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Weighted V-disparity Approach for Obstacles Localization in Highway
Environments

Nizar Fakhfakh1, Dominique Gruyer1 and Didier Aubert2

Abstract— The employment of embedded passive sensors
in order to perceive environment for reducing the accident
risk level is a tendency of intelligent vehicles research. From
such sensors, one can extract useful informations which can
assist the driver to identify hazardous situations. While safety
improvement is a substantial requirement for driving assistance,
localizing and tracking obstacles in complex road environ-
ment became an important task. Stereovision is an attractive
techniques which allows obtaining the 3D components of an
observed scene from two visible 2D images. One promising
approach is to use the V-disparity technique. It is a cumulative
space estimated from the disparity image. We propose a sound
framework and a complete system based on a real-time stere-
ovision for detection, 3D localization and tracking of dynamic
obstacles in highway environment. The main contribution we
propose is the improvement of the V-disparity approach by
extending the basic approach by merging it with a confidence
term. This consists on weighting each pixel in the V-disparity
space according to a confidence value which measures the
probability of associating a pair of pixels. Furthermore, we
propose a tracking system which is based on the belief theory.
The tracking task is done on the image space which takes
into account uncertainties, handles conflicts, and automatically
dealt with targets appearance and disappearce as well as their
spatial and temporal propogation. Extensive experiments on
simulated and real dataset demonstrate the effectiveness and
the robustness of the weighted V-disparity approach.

I. INTRODUCTION

Establishing vehicle-infrastructure-driver interactions de-
pends on the effectiveness of the perception task in a specific
road scenario. The outstanding development of hardware
have significantly improved the capabilities of embedded
algorithms for accidents avoidance and drivers’ safety im-
provement. One of the early researche works introducing
stereovision for road obstacles detection and road-line mark-
ings extraction is the one that is proposed in [1]. Unfortu-
nately, this previous work has proposed a sparse disparity
map and the detection of obstacles is not performed in real
time. The use of binocular stereopsis principle for collision
avoidance or mitigation has been first successfully demon-
strated by JPL’s planetary robotic vehicle [2] which presents
a trade-off between the computational time and the density
of the disparity map. The authors in [3] uses vision-based
detectors for estimating of the road profile. This is done by
detecting road-line markings and all of obstacles not lying on
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the road plane are discarded. In [4] the authors have proposed
an approach for the construction of occupancy grids using
stereo camera pair for obstacles detection implemented on
a GPU. Their method considers the geometrical visibility of
the different regions of the image and can deal with partially-
occluded objects. In [5] the regions so that a fixed-size
volume contains a sufficient number of points are considered
as potential obstacles.

In this paper, we propose a real-time video-based ob-
stacles localization and tracking system at daytime which
makes extensive use of stereovision principle. The proposed
system allows detecting, localizing and tracking obstacles
in highway environments in daytime. After a digitalization
and a pre-processing stage, a stereo algorithm based on a
local approach is then performed for dense disparity map
generation from which the U- and V-disparity maps are
built. The proposed work fits into earlier work initiated in
[6] which exploits the cumulative spaces termed U- and
V-disparity. The main contribution of this paper is in the
improvement of the V-disparity approach by extending the
basic approach by merging it with a confidence approach.
This consists on weighting each pixel in the V-disparity
space according to a confidence value which measures the
probability of associating a pair of pixels. The two maps, U
and V-disparity, are useful for estimating the 2D bounding
box for each potential obstacle. A set of targets is therefore
obtained with a state vector for each target. Each state vector
contains the lateral and longitudinal position, the bounding
box parameters and the uncertainty information. We have
introduced a tracking filter with an association step based on
belief theory and a filtering step using a linear Kalman filter.
The association step allows to provide a link between a target
and a track. The filter provide an update of the track state
vector given the target data. This allows decreasing false
positive rate and avoiding missed detections. The tracking
task is done on the image space and allows taking into
account uncertainties, handles conflicts, and automatically
dealt with the appearance and the disappearing of targets
as well as their spatial and temporal propogation. Then, the
objects which are not lying in the road plane and hence
non-potential obstacles are removed. The remaining potential
obstacles are kept and are subject for further treatment.

