
HAL Id: hal-00865764
https://hal.science/hal-00865764

Submitted on 25 Sep 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Deterministic Algorithms in Dynamic Networks:
Problems, Analysis, and Algorithmic Tools

Arnaud Casteigts, Paola Flocchini

To cite this version:
Arnaud Casteigts, Paola Flocchini. Deterministic Algorithms in Dynamic Networks: Problems, Anal-
ysis, and Algorithmic Tools. 2013. �hal-00865764�

https://hal.science/hal-00865764
https://hal.archives-ouvertes.fr

Deterministic algorithms in dynamic

networks

Problems, analysis, and algorithmic tools

Arnaud Casteigts and Paola Flocchini

The scientific or technical validity of this Contract Report is entirely the responsibility of the Contractor and
the contents do not necessarily have the approval or endorsement of Defence R&D Canada.

Defence R&D Canada – Ottawa

Contract Report
DRDC Ottawa CR 2013-021

April 2013

Deterministic algorithms in dynamic networks
Problems, analysis, and algorithmic tools

Arnaud Casteigts

Paola Flocchini

University of Ottawa

Prepared by:

University of Ottawa

School of Electrical Engineering and Computer Science

800 King Edward Avenue

Ottawa, Ontario

K1N 6N5

Contract Number: W7714-115111/001/SV

Contract Scientific Authority: Matthew Kellett 613-991-4362

The scientific or technical validity of this Contract Report is entirely the responsibility of the contractor and the contents

do not necessarily have the approval or endorsement of Defence R&D Canada.

Defence R&D Canada – Ottawa
Contract Report

DRDC Ottawa CR 2013-021

April 2013

Approved by

Original signed by Jean-François Rivest

Jean-François Rivest
Cyber Operations and Signals Warfare Section

Approved for release by

Original signed by Chris McMillan

Chris McMillan
Chief Scientist, DRDC Ottawa

c© Her Majesty the Queen in Right of Canada as represented by the Minister of National
Defence, 2013

c© Sa Majesté la Reine (en droit du Canada), telle que représentée par le ministre de la
Défense nationale, 2013

Abstract

The number of telecommunication networks deployed in a dynamic environment is quickly
growing. This is true in our everyday life (e.g., smartphones, vehicles, or satellites) as well
as in the military context (e.g., dismounted soldiers or swarms of UAVs). Unfortunately, few
theoretical tools enable, to date, the study of dynamic networks in a formal and rigorous
way. As a result, it is hard and sometimes impossible to guarantee, mathematically, that
a given algorithm will reach its objectives once deployed in real conditions. Having such
guarantees would seem to be crucial in a military context. In a previous report we identified
a collection of recent theoretical tools whose purpose is to model, describe, and leverage
dynamic networks in a formal way. This report focuses on problems, algorithms, and
analysis techniques. We review recent efforts towards the design and analysis of distributed
algorithms in dynamic networks, with an emphasis on those results that are of a deterministic
and analytical nature. The topics include a discussion on how mobility impacts the very
definition of problems; a set of generic tools to be used in the design or analysis of dynamic
network algorithms; a discussion on the impact of various types of dynamics on the feasibility
and complexity of given problems; a classification of dynamic networks based on dynamic
graph properties; and finally, a discussion on how real-world mobility contexts relate to
some of these classes.

Résumé

Le nombre de réseaux de télécommunications déployés dans un environnement dynamique
augmente rapidement. Cette réalité s’applique à la vie quotidienne (ordiphones [téléphones
intelligents], véhicules, satellites) et au contexte militaire (soldats à pied, essaims d’UAV).
Malheureusement, peu d’outils théoriques permettent, jusqu’à maintenant, d’étudier les
réseaux dynamiques de manière formelle et rigoureuse. Par conséquent, il est difficile et
parfois impossible de garantir, mathématiquement, qu’un algorithme donné atteindra ses
objectifs une fois déployé dans des conditions réelles. Avoir ces garanties semble être essentiel
dans un contexte militaire. Dans un rapport précédent, on a identifié un éventail d’outils
théoriques récents dont le but est de modéliser et décrire des réseaux dynamiques et de
les mettre à profit, le tout de manière officielle. Ce rapport est axé sur les problèmes,
les algorithmes et les techniques d’analyse. On examine les efforts récents en matière de
conception et d’analyse d’algorithmes distribués dans des réseaux dynamiques, en insistant
sur les résultats de natures déterministe et analytique. Parmi les sujets abordés, on trouve
l’incidence de la mobilité sur la définition des problèmes, un ensemble d’outils génériques qui
seront utilisés pendant la conception ou l’analyse des algorithmes de réseau dynamique ; un
examen de l’incidence des différents types de dynamique sur la faisabilité et la complexité
de problèmes données ; une classification des réseaux dynamiques en fonction des propriétés
du graphique dynamique et un examen des liens à établir entre les contextes de mobilité
≪réels≫ et certaines de ces classes.

DRDC Ottawa CR 2013-021 i

This page intentionally left blank.

ii DRDC Ottawa CR 2013-021

Executive summary

Deterministic algorithms in dynamic networks: Problems, analysis,

and algorithmic tools

Arnaud Casteigts, Paola Flocchini; DRDC Ottawa CR 2013-021; Defence R&D Canada –

Ottawa; April 2013.

Background: Telecommunication networks are evolving continuously and the number of
those networks deployed in a dynamic environment is quickly growing. This is true in our
everyday life (e.g., smartphones, vehicles, or satellites) as well as in military contexts (e.g.,
dismounted soldiers or swarms of UAVs). Unfortunately, few theoretical tools enable, to date,
the study of dynamic networks in a formal and rigorous way. The current trend is instead to
rely on simulations, which necessarily are not fully representative of real world conditions,
in order to assess the behaviour of a particular solution in a given type of network.

Results: In a previous report (Casteigts and Flocchini 2013, CR 2013-020), we identified
a collection of recent theoretical tools whose purpose is to model, describe, and leverage
dynamic networks in a formal way. This report focuses on problems, algorithms, and analysis
techniques, using the former report as a basis. We review recent efforts toward the design
and analysis of distributed algorithms in dynamic networks with an emphasis on those
results that are of a deterministic and analytical nature. The topics include a discussion on
how mobility impacts the very definition of problems; a set of generic tools to be used in the
design and analysis of dynamic network algorithms; a discussion of the impact of various
types of dynamics on the feasibility and complexity of given problems; a classification of
dynamic networks based on dynamic graph properties; and finally, a discussion on how
real-world mobility contexts relate to some of these classes.

Significance: Having these kinds of algorithmic tools is instrumental in studying the
behaviour of algorithms in dynamic networks. These tools are all the more important when
the objective is to show, mathematically, that an algorithm will or will not solve every
possible instance of a given problem in a given environment. In a military context, where
the failure of an algorithm could have serious consequences, guaranteed performance can be
very appealing.

Future plans: This reports completes a line of work whose main object was an inventory
of recent models and algorithmic tools for distributed computing in dynamic networks.
Research in this domain is clearly in its infancy, and we hope this work will be useful to
guide future efforts. In particular, it lays some foundations for exploring further what can
be done, or not, in dynamic networks in terms of collaborative tasks and self-organization.

DRDC Ottawa CR 2013-021 iii

Sommaire

Deterministic algorithms in dynamic networks: Problems, analysis,

and algorithmic tools

Arnaud Casteigts, Paola Flocchini ; DRDC Ottawa CR 2013-021 ; R & D pour la défense

Canada – Ottawa ; avril 2013.

Renseignements généraux : Les réseaux de télécommunication sont en constante évolution
et le nombre de réseaux déployés dans un environnement dynamique augmente rapidement.
Cette réalité s’applique à la vie quotidienne (ordiphones [téléphones intelligents], véhicules,
satellites) et au contexte militaire (soldats à pied, essaims d’UAV). Malheureusement, peu
d’outils théoriques permettent, jusqu’à maintenant, d’étudier les réseaux dynamiques de
manière officielle et rigoureuse. La tendance actuelle consiste à se fier à des simulations
qui, nécessairement, ne représentent pas l’ensemble des conditions ≪réels≫ afin d’évaluer le
comportement d’une solution particulière dans un type de réseau donné.

Résultats : Dans un rapport précédent (Casteigts and Flocchini 2013, CR 2013-020), on a
identifié un éventail d’outils théoriques récents dont le but est de modéliser et de décrire
des réseaux dynamiques et de les mettre à profit, le tout de manière officielle. Le présent
rapport est axé sur les problèmes, les algorithmes et les analyses techniques, et le rapport
précédent lui sert de fondement. On examine les efforts récents en matière de conception et
d’analyse d’algorithmes distribués dans des réseaux dynamiques, en insistant sur les résultats
de natures déterministe et analytique. Parmi les sujets abordés, on trouve l’incidence de la
mobilité sur la définition des problèmes, un ensemble d’outils génériques qui seront utilisés
pendant la conception et l’analyse des algorithmes de réseau dynamique ; un examen de
l’incidence des différents types de dynamique sur la faisabilité et la complexité de problèmes
données ; une classification des réseaux dynamiques en fonction des propriétés du graphique
dynamique et un examen des liens à établir entre les contextes de mobilité ≪réels≫ et
certaines de ces classes.

Importance : Posséder ces types d’outils algorithmiques est essentiel à l’étude du com-
portement des algorithmes dans les réseaux dynamiques. Ces outils sont d’autant plus
importants que l’objectif consiste à montrer, mathématiquement, qu’un algorithme résout
ou non toutes les occurrences possibles d’un problème dans un environnement donné. Dans
un contexte militaire, où la défaillance d’un algorithme peut avoir de graves conséquences,
la performance garantie peut être très intéressante.

Plans futurs : Ce rapport mène à bien une série de travaux dont l’objectif principal consis-
tait à dresser un inventaire des modèles récents et des outils algorithmiques d’informatique
distribuée dans les réseaux dynamiques. La recherche dans ce domaine en est à ces débuts, et
on souhaite que ce travail soit utile pour orienter les travaux à venir. Elle permet notamment
de jeter les bases pour explorer plus avant ce qui peut ou non être fait dans les réseaux
dynamiques en matière de tâches collaboratives et d’autoorganisation.

iv DRDC Ottawa CR 2013-021

Table of contents

Abstract . i

Résumé . i

Executive summary . iii

Sommaire . iv

Table of contents . v

List of figures . viii

List of tables . ix

List of algorithms . ix

A note on references . xi

Acknowledgements . xi

1 Introduction . 1

2 Background . 3

3 Nature of the problems . 5

3.1 New metrics for existing problems . 6

3.2 New environments for existing problems 8

3.2.1 Exploration in static graphs . 9

3.2.2 Exploration in periodically-varying graphs 9

3.2.3 Exploration in subways . 11

3.2.4 Exploration in networks with edge deletions 13

3.3 Definitions of new problems . 13

3.3.1 Election and spanning trees . 14

3.3.2 Covering problems . 17

DRDC Ottawa CR 2013-021 v

4 Algorithmic tools and techniques . 22

4.1 Temporal-lags vector clocks (T-Clocks) . 22

4.1.1 Measuring temporal lags . 22

4.1.2 T-Clocks as a network abstraction 24

4.1.3 Example: foremost broadcast trees 24

4.1.4 Example: fastest broadcast trees 26

4.2 Raising the level of abstraction . 28

4.2.1 Graph Relabelling Systems . 28

4.2.2 Population protocols . 29

4.2.3 Relevance in a dynamic environment 30

4.3 Using invariants . 30

4.4 Using progression hypotheses . 30

4.5 Topological events as a trigger for computation 31

5 Topological conditions . 34

5.1 Example of graph conditions in static networks 34

5.2 Characterizing graph conditions in dynamic networks 35

5.2.1 Combination of graph relabellings and evolving graphs 36

5.2.2 Necessary and sufficient conditions 37

5.2.3 Example analyses . 38

5.2.3.1 Propagation algorithm 38

5.2.3.2 Centralized counting algorithm 39

5.2.3.3 Decentralized counting algorithm 39

5.2.4 Tightness of conditions . 41

5.2.5 A note on maintenance algorithms 42

vi DRDC Ottawa CR 2013-021

6 Computational relationship between classes of dynamic graphs 43

6.1 Summary of the results . 44

6.2 Basic results and limitations . 46

6.3 TDB[foremost] . 47

6.3.1 TDB[foremost] in R . 48

6.3.2 TDB[foremost] in B . 49

6.4 TDB[shortest] . 51

6.5 Computational relationship . 53

7 Classification of networks and algorithms . 55

7.1 From conditions to classes of dynamic graphs 55

7.2 Relations between classes . 56

7.3 Comparison of algorithms based on their requirements 57

8 Classes of dynamic graphs vs. mobility contexts 59

9 Conclusion . 60

References . 63

List of acronyms/abbreviations . 71

DRDC Ottawa CR 2013-021 vii

List of figures

Figure 1: Summary of key concepts . 3

Figure 2: Example of a dynamic graph. 4

Figure 3: Example of six classical distributed problems (part 1). 5

Figure 4: Example of six classical distributed problems (part 2). 6

Figure 5: Example of tree-based broadcast from a source s. 7

Figure 6: Different meanings for length and distance based on journeys. 7

Figure 7: Example of foremost broadcast trees. 8

Figure 8: Example of cautious walk on a line. 12

Figure 9: A typical MANET scenario. 14

Figure 10: Two versions of the election problem. 15

Figure 11: A spanning tree on top of a random UDG. 16

Figure 12: Example of a spanning forest over a MANET. 16

Figure 13: Why some problems cannot accept a “permanent” variation. 18

Figure 14: Temporal view that c has of a. 23

Figure 15: T-Clocks as an abstraction to track temporal views. 24

Figure 16: A simple TVG where fastest broadcast does not match fastest journeys . 26

Figure 17: Temporal distance from a to c, as a function of emission date. 27

Figure 18: Aggregation of distances . 28

Figure 19: Spanning tree construction over a static graph 29

Figure 20: Example spanning forest algorithm execution sequence 33

Figure 21: Basic conditions for election related to graph coverings. 34

Figure 22: A basic scenario, where a node (b) moves during the execution. 35

Figure 23: Combination of graph relabellings and evolving graphs. 37

viii DRDC Ottawa CR 2013-021

Figure 24: Logical implications of tight conditions. 42

Figure 25: Node waiting for affiliation messages. 51

Figure 26: Propagation of rounds of duration ∆. 53

Figure 27: A first hierarchy of dynamic networks. 56

Figure 28: An additional hierarchy of dynamic networks. 57

Figure 29: Relations between mobility contexts and classes of dynamic graphs. . . . 59

List of tables

Table 1: Set of children relative to emitter a. 25

Table 2: Set of parents relative to emitter a. 25

Table 3: Feasibility and reusability of TDB. 45

Table 4: Complexity of TDB. 45

List of algorithms
1 Spanning forest algorithm. 32

DRDC Ottawa CR 2013-021 ix

This page intentionally left blank.

x DRDC Ottawa CR 2013-021

A note on references

This report uses the “author-year” style of citation. As a result, when a paper involves
three or more authors, only the first one appears in the citation, e.g., First et. al. We invite
the reader to keep in mind that the usage in theoretical computer science is to order the
authors of a paper alphabetically, and as such, the first author is not necessarily the “main”
contributor of the cited paper. The complete list of authors of a paper can be found in the
References section.

Acknowledgements

We are deeply thankful to Matthew Kellett for useful guidance and feedback on this report.

DRDC Ottawa CR 2013-021 xi

This page intentionally left blank.

xii DRDC Ottawa CR 2013-021

1 Introduction

This report is the sequel of a previous report (Casteigts and Flocchini 2013, CR 2013-020) in
which we present a set of models and formalisms devoted to the study of dynamic networks.
While the first report puts the stress on definitions and concepts, this report focuses on
problems, algorithms, and analysis techniques, using the former as a basis. To the highest
extent possible, we make this report as self-contained as possible by recalling informally the
main definitions wherever needed; nevertheless, if some definitional aspects remain unclear
to the reader, we invite her to browse the first report in order to find appropriate details
and answers.

Telecommunication networks are in the middle of a significant mutation. They are becoming
ubiquitous and the number and diversity of those being deployed in a dynamic environment
is growing quickly. This state of facts holds in our everyday life (e.g., smartphones, vehicles,
or satellites) as well as in a military context (e.g., dismounted soldiers or swarms of UAVs).
Few theoretical tools enable, to date, the study of such dynamic networks in a formal and
rigorous way. On the contrary, the current trend is to rely on simulations in order to assess
the behaviour of a given solution in a given type of network, with ins and outs that are, by
definition, not fully understood.

Building on top of dedicated models and formalisms, we review recent efforts toward the
design and analysis of distributed algorithms in dynamic networks with an emphasis on those
results that are of a deterministic and analytical nature. A natural emphasis is placed on
results in which the authors have been involved. The topics discussed include how mobility
impacts the very definition of problems; a set of generic tools to be used in the design or
analysis of dynamic network algorithms; a discussion on the impact of various types of
dynamics on the feasibility and complexity of algorithms; a classification of networks and
algorithms based on their (requirement for) dynamics; and finally how real-world mobility
contexts relate to some of these classes.

The fact that the network is dynamic has a significant impact on the kind of tasks that can
be performed. In general, the impact of dynamicity ranges from suggesting new optimality
metrics (e.g., foremost, shortest, and fastest broadcast), to making a problem harder (e.g.,
exploration of dynamic networks), to suggesting radically different definitions of a given
problem whose original formulation would make no sense or become ambiguous in a dynamic
context. For example, what is a spanning tree in a partitioned dynamic network? Is it a tree
whose logical structure is realized over time and that contains all the nodes, or is it a set of
disjoint trees (a forest) such that each tree at a given time covers some connected subset of
the nodes (ideally, one such tree per connected component). As we will see, a whole class of
combinatorial problems and their distributed analogues can actually be reframed into (at
least) three different ways in a dynamic network, which we refer to as the “temporal”, the
“evolving”, and the “permanent” variants. These topics are the main subject of Section 3.

Unsurprisingly, the formulation of new problems or variants of problems call for appropriate
solutions and design techniques. We review in Section 4 a list of conceptual tools that can
be used in the design of distributed algorithms for dynamic networks. The list is certainly

DRDC Ottawa CR 2013-021 1

not comprehensive and research in the area is still at an early stage. We focus on those
techniques or constructs that are quite generic and susceptible to being applied in a variety
of situations. They range from generic constructs that can be used as building blocks (e.g.,
temporal-lag vector clocks), to abstract computational models, to the use of progression
hypotheses or invariants for correctness.

Besides the complexity in time or in number of messages, a common approach for analyzing
distributed algorithms is to look at the assumptions they require on the underlying network.
We discuss in detail in Section 5 how this approach can be extended to dynamic networks; in
particular, how a given property of the evolution of the network can be rigorously shown to
be necessary or sufficient to the success of an algorithm. Several examples are provided for
basic distributed problems such as broadcast, counting or election. These examples result in
a number of classes of dynamic graphs, each of which captures the set of dynamic networks
in which a given solution is feasible or not.

In Section 6, we consider three additional classes of dynamic graphs, whose edges are
respectively recurrent, recurrent within a bounded time, or periodic. We review a recent
work that studied the computational relationship between these classes, considering different
types of knowledge such as the number n of nodes in the network, a bound ∆ on the
recurrence time, and a period p on the edges schedule. The question is in particular about
the relations between P(Rn), P(B∆), and P(Pp), where P(Ck) is the set of problems
P one can solve in class C with knowledge k. These contexts are shown to form a strict
computational hierarchy.

Section 7 reviews a number of classes of dynamic networks that are based on logical properties
on dynamic graphs. Some of these classes are those resulting from the analyses in Section 5
and Section 6; a handful of others are from the recent literature on mobile ad hoc networks
and delay tolerant networks. We show how these classes can be related to each other through
inclusion relations, and how this particular approach allows us to compare algorithms in
turn on the fair basis of their topological requirements.

Finally, we share some thoughts in Section 8 regarding the relation between real-world
mobility contexts and a number of classes of dynamic graphs, with the prospect of
understanding better each context and enabling systematic transfer of results among them.
We conclude in Section 9 with some remarks and open problems.

2 DRDC Ottawa CR 2013-021

2 Background

This report is the sequel of a previous report (Casteigts and Flocchini 2013) in which we
present a set of models and formalisms devoted to the study of dynamic networks. These
models and formalisms allow us to formulate a number of concepts that have appeared in
recent literature. That report focuses, in particular, on those concepts of a temporal nature,
which follow from relaxing the connectivity assumption in a dynamic network. The main
examples include temporal variants of the concepts of connectivity, distances, and paths.

We review in the table below some of these concepts, the most central ones, to which the
reader is invited to refer when a doubt arises in the reading.

Concept Meaning Notation

Presence function Indicates whether an edge e is present at time t. ρ(e, t).

Latency function Gives the crossing delay (latency) of edge e at time t. ζ(e, t).

Journey Path over time from a node u to a node v. J(u,v)

Topological length of a journey J : its number of hops. |J |h

Temporal length of a journey J : its overall duration. |J |t

Departure of a journey J : date when first edge starts being crossed. departure(J)

Arrival of a journey J : date when last edge ends being crossed. arrival(J)

Temporal view
that a node v has of another node u at time t:

φv,t(u)
lastest time an event at u could influence v by time t.

Temporal distance Min time to reach node v from node u at time t. d̂u,t(v)

Figure 1: Summary of key concepts

A direct journey is a journey that uses no waiting time at intermediate nodes. Contrasting
with this notion, indirect journeys are those journeys where at least one hop requires some
pause at the underlying node before being executed (typically, waiting for the next edge
to appear). The set of all possible journeys from a node u to a node v is denoted as J ∗

(u,v),
and we allow the shorthand u � v to mean that a journey possibly exists from node u to
node v, that is, J ∗

(u,v) /= ∅. It is equivalent to say that node u can causally influence node v.
By convention, u � u for any node u. Finally, we define the horizon of a node u as the set
{v ∈ V : u � v}, that is, the set of nodes it can reach (or influence).

