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Boron nitride is a promising material for nanotechnology applications due to

its two-dimensional graphene-like insulating and highly-resistant structure.1–3

Recently it has received a lot of attention as a substrate to grow and iso-

late graphene4 as well as for its intrinsic UV lasing response.5,6 Similar to car-

bon, one-dimensional boron nitride nanotubes (BNNTs) have been theoretically

predicted7 and later synthesised.8 Here we use first principles simulations to un-

ambiguously demonstrate that i) BN nanotubes inherit the highly efficient UV

luminescence of hexagonal BN; ii) the application of an external perpendicular

field closes the electronic gap keeping the UV lasing with lower yield; iii) defects

in BNNTS are responsible for tunable light emission from the UV to the visible

controlled by an transverse electric field (TEF). Our present findings pave the

road towards optoelectronic applications of BN-nanotube-based devices that are

simple to implement because they do not require any special doping or complex

growth.
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Scientists have worked hard in the last decades to grow defect free nano-structures. The

near-perfect atomic arrangement at the nano-scale has been employed to create new efficient

devices as light-emitters, transistors and sensors. While many applications benefit from using

defect free materials, the presence of particular impurities can generate new and fascinating

properties. For example F-centre in ionic crystals have been widely used in luminescence

applications.9 More recently nitrogen vacancies in diamond have been proposed for quan-

tum computation.10 Defects play an important role also for the luminescence properties of

hexagonal boron nitride and related nanostructures.11–15 Similarly to graphene, a single BN

layer can be rolled up to form new structures ranging from single and multi-wall nanotubes

to BN-fullerens2. In contrast to graphite, the ionic character of the BN bond results in a

wide band-gap of about 6 eV for bulk hexagonal-BN11,16,17. The combination of a such large

gap with a strong electron-hole attraction makes the optical properties of hexagonal-BN

based nanostructures largely independent of the layer arrangement and dimensionality.2,16

Although bulk h-BN has been shown to exhibit a strong luminescence, it cannot be used

for optical applications in the visible range because the emission frequency is fixed to about

5.75 eV in the UV. However the presence of impurities can drastically modify this scenario,

as it has been shown, theoretically12 and experimentally.13–15.

The defects electronic structure and formation energies have been widely studied in bulk

h-BN and BN nanotubes.18–23 Luminescence in the visible was attributed to the presence

of deep levels in the sample,24–26 whereas the UV emission is an intrinsic response (Frenkel-

exciton) of the structurally perfect hexagonal BN.27 Here we propose to engineer BNNTs

with particular defects in order to generate light-emission in a wide range of frequencies,

that can be tuned by means of an external electric field. The range of tunability of the

proposed nanotube-based light emitting device depends from defect location and type.

For pure BNNTs, it has been shown that the application of a transverse electric field

generates a Stark effect leading to a strong reduction of the band gap28,29. The external

field leads to a localisation of the conduction-band minimum/valence-band maximum on

opposite sides of the tube(see Fig. 1). The corresponding energy shift of the band edges is

thus proportional to the nanotube diameter. Experimentally as-grown nanotubes contain

defects that lead to both deep or shallow levels in the gap. The wave-functions of these levels

are, a priori, only slightly affected by the presence of an external electric field22,30 because

they are associated with localised orbitals centred on the impurity. However, their level

3



position with respect to the bands edges changes22,30 because valence(conduction) bands

are modified by the external field. Here we will show that this property can be employed

to produce tunable and highly efficient bright light-emission devices based on defective BN

nanotubes.

RESULTS

We model the electronic and structural properties of the pure and defected BN nanotubes

under a TEF using state-of-the-art first-principles methods based on density functional

theory(DFT) combined with many-body perturbation-theory(MBPT) approaches. These

methods allow calculation of quasiparticle-band structure and optical properties with a high

degree of accuracy (see Methods section for details). In the past this theoretical framework

has been shown to be very efficient in predicting the electronic properties on BN nanotubes

that were later on confirmed in the experiments.2,3,7,16

We start our study by analysing the case of pure isolated BN nanotubes immersed in a

static transverse electric field. A transverse electric field reduces the band gap, as shown