Section II provides a brief overview of the proposed
system. Section III gives the first contribution of this work
with the presentation of an improved dense disparity map
building with confidence approach applied to each pixel.
This confidence approach is used to improve the V-disparity
approach. Section IV explains the second contribution dedi-
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Fig. 1. Obstacles localization system.

cated to the tracking stage using probabilistic approach and
the belief theory. Section V describes the implementation
both in simulated and real scenarios, displays results, and
evaluated the quality of this method with specifics scenarios
related to the intelligent vehicle application. This evaluation
part provides a third contribution with the use of automatic
ground truth generation with the SiVIC virtual environment.
Finally, section VI concludes and discusses future work.

II. PROPOSED OBSTACLES LOCALIZATION
SYSTEM

Figure 1 illustrates the global block diagram of our obsta-
cles localization system based on stereovision principle. The
first step consists of the digitalization task and some pre-
processing applied on both the left and the right images. The
second and third sub blocks allows detecting and localizing
obstacles by means of a robust stereo matching algorithm.
All of the blocks are described in detail in the following sub
sections.

A. Likelihood function for disparity map estimation

Estimating the real position of each point depends only on
one unknown parameter which is the disparity measurement
obtained usually by applying a stereo matching algorithm.
The stereovision problem, also known as stereopsis problem,
consists in determining the depth of all the objects in the
image from the viewer, according to two images coming
from the left and right cameras. The depth of any pixel is
inversely proportional to its disparity, namely how much a
pixel in the right image is shifted to obtain the corresponding
pixel in the left image.

In order to reduce the complexity of such a stereo al-
gorithm, one can exploit prior knowledge of the observed
scene and cameras configuration, which allows promptly
achieving an optimal solution to the matching task. Actually,
known camera geometry with respect to the locally planar
road is used to localize objects which are not lying in
the road plane and hence can be considered as potential
obstacles. An important step is the calibration process of the

stereo cameras enables estimating the intrinsic and extrinsic
parameters which will be useful for reducing the huge range
of the disparity space search for each pixel. By means of a
mechanical and soft calibration process, the stereo camera
is then rectified in such a way that epipolar line appears
horizontal in both images. Actually, the search for similarity
between the two images can be reduced in this way to
horizontal scanlines in the images. Currently, a correlation
window is shifted for each pixel along a horizontal scanline
and computes correlation measurement between the left and
the right images. Each pair of pixels having an optimal score
is considered and then a disparity measure is computed.

The local stereo matching we propose is a two steps patch
matching process. For each pixel to be matched, two scores
are obtained by applying once a rectangular window and
once using a tilted window. This choice is motivated by
considering the following observations:
− For a pixel which belongs to a vertical fronto-parallel

plane, the score obtained with a rectangular window is less
than the one obtained with a tilted window.
− For a pixel lying on the road plane, the score obtained

with a tilted window is less than the one obtained with a
rectangular window.

Local methods are known to rapidly achieve the stereo
matching problem in reasonable processing time but are
subject to many matching error. The estimation of disparities
according to global approaches such as graphical model
is known to be NP-hard, or computationally intractable
problem. Another way for reducing the complexity of such
a stereo algorithm is in exploiting prior knowledge of the
observed scene and cameras configurations.

B. Confidence Approach for Disparity Characterization:

Each pair of matched pixels is evaluated by referring to
the idea initiallty described in our recent and previous work
[7]. Once a likelihood function is applied to initialize the
disparity map, for each matched pair of pixels a confidence
measure is computed. It is termed ψ(pu,v

l , pu′,v
r ) which repre-

sents the level of certainty considering a label l, i.e. disparity,
as the best label for pixel p. We will start from an example
given by figure 2 which shows a pixel which corresponds to a
point of interest to be matched. The homologous of this pixel
in the other image is unique and is well distinguished from
all other candidate pixels. The proposed disparity confidence
function gives a value scaled within the [0, 1] range. For the
previous example, the proposed confidence function gives a
real-valued number which is close to one. The closest to zero,
the less confidence is it. This function depends on several
local parameters and is given by Equation 1:

ψ(pu,v
l , pu′,v

r ) = P(pu′,v
r /pu,v

l ,ρ,min,σ ,ω) (1)

In order to well understand the parameters detailed later,
figure 3 illustrates the scores obtained by applying the
likelihood function on the pixel to be matched of figure 2.
Each score obtained with a candidate qualifies the correla-
tion degree with the pixel to be matched in the reference
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Fig. 2. An example of a point of interest to be matched from the right
image which visibilly have one well identified correspondant in the left
image.

image. The right-hand curve of the figure 3 represents the
scores obtained with the likelihood function. Their scores are
ordered and are shown in the left-hand curve of the figure 3.
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Fig. 3. Likelihood scores of the pixel of figure 2 obtained for each candidate
pixels (a) non-ordered scores (b) ordered scores.