In this report, dynamic graphs are sometimes called time-varying graph (TVG) and
sometimes evolving graphs. If the graph is studied from a global perspective, as a sequence
of static snapshots G = {G1, G2, ...}, whether in discrete-time or in continuous-time with a
time index {t1, t2, ...}, we call it an evolving graph. If we consider it from a local perspective,
through the quadruplet G = (V,E, T , ρ) where V and E are as usual, T is the time span
of the network (a.k.a. lifetime), and ρ is a function that indicates whether a given edge is
available at a given time (presence function), then we call it a time-varying graph. Sometimes,
we consider additional information—such as a latency function ζ that indicates the time it
takes to cross a given edge at a given time—which yields a more elaborate definition, i.e.,

DRDC Ottawa CR 2013-021 3

G = (V,E, T , ρ, ζ). Similarly, two functions of the presence and latency of nodes could also
be considered in addition to edges; however, none of the examples in this report require such
a definition.

Note that evolving graphs and time-varying graphs are equivalent formalisms up to some very
theoretical limits—the presence function ρ might generate sequences that are uncountable in
the TVG case, whereas the fact of considering a sequence of snapshots in the case of evolving
graph limits it to countable transitions. However, these concerns are outside the scope of
this report, and whether we use one or the other here only depends on how convenient they
are in the underlying context.

These graphs are usually depicted using their underlying structure (the union of nodes and
edges, also called underlying graph), on top of which the presence of edges is depicted with
time intervals. In the example of Figure 2, edge (a, b) is present from 20 (inclusive) to 30

a b c d
[20, 30) ∪ [40, 50) [20, 30) ∪ [60, 70) [80, 90)

Figure 2: Example of a dynamic graph.

(exclusive), and then again from 40 (inclusive) to 50 (exclusive), and so is the meaning for
(b, c) and (c, d).

We invite the reader to have a look at our first report to explore deeper the modelling
aspects of dynamic graphs, as well as the new concepts and metrics these graphs induce.

4 DRDC Ottawa CR 2013-021

3 Nature of the problems

The fact that a network is dynamic has a significant impact on the kind of tasks one can
perform in it. In general, the impact of dynamicity ranges from making a problem harder
(e.g., black hole search by mobile agents in dynamic networks, discussed in Section 3.2)
to suggesting new metrics (e.g., in the case of broadcast or routing), to inducing radically
different definitions of a given problem, whose original formulation would make no sense or
become ambiguous in a dynamic context. This holds in particular for networks in which
connectivity takes place over time (highly mobile ad hoc networks or delay-tolerant networks).
In such a context, many classical distributed problems must be redefined and there is several
ways to do so. For example, what is a spanning tree in a partitioned dynamic network? Is it a
tree whose logical structure is realized over time and that contains all the nodes, or is it a set
of changing trees (i.e., a dynamic forest) such that each tree at a given time covers a subset
of nodes that are connected at that time. The same question holds for election or counting.
Deciding which definition to adopt depends on the target application and technological
environment. As we will see, a whole class of combinatorial problems and their distributed
analogues could be reframed in (at least) three different ways in dynamic networks. The
present section explores these definitional variations through a handful of classical problems
in distributed computing, namely, broadcast and routing, election, spanning trees, dominating
sets and other covering problems. Figures 3 and 4 illustrate some of the main problems,
in their classical (i.e., static) version. We provide for each an informal description of the
objectives, and the initial and final states.

Problem Informal definition and illustration

Broadcast

Propagating a piece of information from one node to all others.

a

b

c

d

e

f

gh

i
bb

→ a

b

c

d

e

f

gh

i

Election

Distinguishing exactly one node among all others.

a

b

c

d

e

f

gh

i

→ a

b

c

d

e

f

gh

i
dd

Spanning tree

Selecting a cycle-free set of edges that interconnects the whole network.

a

b

c

d

e

f

gh

i

→ a

b

c

d

e

f

gh

i

Figure 3: Example of six classical distributed problems (part 1).

DRDC Ottawa CR 2013-021 5

Problem Informal definition and illustration

Counting

Getting one node to know the overall number of nodes.

a

b

c

d

e

f

gh

i

→ a

b

c

d

e

f

gh

i9

Naming

Assigning unique identifiers to all the nodes.

∅
∅

∅

∅

∅

∅

∅
∅

∅

→ a

b

c

d

e

f

gh

i

Dominating set

Finding a set of nodes such that all other nodes have a neighbour in it.

a

b

c

d

e

f

gh

i

→ a

b

c

d

e

f

gh

i

Figure 4: Example of six classical distributed problems (part 2).

3.1 New metrics for existing problems

Dealing with dynamic networks and in particular with temporal connectivity—the fact that
a path requires waiting at intermediate nodes to be completed over time and space—has a
significant impact on the kind of metrics an algorithm can optimize. Let us illustrate these
aspects through the problems of broadcast and routing. The broadcast problem refers to
propagating a message from one initial node (referred to as the source or emitter) to every
other node in the network (See Figure 3). A trivial way to broadcast in a connected static
network is to flood the network, that is, to have every node repeating the message to each
of its neighbour whenever it receives it for the first time. However, an additional objective
is usually to minimize some quantity related to the resources taken by the process, such as
time, energy, or the number of messages. Propagating the message along a tree structure
has good properties in this respect, and is therefore common-practice; see Figure 5 for an
example.

Broadcasting in a dynamic network is different in that the links of the topology are time-
dependent. Furthermore, the network is not guaranteed to be connected at any instant, and
thus, nodes should be able to buffer the message for some time before propagating it further,
i.e., propagation is made by means of journeys rather than paths; see detailed definitions
in (Casteigts and Flocchini 2013) or Section 2 for informal definitions. One consequence
is the emergence of new optimality criterioa (or metrics) to be optimized. Indeed, the
optimality of a journey can be defined both in topological or temporal terms. Precisely,
a journey could be shortest, fastest, or foremost depending on which of its attribute is
considered, as illustrated on Figure 6. Given a dynamic graph whose edge schedule is known

6 DRDC Ottawa CR 2013-021

s

Figure 5: Example of tree-based broadcast from a source s.

or unknown, or unknown with some restrictions (e.g., periodicity of the edges), the problems
of broadcasting in a foremost, shortest, or fastest ways are very different in essence. These
three variants were first introduced by Bui-Xuan et al. (2003) in the case that the network
schedule is known beforehand and available to a central algorithm. The distributed version
of these problems, without knowledge of the schedule (but with a variety of assumption
regarding regularities and knowledge) was later explored by Casteigts et al. (2010a, 2012b).
A treatment of the solutions and techniques related to this problem is proposed in Section 4.
An essential quality of broadcasting in dynamic networks is that the optimality of a solution
is time-dependent: a solution might be optimal for some emission date, but not for others,
which adds complexity to the structure of a solution—typically, a set of time-dependent
journey-based trees instead of a single path-based tree, as illustrated by Figure 7. These
trees do not indicate, strictly speaking, what journeys to follow (i.e., paths together with
crossing dates), but only what are the underlying paths, which is enough (every edge being
used as early as possible). For example, the foremost tree corresponding to initiation date
50 goes through b, so a forwards the message to b at date 50, then b knows it must forward
to c, which occurs at 70 when the corresponding edge appears.

The problem of routing is closely related to that of broadcasting. The essential difference in
routing is that the message is intended for a single destination node that is already identified
before propagation, and the objective is to find the best route to deliver the message to this
destination. Variants exist where the destination is a group of node (multicast) or even a
location (geographic routing). As with broadcast, the routing problem must be reformulated
in terms of journeys, and thus in terms of the foremost, shortest, or fastest qualities. Note

a

b
c

d

e

f g

[1, 2)

[3, 4)

[5, 6)

[4, 5) [9, 10)

[7, 8)

[7, 8)

[7, 8)

Optimal journeys from a to d (starting at time 0):

- the shortest: a-e-d (only two hops);

- the fastest: a-f-g-d (no intermediate waiting);

- the foremost: a-b-c-d (arriving at 5 + ǫ);

Figure 6: Different meanings for length and distance based on journeys. The intervals of
time on edges indicates when they are present.

DRDC Ottawa CR 2013-021 7

a

cb

[0, 30) [20, 60)

[10, 40) ∪ [70, 80)

(a) A simple periodic graph
with period 100.

[0, 20− ζ) [20− ζ, 30− ζ) [30− ζ, 60− ζ) [60− ζ, 100)
a

b

c

a

b c

a

c

b

a

b

c

(b) Foremost broadcast trees for all possible emission dates, considering node
a as the emitter and edge latency ζ. (The solution holds modulo 100.)

Figure 7: Example of foremost broadcast trees, which are time-dependent entities. Picture
from (Casteigts et al. 2012b).

that, in general, having a complete solution to the broadcast problem (e.g., the set of all
time-dependent optimal trees) allows one to solve routing trivially. However this is more
than is needed in many cases and thus not the preferred approach. Various techniques have
been developed in delay-tolerant networks based for example on proactive knowledge on the
network schedule (Jain et al. 2004), probabilistic (Lindgren et al. 2003) or encounter-based
strategies (Dubois-Ferriere et al. 2003, Grossglauser and Vetterli 2003, Jones et al. 2007). A
taxonomy of routing approaches is proposed by Zhang (2006).

3.2 New environments for existing problems

Besides the emergence of new metrics, dealing with dynamic environments also suggests
new contexts for classical problems. Taking exploration as an example, we review recent
works that have addressed it in various types of dynamic networks. The problem also gives
us an opportunity to discuss the mobile agent paradigm, frequently used in this context.
Agents are computational entities that have the ability to migrate and change their execution
support (underlying node). As such, they can perform some computation at a node, move
to another node, then perform some new computation again, and so on. Several variants
exist depending on the abilities of the agents, e.g., to carry data with them, to modify the
underlying node, to communicate with other agents; or depending on the initial conditions—
in particular, whether they are initially scattered or co-located on a same node. Mobile
agents were proven computationally equivalent to message passing algorithms for several of
these variants (Barrière et al. 2003, Chalopin et al. 2006, Das et al. 2007a). However, they
suggest a programming paradigm that is much different in essence and facilitate the natural
expression (and thinking) of some distributed problems like exploration.

The exploration problem consists in having the agent(s) visit all nodes of a network, either
alone or collectively. The map construction problem is exploration where the goal is to
create a map of the underlying network by exploring it. Variants include the case where
some nodes are malicious and try preventing the agents from a successful exploration (e.g.
making them disappear, like in the case of black holes nodes). We review below some recent
work involving mobile agents to solve such problems in dynamic networks. The interested
reader is referred to Kellett (2012) for a thorough treatment of the subject.

8 DRDC Ottawa CR 2013-021

3.2.1 Exploration in static graphs

Concretely, the problem of exploration is to have one or several computational entities
(called agents) cross every edge in a network—or every node, for some variants. Early
work on related problems consisted in solving maze or exploring planar graphs. Then came
the exploration of various types of topologies such as (un)directed graphs, trees, or rings.
Some work aims to solve these problems from a centralized standpoint; however, these fall
outside the scope of this report. On the distributed side, solutions exploit information that
is available from within the network.

The objectives of exploration can be varied: to solve the problem repeatedly (perpetual
exploration); to recognize when the problem has been solved (exploration with stop); to
return to the starting point once the exploration is finished (exploration with return); or to
terminate when a map is available (map construction). The performance of a solution is
usually assessed in terms of the number of edges traversed or the number of moves performed
(whether as an absolute or as a competitive ratio over the offline optimal solution).

Next is a list of key references in the domain. This list corresponds to the literature covered in
Kellett (2012), which comprises a good deal of the existing material. The type of entity doing
the exploration varies among papers. The first paper related to exploration is actually about
a physical maze-solving machine built by Shannon (1951). The rest of the papers refer either
to the TSP problem: Averbakh and Berman (1996); to finite automata: Blum and Kozen
(1978), Fraigniaud et al. (2005); to robots or mobile agents: Ambühl et al. (2011), Albers
and Henzinger (2000), Ambühl et al. (2011), Awerbuch et al. (1999), Bender et al. (1998),
Bender and Slonim (1994), Das et al. (2007b, 2005), Deng and Papadimitriou (1990, 1999),
Dessmark and Pelc (2004), Dudek et al. (1991), Dynia et al. (2007), Flocchini et al. (2007,
2008, 2010b, 2009a), Fraigniaud et al. (2004, 2006a, 2005, 2006b, 2004, 2006a), Gasieniec
et al. (2007), Panaite and Pelc (1999). In these investigations, the entities have a variety
of features and their computational power depends on their characteristics. In all cases
the entities move autonomously from node to neighbouring node following a deterministic
protocol, and have some way of harnessing information, whether from the topology or from
other agents. The entities typically have some limited memory to store information, but they
could also be memoryless, taking actions without remembering their past. Communication
between entities can also take various forms, from direct communication (occurring when
present at the same node) to acting on the underlying network (e.g. using pebbles to be
dropped on the nodes and subsequently picked up, or whiteboards present at the nodes on
which information can be written).

3.2.2 Exploration in periodically-varying graphs

Flocchini et al. (2009b, 2010a, 2012a,b,c,d) started to look at exploration in a class of
dynamic networks where every node follows a periodic route. The resulting class of graph
was called periodically varying graphs (PV graphs). The type of PV graph studied in these
works is well exemplified by a bus system where “carriers” move synchronously between
stations (called sites). Hence, there are three types of entities here: the carriers, the sites,
and the exploring agent(s). To explore the PV graph, an agent can jump from carrier to

DRDC Ottawa CR 2013-021 9

carrier when and only when both are located at a same site. The model is presented in
more details below. This model was subsequently used in several works around PV graphs,
including (Flocchini et al. 2010a, 2012a,b,c,d, Ilcinkas and Wade 2011, Brejová et al. 2011).

The carrier model: Consider a set C of nC carriers that move among a set S of nS

sites. A carrier c ∈ C follows a route R(c) between all the sites in its domain S(c) =
{s0, s1, ..., snS(c)−1} ⊆ S, where ns(c) = |S(c)|. A carrier’s route R(c) = 〈r0, r1, ..., rl(c)−1〉 is
a cyclic sequence of stops: after stopping at site ri ∈ S(c), the carrier moves to ri+1 ∈ S(c).
All operations on the indices are taken modulo l(c) = |R(c)|, called the length of the route.
It is assumed that carriers move asynchronously, taking a finite but unpredictable amount
of time to move between stops. A route is called simple if nS(c) = l(c). A transfer site is
any site that is in the domain of two or more carriers.

A carrier’s route R(c) = 〈r0, r1, ..., rl(c)−1〉 defines an edge-labelled directed multigraph
�G(c) = (S(c), �E(c), λ(c)), called a carrier graph, where S(c) is the set of nodes, �E(c) is the
set of edges, and λ(c) is the set of labels, and where there is an edge labelled (c, i+1) from ri to
ri+1 (again, modulo l(c)). The entire network is then represented by the edge-labelled directed
multigraph �G = (R, �E, λ), called the PV graph, where R = ∪c∈CR(c), �E = ∪c∈C

�E(c), and
λ = {λ(c) : c ∈ C}. Associated to this graph is the transfer graph of �G, which is defined as
the edge-labelled undirected multigraph H(�G) = (C,ET) where the nodes are the carriers
and, ∀c, c′ ∈ C, c /= c′, s ∈ S, there is an edge between c and c′ labelled s iff s ∈ S(c) ∩ S(c′),
i.e., s is a transfer site between c and c′.

Note that in this original model, agents cannot stop at sites; however, subsequent works,
such as those described in Section 3.2.3, assume that such a stop is possible and that agents
can communicate through whiteboards at the sites.

PVG exploration: The exploration problem can be extended in the natural way to PV
graphs, that is, as the process of a visiting all the nodes (sites) and exiting the system within
finite time. Flocchini et al. (2009b) study the computability and the complexity of this
problem. The paper first investigate the computability of PVG exploration and establishes
necessary conditions for the problem to be solvable. It is proven that in anonymous systems
(i.e., where nodes have no identifiers) exploration is unsolvable if the agent has no knowledge
of (an upper bound on) the size of the largest route; if the nodes have distinct ids, then
either n or an upper-bound on the system period must be known for the problem to be
solvable. These necessary conditions for anonymous systems hold even if the routes are
homogeneous and the agent has unlimited memory and knows k.

The study also considers the complexity of PVG exploration and establishes lower bounds on
the number of moves. It is shown that in general Ω(kp) moves are necessary for homogeneous
systems and Ω(kp2) for heterogeneous ones, where p is the length of the longest route. This
lower bound holds even if the agent knows n, k, p, and has unlimited memory. Notice that
the parameter p in the above lower bounds can be arbitrarily large since the same site can
appear in a route arbitrarily many times. A natural question is whether the lower bounds
change when restrictions are imposed on the “redundancy” of routes.

10 DRDC Ottawa CR 2013-021

To investigate the impact of the routes structure on the complexity of the problem, Flocchini
et al. (2009b) consider PV graphs where all the routes are simple, that is, do not contain
self-loops nor multiple edges. It is shown that the same type of lower bound holds also for
this class, through establishing a Ω(kn2) lower bound for homogeneous and Ω(kn4) lower
bound for heterogeneous systems with simple route. Then each route is further restricted
to be circular, that is, an edge appears in a route at most once. Even in this case, the
general lower bound holds; in fact, it takes Ω(kn) moves for homogeneous and Ω(kn2) for
heterogeneous systems with circular routes. Interestingly, these lower bounds hold even if
the agent has full knowledge of the entire PV graph and has unlimited memory.

These limitations on computability and complexity are shown to be tight. This bound is
proven constructively by presenting two worst case optimal solutions: one for anonymous
systems and one for those with ids. The algorithm for anonymous systems solves the problem
without requiring any knowledge of n or k; it only uses the necessary knowledge of an
upper bound B ≥ p on the size of the longest route. The number of moves is O(kB) for
homogeneous and O(kB2) for heterogeneous systems. This cost depends on the accuracy of
the upperbound B on p, and the algorithm is optimal so long as B proportional to p. In the
case with identifiers, the algorithm solves the problem without requiring any knowledge of p
or k; in fact it only uses the necessary knowledge of n. The number of moves in this case is
O(kp) and O(kp2), which matches the lower bound.

3.2.3 Exploration in subways

In a recent series of work, Flocchini et al. (2010a, 2012c,b), Kellett (2012) extend the PV
graph result by asking the question, what happens if an agent can step down from the carrier
and wait at sites? Such a context led the authors to the definition of the “subway” model,
also described in detail in (Kellett 2012, Chapter 2).

The subway model: This model considers k agents that start at unpredictable times.
As previously, the agents move opportunistically around the network using the carriers as
medium. Here, however, an agent can move from a carrier to a site (disembark) or from a
site to a carrier (board), but it cannot move directly from one carrier to another. During its
journey on a carrier, the agent can count the number of stops (sites) that the carrier has
passed, and decide to disembark accordingly.

The agents in this model can communicate with each other using whiteboards that are located
at each site (Flocchini et al. 2010a, 2012c), or on the carriers themselves Flocchini et al.
(2012b). All agents execute the same protocol in an asynchronous fashion (each one takes a
finite but unpredictable amount of time to perform computations). Several options were
considered regarding the starting time and site for each agents: either they start at varying
times co-located on the same site (case with whiteboard at sites), or they start at varying
times scattered on possibly different sites (case with whiteboard at carriers). The site on
which an agent starts is called its homebase.

Black hole search in general: Until this line of work, most of the existing work on black
hole search had focused on the problem of a team of co-located agents finding a single black

DRDC Ottawa CR 2013-021 11

hole in the network, as for example in (Dobrev et al. 2002, 2006) where the authors prove a
tight lower bound of Ω(n2) moves when the agents are completely ignorant of the underlying
network. These results were extended in several ways. First, Flocchini et al. (2009a) presents
a solution using agents that start scattered in the network. Instead of a single black hole,
any number of black holes and black links is allowed, with some limitations. (This context
is referred to as the exploration of dangerous graphs.) The solution solves the problem in
O(nm) moves, where n is the number of nodes, and m is the number of links; see Flocchini
et al. (2009a) and (Kellett 2012, Chapter 4) for details.

Black hole search in the subway model: Getting back to the subway model, in the
case that agents start co-located on a same site and communicate using whiteboards on the
stations, Flocchini et al. (2010a, 2012c) prove some basic limitations and propose a solution
that requires O(k · n2

C · lR + nC · l2R) carrier moves. The case where agents start scattered
in the network and communicate using whiteboards on the carriers is studied in Flocchini
et al. (2012b). The presented solution is based on the cooperative independent exploration
of the network by the agents and has a complexity of O(k · n2

C · lR + nC · l2R) carrier moves.

The two solutions mentioned above are again optimal, based on a lower bound, by the same
authors, on the complexity of any solution to the black hole search problem. Such a solution
requires Ω(γ ·n2

C · lR+nC · l2R) carrier moves, where γ is the number of stops that all carriers
make on black hole sites. Note that carrier moves is a complexity measure that is specific to
the subway model (while being similar to agent moves in the carrier model). Both solutions
also work with an optimal number of agents, k = γ + 1. See (Kellett 2012, Chapter 6) for
details on the lower bounds.

A note on the walking technique: A basic technique in the presence of black holes is
the use of cautious walk. A cautious walk is a walk whereby an agent steps back after every
progression; that is, it moves two steps forward, then one step backward, then two steps
forwards, and so on and so forth. The agent also leaves some mark so that if it fails to make
the backward step because it encounters some dangerous link or node, the other agents can
avoid making the same mistake. This simple technique is appealing because it does not
induce a rise in complexity (the total number of moves is only multiplied by 3—a constant
factor). It is illustrated on a line by Figure 8.