in panel b) of Fig. 1. The gap reduction, induced by the TEF, is directly proportional

to the electric field strength and to the tube diameter.31 Surprisingly the shrinking of the

band-gap slightly modifies the optical response of the tube.30 The main exciton remains in

the same position, while a small fraction of its spectral weight is redistributed to higher

excitons (see panel c) in Fig. 1). In fact the conduction and valence orbitals contributing

to the gap reduction are localised on the opposite side of the tube, they have a very little

overlap (see panel a) of Fig. 1) and therefore their contribution to the optical response

is negligible. Therefore we conclude that while the giant Stark effect present in BNNTs

can modify their transport properties32, it leaves the optical response mainly unchanged.

The light emission spectra of pure BNNTs is thus not tunable by an external electric field.

The presence of defects drastically modifies this picture. Different experiments have shown

that impurities induce light emission below 5 eV in BN nanostructures,13–15 and modify

the luminescence arising from the main bulk exciton.12 These effects can be explained by

the presence of deep levels in the BN band gap.12 The low frequency emissions are due to

transitions from and to these levels. Moreover when the impurity levels are close to the top

valence band or bottom conduction band they mix with the bulk excitations giving rise to
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a splitting of the main excitonic peak.12 Among the different impurities responsible for light

emission we can distinguish two families: defect complexes and single defect centres. The

first family is formed by multiple defects as for instance di-vacancies, defect lines and so on.

The second family consists in a single defect centre as for instance boron (nitrogen) vacancies

or a substitution of a boron(nitrogen) atom with a carbon one. The main difference between

these two families lies in the different kind of transitions involved in light absorption/emission

processes. In the case of defect complexes both donor and acceptor states are present in the

band gap while in the other case there is only a single donor or acceptor state. Therefore

in the case of defect complexes the optical response is dictated by the quasi-donor-acceptor

transitions33, while in the simple defect centres light absorption/emission is due to transition

between bulk states and deep defect levels (see Fig. 2).

The electronic structure of defects in BN nanotubes is similar to the one of defects in

a single BN-sheet.18 In fact due to the large band gap curvature effects play a minor role

on the optical properties of pure BNNTs, where the strong localisation of excitons renders

the optical spectra almost independent from the tube diameter and chirality.16,34 In order to

simulate a tube with defects we use the same methodology employed for the pure tube but

with larger supercells in such a way to reduce the defect-defect interaction. Although large

part of the tubes produced in the experiments are multi-wall and possess a zig-zag chirality,

we chose a 12 × 12 armchair one as prototype for our study. This choice is motivated by

two reasons: first the primitive cell of an armchair tube, radius being equal, contains less

atoms than a chiral one, second we expect only small differences with respect to the optical

response of multi-wall or chiral nanotubes for the reasons discussed above. When we turn on

a TEF, the band gap of the tube shrinks and consequently, the defect levels change position

with respect to the band edges.22,30 The orbitals associated with defects levels are strongly

localised on the impurities (see right panel of Fig. 3) and therefore they are slightly deformed

by the presence of the external field. To first order, the shift of the defects levels is thus

given by the potential generated by the TEF and depends therefore on the position of the

defect respect to the direction of the electric field (see inset in Fig. 2). This is visualised in

the bottom panel of Fig. 2 for three different defect positions. We will show in the following,

how this property gives rise to a tunable and efficient light emission.

In order to predict the emission frequencies of BN nanotubes in presence of defects, we used a

simplified approach. The first necessary ingredient to get light emission is non-vanishing op-
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tical matrix elements between the discrete donor(acceptor) state and the continuum states

of the bottom conduction(top valence) bands. In the upper panel of Fig. 2 we show the

strength of the optical matrix elements between the defect level and the bottom conduction

bands for the case of a Boron vacancy, VB. The optical matrix element displays a strong

dependence on the angle between the defect position and the electric field (see inset in the

top panel of Fig. 2). The same phenomena occurs for other simple acceptor or donor defects

like substitution of a Nitrogen or a Boron atom by a carbon one, CB and CN respectively.

Furthermore, we note that the optical matrix elements for polarisation along the tube axis

(z-axis) dominate, which also holds for the optical response of pure nanotubes2.

