tangent to the boundary; c) relation (13) holds true for all vector fields ϕ
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