Figure 8: Example of cautious walk on a line.

All the explorations without black holes rely on some forms of traversals, so traversal by
the agents is the basic tool there, performed in different ways depending on the knowledge
available.

12 DRDC Ottawa CR 2013-021

3.2.4 Exploration in networks with edge deletions

Even more recently, Flocchini et al. (2012a) started to address the exploration problem in a
fault-tolerant context, where an arbitrary number of links can be deleted in an adversarial
way (with some restrictions on the adversary). The model considered here is not the subway
model nor the carrier model, but a more classical network model. The problem is to visit
every (accessible) link in the network, marking locally the frontier links leading to black
holes and the (accessible) black links. The problem is considered solved if at least one agent
survives (and all agents either die or terminate within finite time). The solution proposed
in the paper uses an optimal number of agents and O(nm2) moves, where n is the number
of nodes and m is the number of edges.

The network model: Let G = (V,E) be a simple connected undirected graph with n
nodes and m = |E| links. A team of k agents is considered. Agents start scattered in the
network at varying times, follow the same algorithm, and move asynchronously. Each node
in the network is equipped with a whiteboard on which the agents can read/write in fair
mutual exclusion. A subset VB of the nodes are black holes and a subset EB of the links are
black links; both being characterized by the fact that they make agents disappear. Let FB

be the set of frontier links, which are links that connect safe nodes to black holes. Let EI

be the set of inaccessible links, which are those links in-between two black holes. The safe
portion of the network GS = (VS , ES) is assumed to be connected and the adversary cannot
violate this property. Neither can it delete a link while an agent is crossing it. Finally, it is
assumed that the agents know the number of safe nodes, nS = |VS | (otherwise termination
is impossible).

An algorithm that solves this problem is presented in Flocchini et al. (2012a). This algorithm,
called ExploreDG-LD, requires k ≥ f + 1 agents, where f = |FB|+ 2|EB \ (EI ∪ FB)|. It
proceeds by having each exploring agent build a tree out from its homebase. The cautious
walk technique (see Figure 8) is used during exploration to ensure that only one agent is
eliminated per frontier link and at most two agents are eliminated per black link (one from
each endpoint). Contact between two trees are detected when a non-tree link is incident
to a node in each tree. Then both trees are merged on that link. An agent terminates
the algorithm when the underlying tree contains nS nodes and there is no verification or
exploration work left. Clearly, link deletions complicate the process of building and merging
trees, in particular the deletion of a tree link can have a significant effect. Hence, the
adversary can remove access of one or several agents to the coordinating information for
the tree in which they are working. These deletions being undetectable, maps are used at
the nodes and carried by the agents to detect such deletions. More details can be found in
(Flocchini et al. 2012a), as well as in (Kellett 2012, Chapter 5).

3.3 Definitions of new problems

While the definition of problems like broadcast or routing remain intuitive in dynamic
networks, many other problems become irrelevant or definitionally ambiguous. We first
discuss two examples of classical distributed problems that can be reframed in two versions—
a “temporal” one and an “instant-based” (also called “evolving”) one—then extend the

DRDC Ottawa CR 2013-021 13

Figure 9: A typical MANET scenario.

same thinking to other classes of problems in which at least three distinct definitions make
sense.

3.3.1 Election and spanning trees

Consider the example of election or spanning tree construction. In static networks, election
is the problem of distinguishing one node, a leader, among all others (see Figure 3) in order
to have it play a specific role afterwards. In a sense, the purpose of election is to create
centralization in an otherwise decentralized setting, so as to facilitate subsequent coordination
tasks (many distributed problems become simpler, or even trivial, once a unique leader has
been identified, e.g., naming or counting in static network). What should the concept of a
leader be in a dynamic network? Several options are available to redefine election in such a
setting.

Before discussing them, consider typical instances of mobile ad hoc networkss (MANETs),
such as a set of mobile robots exploring a disaster site, or dismounted soldiers inspecting
a territory (see Figure 9). In such a scenario, the network can be partitioned anytime
into several connected components, each representing a given cluster of nodes that evolve
semi-independently. Assume the temporal connectivity of the whole network can still be
established over time, based on meetings among groups or group recomposition.

How to define the concept of election (and that of a leader) in this scenario? The most
straightforward adaptation of the static version is certainly to distinguish a single node
among the whole network, as illustrated on Figure 10(a). Such a node could be called
a temporal leader because its role is realized over time and justified by the fact that the
network is temporal connected (otherwise the leader could influence only a small subset of
the network). However, if the groups remain united for a substantial amount of time and do
not interconnect quickly, the above definition is inappropriate for the kind of coordination

14 DRDC Ottawa CR 2013-021

(a) Global election (single temporal leader) (b) Component-based election (several instant leaders)

Figure 10: Two versions of the election problem.

action we expect from a leader. Having exactly one leader per connected component seems
far more appropriate in this case (see Figure 10(b)). From an instantaneous perspective, this
point of view is equivalent to considering each connected component as a distinct network
where election must be performed. However, since the groups are subject to occasional
splits and merges, the problem is one of a maintenance: the objective is to maintain one
and exactly one leader per component as the groups compositions evolve over time (e.g., by
regenerating a leader when a group splits, or deleting one when two groups merge).

The same remarks hold for the problem of spanning tree construction. In static graphs, a
spanning tree is a connected subset of the edges such that every node is adjacent to at least
one edge in this set and these edges form no cycle (see Figure 3). Equivalently, there is one
and exactly one possible path between any pair of node. This problem is closely related to
the election problem because once a leader is identified, it is often easy to build a tree from
that node (as the root of the tree) to the others, progressively. Several optimization metrics
are usually considered, such as the average length of the edges or the diameter of the tree
(maximal number of hops between any two nodes). Figure 11 shows an example of spanning
tree in which the length of the longest edge is minimized. This type of solution is useful in
wireless networks that assume that all the nodes must have the same communication range.

Just as for election, the spanning tree problem can be transposed into several dynamic
versions. Besides variants where the dynamics are seen as transient and occasional faults
(which is outside the scope of this report), we distinguish two main variants of the problem.
The first one, a temporal version, has the objective of building a tree whose function is
established over time and which, as a result, has logical links that do not evolve over time.
The second version of the problem is to maintain a forest of spanning trees, each covering a
distinct connected component of the network, as illustrated on Figure 12.

The list of problems accepting the same variations will likely grow further. It includes, at
least, counting and naming (see Figure 4). In counting, we might either want to compute, over
time, the total number of nodes in the whole network, or maintain the best approximation
of the local number of nodes in each connected component. The uniqueness of identifiers in
the naming problem could be similarly defined in terms of the whole network or just the

DRDC Ottawa CR 2013-021 15

Figure 11: A spanning tree on top of a random UDG. Picture from (Casteigts et al. 2010b)

Figure 12: Example of a spanning forest over a MANET.

16 DRDC Ottawa CR 2013-021

connected components (the latter could be relevant, for example, to minimizing the size
of the identifiers). Algorithmic approaches related to election and spanning trees in both
variants are discussed in Section 4.

3.3.2 Covering problems

In Section 3.3.1, we discussed two basic ways to redefine a problem, and we illustrated it in
the case of election and spanning trees. Some problems actually accept further variations in
a way that still makes sense (Casteigts et al. 2011). Consider the example of dominating
sets. In a static context, a dominating set is a subset of nodes DS such that each node in
the network either is in DS or has a neighbour in DS. The goal is usually to minimize the
size of DS. Given a dynamic network represented as a (discrete) evolving graph G = {Gi},
we can reframe the problem in the following ways:

• Temporal dominating set: The solution is defined with respect to the sequence as a
whole, over time. That is, the dominating set is such that each node is covered in at
least one Gi. Here is an example of such a dominating set, for a given evolving graph
G = { , , }:

G1 G2 G3

Here, the solution consists of a single node (the bottom right node), which is sufficient
because this node will, over time, share an edge with every other node. Temporal
dominating sets can be used, for example, to minimize the number of nodes that
propagate a message while guaranteeing that all the nodes get it eventually.

• Evolving dominating set: In this version, every snapshot of the evolving graph sequence
is seen as a separate graph for which an independent solution can be computed. As
such, the dominating set evolves over the execution to contain only what is needed in
each step. Here a possible solution for the same example is

G1 G2 G3

This definition of the problem is also of practical relevance, for example, if the rate
of changes in the network is low enough to consider each graph of the sequence as
representative of a static period during which the network is stable. One important
question here is whether the solution to one Gi could be used to compute more quickly
the solution to Gi+1 given some restrictions on the number of change between Gi and
Gi+1. If this is the case, the algorithm becomes one of maintenance in a similar way
as we discussed above for election and spanning trees.

DRDC Ottawa CR 2013-021 17

• Permanent dominating set: Similar to the temporal dominating set, this solution does
not change over time. In this case, however, it must remain valid for every graph of
the sequence taken individually. We thus have to find a non-changing subset of nodes
DS such that DS is a valid solution in any given Gi. A possible solution for the same
example is

G1 G2 G3

Observe that DS must contain at least 3 nodes here. Indeed, the top left node is
isolated in G1 and thus must belong to DS at least for this reason. The same goes for
the top right node in G3. Then any of the two bottom nodes must be added to make
up a valid solution in any of the three graphs.

At this point, the reader might wonder why the problems of spanning tree construction
and election were not similarly translated into a permanent version. The reason is that the
very concepts of a permanent leader or a permanent spanning tree would not make sense is
some configurations. Consider the two evolving graphs in Figure 13. In the left scenario

G1 G2

(a) Impossible case for permanent

election

G1 G2 G3

(b) Impossible case for permanent spanning tree

Figure 13: Why some problems cannot accept a “permanent” variation.

(Figure 13(a)), every node is initially isolated, which forces the selection of every node as
leader of its component. Since the solution has to be “permanent”, the set of leaders cannot
be updated for the next graph G2, which thus happen to have 4 leaders despite the fact
that it is connected, thereby violating any reasonable definition of what a leader should be.
By a similar argument, the right scenario (Figure 13(b)) forces the selection of all available
edges through G1 and G2, which violates in G3 the cycle-free property a spanning tree
should have. If the dominating set problem was considered with the additional constraint of
being minimal (or minimum) in every Gi, its permanent variant would similarly be made
inconsistent.

The dominating set problem (without additional constraints) is not the only problem that
admits all three variants. Others include the vertex cover problem (the problem of finding a
set of nodes such that every edge has at least one of its endpoint in the covering set) and
the edge cover problem (finding a set of edges such that every node has at least one of its
adjacent edges in covering set). Problems that do not accept the third variant include the

18 DRDC Ottawa CR 2013-021

graph colouring problem (assigning a distinct colour to every neighbouring node while trying
to minimize the total number of colors) for reasons similar to election and spanning tree
construction.

Relation between the three variants

It can be observed that for problems like dominating sets or vertex cover, all three variants
are strongly related (Casteigts et al. 2011). Given such a problem Π, one can easily check
that a solution to permanent Π is a (possibly far from optimal) solution to evolving Π, and a
solution to any Gi in the evolving Π is also a valid solution for temporal Π. The connect‘ion
is even stronger: the intersection of solutions to evolving Π is a valid solution for temporal
Π, and their union is a valid solution to permanent Π. From this perspective, the evolving
variant appears quite central, and the permanent or temporal variants actually form upper
and lower bounds for the size of the solution for the evolving variant.

From a distributed standpoint, the permanent and the temporal variants may appear a bit
unnatural in that they require some knowledge of the future of the graph evolution. However,
this knowledge is relevant in a few, yet important, practical scenarios where knowledge
of this type can be inferred from combining regularity assumptions and past information.
Examples include networks whose edges are periodic (Flocchini et al. 2009b, 2012c, Kellett
2012) or recurrent (Casteigts et al. 2010a). The latter means that if an edge existed onces
then it is guaranteed to re-appear at some future time (possibly known or unknown, or
bounded or unbounded, depending on the cases).

A closer look at the evolving variant

A crucial question about the evolving variant is whether we can leverage the solution to
graph Gi to compute the solution to Gi+1 more quickly (or better within a given time). This
question raises the general question: Is maintenance easier than construction from scratch?
This question has several possible answers, depending on what exactly is meant by “easier”.
Computational complexity tends to identify a feasible task with one that can be performed
in polynomial time. In a nutshell, this means the execution time can be expressed as a
polynomial whose indeterminate is the size of the problem (typically, for a graph problem,
the number of nodes). For example, if the execution time is proportional to 4n8 + 5n4 + n2

where n is the number of nodes, then we say the corresponding solution is a polynomial
time solution, and the corresponding problem is “in P”. Problems not in P are viewed as
being practically infeasible. Examples include exponential-time problems, that is, problems
requiring an execution time exponential in n, e.g., 2n + 3n2. A good deal of research in
computational complexity consists in finding the boundary between P and non-P problems,
through the study of a battery of basic problems.

Getting back to the matter at hand, the most straightforward interpretation of the
“maintenance” question is whether a non-P problem for some Gi could fall into P if we
knew already the solution to Gi−1, assuming Gi and Gi−1 differ only by some elementary
operation such as the single addition or deletion of an edge (let us call such graphs neighbour

DRDC Ottawa CR 2013-021 19

graphs). Unfortunately, the answer is no, and there is a well-known argument to establish
this.

By contradiction. Given a problem Π, assume there is no algorithm in P that solves Π, but
there exists a maintenance algorithm A that does so. That is, given two neighbour graphs
Gi and Gi+1 and a solution to Gi, A finds a solution to Gi+1 in polynomial time. Now
consider an arbitrary graph G = (V,E). We can decompose G into an artificial sequence
G1, G2, ..., Gk such that G0 = (V, ∅) and Gk = G, and every pair Gi, Gi+1 are neighbour
graphs (in other words, we add a new edge in every Gi until we have recreated G). We
can then solve G by applying algorithm A k times starting from G0 (whose solution is
trivial). Hence, if maintaining Π is in P then solving Π is at most k = |E| ≤ |V |2 times
slower, which is still in P, leading to a contradiction. A generalization of this argument to
parametrized complexity, showing that the argument holds up to W [1]-hard problems, is
given by Casteigts et al. (2011).

This result sounds like a bad news for maintenance algorithms in general. Informally, it tells
us the set of problems we can maintain is not larger than the set of problems we can solve
from scratch. But remember this holds if we identify “feasible” with “polynomial time”.
What if we strengten the definition of a feasible task and require that it takes less than
polynomial time? Considering the point of view of distributed maintenance algorithms, this
seems a reasonable approach. Indeed, contrary to centralized algorithms that are in general
executed offline (i.e., the execution is made at a different time than the network lifetime),
distributed algorithms are supposed to be executed concurrently with the network evolution,
which implies that the amount of time in-between two consecutive Gi is limited. It makes
no sense to assume this time is polynomial, or even linear in the number of nodes. To be
realistic, the time in between two Gi should be considered as a constant (i.e, independent
from n), or, even worse, inversely proportional to n (i.e., the more nodes, the more frequent
the changes). Under these assumptions, the question of whether maintenance is easier than
construction from scratch becomes open again, and the answer might turn out to be yes
for several cases. In essence, the matter gets to the line of research initiated by Naor and
Stockmeyer twenty years ago asking what can be computed locally (Naor and Stockmeyer
1993, Suomela 2011). This avenue of research is exciting and we believe it is conceptually
fertile.

The evolving variant in the literature

Ideas similar to the evolving variant have been explored from a non-distributed perspective
under various names: reoptimization, dynamic complexity theory, and incremental compu-
tation. Typical previous work has focused on polynomial or logarithmic time problems,
and did not include the consideration of locality. However, many interesting results and
ideas could be applicable in a distributed context. Patnaik and Immerman (1997) consider
dynamic complexity from a descriptive complexity theory perspective, defining DynFO, a
class of dynamic problems that are expressible in first order logic. Weber and Schwentick
(2007) build upon this, again concentrating on a descriptive complexity approach. Holm
et al. (2001) give a series of results that can readily be interpreted as maintenance algorithms

20 DRDC Ottawa CR 2013-021

in our context. Their results for problems like connectivity and 2-Edge or biconnectivity rely
on the maintenance under edge deletion and addition of a solution for a minimum spanning
forest, giving polylogarithmic running times for all problems, but with no bound on locality.
Miltersen et al. (1994) present another, similar approach where the dynamism is achieved
at a lower level by perturbing individual bits in the input. They also focus on problems
of polynomial complexity showing, in our context, that problems such as the circuit value
problem and propositional horn satisfiability have no polylogarithmic maintenance algorithms
but that interestingly there exist other P-complete problems that do. Ausiello et al. (2011)
discuss a different model, where there is only interest in using an existing optimal solution
to solve to some degree of approximation a perturbed instance.

DRDC Ottawa CR 2013-021 21

4 Algorithmic tools and techniques

We review a list of conceptual tools that can be used in the design of distributed algorithms
for dynamic networks. The list is certainly not comprehensive and research in the area is
still at an early stage. We focus on those techniques or constructs that are quite generic
and capable of being applied in a variety of situations, with a natural emphasis on those
results the authors have been involved in. The topics range from generic constructs that
can be used as building blocks (e.g., temporal-lags vector clocks) to abstract computational
models to the use of progression hypothesis or invariants for correctness.

4.1 Temporal-lags vector clocks (T-Clocks)

Highly-dynamic networks, and in particular delay-tolerant networks (DTNs), are character-
ized by a possible absence of contemporaneous end-to-end communication routes (routes
in which each hop follows directly in time after the hop before, also called direct journeys).
In most cases, however, communication can still be achieved over time and space through
disconnected routes (indirect journeys) using store-carry-forward-like mechanisms. The
duration of a given route in this context rarely depends solely on the number of hops.
One question that immediately arises is how far apart can nodes be, temporally? Clearly,
this quantity is time-dependent: it varies depending on when it is considered. Could this
quantity be measured precisely for every node, at each point in time?. As we will see, the
knowledge of such temporal distances is instrumental in solving more complex problems,
such as performing foremost or fastest broadcast (or routing) in some classes of dynamic
graphs, or electing a node that is temporally central.

4.1.1 Measuring temporal lags

The general problem of measuring temporal lags in a dynamic network was addressed in
a number of works from the field of social network analysis (Holme 2005, Kostakos 2009,
Kossinets et al. 2008). Indeed, social networks are in essence similar to DTNs, but unlike
them, social networks often produce large datasets of connection history. Kossinets et al.
(2008) ask how out-of-date each node can be with respect to other nodes, and provide a
centralized algorithm that processes a known sequence of contacts to measure these lags
based on an adaptation of vector clocks. Besides looking at the question from a centralized
point of view, these studies assume that contacts between nodes are punctual in time, i.e.
they have no duration and can be given as triplets (u, v, t) where u and v are two nodes and
t is the date of contact between them. This assumption, likely due to the nature of the data
(e.g. email exchanges), is punctual in essence.

The specificity of delay-tolerant networks: The situation in DTNs is typically different
because contacts between nodes can have arbitrary durations and overlap in time with each
other (we will refer to such contacts as non-punctual). This aspect renders computation
of temporal distances much more complex because it implies the possible co-existence of
indirect routes on the one hand (routes with waiting pauses at intermediate nodes), and
continuums of direct routes on the other hand (when the entirety of the route can be realized

22 DRDC Ottawa CR 2013-021

in a row, as in usual static networks). Typical DTNs exhibit a mixture of both routes in
various proportions. In a recent paper, Casteigts et al. (2012b) look at the question of
measuring temporal lags in this more general setting and from a distributed point of view
as well. Specifically, they ask whether it is possible for each node to know exactly—and
in real time—how out of date it is with respect to all others? The question is answered
positively in a continuous-time setting (assuming only a fixed and uniform latency for
message propagation over single edges). Feasibility is demonstrated constructively. The
algorithm generalizes the one from Kossinets et al. (2008) to non-punctual contacts and
makes it distributed.

Temporal views: One of the most central concepts in this work is that of temporal view.
The temporal view a node v has of a node u at time t, denoted φv,t(u), is the latest (i.e.,
largest) time or date t′ ≤ t at which a message received by time t at v could have been
emitted at u; that is, in our formalism

φv,t(u) = Max{departure(J) : J ∈ J ∗
(u,v) ∧ arrival(J) ≤ t}.

The fact that contacts have arbitrary durations makes it possible for adjacent contacts
to overlap in time, thereby producing complex patterns of time lag between nodes. As
an example, consider the plots in Figure 14, showing the evolution of the temporal view

a b c
[0, 4) [1, 3) ∪ [5, 6)

0

1−ζ

3−2ζ

4−ζ

1+ζ 3 5

φc,t(a)

t

Figure 14: Temporal view that c has of a, as a function of time (with latency ζ ≪ 1).
Example from (Casteigts et al. 2012b).

that node c has of node a in a basic TVG. Unlike the case with punctual contacts—where
evolution occurs in discrete steps only—here there is a mixture of discrete and continuous
evolution. (The reader is encouraged to spend a few minutes on this example as these
concepts are essential in what follows.)

Direct journeys are often faster than indirect ones, however this is not necessarily the case
(consider a very long direct journey versus a short indirect one whose edges traversals follow
after a very short wait). As a result, the temporal view φ at any time could result from
either type of journey. The views resulting from the best direct and indirect journeys at any
given time are referred to as the direct view and the indirect view, respectively, in (Casteigts
et al. 2012b). At any time, φ is in fact the maximum of the two.

The algorithm in (Casteigts et al. 2012b) tracks the evolution of both direct views and
indirect views independently. While indirect views are stored as simple values and updated

DRDC Ottawa CR 2013-021 23

punctually, when topological events occur, direct views are inferred, on demand, from the
knowledge of topological distance from the considered remote node to the local node (i.e.,
the level of the local node with respect to the remote node). Thus, the algorithm consists in
maintaining up-to-date information about two kinds of variables for every remote node: the
level (for direct views), and the largest date at which a message carried to the local node
through a indirect journey could have been emitted at the remote node (for indirect views).
This algorithm is referred to as T-Clocks.