The confidence measurement with its parameters is given
by Equation 2:

ψ(pu,v
l , pu′,v

r ) =

(
1− min

ω

)τ2log(σ)

(2)

Where min is the Best Correlation Score, τ is the number
of potential candidate pixels among all of the candidates, σ

is the standard deviation of the disparity of the τ pixels, ω

is the Gap between the τ th and (τ +1)th scores.

− Best Correlation Score (min): The output of the
likelihood function is a measure of the degree of similarity
between two pixels. Then, the candidate pixels are ranked
in increasing order according to their corresponding scores.
The couple of pixels that has the minimum score is
considered as the best-matched pixels. The lower the score,
the better the matching. The nearer the minimum score to
zero, the greater the chance of the candidate pixel to be the
actual correspondent.
− Number of Potential Candidate Pixels (τ): This parameter
represents the number of potential candidate pixels having
similar scores. τ has a big influence because it reflects
the behavior of the likelihood function. A high value of τ

means that the first candidate pixel is located either in a
uniform region or in a repetitive pattern of the image. The

lower the value of τ , the fewer the candidate pixels. If there
are few candidates, the chosen candidate pixel has a greater
chance of being the actual correspondent. Indeed, the pixel
to be matched belongs to a region with high variation of
gray component. A very small value of τ and a min score
close to zero, means that the pixel to be matched probably
belongs to a region of high gray variations.
− Disparity variation of the τ pixels (σ ): A disparity value
is obtained for each candidate pixel. For the τ potential
candidate pixels, we compute the standard deviation σ

of the τ disparity values. A small σ means that the τ

candidate pixels are spatially neighbors. In this case, the
true candidate pixel should belong to a particular region of
the frame, such as an edge or a transition point. Therefore,
it increases the confidence measure. A large σ means that
the τ candidate pixels taken into account are situated in a
uniform gray region.
− Gap value (ω): This parameter represents the difference
between the τ th and (τ + 1)th scores given with the
dissimilarity function used. It is introduced to adjust the
impact of the minimum score.

To ensure that function ψ has a value between 0 and 1, a
few constraints are introduced. The min parameter have not
to be higher than ω . If so, parameter ω is forced to min+1.
Moreover, the log(σ) term is used instead of σ , so as to
reduce the impact of high value of σ and obtain coherent
confidence measures.

In the following, the way of estimating the τ parameter
is detailed. The number τ of potential candidate pixels is
deduced from all scores obtained with the local likelihood
function. The main idea is to detect major differences be-
tween successive scores. These major differences are called
main gaps. Let φ denote a discrete function which represents
all the scores given by the dissimilarity function in increasing
order. We introduced a second function denoted η , which
represents the average growth rate of the φ function. η can
be seen as the ratio of the difference between a given score
and the first score, and the difference between their ranks.
This function is defined in Equation 3:

η(φ u′,v) =
φ u′,v(zm)−φ u′,v(z1)

zm− z1
m ∈L (3)

where L is the number of all candidates and φ u′,v(zm)
is the mth dissimilarity cost among all scores obtained for
the pair of matched pixels (pu,v, pu′,v). zm is the rank of
the mth score. η(φ u′,v) is a discrete function that allows to
highlight the large gaps between scores. It is materialized
using Equation 4:

ξ (φ u′,v) =

{
∇ηu′,v

m2 if ∇ηu′,v > 0
−1 otherwise

(4)

The previous function (Equation 4) is used to characterize
the major scores and is applied only in the case where the
gradient ∇ηu′,v has a positive sign. We have introduced
parameter m2 in order to penalize the candidate pixels



according to their rank. The number of candidate pixels is
given by Equation 5:

τ = argmax
m

ξ (φ u′,v) (5)

Figure 4 illustrates an example of estimating the number
of potential candidate pixels τ by applying the ξ function on
the scores showed in figure 3. In this example there is only
one pixel which has a distinguished score among all scores.
This is visibly highlighted in figure 4 so that the τ parameter
corresponds to the rang of the higher value.
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Fig. 4. The number of potential candidate pixels τ is given as the rank of
the highest number obtained with the ξ function.