The presence of the external electric field localises valence and conduction bands on oppo-

site sides of the tube (see Fig. 1), therefore transitions are maximal only when the defect

is aligned with the bottom(top) of the conduction(valence) band. The dipole element de-

creases to almost zero as the defect is turned to the opposite side of the tube. Consequently

one can expect that luminescence, which is generated by transitions from and to the de-

fects levels, will be efficient only when the defects are positioned on the side of ”localised”

conduction(valence) band edge. This focusing effect increases with the tube size and field

intensity.

Now that we are sure that transitions from and to simple defect centres are not zero in

presence of a transverse electric field, we investigate how the field modifies the emission

frequencies. In order to predict light emission we start from the quasi-particle(QP) band

structure in presence of defects. We consider the energy differences for transitions between

defect states and the top valence(bottom conduction) states. This allows us to investigate

light-emission versus transverse electric field, without including electron-hole interaction or

lattice relaxation (see Methods section). We found that also in presence of defects the GW

renormalisation for conduction(valence) bands and defects levels is almost a constant respect

to the external electric field (see also Fig. 1(b)).

Luminescence can be estimated from the QP band structure in presence of TEF as the

sum of independent transitions between conduction bands and defect states. However light

emission originates from electron-hole recombination, a two-particle process that cannot be

described by means of the quasi-particle band structure only. In fact electrons and holes

attract each other and this attraction modifies the transition energies. These processes can

be naturally treated within a two-particle Green’s functions formalism35 and it has been
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shown that transition energies from and to defect states are strongly renormalised12 by the

electron-electron correlation. In order to model this correction, we calculate the exchange

and electron-hole attraction between the defect level and the bottom conduction(top va-

lence) bands only. In the past this approximation has been successfully employed to predict

excitation energies of F-colour centres.36

In addition to the corrections originating from the electronic correlation, we have to consider

the contributions due to the lattice relaxation induced by the excited carriers. These are

the so called Stokes and anti-Stokes shifts. The Stokes shifts can be estimated by means

of a constrained DFT calculation with different defect occupation. We investigated three

different defects, an acceptor the Boron vacancy VB, a donor the Carbon substitution of a

Boron atom CB, and the Boron-Nitrogen di-vacancy VBN . In order to estimate the Stokes

shift we considered the case of a completely empty acceptor state(or a completely filled

donor state). In principle one should consider also the correction coming from the partial

filling (emptying) of the conduction(valence) bands, but this is supposed to be a minor effect

because these bands are delocalised along the ~z direction. In this way we obtain a rough

estimation of the Stokes shift of ∆Es ≃ 0.19 eV for CB and ∆Es ≃ 0.03 eV for VB. We

did not calculated any Stokes shift for VBN because in this case it is irrelevant as it will be

clear in the following. Vested with this theoretical approach we proceed in the study of light

emission versus the external electric field.

We report our predicted light emission for BN(12, 12) tube versus the transverse electric

field in Fig. 4. As one can see from the figure an external electric field allows to vary

the emission frequency in a large spectral range for the CB and VB cases. Notice that in

presence of defect complexes, as for instance the BN di-vacancy VBN , the emission frequency

does not change with the external field. In fact in this case the emission is dominated by

transitions between donor and acceptor states in the band-gap.12,33 Since the wave-functions

associated to these states are localised on the impurity, the effect of external electric field

is irrelevant. In the left panel of Fig. 3 we present a schematic representation of the light

emission process from BN nanotubes in presence of defects. We want to underline that this

process happens only when the defect is aligned with the conduction(valence) maximum,

otherwise the emission will be inefficient due to the small dipole matrix elements.