4.1.2 T-Clocks as a network abstraction

One way of using T-Clocks is to consider them as an abstraction that provides high-level
information about the temporal views—namely, information to track both direct and indirect
views. Technically, the abstraction consists of an intermediate layer between the network and
some higher algorithm (see Figure 15), which it informs by means of generating two events:
levelChanged(), reflecting the evolution of a direct view, and dateImproved(), reflecting the
evolution of an indirect view.

Network

T-Clocks

Higher-Level Algorithm

levelChanged()
global

dateImproved()

onEdgeAppearance()
local

onEdgeDisappearance()

Figure 15: T-Clocks as an abstraction to track temporal views. Picture from (Casteigts
et al. 2012b).

Casteigts et al. (2012b) illustrate how this abstraction can be used as a building block to
solve more concrete problems. In particular, they provide algorithms to learn foremost
broadcast trees: a set of broadcast trees that vary depending on the emitter and the emission
date (modulo the period), guaranteeing the earliest possible delivery time at all nodes; and
fastest broadcast trees: a set of broadcast trees that vary with the emitter and guarantee
that the time spent between first message emission and last message reception is minimized,
even if this means delaying the first emission.

4.1.3 Example: foremost broadcast trees

It is natural to ask what set of journeys a message emitted at a given source (or emitter) should
follow to reach all nodes at the earliest possible date. As discussed above in Paragraph 4.1,
this choice depends on which date the broadcast is initiated (the initiation date), and even
then, several options may exist. A nice property of the foremost metric is that among all

24 DRDC Ottawa CR 2013-021

the possible foremost journeys, there is (at least) one whose prefixes are themselves foremost
journeys, i.e., every intermediary node is reached in a foremost fashion. This property allows
one to consider, for a given emitter and initiation date, a tree of foremost journeys that we
refer to as a foremost broadcast tree (foremost BT, for short) for that particular date. As an
example, the foremost BTs corresponding to the graph of Figure 7(a) on page 8 for emitter
a are shown in Figure 7(b) on page 8 as a function of the initiation date.

Periodically varying graphs: The assumption of periodicity is not strictly needed to
perform a foremost broadcast (flooding the network would also do); however, it allows for
the trees to be learnt and reused at a lower cost since the optimality of journeys clearly holds
modulo p. Considering again the same example, the first tree is optimal for any initiation
date in [0, 19), or [100, 119), or [900, 919), etc. It is thus sufficient to build all foremost BTs
relative to one single period, in order to solve the problem completely.

Locality of knowledge: An important aspect of computing foremost broadcast trees is
that a node does need to know the whole tree in order to make a local choice. The node
needs only know which neighbours it should forward a message to, which is based on the
source and initiation date. The corresponding information relative to source node a in
Figure 7(a) is shown in Table 1.

Table 1: Set of children relative to emitter a.

on a
Initiation date [0, 19) [19, 29) [29, 59) [59, 100)

Children {b} {b, c} {c} {b}

on b
Initiation date [0, 19) [19, 59) [59, 100)

Children {c} ∅ {c}

on c
Initiation date [0, 29) [29, 59) [59, 100)

Children ∅ {b} ∅

Learning children tables for all potential emitters is the purpose of the algorithm, whose
informal strategy is as follows. The algorithm actually starts the other way around, with
nodes determining their set of optimal parents in the trees, relative to one complete period of
initiation dates and all sources. This is done based on information provided by the T-Clocks

abstraction. The resulting information is stored in a structure equivalent to Table 2. Once

Table 2: Set of parents relative to emitter a.

on b
Initiation date [0, 29) [29, 59) [59, 100)

Parent a c a

on c
Initiation date [0, 19) [19, 59) [59, 100)

Parent b a b

a node has determined its set of parents with respect to a complete period of initiation
dates, it notifies each parent by sending the corresponding intervals. On the parent side, the
intervals are processed upon receipt to fill in their children table.

DRDC Ottawa CR 2013-021 25

4.1.4 Example: fastest broadcast trees

While “foremost” refers to minimizing the arrival date, “fastest” refers to minimizing the
overall time spent once the broadcast is initiated. As such, one might be willing to delay
the effective starting date of a broadcast for the purpose of making it faster, which makes
sense, for example, in communication networks whose medium is shared exclusively, or to
minimize a trip duration in the context of transportation networks.

What a fastest broadcast “tree” should be: A fundamental difference between fastest
and foremost journeys is that finding fastest journeys whose prefixes are themselves fastest
may not always be possible. Consider the example in Figure 16, assuming node a is willing
to broadcast at time 0. Reaching d in a fastest way requires a to send the first message at
49− ǫ and then propagate the message from b to c anywhere between 60 and 69, thereby
implying a duration of at least 12 from a to c. However, faster journeys of duration 2 could
exist earlier from a to c. This observation is crucial to formulate the problem of fastest
broadcast. Attempting to reach each node using fastest journeys may be relevant in the case
of point-to-point communication (and this objective was the one considered in Bui-Xuan
et al. (2003)); but it is clearly less relevant in a context of broadcast for the aforementioned
reason, since this would imply a same message is sent several times over a same edge (e.g.,
over (bc), once as part of the fastest journey to c, another time as part of the fastest journey
to d).

a b c d
[20, 30) ∪ [40, 50) [20, 30) ∪ [60, 70) [80, 90)

Figure 16: A simple TVG where fastest broadcast does not match fastest journeys (edge
latency ζ = 1). Example from (Casteigts et al. 2012b).

Casteigts et al. (2012b) address the problem of minimizing the overall duration of the
broadcast, that is, the time elapsed between the first message emission and the last message
reception in the whole network. As such, a fastest broadcast tree (or fastest BT) corresponds
to a union of journeys which may or may not be individually fastest.

A link with temporal eccentricity: The main subproblem becomes determining when
the emitter has the potential to reach all nodes the fastest, i.e., when the “longest” foremost
journey from the emitter to any other node (also called its temporal eccentricity) is minimum.
Note that learning minimum temporal eccentricities in distributed networks is an interesting
problem in its own right, and may be used in other tasks than broadcasting (e.g., electing
leader nodes based on their ability to reach other nodes quickly).

Once the emitter knows its own time of minimum eccentricity, the fastest broadcast reduces
to performing a foremost broadcast at this particular date (by definition, this is optimal).
This foremost broadcast can be done using the output of the foremost BT algorithm in
previous section, or by building a single foremost BT for the selected date (for a single date,
foremost BTs can be built by means of flooding whereby all the nodes record which of their
neighbour gave them the message first, followed by local acknowledgments of these relations).

26 DRDC Ottawa CR 2013-021

In both cases, it is not the broadcast itself that causes us difficulty, we thus describe the
mechanisms by which a node can learn its temporal eccentricity in a periodic TVG using
T-Clocks.

The temporal eccentricity (or simply eccentricity below) of a node u at date t is formally
defined as

eccu(t) = max{d̂u,t(v) : v ∈ V }, (1)

that is, the maximum among all temporal distances from u to any node at time t (see
Section 2 for definitions).

Temporal distance vs. temporal views: There is a strong connection between temporal
distances and temporal views. Both actually refer to the same quantity seen from different
perspectives: the temporal distance is a duration defined locally to an emitter at an emission
date, while the temporal view is a date defined locally to a receiver at a reception date. In
fact, we have

d̂u,te(v) = tr − φv,tr(u) (2)

where te is an emission date, and tr is the corresponding earliest reception date.

Principle of the algorithm: The algorithm in (Casteigts et al. 2012b) consists in inferring
(and recording) temporal distances at every node relative to a given emitter based on the
evolution of temporal views monitored through T-Clocks. The inference is made as per
the equivalence relation of Equation 2. Precisely, for a given emitter u, every node v /= u
infers d̂u(v) from φv(u) over one period and records it in a distance table. Since we deal
with continuous-time and possibly overlapping contacts, this information is recorded as a set
of intervals that correspond to the different phases of evolution of the distance (discrete or
continuous) as illustrated in Figure 17. The aggregation operation is illustrated in Figure 18.

t d̂a,t(c) trend

9 2 flat

19 2 slope

20 1 flat

59 52 slope

(a) Sequence of triplets for d̂a,t(c)
0 20 40 60 80 100

0

10

20

30

40

50

(b) d̂a,t(c) as a function of t

Figure 17: Temporal distance from a to c, as a function of emission date. Example from
(Casteigts et al. 2012b).

After the distance tables have been computed with respect to some emitter u, they can be
opportunistically aggregated along a tree rooted in u (the aggregation tree is arbitrary).
Aggregation of a children table consists of a segment-wise maximum against the local distance
table (segments are artificially split, if needed, to be aligned with each other).

Finally, once the emitter has aggregated the table of its last child, the final result corresponds
to its eccentricity over time (by Equation 1). Any of the minimum values can thus be

DRDC Ottawa CR 2013-021 27

0 20 40 60 80 100

0

10

20

30

40

50

(a) d̂a(b)

0 20 40 60 80 100

0

10

20

30

40

50

(b) ecca(t) = max(d̂a,t(b), d̂a,t(c))

Figure 18: Aggregation of distances. The left curve (distance from a to b) is combined to
the curve of Figure 17(b) (distance from a to c) in order to yield the eccentricity of node a
over one period. Example from (Casteigts et al. 2012b).

selected and used as initiation date for the broadcast.

4.2 Raising the level of abstraction

Distributed algorithms can be expressed using a variety of communication models (e.g.,
message passing, mailboxes, shared memory). Although a vast majority of algorithms are
designed using one of these models—the message passing model—the very fact that one of
them is chosen implies that the obtained results (e.g., positive or negative characterizations
and associated proofs) are somewhat limited by the scope of that model. This problem
of diversity among models, already pointed out twenty years ago in Lynch (1989), led
researchers to consider higher abstraction levels when studying fundamental properties of
distributed systems. In a previous report (Casteigts and Flocchini 2013), we presented two
related tools: graph relabelling systems and population protocols. We recall here the main
definitions, some of which are used in Section 5.

4.2.1 Graph Relabelling Systems

Graph relabelling systems were proposed by Litovsky et al. (1999) as a mean to represent
distributed algorithms at a abstract level and local scale. This formalism allows one to
represent an algorithm as a set of local interaction rules that modify atomically the state of
small connected subsets of nodes—typically a pair or a star of neighbouring nodes. Each rule
is encoded as a couple (preconditions, actions), where preconditions describes the pattern
of state that triggers the rule, and actions indicates to new states the corresponding nodes
take on as a result.

Figure 19 shows a basic example of algorithm made up of a single rule, I N I I0 1 , which
builds a spanning tree over an arbitrary graph. Concretely, the effect of the rule is to extend
the existing tree by including new connected nodes (labelled N) and the corresponding
edges. Initially, all the nodes are labelled N except one distinguished node, the root of the
tree, labelled I. All the edges are labelled 0 (they do not belong to the tree). Then, as the

28 DRDC Ottawa CR 2013-021

rule is applied repeatedly, more nodes and edges are included, leading eventually to a valid
spanning tree.

I

N

0

N

N

0

0

N

N

0

00

0 I

N

0

N

N

0

0

N

N

0

00

0 I

I

1

N

N

0

0

N

N

0

00

0 I

I

1

N

N

0

0

N

N

0

00

0

I

I

1

I

I

1

1

N

N

0

00

0 I

I

1

I

I

1

1

N

N

0

00

0 I

I

1

I

I

1

1

I

I

1

1

0

0

Figure 19: Spanning tree construction over a static graph, using graph relabellings. Example
adapted from (Litovsky et al. 1999).

Several relabelling steps can occur simultaneously, as long as they involve disjoint sets of
nodes. The order in which the interactions take place is not specified by the algorithm; it
can be regarded as an implementation choice or even an external component, for example,
controlled by an adversary. The various models of computation (e.g., pairwise, starwise) are
however sometimes associated with an underlying synchronization procedure that can be
implemented in the message passing model.

4.2.2 Population protocols

Another approach that shares the objective of abstracting the communication model is
that of population protocols (Angluin et al. 2006). Population protocols can be seen as a
particular instance of graph relabelling systems, which involves pairwise interaction and
assumes particular properties on the underlying synchronization (also called an interaction
scheduler). In particular, the original paper on population protocols assumes that every pair
of nodes interact infinitely often—the graph of interaction is complete. The brilliant idea
behind population protocols is to consider the interaction scheduler as representative of the
connectivity induced by nodes’ movements in a mobile network, and thus make it a model
for interaction in dynamic networks (however realistic the infinitely frequent interactions
may be).

Research around population protocols has mainly focused on examining variations of the
initial model and characterizing, for each variant, the type of predicates (formulas of logic
related to the nodes states) that could be possibly computed. For instance, the initial model
is shown to compute the class of semilinear predicates, that is, all predicates definable by
first order Presburger arithmetics (Ginsburg and Spanier 1966). The addition of various
features allows one to increase the power of such a distributed machine. For instance, adding
a constant number of bits of memory on the edges makes it equivalent to a non-deterministic
Turing Machine with O(n2) space (Chatzigiannakis et al. 2010) Variations can also concern
properties of the underlying scheduler, for example, related to its fairness or self-evolution

DRDC Ottawa CR 2013-021 29

(Chatzigiannakis et al. 2009); however, the fact that nodes interact infinitely often seems
not have been questioned in these works.

4.2.3 Relevance in a dynamic environment

Whether in the case of graph relabellings or population protocols, the abstraction offered by
these tools allows for general results to be characterized. In particular, negative results in
these models imply impossibility in all concrete models, such as shared memory, mailboxes,
or message passing (and as a result of equivalence, the mobile agent paradigm as well).
By distancing the analysis from low-level concerns, it also allows one to focus on more
fundamental aspects like the connectivity or the symmetries of a graph and their impact on
the feasibility of problems.

The need for this type of abstraction is all the more relevant in dynamic networks, where the
evolution of the topology adds yet another level of complexity to the analysis. Of particular
interest is the question of how a given property on the dynamics impacts the feasibility or
complexity of problems, regardless of concrete communications. Section 5 discusses in detail
this question, using graph relabellings as the basic tool.

4.3 Using invariants

In the chaos of dynamic networks, it is always possible to design algorithms in such a way
that they guarantee some global invariants over the whole execution. The counting algorithm
proposed by Angluin et al. (2006) in the context of population protocols is one such example.
In this algorithm, every node is initially a counter that has counted itself. Then, as the
nodes interact, the counters opportunistically merge by pairs. As the counters keep merging,
their tally increases and their number decreases, leading eventually to a single counter that
has the right tally. A possible application of this counting principle is given, consisting of
monitoring a flock of birds for fever, with the role of counters being played by sensors in
each bird and the bird assume to interact pairwise infinitely often.

The correctness of the algorithm is based on the following invariant. Let C (resp. F) be the
set of counter nodes (resp. counted nodes). Then |C|+ |F| = |V | holds at any time of the
computation. It follows that if |C| = 1 then the corresponding node has its counter value
equal to |V |. Under the assumption of a fixed number of nodes, this algorithm thus reaches
the desired state when exactly one counter remains.

4.4 Using progression hypotheses

Informally speaking, a progression hypothesis is one that guarantees the execution of
a algorithm keeps making some progress (whenever possible) towards reaching its goal.
Progression hypotheses can be defined at several levels, e.g., on the topology, on the
synchronization between nodes, or on the ordering of interactions.

An example of a progression hypothesis based on topological properties is given by O’Dell
and Wattenhofer (2005) in the case of broadcast. The basic idea is to assume that, however

30 DRDC Ottawa CR 2013-021

dynamic the network might be, it always remains connected in a static sense. In terms of
evolving graphs that means that every Gi of the sequence is connected in the usual way.
Given a process of broadcast, this guarantees that in each step, at least one informed node
must have a non-informed node as neighbour, and thus some progress can be made on the
broadcast. As a result, the duration of the overall process can be bounded by the number of
nodes; at least, if we assume the nodes cannot fail to communicate with their neighbour.

In general, no topological property can, alone, guarantee that the nodes will effectively
communicate and collaborate. This property is particularly true in finite-time dynamic
graphs, where every edge appears only a limited number of times. In this case, guaranteeing
the success of an algorithm requires additional assumptions about the existence of interactions.
Casteigts et al. (2009a) propose a generic progression hypothesis for the application of
pairwise interactions in evolving graphs in the context of graph relabelling systems. The
hypothesis requires that, given an evolving graph G = {G1, G2, . . .} where every Gi covers
some period [ti, ti+1), it is possible for each node to apply at least one relabelling rule
with each of its neighbours in every period provided that the rule preconditions are already
satisfied at time ti and still satisfied at the time the rule is applied. As discussed in Section 5,
hypotheses of this kind are required to characterize sufficient conditions in terms of dynamic
graph properties.

Things are a bit different when the edges are assumed to appear infinitely often. In this
case, it make sense to consider progression hypotheses at a more abstract level. Several
such hypotheses have been considered in the area of population protocols, based on various
fairness assumptions on the interaction scheduler (Angluin et al. 2006, Chatzigiannakis
et al. 2009). Given the global state of the network, called a configuration, the basic fairness
assumption states that if a configuration C2 can be reached from another configuration C1,
and C1 is reached infinitely often, then C2 must also be reached infinitely often. In other
words, all recurrently reachable configurations must be reached eventually. Several variants
of fairness have been proposed, including local fairness, global fairness, or k-bounded fairness.
It is this type of assumption that guarantees, for instance, that the execution of the counting
principle from Section 4.3 will eventually reach a single-counter configuration.

4.5 Topological events as a trigger for computation

In some cases, it may be relevant to execute dedicated operations when a topological event
occurs. This technique is fundamental in dynamic networks whenever such changes should
impact a solution being computed. The idea is very general and applies in a variety of
models. For example, message passing algorithms can usually be specified in an event-based
fashion using the three following types of events (Santoro 2007):

• spontaneous impulse (e.g., at initialization time)

• arrival of a message

• firing of a local trigger (e.g., timer or alarm)

DRDC Ottawa CR 2013-021 31

Algorithm 1 Spanning forest algorithm based on coalescing and regenerating trees.

×r1 :
N T

r2 :
T T N T

r3 :
N T T N

initial states:
• T for every node,

meaning of the states:
• T: a token is on this node,

• N: no token is on this node,

• arrows: relation from a child to its parent.

In the same vein, topological events can also be considered as another type of event. The
T-Clocks algorithm we discussed in Section 4.1, which is a message-passing algorithm, is
mostly made up of routines that execute when the appearance or the disappearance of an
edge is detected, that is, its operations are encapsulated inside onEdgeAppearance() and
onEdgeDisappearance() methods that are supposedly called by the system when these
events occur.

Casteigts and Chaumette (2005) suggest applying the same principle in the case of graph
relabelling systems by introducing special rules that a node can apply locally whenever
adjacent edges appear or disappear. An example of an algorithm using this feature is shown
in Algorithm 1. This algorithm was proposed in (Casteigts 2006, Casteigts et al. 2009b) to
maintain a forest of spanning trees in a delay-tolerant network, which is the same problem
we discussed in Section 3 (illustrated in Figure 12 on page 16). The main quality of this
algorithm is that it does not assume the existence of stable periods in-between consecutive
events; it can actually tolerate any number of simultaneous events without entering an
inconsistent state. The solution is based on a perpetual alternation of topology-induced splits
and computation-induced mergers of a forest of spanning trees based on the circulation of
tokens that are none other than the roots themselves. Hence, each tree in the forest hosts
exactly one token whose circulation is strictly confined to the edges of its own tree. When
two tokens arrive at the endpoints of the same edge (rule r2) both trees are merged on that
edge and one of the two tokens is destroyed. If an edge disappears and it was part of a
tree, the corresponding tree is broken into two pieces, one of which becomes token-free. The
corresponding endpoint, because it lost the edge to its parent, knows instantly that it has
become the highest node in its remaining tree, and it can thus generate a new token locally
(rule r1). As a result, both mergers and splits are purely localized, atomic phenomena.
The rest of the time, the token circulates (rule r3) in the hope of finding new merging
opportunities. Consistency—here defined as the absence of cycles and presence of exactly
one token per tree—is always guaranteed. Convergence towards a single tree per connected
component is generally not expected due to the frequency of topological changes; however, it
can be reached eventually if the graph remains static sufficiently long. How fast it converges
remains an open question. A detailed example of execution is shown on Figure 20.

Note that, in general, the circulation of tokens is a powerful technique that is often used for
voting, mutual exclusion, and leader election (Israeli and Jalfon 1990, Cooper et al. 2012).

32 DRDC Ottawa CR 2013-021

N

N

T

N

N

N

T

movement

(a)

N

N

T

N

N

N

T

some time

(b)

N

N

T

N

N

N

T

r2 twice

(c)

N

N

N

N

T

T

N

some time

(d)

N

N

N

N

T

T

N

r1

(e)

N

N

N

N

N

T

N

movement

(f)

×

N

N

N

N

N

T

N

r3

(g)

N

T

N

N

N

T

N

some time

(h)

N

T

N

N

N

T

N

r2

(i)

N

T

N

N

T

N

N

some time

(j)

N

T

N

N

T

N

N

r1

(k)

N

T

N

N

N

N

N

etc.

(l)

Figure 20: Example of a (possible) execution sequence for the spanning forest algorithm.

DRDC Ottawa CR 2013-021 33

5 Topological conditions

Besides the complexity in time or in number of messages, a common approach for analyzing
distributed algorithms is to look at the assumptions they require on the underlying network.
We review here recent efforts to extend this type of approach to dynamic networks. In
particular, we ask how a given property of the evolution of a network can be shown to be
fundamentally necessary or sufficient to the success of an algorithm.