C. Weighted U- and V-disparity :

As detailed in section A, the likelihood function used for
estimating the disparity map is a two steps procedure. We
recall that the first step is performed using a rectangular
window which gives optimal scores for pixels belonging
on obstacles, while the second step uses a sloped window
which gives optimal scores for pixels corresponding to the
road plane. For each step, a confidence map is obtained by
applying the confidence function, detailed in section B, in
each matched pixel. These confidence maps are termed the
Obstacles Confidence Map (OCM) and the Road Confidence
Map (RCM). Recall that the basic version of the so called
V-disparity map is basically obtained by cumulating all of
disparity values along lines and columns of the dense dis-
parity map. Each point in the V-disparity space corresponds
to the sum of all disparities along the same v image line.
Figure 5 illustrates the two cumulating spaces.

According to our knowledge, there is no improvement of
the V-disparity method since its inception. In our approach,
we propose a more general method which we term WV-
disparity. It is obtained starting from the dense disparity
map, the OCM and the RCM maps. Unlike the standard form
of the V-disparity, each pixel in the dense disparity map is
weighted by two confidence values as follow α×Co+β×Cr.
The parameters Co and Cr correspond to the confidence
values given by the OCM and the RCM maps. In our
approach, a powerful tool is introduced in the formulation of
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Fig. 5. (a) U- and V-disparity estimation from filtered dense disparity map
(b) bounding box of an obstacle in the right image.

the V-disparity map by re-weighting the confidences values
with a non normalized parameters, α and β . Depending
on the application, one can give more importance to the
obstacles detection component or the road plane subtraction.
For obstacles detection, Co is more weighted than Cr by
assigning a hight value to α while a small one for β . This
allows highlighting frontal obstacles and ignore the road
plane. For road plane extraction, one can simply inverse the
weighting of α and β .

Empirically, the obtained weighted cumulative space, i.e.
WC-disparity, is more accurate than the original V-disparity.
The use of the WV-disparity and WU-disparity maps allows
to highlight obstacles lying on the road and best discriminat-
ing the most of unlikely obstacles more precisely than using
the standard version of the V-disparity method. However,
the localization of obstacles is done by exploiting the dense
disparity map and the cumulative spaces named Weignted
U- and V-disparity map. The pixels are clustered into two
classes, road and obstacles, after applying a Hough transform
on WV-disparity and WU-disparity in order to highlight
each principal line. The presence of vertical line means
the presence of a potential obstacle and the presence of
a sloped line illustrate the road profile. The v coordinate
of the intersection between the road profile and the v-axis
gives the horizon line. After the clustering step, the mean
weight obtained for all pixels representing each obstacle is
computed. This additional information is very useful for the
tracking module because of the attribution of an uncertainty
measure to each obstacle to be tracked. Figure 6 shows
the obtained WV-disparity map compared to the standard V-
disparity map.

In order to identify the most of false alarms, we have
defined same filters such as the allowed volume depending
on the location of each obstacle. Each filter corresponds to
a condition which must be fulfilled and leading to eliminate,
if possible, all of erroneous disparities and all of ambiguities
regions. A list of obstacles, i.e. target, is therefore obtained
on which a tracking procedure is applied.

III. TRACKING ALGORITHM

Once obstacles have been extracted from the two stereo
images, a multi-objects association algorithm is needed to
estimate the dynamic state of the targets and to monitor
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Fig. 6. The basic V-disparity maps vs. the WV-disparity map. (a) dense
disparity map (b) V-disparity map (c) WV-disparity map.

appearances and disappearances of tracks. The position of
previously perceived objects is predicted at the current time
using Kalman Filtering. These predicted objects are already
known objects and will be denoted in what follows by Yj.
Perceived objects at the current time will be denoted by Xi.
In a general framework, the problem consists in identifying
an object designated by a generic variable X among a set
of hypotheses Yi. One of these hypotheses is supposed to
be the solution. The current problem consists in associating
perceived objects Xi to known objects Yj. Belief theory
allows assessing the veracity of Pi propositions representing
the matching of the different objects.