Although the results of Fig. 4 can be theoretically extended to larger tubes, calculations

become soon prohibitive due to the large number of atoms, the vacuum in the super-cell and
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the number of conduction bands that enter in the many-body operators. Therefore in order

to predict light emission in larger (more realistic) tubes we assume many-body corrections

to be a constant with respect to the tube size and we fit the emission energy with a simple

linear curve

Eemission = E0 + αξ (1)

where ξ is the external electric field. This relation was already employed to describe the

band gap closing of h-BN nanotubes under the effect of a TEF in simple tight-binding

models and ab-initio calculations.31,37 In principle the linear coefficient α depends on the

tube size. In order to estimate this dependence we performed different calculations at the

DFT level, varying the tube size. We found that α changes linearly with the tube radius R,

α(R) = α0 + Rβ. A similar behaviour has been found for the pure BNNTs gap versus the

electric-field and tube radius.31 Combining the previous two equations we can predict the

electric field ξ necessary to produce light emission at a given frequency E1:

ξ =
E1 −E0

α0 +Rβ
. (2)

Now we use Eq. 2 to estimate the intensity of the TEF that will induce emission in the

visible range (1.65 − 3.1 eV). In Fig. 5 we report the visible emission range for the VB and

CB cases versus the TEF intensity and tube radius.

In general an increase of the tube size reduces the strength of the transverse electric field

necessary to obtain emission in the visible range, For sufficient large tubes the TEF intensity

is of the same order of the one available in small devices. Notice that an TEF produces an

electrostatic potential inside the tube that is proportional to the TEF intensity and the tube

radius.22 Therefore Eq. 2 breaks down for too large nanotubes or too strong fields. However

a giant Stark effects has been experimentally measured in pure BN nanotubes with a radius

of about 23 Å and a TEF of 0.08 V/Å. In the same experiment a gap reduction of more

than 1 eV has been obtained.29 Comparing these values with our extrapolation in Fig. 5 it

is clear that there is a large margin to produce visible light with experimentally accessible

nanotubes and electric fields.

Finally we consider defects formation and their charge state. Recent experiments38 have

shown that it is possible to introduce defects in h-BN structures by means of electron

irradiation. This process is mainly dominated by boron mono-vacancies even if other larger

vacancies are present. These vacancies can also be transformed in substitutional defects
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by introducing C atoms in the experiment,39,40 and the final process can be controlled by

charging the system during the irradiation.40 These advances make possible the realisation

of the device that we are going to discuss in the following. Regarding the charge state of

the defects, in the present paper we investigated only neutral ones. Charged defects posses

different relaxation energies and electronic structure. This fact influences also their optical

properties, as it has been recently shown in the case of vacancies in SiC.41 The present

results can easily be extended to charged defects and we expect that the main findings will

remain valid. In fact the tunability of the light emission it is related to the localisation of

defect states versus the delocalised bulk ones. Therefore a different charge state will modify

the emission at zero field but not its behaviour in presence of a TEF.

Now that we have shown how to produce tunable light emission with defective BN nanotubes

and discussed the feasibility of our idea, we briefly present the possible configurations of

a device based on BN nanotubes. The generic configuration of the device (see Fig. 6)

comprises depositing as-grown BN nanotubes on an insulating surface (for example silicon

oxide) acting as a dielectric to enable the application of the gated electric field that controls

the light emission. The configurations is very much similar to the one of a field effect

transistor (FET). The activation of the BN-defected optoelectronic device could be done by

one of the following three processes: i) using UV light, ii) introducing an ambipolar current

that recombines in the defect and emits light dictated by the applied gate voltage42 iii)

using tunnelling current through an STM tip close to the nanotube. The excited electrons

would inelastically decay very fast into the lowest energy state (the defect-liked Frenkel

exciton) that would further decay by emitting light, again with a frequency dictated by the

applied voltage, a process similar to the one leading to light emission in electronically excited

semiconductors and fluorescent materials. A schematic set-up of those devices is illustrated

in Fig. 6.

DISCUSSION

In conclusion, we have shown that light emission from BNNTs with simple defect centres

can be tuned by the presence of TEF. This opens the possibility to use these systems as light

emitting devices. The use of (non-tunable) UV-light emitting devices based on crystalline

hexagonal BN has already been suggested before43. Here, we move one important step
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further by showing how nanotube based devices could operate in the UV and visible range

by varying the external field. The external electric field, necessary to tune the emission, can

be applied using a field-effect transistor configuration32. The intensity necessary to produce

visible light decreases with the tube size. The present results have been patented by some

of the authors.44

Finally we envision that the present findings can be applied to other two-dimensional

semiconducting or insulating layered materials that form tubes, as it is the case for transition

metal dichalcogenides.45

METHODS

BNNTs are simulated by using a supercell approach,7 where the tube is oriented along the z

direction, and a large empty space is left in the other two directions between tube replica in order

to reduce the tube-tube interactions. Subsequently a sawtooth electric field (see inset in Fig. 1(a))

with the cell periodicity is added along the x direction. In order to simulate light emission in