5.1 Example of graph conditions in static networks

Let us start with providing a few examples of such conditions in static networks, to give
an intuition of what is a necessary graph condition. One of the most recurrent obstacles
to the solvability of distributed problems is the presence of symmetries in a network. The
simplest example occurs with the problem of election in a two-node network (see Section 3 for
definition of the election problem). Consider the two-node graph on the left of Figure 21(a).
There exists no deterministic distributed algorithm that can guarantees a successful election
in this graph. Informally, both nodes could keep making the same decision simultaneously,
and forever so. The reason is that this graph possesses symmetry: it is a sort of “multiple”
of another simpler graph, the one-node loop graph (depicted on the right of the same figure).
Thus, from a local point of view, a node has no mean to decide whether it is alone or has a
neighbour that acts in the same way as it does (i.e., sends and receives the same messages).
It is therefore impossible for it to decide whether to be a leader or not, since any such
decision could be duplicated and lead to an inconsistency.

(a) Simplest case of
graph covering.

a

b
c

a

b c

a

b c

a

bc

(b) Graph coverings in general.

a

b c

a

b c

d

ef

(c) Examples of minimal
configurations.

Figure 21: Example of basic conditions for the election problem in static networks: minimality
in terms of graph coverings.

The symmetry problem is pointed out in several early works in distributed computing, and
is examined closely by Angluin (1980). The graph-theoretic concept at stake here is that
of covering. We say that the two-node graph on the left is a 2-covering of the one-node
loop graph on the right. It is today a well-known fact that election is only feasible in those
graphs that are minimal in terms of covering (Yamashita and Kameda 1996, Mazurkiewicz
1997). This concept generalizes well to labelled graphs. Figure 21(b) gives an example of a
generic construction rule to build a covering: take two (or more) identical graphs; remove
the same edge from each; and re-connect them by switching the edges endpoints (circularly,
if more than two). Finally, Figure 21(c) shows two examples of configurations in which

34 DRDC Ottawa CR 2013-021

election is feasible. Note that in the case of election, minimality in terms of graph covering
is both a necessary and a sufficient condition.

This example illustrates what might be a condition, in terms of a graph property, for a given
distributed problem. There are many other examples in static graphs, e.g. graph planarity
for the problem of face routing, or bounded growth for maximum independent set. The rest
of this section is concerned with the transposition of this type of approach, and results, into
the realm of dynamic networks.

5.2 Characterizing graph conditions in dynamic networks

As a trivial example, consider the broadcasting of a piece of information in the network
depicted in Figure 22. The possibility of completing the broadcast in this scenario clearly
depends on which node is the initial emitter: a and b may succeed, while c cannot. Why?
How can we express this intuitive property that the topological evolution must have with
respect to the emitter? Flattening the time dimension without keeping information about
the ordering of events would obviously be removing important specifics, such as the fact
that nodes a and c are in a non-symmetrical configuration.

a b c a b c a b c

beginning movement end

Figure 22: A basic scenario, where a node (b) moves during the execution.

In recent work, Casteigts et al. (2009a, 2012a) suggest combining the formalism of graph
relabelling systems with that of evolving graphs in order to model computation in a dynamic
network at a high level of abstraction. This combination makes it possible to express the
fine-grained properties of the network’s dynamics (based on evolving graphs) and then
examine what impact these properties have on the possible sequence of execution of an
algorithm. The main advantage of graph relabellings is their high level of abstraction.
Distributed algorithms are generally expressed using a particular communication models
(e.g., message passing, mailboxes, or shared memory). But the very fact of choosing one
implies that the obtained results (e.g., positive or negative characterizations and associated
proofs) are somewhat limited to the scope of the model. This problem of diversity among
formalisms and results, already pointed out twenty years ago by Lynch (1989), led researchers
to consider higher abstractions when studying fundamental properties of distributed systems,
among which graph relabelling systems were proposed by Litovsky et al. (1999).

We review here some important definitions, while referring the reader to our first report
Casteigts and Flocchini (2013) for a more formal treatment. In a nutshell, an evolving
graph is a sequence of static graphs SG = {G1, G2, ...} whose evolution represents that of
a dynamic network. The scenario on Figure 22 corresponds to SG = {G1 = , G2 =

, G3 = }. Evolving graphs can be associated with additional time information,
such as a time index ST = {t1, t2, ...} that indicates the intervals of time corresponding to

DRDC Ottawa CR 2013-021 35

each graph in the sequence (i.e., G1 corresponds to the period [t1, t2)). Evolving graphs are
usually given as the couple G = (G,SG) or triplet G = (G,SG ,ST), where G is the union
of all graphs in SG , also called the underlying graph. In our example, G = . In the
following we consider evolving graphs in their triplet form G = (G,SG ,ST), which is more
general since it can simulate the simpler version using ST = {1, 2, . . .}.

Graph relabelling systems are discussed in Section 4 of this document and also with a
bit more detail in our first report. They were introduced as a means to describe local
computations in distributed networks by Litovsky et al. (1999). Using them, a distributed
algorithm is represented as a set of local interaction rules that are independent from
the effective communications. Within the formalism of graph relabellings, the network
is represented by a labelled graph whose labels indicate the algorithmic state of the
corresponding nodes and edges. An interaction rule is thus defined as a local transition
pattern (preconditions, actions), where preconditions and actions relate to the values of
these labels. In the broadcasting example, the algorithm could be made up of a single

propagation rule, namely I N I I , with the following meaning: if a node that is
informed (labelled I) interacts with a node that is not (labelled N), then it transmits to
this node the information (i.e., the N -node is relabelled into I, while the I-node remains
unchanged). Initially all the nodes but the emitter are labelled N . The opportunistic
repetition of such a rule within the sequence of graph SG eventually completes the propagation
if this sequence of graph satisfies some conditions. Which ones?

5.2.1 Combination of graph relabellings and evolving graphs

Given an evolving graph G = (G,SG ,ST) and a date ti ∈ ST , Gi is the labelled graph
representing the state of the network just after the topological event of date ti occurred,
and by Gi[the labelled graph representing the network state just before that event occurred.
This concept can be written as

Eventti(Gi[) = Gi

A number of distributed operations may occur between two consecutive events. Hence, for a
given algorithm A and two consecutive dates ti, ti+1 ∈ ST , we denote by RA[ti,ti+1)

one of

the possible relabelling sequences induced by A on the graph Gi during the period [ti, ti+1).
(Note that there might be various such sequences depending on the type of synchronization
considered between nodes. The level of abstraction here is more general.) This concept can
be written as

RA[ti,ti+1)
(Gi) = Gi+1[

A complete execution sequence from t0 to tk is then represented by an alternated sequence
of relabelling steps and topological events, which can be written as

X=RA[tk−1,tk)
◦ Eventtk−1

◦ .. ◦ Eventti ◦ RA[ti−1,ti)
◦ .. ◦ Eventt1 ◦ RA[t0,t1)

(G0)

This combination is illustrated on Figure 23. As mentioned above, the deterministic execution
of a relabelling algorithm depends on the way nodes select each other to interact. Hence,
we denote by XA/G the set of all possible execution sequences of an algorithm A over an
evolving graph G.

36 DRDC Ottawa CR 2013-021

time

start

t0

G0 G1[

R[t0,t1)

︷ ︸︸ ︷
G0

Eventt1

t1

G1 G2[

R[t1,t2)

︷ ︸︸ ︷
G1

Eventt2

t2

Eventtk−1

tk−1

Gk−1 Gk[

R[tk−1,tk)

︷ ︸︸ ︷

Gtk−1

end

tk

. . .

. . .

Figure 23: Combination of graph relabellings and evolving graphs. Picture from (Casteigts
et al. 2009a).

This formulation of an execution allows us to define precisely the concepts of topology-related
necessary or sufficient conditions. These concepts rely on a proper formulation of the
objectives of an algorithm and what it means for an execution to be successful or not.

5.2.2 Necessary and sufficient conditions

Given an algorithm A and a labelled graph G, the state one wishes to reach by the end
of the execution can be given by a logic formula P on the labels of the nodes (or edges, if
appropriate). For the example above (the single-rule propagation algorithm, let us call it
A1), one such terminal state would be that all nodes are informed, i.e.,

P1(G) = (∀v ∈ V, λ(v) = I),

where λ is the labelling function. The objective OA is then defined as the fact of satisfying
the desired property by the end of the execution, that is, on the final labelled graph Gk.
Here, we have OA1 = P1(Gk).

Given an algorithm A, its objective OA and an evolving graph property CN , the property
CN is a (topology-related) necessary condition for OA if and only if

∀G,¬CN (G) =⇒ ¬OA

Proving this result comes from proving that ∀G,¬CN (G) =⇒ ∄X ∈ XA/G | P(Gk). (The
desired state is not reachable by the end of the execution unless the condition is satisfied.)
Symmetrically, an evolving graph property CS is a (topology-related) sufficient condition for
A if and only if

∀G, CS(G) =⇒ OA

Proving this result comes from proving that ∀G, CS(G) =⇒ ∀X ∈ XA/G ,P(Gk).

Because the abstraction level of these computations is not concerned with the underlying
synchronization, no topological property can guarantee, alone, that the nodes will effectively
communicate and collaborate to reach the desired objective. Therefore, the characterization
of sufficient conditions requires additional assumptions on the synchronization. Below is
a generic progression hypothesis that enables it. This assumption may or may not be
considered as realistic depending on the expected rate of topological changes.

DRDC Ottawa CR 2013-021 37

Progression Hypothesis 1. (PH1). In every time interval [ti, ti+1), each node is able to
apply at least one relabelling rule with each of its neighbours, provided the rule preconditions
are already satisfied at time ti (and still satisfied at the time the rule is applied).

5.2.3 Example analyses

This analytical framework was illustrated in (Casteigts et al. 2009a, 2012a) by the analysis of
three basic algorithms: the above propagation algorithm and two counting algorithms (one
with a distinguished counter, the other one with coalescing counters). The main advantage
of this framework is the ability to formalize the proofs to a large extent (and thereby open a
door towards partial mechanization); however, for the sake of intuition, we review here their
arguments in a natural language style, referring the reader to the above papers for complete
proofs. Most of these arguments are very simple.

5.2.3.1 Propagation algorithm

Let us analyze the single-rule propagation algorithm A1 from above. The existence of a
journey (resp. strict journey under PH1, see above) between the emitter and every other
node is a necessary (resp. sufficient) condition to achieve OA1 .

Condition 1. ∀v ∈ V, emitter � v
(There exists a journey between the emitter and every other node).

Lemma 1. If a non-emitter node has the information at some point, this implies the
existence of an incoming journey from a node that had the information before.

Proof. If a non-emitter node has the information at some point, then it has necessarily
applied the rule with another node. Thus, an edge existed at a previous date between this
node and a node labelled I. By transitivity, this implies that a journey existed between a
node labelled I and this node.

Theorem 1. Condition 1 (C1) is a necessary condition on G to allow algorithm A1 to reach
its objective OA1.

The proof follows from Lemma 1 and the initial states (I for the emitter, N for all other
nodes), we have OA1 =⇒ C1, and thus ¬C1 =⇒ ¬OA1 .

The characterization of a sufficient condition below uses the concept of strict journeys. Given
a graph G = (G,SG ,ST) and its sequence SG = {G1, G2, ..}, a strict journey is one such
that at most one edge is crossed in each Gi. In other words, at most one edge is crossed
in-between consecutive topological events. The existence of such a journey from a node u to

a node v is noted u
st
� v.

Condition 2. ∀v ∈ V, emitter
st
� v

Theorem 2. Under Progression Hypothesis 1 (PH1, defined in the previous section),
Condition 2 (C2) is sufficient on G to guarantee that algorithm A1 will reach OA1.

38 DRDC Ottawa CR 2013-021

Proof. By PH1, we have that for any graph Gi = (V,Ei) ∈ SG , if a node u is labelled I at
ti then all its neighbours must be labelled I by ti+1. By iteration of this statement over

the sequence SG , if a node u is initially labelled I, then all the nodes v such that u
st
� v in

G will eventually be labelled I. Knowing that the initial label of the emitter is I, we can
conclude that C2(G) =⇒ ∀X ∈ XA/G ,P1(Gk)

5.2.3.2 Centralized counting algorithm

We next look at a centralized counting algorithm, A2. The algorithm studied here is
centralized in the sense that one node (the counter in charge of counting all the others)
is distinguished from the other nodes at the beginning. The propagation algorithm seen
above also uses a distinguished node, the emitter. The counter node has two labels (C, n),
meaning that it is the counter (C), and that it has already counted n nodes (initially 1,
itself). The other nodes are labelled either F or N , depending on whether they have already

been counted or not. The counting rule is then given as
C, n N C, n+1 F .

Under the assumption of a fixed number of nodes, the algorithm reaches a terminal state
when all nodes are counted, which corresponds to the fact that no more nodes are labelled
N :

P2 = (∀v ∈ V, λ(v) /= N)

The objective is thus to satisfy this property by the end of the execution (OA2 = P2(Gk)).
There is a simple condition that is both necessary and sufficient: the existence of an edge at
some point of the execution between the counter node and every other node. Proving this
result is straightforward, so we omit the proofs.

Condition 3. ∀v ∈ V \{counter}, (counter, v) ∈ E, where E is the set of edges of the
underlying graph.

Theorem 3. Condition 3 (C3) is a necessary condition to allow algorithm A2 to reach its
objective OA2.

Theorem 4. Under PH1, C3 is also a sufficient condition to guarantee that algorithm A2

will reach its objective OA2.

5.2.3.3 Decentralized counting algorithm

In contrast to the previous algorithm, the next algorithm, A3 does not require a distinguished
initial state for a node. Indeed, all nodes are initialized with the same labels (C, 1), meaning
that they are all initially counters that have already included themselves into the count.
Then, depending on the topological evolutions, the counters opportunistically merge by pairs,

that is,
C, i C, j C, i+j F . The same counting principle is discussed in Section 4.3

and proposed by Angluin et al. (2006). Note that this algorithm can also serve as an election
algorithm based on the same coalescing principle. In the optimistic scenario, at the end of
the execution, only one node remains labelled C and its second label gives the total number

DRDC Ottawa CR 2013-021 39

of nodes in the graph. We are interested here in the topological conditions that enable (resp.
guarantee) a successful execution of this algorithm.

The correctness of this algorithm is based on the following invariant (also mentioned in
Section 4.3). Let C (resp. F) be the set of nodes in state C (resp. F). Then |C|+ |F| = |V |
holds at any time of the computation. It follows that if |C| = 1 then the corresponding node
has its counter value equal to |V |. Under the assumption of a fixed number of nodes, this
algorithm thus reaches the desired state when exactly one node remains labelled C:

P3 = (|C| = 1).

As with the two previous algorithms, the objective here is to satisfy this property by the
end of the execution: OA3 = P3(Gk). The characterization below proves that the existence
of a node belonging to the horizon of every other node is a necessary condition for this
algorithm.

Condition 4. ∃v ∈ V : ∀u ∈ V, u � v.
(At least one node is reachable from all the others by a journey.)

Lemma 2. ∀u ∈ V, ∃u′ ∈ V : u � u′ ∧ λtk(u
′) = C

(Counters cannot disappear from their own horizon.)

Proof. By contradiction. The only operation that can suppress C labels is the application
of the counting rule. Since all nodes are initially labelled C, assuming that Lemma 2 is
false (i.e., that there is no C-labelled node in the horizon of a node) comes to assume that
a relabelling sequence took place transitively from node u to a node u′ that is outside the
horizon of u, which is by definition impossible.

Theorem 5. Condition 4 (C4) is necessary for algorithm A3 to reach its objective OA3.

Proof. ¬C4(G) implies that none of the nodes can be reached by all others. Thus, given any
potential final counter, at least one other node could not have reached it through a journey.
By Lemma 2, this implies that at least two final counters remain at the end of the execution
(|C| ≥ 2 in Gk).

The characterization of a sufficient condition for algorithm A3 is left open by Casteigts et al.
(2009a). De facto, the original assumption of population protocols, namely that every pair of
node interacts infinitely often, would form a sufficient condition for this algorithm to converge
in finite time; however, this time is unbounded and thus does not offer a guarantee of success
in any finite instance of evolving graph. Searching for properties that could be satisfied on a
given finite-time evolving graph is particularly appealing in terms of applications, since it
would allow to check if that property holds on a given network trace (and thus, guarantee
that the algorithm would have worked with certainty in the corresponding scenario).

Such a condition was characterized by Marchand de Kerchove and Guinand (2012). The
condition is that every pair of nodes shares an edge at least once during the execution. In
other words, given an evolving graph G = (G,SG ,ST), its underlying graph G is complete

40 DRDC Ottawa CR 2013-021

(be careful not to mistake the concepts of underlying graph of an evolving graph, with that
of graph of interaction in population protocols; the edges of the latter are required to appear
infinitely often, while those of the former might exist once once).

Condition 5. ∀u, v ∈ V, (u, v) ∈ E.
(Every pair of node shares an edge at least once during the execution. Or equivalently, the
underlying graph G of the evolving graph G is complete.)

Here is a sketch of the arguments from Marchand de Kerchove and Guinand (2012).

Lemma 3. C-nodes remain C-nodes until they become F -nodes.

Lemma 4. F -nodes remain forever F -nodes.

Lemma 5. If two C-nodes share an edge in a given Gi, only one remains by ti+1.

Theorem 6. Condition 5 (C5) is sufficient under PH1 for algorithm A3 to reach its
objective OA3.

Proof. By contradiction. Assume the algorithm fails, i.e., there is at least two C-nodes at
the end of the execution. By C5, they must have shared an edge in some Gi. By Lemma 3
their labels were already C, and thus (by Lemma 5) one of them must have disappeared.
But Lemma 4 tells us this is impossible.

5.2.4 Tightness of conditions

Given a necessary or a sufficient condition C relative to an algorithm A, one important
question is whether C is optimal for A or a better condition could exist. Marchand de
Kerchove and Guinand (2012) defines a criterion of tightness for necessary and sufficient
conditions. The motivation is to avoid basic conditions that tell us nothing or little about
the problem at stake. Examples of trivial necessary conditions include E /= ∅; examples of
excessive sufficient conditions include, for many algorithms, the fact that every pair of nodes
interacts infinitely often—this condition would have been sufficient for all algorithms we
discussed so far.

Keep in mind that given an algorithm A, a necessary condition CN is one such that
¬ CN (G) =⇒ ∄X ∈ XA/G | OA, and a sufficient condition CS is one such that CS(G) =⇒
∀X ∈ XA/G ,OA. Now, a necessary condition CN is said to be tight if and only if

CN (G) =⇒ ∃X ∈ XA/G | OA

Symmetrically, a tight sufficient condition CS is a sufficient condition such that

¬CS(G) =⇒ ∃X ∈ XA/G ,¬OA

What does it tell us? In technical terms, it tells us that the set of dynamic graphs that
satisfies a tight condition is maximal for the considered algorithm. For necessary conditions,

DRDC Ottawa CR 2013-021 41

having a dynamic graph not in this set implies failure, while having a graph in this set
implies a possibility of success (depending on how interaction takes place between the nodes).
For sufficient conditions, having a graph in the set implies success, while having it outside
implies a possibility of failure (depending on how interaction takes places between the nodes).
These observations are summarized by a diagram on Figure 24.

¬CN (G) → Failure guaranteed

CN (G)

no clue

∃ successful
execution sequence

¬ tight

tight

(a) Necessary condition CN

CS(G) → Success guaranteed

¬CS(G)

no clue

∃ failing execution
sequence

¬ tight

tight

(b) Sufficient condition CS

Figure 24: Logical implications of tight conditions.

All of the conditions characterized in this section happen to be tight, including the sufficient
condition by Marchand de Kerchove and Guinand (2012) for decentralized counting.

5.2.5 A note on maintenance algorithms

We discuss in Section 3 the various ways a problem could be reframed in a dynamic context.
In particular, we can distinguish between two fundamental types of objectives. In the
examples above, we consider algorithms whose objective is to satisfy a given property by
the end of the execution. Another way is to consider the maintenance of a desired property
despite the evolution of the network (i.e., what we referred to as the evolving variant of
a problem in Section 3). In this case, the objective should not be expressed in terms of
a terminal state, but rather in terms of a recurrent state one wants to see satisfied, say,
in-between every two consecutive topological events, i.e., OA = ∀Gi ∈ SG,P(Gi+1[).

42 DRDC Ottawa CR 2013-021

6 Computational relationship between classes of

dynamic graphs

We discussed in Section 5 how the intimate relationship between dynamic properties and
the feasibility of problems can be studied in the most general terms. This section explores
another facet of the same question: What is the computational relationship between a set
of dynamic graph classes? Unlike the conditions studied in Section 5 whose characterizing
property was of a finite essence (e.g. existence of at least one journey from a node to all
others), the classes we consider here are defined by recurrence properties on an infinite-
time network schedule. (Note that all of these properties/classes, whether of a finite or
infinite essence, will be connected within the same hierarchy in Section 7). We study the
categorization of dynamic graphs into classes using problems already discussed in Sections 3
and 4.1, namely foremost, shortest, and fastest broadcast. As a result, the work presented
here offers in a sense a good summary of the analytical approach we advocated throughout
the report. Most of these results can be found in Casteigts et al. (2010a, 2012b,c).

The three classes: These are three subclasses of delay-tolerant networks (DTNs)—those
networks in which instant connectivity is never guaranteed, but connectivity can still be
achieved over time and space. Precisely, the classes are:

• The class R of all graphs whose edges re-appear infinitely often (recurrent edges).
That is, if an edge exists at some time then it cannot disappear forever and must
eventually re-appear at some unknown (but finite) date in the future, repeatedly. The
underlying graph is not required to be complete (i.e., not all possible pairs of nodes
must interact), but in order to guarantee temporal connectivity it must be connected.