A basic belief allowing the characterization of a propo-
sition must be defined. This basic belief (mass mΘ(.)) is
defined in a [0,1] interval. This mass is very close to the one
used in probabilistic approach, except that it is distributed
on all the propositions of the referential of definition 2Ω =
{A/A⊆Ω}= {∅,{Y1},{Y2}, ...,{Yn},{Y1Y2}, ...,{Ω}}. This
referential is the power set of Ω = {Y1,Y2, ...,Yn} which
includes all the admissible hypotheses. These hypotheses
must also be exclusive (Yi∩Yj =∅,∀i 6= j). The masses thus
defined are called basic belief assignment and verify:

∑
A⊆Ω

mΩ(A) = 1 A ∈ 2Ω, A 6=∅ (6)

The sum of these masses is equal to 1 and the mass
corresponding to the impossible case mΩ

1..n{Xi}(∅) must be
equal to 0. In order to succeed in generalizing the Demp-
ster combination rule and thus reducing its combinatorial
complexity, the reference frame of definition is limited with
the constraint that a perceived object can be connected with
one and only one known object. For example, for a detected
object, in order to associate among three known objects, the
frame of discernment is Ω = {Y1,Y2,Y3,Y∗} where Yi means
that X and Yi are supposed to be the same object. In order to
ensure that the frame of discernment is really exhaustive, a
last hypothesis noted Y∗ is added. This one can be interpreted
as a target has no association with any of the tracks. In
fact each Yj represents a local view of the world and the Y∗
represents the rest of the world. In this context, Y∗ means that

an object is associated with nothing in the local knowledge
set. The tracking module is designed to be a tool allowing a
temporal filtering of the set of detected targets. This allows a
spatial and temporal filtering of each obstacle. This tracking
stage also allows reducing both the false detections rate and
the missed detection rate. Previously, this approach has been
used in order to track obstacles with telemetric sensors in a
cartesian referential [8]. In this work, this approach has been
adapted to the image space.

IV. EVALUATION AND RESULTS
In this section we describe the quantitative and qualita-

tive results of our proposed stereovision-based system for
detection and 3D localization of any kind of obstacles in
road environment in daytime. We demonstrate the ability
of our system to detect obstacles in various geometrical
configurations. This evaluation stage has been also done in
both simulated and real environments. We begin at the first
time by evaluating the performances of our algorithms by
referring to a simulated dataset in which all of disparity
maps and obstacles ground truth are available [9]. Figure
7 illustrates the Satory’s closed loop tracks used for build-
ing images database on which the proposed algorithm is
evaluated. A lap around the Satory’s track is 3.4 km with
various geometrical configurations such as straight segments,
slight and sharp bends, and a nonconstant road plane, i.e.
with different slopes. The track is also equipped with some
guardrail. For qualitative evaluation purposes, we need a
ground truth at any time in order to get information about
the depth of any real point and the set of obstacles. For
experiments, the following parameters have been fixed: the
baseline, i.e. the distance between the two optical axis of
cameras, is 0.5 meter. The size of the optical sensor is
of 5.12×3.84 cm which corresponds to an image of size
640×480. For reducing processing time, only the quarter of
the image is processed. For the research of corresponding
pairs of pixels, the window size is fixed to 8×8. Knowing
that the sensors are positioned at 1.4 meter from the road
plane, the set of possible disparities values is up to 60. In
the following, the ability of the proposed system for detecting
obstacles in simulated and real database is demonstrated.

Fig. 7. Satory’s track used for evaluationg our algorithm on real en-
vironment. A lap around the track is 3.4 km with different geometrical
configurations.

A. Evaluation on simulated database

The performance of our algorithm is assessed by com-
paring the obtained detection results with a ground truth
generated by means of the SiVIC platform developed in
the LIVIC laboratory. This simulator allows modeling any
complex environment, sensors, and vehicles with realistic



rendering. However, it offers diverse and useful functionali-
ties such as adding gaussian or arbitrary noise or even rain or
fog on simulated images. The database we have generated is
obtained by simulating two cameras which gives left and
right images with their corresponding ground truth depth
maps and obstacles mask. Figure 8 illustrate a right image
with its corresponding disparity map and an image on which
real obstacles are identified.