BNNTs we employed a combination of Density-Functional Theory (DFT) plus Many Body Per-

turbation Theory (MBPT). DFT is an exact theory for ground state properties and it is known to

describe very well the structural properties of boron-nitride nanostructures within Local Density

Approximation (LDA). All DFT calculations have been performed using a 1× 1× 5 supercell con-

taining 240 atoms. The distance between the tube replica was 29 a.u. , we used a 1× 1× 2 k-point

sampling, LDA for the exchange correlation functional46, a plane waves cutoff of 45 Ry for the wave-

function and norm-conserving pseudo-potentials.47 All DFT calculations have been performed with

the PWSCF code48 and the atomic structures have been relaxed using a BFGS quasi-Newton algo-

rithm. Excited state and optical properties have been studied by means of MBPT. We calculated

quasi-particle properties solving a Dyson equation within the so-called G0W0 approximation49,50,

where all the Green’s functions and the self-energy operator are constructed with eigenvalues and

eigenvectors of the Kohn-Sham(KS) Hamiltonian. Non-self consistent GW calculations have been

performed with the code YAMBO51 using a plasmon pole approximation for the dielectric con-

stant. We used 30.000 G-vectors for the wave-function, 2 Ha for the response block size and 3000

bands for the screening. A cylindrical cutoff has been applied to the Coulomb potential in order

to reduce the tube-tube interaction. Neutral excitations, responsible for the absorption spectra

were obtained from a two-particle Green’s function equation, the Bethe-Salpeter equation, that
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is solved in the static ladder approximation35, including excitonic effects. We excluded quasi-free

electron states28 in the Bethe-Salpeter equation, because they are not supposed to be responsible

for luminescence. We performed all calculations without including spin-polarisation effects. Even

if we know that exchange-splitting slightly modifies the defects levels positions12,52, this effect does

not modify the main results of the paper. For the large tubes employed to get the results in Fig. 4

we estimated the GW and electron-hole interaction from the one of a BN-sheet with the same

defects and a distance between the periodic replica equal to the inter-tube distance.12
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FIGURES
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FIG. 1. Panel a) left(right): lowest conduction band (highest valence band) in presence of an

external field E=0.206 V/Å. In panel b) we report the band gap of BN 8× 8 nanotube versus the

TEF in LDA and G0W0 approximations; in panel c) the corresponding optical absorption computed

at the many-body Bethe-Salpeter level.

17



FIG. 2. In the top panel we report the oscillator strength versus the angle between the defect

and the bottom conduction band for VB . The optical matrix elements are averaged on the first

conduction bands within an energy range of 0.15 eV. The straight lines are the dipole matrix

elements at zero TEF. In the same figure it is present also a schematic representation of the a BN

tube with a defect in presence of a TEF. In the bottom panels we show the band structure of the

same tube versus the angle between the defect and the electric field. The red arrow represents the

transition responsible for the luminescence in presence of VB .
12 The intensity of the TEF is 0.206

V/Å.
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FIG. 3. Schematic representation of light emission process for an acceptor impurity in a BN

nanotube. On the left a simplified band structure picture in presence of a TEF. On the right

conduction and defect orbitals responsible for the emission process.
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FIG. 4. Predicted light emission for different defects as a function of the transverse electric field.

All the defects are taken in the position of maximum emission, according to their optical matrix

elements, see also Fig. 2. In the VBN we did not include any Stokes shift.
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FIG. 5. Visible light emission range as function of the tube radius and the external electric field

for VB and CB cases (rainbow colours are just a guide to the eyes).
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FIG. 6. Schematic set-up for the suggested three possibilities to activate the optoelectronic device

based on defective BN nanotubes (i) light-induced luminescence (ii) ambipolar transistor configu-

ration (iii) electron induced electron-hole pairs by means of STM tip.
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