• The class B (for bounded-recurrent edges) which consists of those graphs with recurrent
edges in which the recurrence time cannot exceed a given duration ∆, and, again, the
underlying graph is connected.

• The class P (for periodic edges) which consists of those graphs in which all topological
events (appearance or disappearance) repeat identically modulo some period p, and,
again, the underlying graph is connected.

As far as inclusion is concerned, it clearly holds that P ⊂ B ⊂ R, but what about the
computational relationship between these classes? Considering different types of knowledge,
namely the number n of nodes in the network, a bound ∆ on the recurrence time, and (any
multiple of) the period p, the authors looked at the relationship between P(Rn), P(B∆),
and P(Pp), where P(Ck) is the set of problems one can solve in class C with knowledge k.

The three problems: The investigation is carried out by studying three variants of
broadcast with termination detection at the emitter (TDB) in highly dynamic networks.
These variants are those discussed in Section 3: TDB[foremost], in which the date of delivery
is minimized at every node; TDB[shortest], where the number of hops used by the broadcast
is minimized relative to every node; and TDB[fastest], where the overall duration of the

DRDC Ottawa CR 2013-021 43

broadcast is minimized (however late the departure is). As already mentioned, these three
metrics were introduced in Bui-Xuan et al. (2003) as part of a centralized, offline problem.

The main questions at stake are how the feasibility and reusability (and to some extent,
complexity) of these problems vary in R, B, or P with knowledge ∅, n, ∆, or p.

6.1 Summary of the results

We present a short summary of these results, which are then described in detail in Sections 6.2
to 6.5.

Feasibility: It is first shown that none of the three problems are solvable, in any of the
classes, unless additional knowledge is considered. A constructive proof then shows that
knowing n makes it possible to solve TDB[foremost] in R; however, it is not sufficient to
solve TDB[shortest] nor TDB[fastest], even in B. TDB[shortest] becomes in turn feasible
in B if ∆ is known, but this context is not sufficient to solve TDB[fastest]; this later problem
being solvable in P knowing p. Put together, these results allow to show that

P(Rn) � P(B∆) � P(Pp) (3)

that is, the computational relationships between these three contexts form a strict hierarchy.
This hierarchy implies in turn that a partial order �f exists on the feasibility of the three
problems, such that

TDB[foremost] �f TDB[shortest] �f TDB[fastest] (4)

Reusability: Regarding the possibility of reusing a solution, that is, the same broadcast
tree over several broadcasts, the authors find that reusability in TDB[shortest] is easier
than that of TDB[foremost]. Precisely, when TDB[shortest] becomes feasible in B, it also
enables reusability of the broadcast trees, whereas TDB[foremost], although it is already
feasible in R, does not enable reusability until in P . This result is somehow surprising, as it
suggests a different order �r on the reusability of these problems, such that

TDB[shortest] �r TDB[foremost] (5)

Whether reusability is more or less difficult in TDB[fastest] than in TDB[foremost] is an
open question, both of them being impossible in B∆ but possible in Pp.

These results on feasibility and reusability are summarized in Table 3.

Complexity: Although complexity was not the main focus in Casteigts et al. (2012c),
they characterized the time complexity and message complexity of their algorithms and
observe some noticeable facts. For instance, the message complexity of the algorithm for
TDB[foremost] is lower knowing ∆ than knowing n, and even lower if both are known.
Complexity results are summarized in Table 4. Note that TDB involves two processes: the
actual dissemination of information messages, and the exchange of typically smaller control
messages (e.g., for termination detection), both of which are separately analyzed.

44 DRDC Ottawa CR 2013-021

Metric Class Knowledge Feasibility Reusability Result from

Foremost

R ∅ no –
⎫

⎬

⎭

Casteigts et al. (2012c)R n yes no
B ∆ yes no
P p yes yes Casteigts et al. (2012b)

Shortest

R ∅ no –
⎫

⎬

⎭

Casteigts et al. (2012c)R n no –
B ∆ yes yes
P p yes yes

Fastest

R ∅ no –
⎫

⎬

⎭

Casteigts et al. (2012c)R n no –
B ∆ yes no
P p yes yes Casteigts et al. (2012b)

Table 3: Feasibility and reusability of TDB in different classes of dynamic networks (with
associated knowledge).

Metric Class Knowl. Time Info. msgs Control msgs Info. msgs Control msgs

(1st run) (1st run) (next runs) (next runs)

Foremost R n unbounded O(m) O(n2) O(m) O(n)

B n O(n∆) O(m) O(n2) O(m) O(n)

∆ O(n∆) O(m) O(n) O(m) 0

n&∆ O(n∆) O(m) 0 O(m) 0

Shortest B ∆ O(n∆) O(m) O(n) : 2n− 2 O(n) 0

either of

{

n&∆ O(n∆) O(m) O(n) : n− 1 O(n) 0

n&∆ O(n∆) O(m) 0 O(m) 0

Table 4: Complexity of TDB for different classes of dynamic networks and associated
knowledge.

DRDC Ottawa CR 2013-021 45

6.2 Basic results and limitations

Observe first a general property of the computational relationship between the main three
contexts of interest, namely knowing n in R (noted Rn), knowing ∆ in B (noted B∆), and
knowing p in P (noted Pp). These inclusions are shown to be strict in Section 6.5, based on
the results we mention over the next subsections.

Theorem 7. P(Rn) ⊆ P(B∆) ⊆ P(Pp)

Proof. The right inclusion is straight from the fact that B ⊆ P and p is a valid bound ∆
on the recurrence time. The left inclusion follows from the facts that R ⊆ B and n can be
inferred in B if ∆ is already known. This calculation can be done by performing, from any
node (say u), a depth-first token circulation that will explore the underlying graph G over
time. Having a bounded recurrence time indeed allows every node to learn the list of its
neighbours in G within ∆ time (all incident edges must appear within this duration). As
the token is circulated to unvisited nodes, these nodes are marked as visited by u’s token
and the token is incremented. Upon returning to u, the token value is n.

Here is now a negative result that justifies the need for additional knowledge in order to
solve TDB in any of the considered contexts. Thus, we have:

Theorem 8. TDB cannot be solved in P without additional knowledge.

Proof. By contradiction, let A be an algorithm that solves TDB in P . Consider an arbitrary
G = (V,E, T , ρ) ∈ P and x ∈ V . Execute A in G starting at time t0 with x as the source. Let
tf be the time when the source terminates (and thus all nodes have received the information).
Let G′ = (V ′, E′, T ′, ρ′) ∈ P such that V ′ = V ∪{v}, E′ = E∪{(u, v) for some u ∈ V }, for all
t0 ≤ t < tf , ρ

′(e, t) = ρ(e, t) for all e ∈ E and ρ′((u, v), t) = 0. Now, consider ρ′((u, v), t) = 1
for some t > tf , and the period of G′ is some p′ > t − t0. Consider the execution of A in
G′ starting at time t0 with x as the source. Since (u, v) does not appear from t0 to tf , the
execution of A at every node in G′ is exactly the same as at each corresponding node in G.
In particular, node x enters a terminal state at time tf with node v not having received the
information, contradicting the correctness of A.

Inclusion of P in B (and thus R) yields the following corollary.

Corollary 9. TDB cannot be solved in B nor R without any additional knowledge.

Hence, it is proven by Casteigts et al. (2012c) that additional knowledge of some kind is
required to solve TDB in these classes. They subsequently consider three types of knowledge,
namely, the number of nodes n = |V |, an upper bound ∆ on the recurrence time (when in
B), or the period p (in P).

Impossibility of fastest broadcast: A general impossibility result can be established for
TDB[fastest] in B (and a fortiori in R), this problem being unsolvable even if both n and
∆ are known.

46 DRDC Ottawa CR 2013-021

Theorem 10. TDB[fastest] is not solvable in B (and a fortiori in R), if only n and ∆ are
known.

Proof. The argument relates to the very existence of fastest journeys in an unstructured
infinite setting. Consider for example the graph G = (V,E, T , ρ) ∈ B such that V =
{v1, v2, v3}, E = {e1 = (v1, v2), e2 = (v2, v3)} and ρ is such that:

• ∀t ∈ T , ∀i ∈ N, ρ(e1, t) = 1 ⇐⇒ i∆ ≤ t < i∆+ ζ

• ∀t ∈ T , ∀i ∈ N, ρ(e2, t) = 1 ⇐⇒ i∆+ (i+ 1)−1 ≤ t < i∆+ (i+ 1)−1 + ζ

for any ∆ ≥ 2ζ + 1. In such a setting, every period [i∆, (i+ 1)∆) enables a journey Ji from
v1 to v3 such that |Ji|t = 2ζ +(i+1)−1. As a result, there is an infinite sequence of journeys
J1,J2, .. such that |Ji+1|t < |Ji|t for all i ∈ N.

Theorem 11. TDB[fastest] is feasible in P with a known period p, and the solution can be
reused for subsequent broadcasts.

The algorithm for this result is described in Section 4 of this report. It relies on learning at
what time or times in the period the temporal eccentricity of the emitter is minimum, then
building a foremost broadcast tree for such a date or dates. Note that the broadcast tree
so-built remains necessarily optimal in the future, since in P the whole network schedule
repeats forever. It can thus be memorized for subsequent broadcasts, i.e., the solution is
reusable.

The next two sections (6.3 and 6.4) focus on TDB[foremost] and TDB[shortest] in R and B,
knowing n and/or ∆. Section 6.5 then draws some conclusions on the variation of difficulty
among these three problems, as well as on the computational relationship between P(Rn),
P(B∆), and P(Pp).

6.3 TDB[foremost]

TDB[foremost] in R or B clearly requires some sort of flooding because the very fact
of probing a neighbour to determine if it already has the information compromises the
possibility of sending it in a foremost fashion (in addition to risking the disappearance of the
edge in-between the probing and the actual sending). As a consequence of Theorem 8, we
know that this problem cannot be solved without additional knowledge. It becomes possible
in R if the number of nodes n = |V | is known, as shown constructively by an algorithm
whose termination is, however, not bounded in time. Being in B with the same knowledge
allows its termination to be bounded. Knowing ∆ instead of n in B then makes it possible
to propose another solution that has a lower message complexity. This complexity can be
further improved if both ∆ and n are known, due to the possibility of terminating implicitly.
Regarding reusability for the broadcast of the information, none of the broadcast trees built
in R or even B turn out to be reusable as such, due to the inherent lack of structure of these
classes.

Theorem 12. Foremost broadcast trees are not reusable as such in B∆ (and a fortiori in
Rn).

DRDC Ottawa CR 2013-021 47

Proof. By contradiction, let a tree T be a reusable foremost tree with respect to emission
date t. Since the order in which edges re-appear in B is arbitrary (as long as they all occur
within a ∆ time window), an adversary can act on the schedule in such a way that the edges
appear in a different order than that of the hierarchy of T , contradicting the fact that the
tree is foremost.

Note that the proof argument does not relate to the non-existence of trees whose optimality
repeat in the future; in fact, there must be at least one tree whose optimality holds infinitely
often since there are finitely many possible trees and infinitely many time spans of duration
∆. The argument actually relates to the non-decidability of using a given tree. Nonetheless,
the knowledge acquired can be helpful to lower the complexity of the termination detection.

6.3.1 TDB[foremost] in R

This section only discusses the knowledge of n since ∆ is not defined for R. It can be shown
constructively that the problem is solvable when n is known. The complete algorithm is
in (Casteigts et al. 2012c); its informal description is as follows. Every time a new edge
appears locally to an informed node, this node sends the information on the edge, and
remembers the edge. The first time a node receives the information, it records the sender
as parent, transmits the information on its available edges, and sends back a notification
message to the parent. Note that these notifications create a parent-relation and thus a
converge-cast tree. The notification messages are sent using a special primitive send retry
to ensure that the parent eventually receives it even if the edge disappears during the first
attempt (message loss can be detected as a result of knowing the latency and detecting the
disappearance of edges instantly). Each notification is individually propagated along the
converge-cast tree using the send retry primitive, and eventually collected at the emitter.
Once the emitter has received n− 1 notifications, it knows all nodes are informed.

Theorem 13. When n is known, TDB[foremost] can be solved in R in unbounded time by
exchanging O(m) information messages and O(n2) control messages, where m is the number
of edges.

Proof. Since a node sends the information to each newly appearing edge, it is easy to
see, by connectivity of the underlying graph, that all nodes will eventually receive the
information. The dissemination itself is necessarily foremost because the information is
either directly relayed on edges that are present, or sent as soon as a new edge appears.
As for termination detection: every node identifies a unique parent and a converge-cast
spanning tree directed towards the source is implicitly constructed; since every node notifies
the source (through the tree) and the source knows the total number of nodes, termination
is guaranteed. Since information messages might traverse every edge in both directions,
and an edge cannot be traversed twice in the same direction, we have that the number of
information messages is in the worst case 2m. Since every node but the emitter induces
a notification that is forwarded up the converge-cast tree to the emitter. The number of
notification messages is the sum of distances in converge-cast tree between all nodes and the
emitter,

∑

v∈V \{emitter} dh tree(v, emitter). The worst case is when the graph is a line where

48 DRDC Ottawa CR 2013-021

we have n2−n
2 control messages. Regarding time complexity, the termination of the algorithm

is unbounded due to the fact that the recurrence of the edges is itself unbounded.

Reusability for subsequent broadcasts: As stated in Theorem 12, a foremost broadcast
tree cannot be reused as such in subsequent broadcasts. It can however be reused as a
converge-cast tree for the notification process where, instead of sending a notification as
soon as a node is informed, each node notifies its parent in the converge-cast tree if and
only if it is itself informed and has received a notification from each of its children. This
would allow to reduce the number of control messages from O(n2) to O(n), having only one
notification per edge of the converge-cast tree.

6.3.2 TDB[foremost] in B

If the recurrence time is bounded then either the knowledge of n or an upper bound ∆ on
the recurrence time can be used to solve the problem (with various message complexities).

Knowledge of n.

Since B ⊆ R, one can obviously solve TDB[foremost] in B using the same algorithm as in
R (and the same observations apply regarding reusability of the converge-cast tree). Here,
however, the termination time becomes bounded due to the fact that the recurrence of edges
is itself bounded.

Theorem 14. When n is known, TDB[foremost] can be solved in B in O(n∆) time by
exchanging O(m) information messages and O(n2) control messages.

Proof. Since all edges in E are recurrent within any ∆ time window, the delivery of the
information to the last node must occur within (n− 1)∆ global time. The same property
holds for the latest notification, bounding the overall process to a duration of ∆(2n− 2).
The rest follows from Theorem 13.

Knowledge of ∆.

The information dissemination is performed as with the knowledge of n in R, but termination
detection can be achieved differently using ∆. Again, the full algorithm can be found in
(Casteigts et al. 2012c); its informal description is as follows. Due to the time-bounded
recurrence, no node can discover a new neighbour after a duration of ∆. Knowing ∆ can
thus be used by any node to determine whether it is a leaf in the broadcast tree (i.e., if it
has not informed any other node within ∆ time following its own reception time). This
allows the leaves to terminate spontaneously while notifying their parents, which recursively
terminate as they receive notifications from all their children.

Specifically, every time a new edge appears locally to an informed node, the node sends the
information on that edge, and records it. The first time a node receives the information,
it chooses the sender as its parent, memorizes the current time (in a variable firstRD),

DRDC Ottawa CR 2013-021 49

transmits the information on its available edges, and returns an affiliation message to
its parent using the send retry primitive (starting to build the converge-cast tree). This
affiliation message is not relayed upward in the tree, but is only intended to inform the direct
parent about the existence of a new child (so this parent knows it must wait for a future
notification by this node). If an informed node has not received any affiliation message
after a duration of ∆ + ζ, it sends a notification message to its parent using the send retry
primitive. The wait is bounded by ∆ + ζ for the following reasons (see also Figure 25).
First, the information messages cannot be lost when they are sent on an appearing edge,
neither can their potential affiliation answer (this work assumed that edge appear for a
minimum of 2 · ζ time). Thus, the loss of information messages can only occur when the
information is directly relayed by a node that has received it (say, as in Figure 25, node
a relaying at time firstRD the information to node b). If the information message is lost
then it simply means that this edge at that time did not have to be used. On the other
hand, if the affiliation message is lost, it must be sent again. However, in the worst case,
the common edge disappears just before the affiliation message is delivered, and reappears
only ∆− 2 · ζ later. Affiliation messages can thus be received until firstRD +∆+ ζ.

If a node has one or more children, it waits until it receives a notification message from each
of them and then notifies its parent in the converge-cast tree (using send retry again). Once
the emitter has received a notification from each of its children, it knows that all nodes are
informed.

Theorem 15. When ∆ is known, TDB[foremost] can be solved in B in O(n∆) time by
exchanging O(m) information messages and O(n) control messages.

Proof. Correctness follows the same lines of the proof of Theorem 13. However the correct
construction of a converge-cast spanning tree is guaranteed by the knowledge of ∆ (i.e., the
nodes of the tree that are leaves detect their status because no new edges appear within ∆
time) and the notification starts from the leaves and is aggregated before reaching the source.
The number of information messages is O(m) as the exchange of information messages is the
same as in R knowing n, but the number of notification and affiliation messages drops to
2(n−1). Every node but the emitter sends a single affiliation message; as for the notification
messages, instead of sending a notification as soon as it is informed, each node notifies its
parent in the converge-cast tree if and only if it has received a notification from each of its
children resulting in one notification message per edge of the tree. The time complexity of
the dissemination itself is the same as for the foremost broadcast when n is known. The time
required for the emitter to subsequently detect termination is an additional ∆+ ζ +∆(n− 1)
(the value ∆ + ζ corresponds to the time needed by the last informed node to detect that it
is a leaf, and ∆(n− 1) corresponds to the worst case of the notification process, a line graph
with the emitter on one end and the last informed node on the other).

Reusability for subsequent broadcasts: Clearly, the number of nodes n, which is not a
priori known here, can be obtained through the notification process of the first broadcast (by
having nodes reporting their number of descendants in the tree, while notifying hierarchically).
All subsequent broadcasts can thus behave as if both n and ∆ were known. Next we show
this technique allows one to solve the problem without any control messages.

50 DRDC Ottawa CR 2013-021

a

b

firstRD +∆ +∆+ζ

1 2
3

Figure 25: Case when a node waits ∆ + ζ for receiving potential affiliation messages.
Picture from (Casteigts et al. 2012c).

Knowledge of both n and ∆

In this case, the emitter knows an upper bound on the broadcast termination date; in fact,
the broadcast cannot last longer than n∆ (this worst case is when the foremost tree is a line
graph). Termination detection can thus become implicit after this amount of time, which
removes the need for any control message (whether of affiliation or of notification).

Theorem 16. When ∆ and n are known, TDB[foremost] can be solved in B in O(n∆)
time by exchanging O(m) information messages and no control messages.

6.4 TDB[shortest]

Let us recall that the objective of TDB[shortest] is to deliver the information to each
node within a minimal number of hops from the emitter, and to have the emitter detect
termination within finite time. In contrast to the foremost case, knowing n is insufficient to
perform a shortest broadcast in R or even in B. However, it becomes feasible in B when ∆
is also known. Moreover, any shortest tree built at some time t will remain optimal in B
relative to any future emission date t′ > t. This feature allows for the possible reuse of the
solution to TDB[shortest] in subsequent broadcasts.

It is shown below that knowing n is not sufficient to solve TDB[shortest] in B (and thus in
R). We also describe how to solve the problem when ∆ is known, and finally when both n
and ∆ are known.

TDB[shortest] in B with knowledge of n

The following theorem establishes that knowing n is not sufficient to solve TDB[shortest] in
B (and thus in R).

Theorem 17. TDB[shortest] is not feasible in B (nor a fortiori in R) knowing only n.

Proof. By contradiction, let A be an algorithm that solves TDB[shortest] in B with the
knowledge of n only. Consider an arbitrary G = (V,E, T , ρ) ∈ B and x ∈ V . Execute
A in G starting at time t0 with x as the source. Let tf be the time when the source
terminates and T the shortest broadcast tree along which broadcast was performed. Let
G′ = (V ′, E′, T ′, ρ′) ∈ B such that V ′ = V , E′ = E ∪ {(x, v) for some v ∈ V : (x, v) /∈ E},
ρ′(e, t) = ρ(e, t) for all e ∈ E, 0 ≤ t ≤ tf , ρ′((x, v), t) = 0 for all t0 ≤ t < tf , and
ρ′((x, v), t) = 1 for some t > tf (we can take ∆ as large as needed here). Consider

DRDC Ottawa CR 2013-021 51

the execution of A in G′ starting at time t0 with x as the source. Since (x, v) does not
appear between t0 and tf , the execution of A at every node in G′ will be exactly as at the
corresponding node in G and terminate with v having received the information in more than
one hop, contradicting the fact that T is a shortest tree, and thus the correctness of A.

TDB[shortest] in B with knowledge of ∆

We present here a solution to TDB[shortest] in B when ∆ is known. The idea is to propagate
the message along the edges of a breadth-first spanning tree of the underlying graph. Here
is an informal description of the algorithm in (Casteigts et al. 2012c). Assuming that the
message is created at some date t, the mechanism consists of authorizing nodes at level
i in the tree to inform new nodes only between time t + i∆ and t + (i + 1)∆ (doing it
earlier would lead to a non-shortest tree, while doing it later is pointless because all the
edges have necessarily appeared within one ∆). So the broadcast is confined into rounds of
duration ∆ as follows: whenever a node sends the information to another, it sends a time
value that indicates the remaining duration of its round (that is, the starting date of its
own round plus ∆ minus the current time minus the crossing delay), so the receiving node
knows when to start informing new nodes in turn (if it did not have the information yet).
An example of this timing is shown in Figure 26. When the node a attempts to become
b’s parent, node a transmits its own starting date plus ∆ minus the current date minus ζ.
This duration corresponds to the exact amount of time the child would have to wait, if the
relation is established, before integrating other nodes in turn. If a node has not informed
any other node during its round, it notifies its parent. When a node has been notified by
all its children, it notifies its parent. Note that this requires parents to keep track of the
number of children they have, and thus children need to send affiliation messages when they
select a parent (with the same constraints as already discussed in Figure 25). Finally, when
the emitter has been notified by all its children, it knows the broadcast is terminated.