(a) (b) (c)
Fig. 8. Images obtained with SIVIC simulator. (a) image acquired from
right camera (b) disparity map ground truth (c) list of obstacles.

To better evaluate the localization accuracy, we opted for
testing our algorithms with different image sequences and
various obstacle configurations. Three simulated sequences
had been generated on the virtuel Satory’s track. Each one
of these dataset contains 5 vehicles with only one moving
in front and in the same lane than the ego-vehicle. In
the third sequence, the front vehicle dynamically changes
its longitudinal position. In the first sequence the frontal
obstacle, e.g. a car, is at 10 meters while for the second one
is at 23 meters. Note that each sequence has around four
thousand frames. For the moment, the accuracy of the 3D
localization processes is first performed only on the frontal
car. Errors of lateral and longitudinal positions of the frontal
obstacle for all database are given in table I.

Frontal obstacle location 10 m 23 m various distances
Lateral errors 0.11 (m) 0.17 (m) 0.18 (m)

Longitudinal errors 0.34 (m) 0.59 (m) 1.06 (m)

TABLE I
LATERAL AND LONGITUDINAL ERROR POSITIONS (METERS) OF THE

FRONTAL OBSTACLE FOR ALL SEQUENCES.

The errors in lateral and longitudinal positions given in
Table I are obtained by measuring the Euclidean distance
between the centre of mass of both the ground truth and
the frontal obstacle. The nearer is the obstacle, the lower is
the error. By considering only frontal obstacles, the rate of
correct detections for the first two sequences, (i.e. scenarios
with constant interdistance: 10 and 23 meters), is 99.52 %.
For the last sequence, the rate of correct detections is 95.39
%. The false detections rate is 0 % for all tested sequences.
Note that considering all of obstacles in each frame, the
correct detection rate are 89.6 %, 94.75 % and 91.2 % for
the three evaluated sequences, and the false detection rate
is 11.93 %, 12.4 % and 23.31 % respectively. We illustrate
in Figures 9 and 10 the errors of lateral and longitudinal
positions respectively, given for each frame.

The uncertainty on lateral positions grows significantly
either in the case of a turn so that the lateral positions of
each obstacle varies substantially, or in the case of partial
occlusions due to lane changing of some obstacles.

Another evaluation criterion is expressed by the Recall
R and Precision P parameters which describe the way the
obstacles image matches the corresponding ground truth. We
remind that the Recall measures the ability of an algorithm
to well detect obstacles, while the Precision is an intrinsic
criterion which gives a clue to the accuracy of the detection.
Instead of presenting these measures separately, we propose
to use a correlated measurement defined by Fβ −measure.

Fβ =
(β 2 +1)PR

β 2P+R
(0≤ β ≤ ∞) (7)

β is a parameter that controls a balance between P and
R. When β = 1, F1 comes to be equivalent to the harmonic
mean of P and R which equally weighs precision and recall.
If β > 1, Fβ becomes more recall-oriented and if β < 1, it
becomes more precision-oriented, e.g., F0 = P.

Figures 11 and 12 shows the ROC curves which express
the Fβ − measure by varying the β parameter for only
frontal obstacles and all of obstacles in the observed scene,
recpectively. By fixing the β parameter to 1, both of R and
P measures are weighted equally. The weight put on R and
P critera can be change in order to highlight one of them.

Fig. 11. Evolution of Fβ −measure by varying the β parameter which
attributes less or more weight for recall and precision measures, for only
frontal obstacles of the three sequences.

Fig. 12. Evolution of Fβ −measure by varying the β parameter which
attributes less or more weight for recall and precision measures, for all
obstacles of the three sequences.



Fig. 9. The error of lateral positions (meter) for frontal obstacles: At 10m (green), 23m (blue) and variable distances (red).

Fig. 10. The error of longitudinal positions (meter) for frontal obstacles: At 10m (green), 20m (blue) and variable distances (red).

(a) (b)
Fig. 13. Overview of the proposed system (a) instrumented vehicle (b)
stereovision configuration.

B. Evaluation on real database

An intensive evaluation is made on real sequences ac-
quired in normal and degraded weather conditions such as
the case of dazzle by the sun and cloudy time. The vehicle
used for experiments is shown in Figure 13 on which we have
mounted a pair of stereo cameras with the same geometrical
configuration described in the previous section. Some dozen
of sequences with four thousand images for each are used
for the evaluation.

In the database, the number of obstacles is limited to three

vehicles. The evaluated sequences are manually labeled while
considering the correct detections, the missed detection, and
the false positives rates as a criterion for the evaluation. For
each frame, an obstacle is considered as well detected if
it is highlighted by the stereovision algorithm relatively to
the ground truth. The detection range is limited to 5 m for
the nearest obstacle and to 55 m for the farthest one. By
considering 30000 frames which are processed, the results
in terms of correct detections, missed detections, and false
detections are given in the following tables:

Correct detections Missed detections Fp
without tracking 96.49% 3.51% 2.74%

with tracking 99.04% 0.96% 0.85%

TABLE II
RATE OF CORRECT DETECTIONS, MISSED DETECTIONS AND FALSE

POSITIVES.

Table II shows that the correct detections rate obtained
for the real dataset is more important that the one obtained
for simulated dataset. This can be explained by the fact that



we do not consider as obstacle both all of obstacles which
are partially overlapped by another ones and those which
overtake the ego-vehicle on the left and on the right. Figure
14 shows some screenshots of the output of the stereovision
detection and tracking algorithm. The Z component of each
obstacle, i.e. how far is an obstacle from the ego-vehicle, is
displayed over each bounding box shown in green.

Fig. 14. Screenshot of some detection results obtained from real sequence.

C. Performances analysis

The proposed system has demonstrated the ability to
provide a set of relevant obstacles in daytime environment.
To be useful and in referring to the main requirement that
such a system must be embedded in a vehicle, any system
must reach the real-time performances. It is the case with
our proposed system which is first evaluated, in term of
processing time, on an Intel(R) Xeon 2.00 GHz quadruple
core processor. From all the 20 real and simulated videos
we have processed, the processing time varied between 30
and 40 ms. This time processing is lower than the sensor
sampling time (40 ms).

V. CONCLUSION
We presented comprehensive an efficient obstacle detec-

tions, 3D localization and tracking system based on stereovi-
sion principle. Results demonstrate the effectiveness of our
system in road environment. First, a dense disparity map is
estimated starting from two images. A confidence approach
is then applied for measuring the matching quality of each
pair of matched pixels. Second, a WU- and WV-disparity
maps are built which allows estimating the 2D bounding
box for each obstacle. A set of targets is then obtained
from which a tracking algorithm is applied. We note that
the main contribution of this paper is the extention and the
generalization of the V-disparity approach by weighting each
pixel in the dense disparity map for the estimation of the WV-
disparity map. Unlike the standard method, the ours offers
the possibility of highlighting either the obstacles or the road
plane. After the segmentation step, a confidence value is
attributed to each obstacle. This additional infomation is very
useful for the tracking module which makes it more robust.

The evaluation stage shows a high rate of correct de-
tections whereas a low rate of false detections and missed
detections. We have shown that most of false detections are
due mainly to the guardrail in front of the ego-vehicle in
case of sharp turn which is considered as a potential obstacle.
Missed detections mainly occurs in the case that the nearest
obstacle from the ego-vehicle is very far away (about 50m).
In this situation, the correlation window must be adapted
in order to be efficient and to allows a good enough stereo
matching. Another cause of failure in detection occurs also in
the case that two or more obstacles are at the same distance
from the ego-vehicle and are in different traffic lanes. This
leads to fuse these obstacles and the algorithm is unable to
discriminate objects really present in the disparity map. In
order to dealt with this failing, one can make dynamically
change the window size for the stereo matching task. The
farther the obstacle, the smallest the size of such a window.

In future work and in order to improve the current algo-
rithm, a cooperative fusion stage will be added in order to
enhance the accuracy of the obstacles localization. Reduc-
ing false negative rate and filtering out false positives can
effectively be done by merging the proposed system with a
lane markings detection module which allows identifying all
of real obstacles lying on the road. Currently, the integration
of this algorithm in a dedicated hardware architecture is in
progress.
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