Theorem 18. When ∆ is known, TDB[shortest] can be solved in B in O(n∆) time by
exchanging O(m) information messages and O(n) control messages.

Proof. The fact that the algorithm constructs a breadth-first (and thus shortest) delay-
tolerant spanning tree follows from the connectivity over time of the underlying graph and
from the knowledge of the duration ∆. The bound on recurrence is used to enable a rounded
process whereby the correct distance of each node to the emitter is detected. The number
of information messages is 2m as the dissemination process exchanges at most two messages
per edge. The number of affiliation and notification messages are each of n − 1 (one per
edge of the tree). The time complexity for the construction of the tree is at most (n− 1)∆
to reach the last node, plus ∆ + ζ at this node, plus at most (n − 1)∆ to aggregate this
node’s notification. (The additional ζ caused by waiting affiliation messages matters only
for the last round, since the construction continues in parallel otherwise.) The total is thus
at most (2n− 1)∆ + ζ.

Reusability for subsequent broadcasts: Thanks to the fact that shortest trees remain
shortest regardless of the emission date, all subsequent broadcasts can be performed within

52 DRDC Ottawa CR 2013-021

a

b

roundStart now() roundStart+∆

roundStart

ζ

Figure 26: Propagation of rounds of duration ∆. Picture from (Casteigts et al. 2012c).

the same, already known tree, which reduces the number of information message from O(m)
to O(n). Moreover, if the depth d of the tree is detected through the first notification process
then all subsequent broadcasts can enjoy an implicit termination detection that is itself
optimal in time (after d∆ time). No control message is needed.

TDB[shortest] in B with knowledge of n and ∆

When both n and ∆ are known, one can apply the same dissemination procedure as above
(knowledge of ∆) combined with an implicit termination detection deduced from the very
first broadcast (after n∆ time) and thus avoid using control messages.

Theorem 19. When n and ∆ are known, TDB[shortest] can be solved in B in O(n∆) time
by exchanging O(m) information messages and no control messages.

However, avoiding control messages prevents the emitter from learning the depth d of the
shortest tree, and thus prevents lowering the termination bound to d∆ time. An alternative
solution would be to achieve explicit termination for the first broadcast in order to build a
reusable broadcast tree (and learn its depth d in the process). In this case, dissemination
is achieved with O(m) information messages, termination detection is achieved as above
with O(n) control messages (where, however, affiliation messages are not necessary, and
the number of control messages would decrease to n − 1). In this way, we would have
an increase in control messages, but the subsequent broadcasts could reuse the broadcast
tree for dissemination with O(n) information messages, and termination detection could
be implicit with no exchange of control message at all after d∆ time. The choice of either
solution may depend on the size of the information message and on the expected number of
broadcasts planned.

6.5 Computational relationship

On the basis of these results, Casteigts et al. (2012c) conclude regarding the computational
relationship between P(Rn), P(B∆), and P(B∆).

Theorem 20. P(Rn) � P(B∆) � P(Pp)

Proof. The fact that P(Rn) ⊆ P(B∆) ⊆ P(Pp) was observed in Theorem 7. To make the
left inclusion strict, one has to exhibit a problem Π such that Π ∈ P(B∆) and Π /∈ P(Rn).
By Theorem 17 and Theorem 18, TDB[shortest] is one such example. The right inclusion is

DRDC Ottawa CR 2013-021 53

similarly proven strict, based on the fact that TDB[fastest] is in P(Pd) (Theorem 11) but
it is not in P(B∆) (Theorem 10).

Now, considering the fact that TDB[foremost] ∈ P(Rn) while TDB[shortest] /∈ P(Rn),
and the fact that TDB[shortest] ∈ P(B∆) while TDB[fastest] /∈ P(B∆), together with the
inclusions of Theorem 20, we have

TDB[foremost] �f TDB[shortest] �f TDB[fastest]

where �f is a partial order on these problems topological requirements (relative to feasibility).
The order is “only” partial here because the variations of feasibility of these problems may
be different in another set of assumptions. Following a similar reasoning (that is the fact
that the solutions to TDB[shortest] are reusable in B∆ whereas those to TDB[foremost]
are not) leads to

TDB[shortest] �r TDB[foremost]

where �r is a partial order on these problems topological requirements (relative to reusability).
This result is somehow surprising, as it suggests a problem could be both easier or more
difficult than another, depending on which aspect is looked at (feasibility vs. reusability).
In other words, the difficulty of these problems seems to be multi-dimensional. Whether
reusability is easier for TDB[fastest] or TDB[foremost] is an open question, since both of
these problems are not solvable in B∆ but are solvable in Pp (Casteigts et al. 2012b).

54 DRDC Ottawa CR 2013-021

7 Classification of networks and algorithms

In this section, we show how the conditions (C1 to C4) characterized in Section 5 (and
repeated below) can be used to define dynamic graph classes, some of which are included
in others. These conditions are related to the analyses of a number of algorithms: A1 for
propagation, A2 for centralized counting, and A3 for distributed counting. The dynamic
graph classes are in turn connected to those studied in Section 6 and to more classes from
recent literature. Overall, these inclusion relations yield a hierarchy of 17 dynamic graph
classes, each of which corresponds to a feasible or unfeasible problem. Such a hierarchy can
also be used, in turn, to compare algorithms or problems on the fair basis of their topological
requirements in a dynamic context.

7.1 From conditions to classes of dynamic graphs

From C1 = (∀v ∈ V, emitter � v), we derive two classes of dynamic graphs. F1 is the class
in which at least one vertex can reach all the others by a journey. If a dynamic graph does
not belong to this class then there is no chance for algorithm A1 to succeed whatever the
initial emitter. F2 is the class where every vertex can reach all the others by a journey. If a
dynamic graph does not belong to this class then at least one vertex, if chosen as an initial
emitter, will fail to inform all the others using algorithm A1.

From C2 = (∀v ∈ V, emitter
st
� v), we derive two classes of dynamic graphs. F3 is the class

in which at least one vertex can reach all the others by a strict journey. If a dynamic graph
belongs to this class then there is at least one vertex that could, for certain, inform all the
others using algorithm A1 (under Progression Hypothesis 1 on page 38). F4 is the class
of dynamic graphs in which every vertex can reach all the others by a strict journey. If a
dynamic graph belongs to this class then the success of algorithm A1 is guaranteed for any
vertex as initial emitter (again, under Progression Hypothesis 1).

From C3 = (∀v ∈ V \{counter}, (counter, v) ∈ E), we derive two classes of graphs. F5 is the
class of dynamic graphs in which at least one vertex shares, at some point of the execution,
an edge with every other vertex. If a dynamic graph does not belong to this class then there
is no chance of success for algorithm A2, whatever the vertex chosen for counter. Here,
if we assume Progression Hypothesis 1 then F5 is also a class in which the success of the
algorithm can be guaranteed for one specific vertex as counter. F6 is the class of dynamic
graphs in which every vertex shares an edge with every other vertex at some point of the
execution. If a dynamic graph does not belong to this class then there exists at least one
vertex that cannot count all the others using algorithm A2. Again, if we consider Progression
Hypothesis 1 then F6 becomes a class in which the success is guaranteed whatever the
counter.

Finally, from C4 = (∃v ∈ V : ∀u ∈ V, u � v), we derive the class F7, which is the class of
graphs such that at least one vertex can be reached from all the others by a journey (in
other words, the intersection of all nodes horizons is non-empty). If a graph does not belong
to this class then there is absolutely no chance of success for algorithm A3.

DRDC Ottawa CR 2013-021 55

7.2 Relations between classes

The classes defined so far can be connected into a hierarchy by means of inclusion relations
(Casteigts 2007, Casteigts et al. 2009a). Since “all” implies “at least one”, we have F2 ⊆ F1,
F4 ⊆ F3, and F6 ⊆ F5. Because a strict journey is a journey, we have F3 ⊆ F1, and
F4 ⊆ F2. Since an edge is a (strict) journey, we have F5 ⊆ F3, F6 ⊆ F4, and F5 ⊆ F7.
Finally, the existence of a journey between all pairs of vertices (F2) implies that each vertex
can be reached by all the others, which implies in turn that at least one vertex can be reach
by all the others (F7). We thus have F2 ⊆ F7. Although we have used here a non-strict
inclusion (⊆), all the inclusions actually turn out to be strict (�)—one can easily find
for each inclusion a graph that belongs to the parent class but is outside the child class.
Figure 27 summarizes these relations.

F1 : ∃u ∈ V : ∀v ∈ V, u � v
F2 : ∀u, v ∈ V, u � v

F3 : ∃u ∈ V : ∀v ∈ V, u
st
� v

F4 : ∀u, v ∈ V, u
st
� v

F5 : ∃u ∈ V : ∀v ∈ V \{u}, (u, v) ∈ E
F6 : ∀u, v ∈ V, (u, v) ∈ E
F7 : ∃u ∈ V : ∀v ∈ V, v � u

F6 F4

F5

F2

F3

F7

F1

F8 (Fig. 28)

Figure 27: A first hierarchy of dynamic networks based on dynamic graph properties that
result from previous analyses. Picture from (Casteigts et al. 2009a).

Further classes were studied in Section 6 and others introduced in the recent literature. They
are organized into a hierarchy in (Casteigts et al. 2012d). These classes include F8 (round
connectivity): every node can reach every other node, and be reached back afterwards; F9:
(recurrent connectivity): every node can reach all the others infinitely often; F10 (recurrence
of edges): the underlying graph G = (V,E) is connected, and every edge in E re-appears
infinitely often; F11 (time-bounded recurrence of edges): same as F10, but the re-appearance
is bounded by a given time duration; F12 (periodicity): the underlying graph G is connected
and every edge in E re-appears at regular intervals; F13 (eventual instant-routability): given
any pair of nodes and at any time, there always exists a future Gi in which a (static) path
exists between them; F14 (eventual instant-connectivity): at any time, there always exists a
future Gi that is connected in a classic sense (i.e., a static path exists in Gi between any
pair of nodes); F15 (perpetual instant-connectivity): every Gi is connected in a static sense;
F16 (T-interval-connectivity): all the graphs in any sub-sequence Gi, Gi+1, ...Gi+T have at
least one connected spanning subgraph in common. Finally, F17 is the reference class for
population protocols, it corresponds to the subclass of F10 in which the underlying graph G
(graph of interaction) is a complete graph.

All these classes have been shown to have particular algorithmic significance. For example,
F16 allows one to speed up the execution of some algorithms by a factor T (Kuhn et al. 2010).
In the context of broadcast, F15 allows one to have at least one new node informed in every
Gi, and consequently to bound the broadcast time by (a constant factor of) the network
size (O’Dell and Wattenhofer 2005). F13 and F14 were used by Ramanathan et al. (2007) to

56 DRDC Ottawa CR 2013-021

characterize the contexts in which non-delay-tolerant routing protocols can eventually work
if they retry upon failure. Classes F10, F11, and F12 have been shown to have an impact
on the distributed versions of foremost, shortest, and fastest broadcasts with termination
detection. Precisely, foremost broadcast is feasible in F10, whereas shortest and fastest
broadcasts are not; shortest broadcast becomes feasible in F11 (Casteigts et al. 2010a),
whereas fastest broadcast is not and becomes feasible in F12 (See also Section 6). Also, even
though foremost broadcast is possible in F10, recording the journeys for subsequent use is
not possible in F10 nor F11; it is however possible in F12 (Casteigts et al. 2012b). Finally,
F8 can be regarded as a sine qua non for termination detection in many contexts.

Interestingly, this second range of classes—from F8 to F17—can also be entirely connected
through inclusions, as illustrated on Figure 28. Both classifications can also be inter-
connected through F8, a subclass of F2, which brings us to a total of 17 connected classes. A
hierarchy of this type can be useful in several respects, including the possibility to transpose
results or to compare solutions or problems on a formal basis, which we discuss now.

F8 F2F9

F10

F17

F11F12

F13F14F15F16

Figure 28: An additional hierarchy of dynamic networks based on further classes found in
recent literature. Picture from Casteigts et al. (2012d).

7.3 Comparison of algorithms based on their requirements

Let us consider the two counting algorithms given in Section 5. To have any chance of
success, the centralized counting algorithm, A2, requires the dynamic graph to be in F5

(with a fortunate choice of counter) or in F6 (with any vertex as counter). On the other
hand, the distributed counting algorithm, A3, requires the dynamic graph to be in F7.
Since both F5 (directly) and F6 (transitively) are included in F7, there are some topological
scenarios (i.e., G ∈ F7\F5) in which A2 has no chance of success, while A3 has some. Such
observations allow us to claim that A3 is more general than A2 with respect to its topological
requirements. This example illustrates how a classification can help compare two solutions
on a fair and formal basis. In the case of these two counting algorithms, however, the claim
could be balanced by the fact that the sufficient condition for A3 is more demanding than
that for A2 (given a fortunate choice of node as counter; they are equivalent otherwise).

A similar type of reasoning could also teach us something about the problems themselves,
as discussed in Section 6. Indeed, the feasibility results on shortest, fastest, and foremost
broadcast with termination detection combined with the inclusion relation F12 ⊂ F11 ⊂ F10

tells us there exists a partial order of difficulty between these problems in terms of topological
requirements (foremost �f shortest �f fastest).

We believe classifications of this type have the potential to lead more equivalence results and
formal comparisons between problems and algorithms. Now, one must also keep in mind

DRDC Ottawa CR 2013-021 57

that these are only topology-related conditions, and that other dimensions of properties—e.g.,
what knowledge is available to the nodes, or whether they have unique identifiers—keep
playing the same important role as they do in static networks. As an example, the above
partial ordering of difficulty omist the fact that detecting termination in the foremost case
in F10 requires the emitter to know the number of nodes n in the network, whereas this
knowledge is not necessary for shortest broadcast in F11 (the alternative knowledge of
knowing a bound on the recurrence time is, however, not weaker).

58 DRDC Ottawa CR 2013-021

8 Classes of dynamic graphs vs. mobility contexts

What properties do real mobile networks such as sensors, pedestrians, robots, UAVs, vehicles,
or satellites have in terms of dynamics? Each of these networks is of course dynamic, but
in its own peculiar way. It seems essential, and extremely relevant, to understand what
assumptions (both topological or computational) are representative and/or realistic for each
specific context.

For instance, it is generally understood that satellites have periodic movements (class F12),
while sensor networks are, in general, connected at any instant (class F15). Interaction
between smartphones may represent interactions between people in a given context, such
as in a small company with bounded recurrence of edges, typically within a week (class
F11), or in a community with unbounded, yet recurrent interactions (class F10). Vehicular
networks exhibit an important range of densities and connectivity patterns, but they still
offer recurrent connectivity over time and space (class F9). Vehicles also share some traits
with pedestrians through having their movements constrained by the environment (roads
and pathways).

On the other hand, robots or UAVs (and to some extent, soldiers too) share the convenient
feature that they can influence their own mobility. For instance, they may modify their
movements for the very purpose of enforcing some topological properties that are required to
complete a given task. They may also avoid interrupting an ongoing crucial communication,
making it more realistic to consider coarser-grain atomicity in their computational model.

∗ ∗
∗�∗

∗�1

1�∗
1

st
�∗

1–∗
∗–∗

∗
st
�∗

∗
R
�∗

R
–

B
–

P
–

∗
R
–∗

R
––∗

R
––∗∗

∗
––∗T-∗

∗
––∗

? ? ?

Figure 29: Relations between mobility contexts and classes of dynamic graphs.

Through linking mobility models to analytical properties, we expect to understand better
what are the possibilities and limitations of each context, as well as enabling a more
systematic transfer of results among the different contexts. Finally, this may also help
understand how networks of different natures can interconnect.

DRDC Ottawa CR 2013-021 59

9 Conclusion

As the prevalence of dynamic networks and related applications is constantly growing, the
need for a better understanding of their nature is increasingly important. Heretofore, the
high complexity of dynamic networking environments led most researchers of the domain
to study the new problems and solutions by means of simulations. Simulations are beyond
doubt an essential component; however, they are by nature incomplete in that they mask
the link between a given setting and the corresponding outcome. At the best, one can
observe that a given solution works well (or better than another) in a given context, but
small changes in the settings may have tremendous implications on the outcome, which
makes simulation an unsafe approach for critical applications whose execution context is not
perfectly predictable.

This report has provided an overview of recent algorithmic techniques and analysis approaches
that aim to consider dynamic networks from a formal perspective. The topics we discussed
are certainly not exhaustive; in particular, we did not elaborate on some restricted types of
dynamic networks that have received attention lately. These include fault-tolerant networks
(where topological events are only occasional) and perpetually connected dynamic networks
(where there always exists a path between any pair of nodes). We have focused instead on
those highly dynamic networks whose connectivity is never guaranteed at any given time,
the network being likely partitioned into a number of separate components (possibly merging
or splitting at times). We believe this context reflects dynamic networks better, and to some
extent, that making less assumptions first is a good thing when trying to solve a problem.

Taking these networks as our main objective, we discussed a number of related topics.
In particular, the significant impact these environments have on the very definition of
problems, such as exploring the network or building communication structures. In many
cases, typical construction problems become problems of maintenance in a dynamic network
(e.g., maintaining one leader per component, a spanning forest, or a dominating set) where
the solution is required to adapt as the network evolves. We suggested a list of generic
approaches or constructs that can be helpful to solve or analyze various problems. These
include, among others, temporal-lags vector clocks (or T-Clocks) that have the ability to
measure delays between nodes in just such a disconnected context, which can be used to solve
concrete problems like foremost or fastest broadcast, and abstract models of computation,
which can be used to solve more general problems.

The remainder of the document dealt with important aspects of the analysis of distributed
algorithms and dynamic graph properties with a strong emphasis on the link between both.
In particular, we showed how a given property of the network dynamics could be proven to
be necessary or sufficient to the success of a given algorithm, and also at a general level.
We described the computational relationship between three important classes of dynamic
networks: networks whose edges re-appear recurrently, bounded-recurrently, or periodically.
Finally, we showed how all the graph properties studied in the document plus others from
the literature can be connected through a hierarchy of dynamic graph classes, itself having
many possible applications.

60 DRDC Ottawa CR 2013-021

An important question we have not addressed in this document is the relationship between
the number of topological events and the cost of an algorithm. Indeed, many algorithmic
operations in highly dynamic networks are triggered in reaction to topological events (e.g.
the appearance or disappearance of a local link). However, the complexity of algorithms is
more often than not characterized in the sole terms of the number of nodes or edges, thus
ignoring the impact of this essential parameter. Much remains to be done around these
questions. In fact, the field is just opening up and many research avenues still wait to be
explored. We hope this report contributed to developing the interest of the reader in formal
approaches to dynamic networks, and makes the point for such approaches in particular
when targeting critical applications whose outcome must be guaranteed. Besides, we believe
this research area raises many interesting questions which deserve to be explored in their
own, scientific, right.

DRDC Ottawa CR 2013-021 61

This page intentionally left blank.

62 DRDC Ottawa CR 2013-021

References

Albers, S. and Henzinger, M. R. (2000), Exploring unknown environments, SIAM Journal
on Computing, 29(4), 1164–1188.

Ambühl, C., Gasieniec, L., Pelc, A., Radzik, T., and Zhang, X. (2011), Tree exploration
with logarithmic memory, ACM Transactions on Algorithms, 7(2), 17:1–17:21.

Angluin, D. (1980), Local and global properties in networks of processors, In Proceedings of
the 12th annual ACM symposium on Theory of Computing (STOC), pp. 82–93, ACM.

Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M., and Peralta, R. (2006), Computation in
networks of passively mobile finite-state sensors, Distributed Computing, 18(4), 235–253.

Ausiello, G., Bonifaci, V., and Escoffier, B. (2011), Complexity and Approximation in
Reoptimization, In Cooper, S. and Sorbi, A., (Eds.), Computability in Context:
Computation and Logic in the Real World, pp. 101–130, World Scientific.

Averbakh, I. and Berman, O. (1996), A heuristic with worst-case analysis for minimax
routing of two travelling salesmen on a tree, Discrete Applied Mathematics, 68(1–2), 17–32.

Awerbuch, B., Betke, M., Rivest, R. L., and Singh, M. (1999), Piecemeal graph exploration
by a mobile robot, Information and Computation, 152(2), 155–172.

Barrière, L., Flocchini, P., Fraigniaud, P., and Santoro, N. (2003), Can we elect if we cannot
compare?, In Proceedings of the 15th ACM symposium on Parallel algorithms and
architectures (SPAA), pp. 324–332, ACM.

Bender, M. A., Fernández, A., Ron, D., Sahai, A., and Vadhan, S. (1998), The power of a
pebble: Exploring and mapping directed graphs, In STOC ’98: Proceedings of the 30th
ACM Symposium on Theory of Computing, pp. 269–278, New York, NY, USA: ACM.

Bender, M. A. and Slonim, D. K. (1994), The power of team exploration: Two robots can
learn unlabeled directed graphs, In FOCS 1994: Proceedings of the 35th Symposium on
Foundations of Computer Science, pp. 75–85.

Blum, M. and Kozen, D. (1978), On the power of the compass (or, Why mazes are easier to
search than graphs), In FOCS 1978: Proceedings of the 19th Annual Symposium on
Foundations of Computer Science, pp. 132–142, IEEE.

Brejová, B., Dobrev, S., Královič, R., and Vinař, T. (2011), Routing in carrier-based mobile
networks, In Proceedings of the 18th international conference on Structural information and
communication complexity, SIROCCO’11, pp. 222–233, Berlin, Heidelberg: Springer-Verlag.

Bui-Xuan, B., Ferreira, A., and Jarry, A. (2003), Computing shortest, fastest, and foremost
journeys in dynamic networks, International Journal of Foundations of Computer Science,
14(2), 267–285.

DRDC Ottawa CR 2013-021 63

Casteigts, A. (2006), Model Driven capabilities of the DA-GRS model, In Proceedings of the
1st International Conference on Autonomic and Autonomous Systems (ICAS’06), pp. 24–32,
Washington, DC, USA: IEEE Computer Society.

Casteigts, A. (2007), Contribution à l’Algorithmique Distribuée dans les Réseaux Mobiles
Ad Hoc - Calculs Locaux et Réétiquetages de Graphes Dynamiques, Ph.D. thesis,
University of Bordeaux.

Casteigts, A. and Chaumette, S. (2005), Dynamicity-Aware Graph Relabeling Systems
(DA-GRS), a local computation-based model to describe MANet algorithms, In Proceedings
of the 17th Conference on Parallel and Distributed Computing and Systems (PDCS’05),
pp. 231–236, Dallas, USA.

Casteigts, A., Chaumette, S., and Ferreira, A. (2009), Characterizing Topological
Assumptions of Distributed Algorithms in Dynamic Networks, In Proceedings of the 16th
International Colloquium on Structural Information and Communication Complexity
(SIROCCO), pp. 126–140, Piran, Slovenia: Springer. (Full version on arXiv:1102.5529).

Casteigts, A., Chaumette, S., and Ferreira, A. (2012), Distributed Computing in Dynamic
Networks: Towards a Framework for Automated Analysis of Algorithms, CoRR,
Vol. abs/1102.5529.

Casteigts, A. and Flocchini, P. (2013), Deterministic Algorithms in Dynamic Networks:
Formal models and metrics, (CR 2013-020) Defence R&D Canada – Ottawa.

Casteigts, A., Flocchini, P., Mans, B., and Santoro, N. (2010), Deterministic Computations
in Time-Varying Graphs: Broadcasting under Unstructured Mobility, In Proceedings of 5th
IFIP Conference on Theoretical Computer Science (TCS), pp. 111–124, Brisbane, Australia:
Springer.

Casteigts, A., Flocchini, P., Mans, B., and Santoro, N. (2012), Measuring Temporal Lags in
Delay-Tolerant Networks, IEEE Transactions on Computers. In press.

Casteigts, A., Flocchini, P., Mans, B., and Santoro, N. (2012), Shortest, Fastest, and
Foremost Broadcast in Dynamic Networks, Technical Report University of Ottawa.

Casteigts, A., Flocchini, P., Quattrociocchi, W., and Santoro, N. (2012), Time-varying
graphs and dynamic networks, International Journal of Parallel, Emergent and Distributed
Systems, 27(5), 387–408.

Casteigts, A., Mans, B., and Mathieson, L. (2011), On the Feasibility of Maintenance
Algorithms in Dynamic Graphs, CoRR, Vol. abs/1107.2722.

Casteigts, A., Nayak, A., and Stojmenovic, I. (2010), Topology Control in Sensor, Actuator
and Mobile Robot Networks, Ch. 7 of Wireless Sensor and Actuator Networks - Algorithms
and Protocols for Scalable Coordination and Data Communication, Nayak, A. and
Stojmenovic, I. (eds), Wiley.

Casteigts, A., Chaumette, S., Guinand, F., and Pigné, Y. (2009), Distributed Maintenance
of Anytime Available Spanning Trees in Dynamic Networks, CoRR, Vol. abs/0904.3087.

64 DRDC Ottawa CR 2013-021

Chalopin, J., Godard, E., Métivier, Y., and Ossamy, R. (2006), Mobile agent algorithms
versus message passing algorithms, Principles of Distributed Systems, pp. 187–201.

Chatzigiannakis, I., Dolev, S., Fekete, S., Michail, O., and Spirakis, P. (2009), Not all fair
probabilistic schedulers are equivalent, In Proceedings of the 13th International Conference
on Principles of Distributed Systems (OPODIS), pp. 33–47, Springer.

Chatzigiannakis, I., Michail, O., Nikolaou, S., Pavlogiannis, A., and Spirakis, P. (2010), All
symmetric predicates in NSPACE (n 2) are stably computable by the mediated population
protocol model, In Proceedings of the 35th Symposium on Mathematical Foundations of
Computer Science (MFCS), pp. 270–281, Springer.

Cooper, C., Elsässer, R., Ono, H., and Radzik, T. (2012), Coalescing random walks and
voting on graphs, In Proceedings of the 31st ACM symposium on Principles of distributed
computing (PODC), pp. 47–56, ACM.

Das, S., Flocchini, P., Santoro, N., and Yamashita, M. (2007), Fault-tolerant simulation of
message-passing algorithms by mobile agents, Structural Information and Communication
Complexity, pp. 289–303.

Das, S., Flocchini, P., Kutten, S., Nayak, A., and Santoro, N. (2007), Map construction of
unknown graphs by multiple agents, Theoretical Computer Science, 385(1–3), 34–48.

Das, S., Flocchini, P., Nayak, A., and Santoro, N. (2005), Distributed exploration of an
unknown graph, In SIROCCO 2005: Proceedings of the 12th International Colloquium on
Structural Information and Communication Complexity, Vol. 3499 of Lecture Notes in
Computer Science, pp. 99–114, Springer.

Deng, X. and Papadimitriou, C. H. (1990), Exploring an unknown graph, In FCS 1990:
Proceedings of the 31st Annual Symposium on the Foundations of Computer Science,
pp. 355–361.

Deng, X. and Papadimitriou, C. H. (1999), Exploring an unknown graph, Journal of Graph
Theory, 32(3), 265–297.

Dessmark, A. and Pelc, A. (2004), Optimal graph exploration without good maps,
Theoretical Computer Science, 326(1–3), 343–362.

Dobrev, S., Flocchini, P., Prencipe, G., and Santoro, N. (2002), Searching for a black hole
in arbitrary networks: optimal mobile agent protocols, In Proceedings of the 21st
symposium on Principles of distributed computing (PODC), pp. 153–162, ACM.

Dobrev, S., Flocchini, P., Prencipe, G., and Santoro, N. (2006), Searching for a black hole in
arbitrary networks: Optimal mobile agents protocols, Distributed Computing, 19(1), 1–18.

Dubois-Ferriere, H., Grossglauser, M., and Vetterli, M. (2003), Age matters: efficient route
discovery in mobile ad hoc networks using encounter ages, In Proceedings of ACM
International Symposium on Mobile Ad Hoc Networking & Computing (MobiHoc), p. 266.

DRDC Ottawa CR 2013-021 65

Dudek, G., Jenkin, M., Milios, E., and Wilkes, D. (1991), Robotic exploration as graph
construction, IEEE Transactions on Robotics and Automation, 7(6), 859–865.

Dynia, M., Lopuszański, J., and Schindelhauer, C. (2007), Why robots need maps, In
SIROCCO 2007: Proceedings of the14th International Colloquium Structural Information
and Communication Complexity, Vol. 4474 of Lecture Notes in Computer Science,
pp. 41–50, Springer.

Flocchini, P., Kellett, M., Mason, P., and Santoro, N. (2009), Map construction and
exploration by mobile agents scattered in a dangerous network, In IEEE International
Symposium on Parallel & Distributed Processing (IPDPS), pp. 1–10, IEEE.

Flocchini, P., Kellett, M., Mason, P., and Santoro, N. (2010), Mapping an unfriendly
subway system, In Proceedings of the 5th International Conference on Fun with Algorithms
(FUN), pp. 190–201.

Flocchini, P., Kellett, M., Mason, P., and Santoro, N. (2012), Fault-Tolerant Exploration of
an Unknown Dangerous Graph by Scattered Agents, In Proceedings of the 14th
International Symposium on Stabilization, Safety, and Security of Distributed Systems
(SSS).

Flocchini, P., Kellett, M., Mason, P., and Santoro, N. (2012), Finding Good Coffee in Paris,
In Proceedings of the 6th Int. Conference on Fun with Algorithms (FUN), pp. 154–165,
Springer.

Flocchini, P., Kellett, M., Mason, P., and Santoro, N. (2012), Searching for black holes in
subways, Theory of Computing Systems, 50(1), 158–184.

Flocchini, P., Kellett, M., Mason, P., and Santoro, N. (2012), Searching for Black Holes in
Subways, Theory of Computing Systems, 50(1), 158–184.

Flocchini, P., Mans, B., and Santoro, N. (2009), Exploration of periodically varying graphs,
In Proceedings of 20th International Symposium on Algorithms and Computation (ISAAC),
pp. 534–543.

Flocchini, P., Ilcinkas, D., Pelc, A., and Santoro, N. (2007), Computing without
communicating: Ring exploration by asynchronous oblivious robots, In OPODIS 2007:
Proceedings of the 11th International Conference on Principles of Distributed Systems,
Vol. 4878 of Lecture Notes in Computer Science, pp. 105–118, Springer.

Flocchini, P., Ilcinkas, D., Pelc, A., and Santoro, N. (2008), Remembering without memory:
Tree exploration by asynchronous oblivious robots, In SIROCCO 2008: Proceedings of the
15th International Colloquium on Structural Information and Communication Complexity,
Vol. 5058 of Lecture Notes in Computer Science, pp. 33–47, Springer.

Flocchini, P., Ilcinkas, D., Pelc, A., and Santoro, N. (2010), Remembering without memory:
Tree exploration by asynchronous oblivious robots, Theoretical Computer Science,
411(14-15), 1583–1598.

66 DRDC Ottawa CR 2013-021

Fraigniaud, P., Gasieniec, L., Kowalski, D. R., and Pelc, A. (2006), Collective tree
exploration, Networks, 48(3), 166–177.

Fraigniaud, P., Ga̧sieniec, L., Kowalski, D. R., and Pelc, A. (2004), Collective tree
exploration, In LATIN 2004: Proceedings of the 6th Latin American Symposium Theoretical
Informatics, Vol. 2976 of Lecture Notes in Computer Science, pp. 141–151, Springer.

Fraigniaud, P., Ilcinkas, D., Peer, G., Pelc, A., and Peleg, D. (2005), Graph exploration by a
finite automaton, Theoretical Computer Science, 345(2–3), 331–344.

Fraigniaud, P., Ilcinkas, D., and Pelc, A. (2006), Tree exploration with an oracle, In MFCS
2006: Proceedings of the 31st International Symposium on the Mathematical Foundations of
Computer Science, Vol. 4162 of Lecture Notes in Computer Science, pp. 24–37, Springer.

Gasieniec, L., Pelc, A., Radzik, T., and Zhang, X. (2007), Tree exploration with logarithmic
memory, In SODA 2007: Proceedings of the 18th Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA ’07, pp. 585–594, Philadelphia, PA, USA: Society for Industrial
and Applied Mathematics.

Ginsburg, S. and Spanier, E. (1966), Semigroups, Presburger formulas and languages,
Pacific Journal of Mathematics, 16(2), 285–296.

Grossglauser, M. and Vetterli, M. (2003), Locating nodes with EASE: Last encounter
routing in ad hoc networks through mobility diffusion, In Proceedings of 22nd Conference on
Computer Communications (INFOCOM), Vol. 3, pp. 1954–1964, San Francisco, USA: IEEE.

Holm, J., de Lichtenberg, K., and Thorup, M. (2001), Poly-logarithmic deterministic
fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and
biconnectivity, Journal of the ACM, 48(4), 723–760.

Holme, P. (2005), Network reachability of real-world contact sequences, Physical Review E,
71(4), 46119.

Ilcinkas, D. and Wade, A. (2011), On the Power of Waiting when Exploring Public
Transportation Systems, Proceedings of the 15th International Conference on Principles of
Distributed Systems (OPODIS), pp. 451–464.

Israeli, A. and Jalfon, M. (1990), Token management schemes and random walks yield
self-stabilizing mutual exclusion, In Proceedings of the 9th ACM symposium on Principles of
distributed computing (PODC), pp. 119–131, ACM.

Jain, S., Fall, K., and Patra, R. (2004), Routing in a delay tolerant network, In Proceedings
of Conference on Applications, Technologies, Architectures, and Protocols for Computer
Communications (SIGCOMM), pp. 145–158.

Jones, E., Li, L., Schmidtke, J., and Ward, P. (2007), Practical routing in delay-tolerant
networks, IEEE Transactions on Mobile Computing, 6(8), 943–959.

Kellett, M. (2012), Black hole search in the network and subway models, Ph.D. thesis,
University of Ottawa.

DRDC Ottawa CR 2013-021 67

Kossinets, G., Kleinberg, J., and Watts, D. (2008), The structure of information pathways
in a social communication network, In Proceedings of 14th International Conference on
Knowledge Discovery and Data Mining (KDD), pp. 435–443, Las Vegas, USA: ACM.

Kostakos, V. (2009), Temporal graphs, Physica A, 388(6), 1007–1023.

Kuhn, F., Lynch, N., and Oshman, R. (2010), Distributed computation in dynamic
networks, In Proceedings of the 42nd ACM Symposium on Theory of Computing (STOC),
pp. 513–522, Cambridge, USA: ACM.

Lindgren, A., Doria, A., and Schelén, O. (2003), Probabilistic routing in intermittently
connected networks, SIGMOBILE Mob. Comput. Commun. Rev., 7(3), 19–20.

Litovsky, I., Métivier, Y., and Sopena, E. (1999), Graph Relabelling Systems and Distributed
Algorithms, H. Ehrig, H.J. Kreowski, U. Montanari and G. Rozenberg (Eds.), Handbook of
Graph Grammars and Computing by Graph Transformation, pp. 1–53.

Lynch, N. (1989), A hundred impossibility proofs for distributed computing, In Proceedings
of the 8th annual ACM Symposium on Principles of distributed computing (PODC),
pp. 1–28, ACM.

Marchand de Kerchove, F. and Guinand, F. (2012), Strengthening Topological Conditions
for Relabeling Algorithms in Evolving Graphs, Technical Report Université du Havre.

Mazurkiewicz, A. (1997), Distributed enumeration, Information Processing Letters, 61(5),
233–239.

Miltersen, P., Subramanian, S., Vitter, J., and Tamassia, R. (1994), Complexity models for
incremental computation, Theoretical Computer Science, 130(1), 203–236.

Naor, M. and Stockmeyer, L. (1993), What can be computed locally?, In Proceedings of the
25th annual ACM symposium on Theory of computing, pp. 184–193, ACM.

O’Dell, R. and Wattenhofer, R. (2005), Information dissemination in highly dynamic
graphs, In Proceedings of the Joint Workshop on Foundations of Mobile Computing
(DIALM-POMC), pp. 104–110, Cologne, Germany: ACM.

Panaite, P. and Pelc, A. (1999), Exploring unknown undirected graphs, Journal of
Algorithms, 33(2), 281–295.

Patnaik, S. and Immerman, N. (1997), Dyn-FO: A Parallel, Dynamic Complexity Class,
Journal of Computer and System Sciences, 55(2), 199–209.

Ramanathan, R., Basu, P., and Krishnan, R. (2007), Towards a formalism for routing in
challenged networks, In Proceedings of 2nd ACM Workshop on Challenged Networks
(CHANTS), pp. 3–10.

Santoro, N. (2007), Design and analysis of distributed algorithms, Vol. 509, Wiley Online
Library.

68 DRDC Ottawa CR 2013-021

Shannon, C. (1951), Presentation of a maze-solving machine, In Proceedings of the 8th
Conference of the Josiah Macy Jr. Foundation (Cybernetics), pp. 173–180.

Suomela, J. (2011), Survey of local algorithms, ACM Computing Surveys. To appear.

Weber, V. and Schwentick, T. (2007), Dynamic Complexity Theory Revisited, Theory of
Computing Systems, 40(4), 355–377.

Yamashita, M. and Kameda, T. (1996), Computing on anonymous networks: Part I and II,
IEEE Trans. on Par. and Distributed Systems, 7(1), 69 – 96.

Zhang, Z. (2006), Routing in intermittently connected mobile ad hoc networks and delay
tolerant networks: Overview and challenges, IEEE Communications Surveys & Tutorials,
8(1), 24–37.

DRDC Ottawa CR 2013-021 69

This page intentionally left blank.

70 DRDC Ottawa CR 2013-021

List of acronyms/abbreviations

DTN delay-tolerant network

MANET mobile ad hoc networks

TVG time-varying graph

UDG unit disk graph

DRDC Ottawa CR 2013-021 71

This page intentionally left blank.

72 DRDC Ottawa CR 2013-021

DOCUMENT CONTROL DATA
(Security classification of title, body of abstract and indexing annotation must be entered when document is classified)

1. ORIGINATOR (The name and address of the organization preparing the

document. Organizations for whom the document was prepared, e.g. Centre

sponsoring a contractor’s report, or tasking agency, are entered in section 8.)

University of Ottawa

School of Electrical Engineering and Computer Science

800 King Edward Avenue

Ottawa, Ontario

K1N 6N5

2a. SECURITY CLASSIFICATION (Overall

security classification of the document

including special warning terms if applicable.)

UNCLASSIFIED

2b. CONTROLLED GOODS

(NON-CONTROLLED GOODS)

DMC A

REVIEW: GCEC JUNE 2010

3. TITLE (The complete document title as indicated on the title page. Its classification should be indicated by the appropriate

abbreviation (S, C or U) in parentheses after the title.)

Deterministic algorithms in dynamic networks: Problems, analysis, and algorithmic tools

4. AUTHORS (Last name, followed by initials – ranks, titles, etc. not to be used.)

Casteigts, A.; Flocchini, P.

5. DATE OF PUBLICATION (Month and year of publication of

document.)

April 2013

6a. NO. OF PAGES (Total

containing information.

Include Annexes,

Appendices, etc.)

88

6b. NO. OF REFS (Total

cited in document.)

85

7. DESCRIPTIVE NOTES (The category of the document, e.g. technical report, technical note or memorandum. If appropriate, enter

the type of report, e.g. interim, progress, summary, annual or final. Give the inclusive dates when a specific reporting period is

covered.)

Contract Report

8. SPONSORING ACTIVITY (The name of the department project office or laboratory sponsoring the research and development –

include address.)

Defence R&D Canada – Ottawa

3701 Carling Avenue, Ottawa ON K1A 0Z4, Canada

9a. PROJECT OR GRANT NO. (If appropriate, the applicable

research and development project or grant number under

which the document was written. Please specify whether

project or grant.)

15by03

9b. CONTRACT NO. (If appropriate, the applicable number under

which the document was written.)

W7714-115111/001/SV

10a. ORIGINATOR’S DOCUMENT NUMBER (The official

document number by which the document is identified by the

originating activity. This number must be unique to this

document.)

DRDC Ottawa CR 2013-021

10b. OTHER DOCUMENT NO(s). (Any other numbers which may

be assigned this document either by the originator or by the

sponsor.)

11. DOCUMENT AVAILABILITY (Any limitations on further dissemination of the document, other than those imposed by security

classification.)

(X) Unlimited distribution

() Defence departments and defence contractors; further distribution only as approved

() Defence departments and Canadian defence contractors; further distribution only as approved

() Government departments and agencies; further distribution only as approved

() Defence departments; further distribution only as approved

() Other (please specify):

12. DOCUMENT ANNOUNCEMENT (Any limitation to the bibliographic announcement of this document. This will normally correspond

to the Document Availability (11). However, where further distribution (beyond the audience specified in (11)) is possible, a wider

announcement audience may be selected.)

13. ABSTRACT (A brief and factual summary of the document. It may also appear elsewhere in the body of the document itself. It is highly

desirable that the abstract of classified documents be unclassified. Each paragraph of the abstract shall begin with an indication of the

security classification of the information in the paragraph (unless the document itself is unclassified) represented as (S), (C), or (U). It is

not necessary to include here abstracts in both official languages unless the text is bilingual.)

The number of telecommunication networks deployed in a dynamic environment is quickly growing.

This is true in our everyday life (e.g., smartphones, vehicles, or satellites) as well as in the military

context (e.g., dismounted soldiers or swarms of UAVs). Unfortunately, few theoretical tools enable,

to date, the study of dynamic networks in a formal and rigorous way. As a result, it is hard and

sometimes impossible to guarantee, mathematically, that a given algorithm will reach its objectives

once deployed in real conditions. Having such guarantees would seem to be crucial in a military

context. In a previous report we identified a collection of recent theoretical tools whose purpose

is to model, describe, and leverage dynamic networks in a formal way. This report focuses on

problems, algorithms, and analysis techniques. We review recent efforts towards the design and

analysis of distributed algorithms in dynamic networks, with an emphasis on those results that

are of a deterministic and analytical nature. The topics include a discussion on how mobility

impacts the very definition of problems; a set of generic tools to be used in the design or analysis

of dynamic network algorithms; a discussion on the impact of various types of dynamics on

the feasibility and complexity of given problems; a classification of dynamic networks based on

dynamic graph properties; and finally, a discussion on how real-world mobility contexts relate to

some of these classes.

14. KEYWORDS, DESCRIPTORS or IDENTIFIERS (Technically meaningful terms or short phrases that characterize a document and could

be helpful in cataloguing the document. They should be selected so that no security classification is required. Identifiers, such as

equipment model designation, trade name, military project code name, geographic location may also be included. If possible keywords

should be selected from a published thesaurus. e.g. Thesaurus of Engineering and Scientific Terms (TEST) and that thesaurus identified.

If it is not possible to select indexing terms which are Unclassified, the classification of each should be indicated as with the title.)

dynamic networks

wireless networks

vehicular ad hoc networks

VANET

mobile ad hoc networks

MANET

time-varying graphs

algorithms

deterministic algorithms

