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Abstract

A new method is described to handle slide lines in cell-centered Lagrangian schemes for
the modeling of sliding problems between two fluids in the framework of compressible hy-
drodynamics. The method is an extension of the one proposed in the reference [1] and is
conservative in momentum and total energy. Our method is based on the minimization of
an objective function over a specific set that models the sliding constraint. We illustrate on
several basic problems.
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1. Introduction

Slide lines are particularly useful in Lagrangian schemes when large relative displace-
ments occur between two distinct regions within a system (that may be a solid, a fluid or
a mixture of both). They prevent the mesh tangling due to an extreme distortion which
may cause the crash of the simulation. In Lagrangian formulation, the slide line is generally
defined as a list of several nodes of the mesh whose motion is described by a specific method.
In the literature, various methods have been proposed, most of them are reviewed in the
recent survey of Burago [2]. Some of them started from the seminal work of Wilkins [3], see
for instance the references [4, 5, 6, 7, 8] and the references therein. Such works are usually
based on a master-slave procedure in which a set of nodes in the mesh associated with one
side of the interface defines a line or surface (master) on which the nodes of the opposite side
can slide (slave). This imposes to define arbitrarily a master side, which in most applications
is naturally associated to the fluid with the highest inertia (that is the fluid with the highest
density). The interaction of both sides of the slide line is then explicitly calculated, and their
inter-penetration is prevented by an explicit put-back-on step [3].
Historically, most of the methods devoted to the treatment of slide lines were described for
staggered schemes. Recently, new methods adapted to cell-centered Lagrangian schemes[9,
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10, 11] have been published in the literature (readers can refer to [12, 13] for recent exten-
sions of these schemes to slide lines). These methods exploit the advantage of using two
discrete versions of the velocity in the mesh, the first one centered in each cell, which is the
physical velocity computed from the law of conservation of the momentum, and the second
one, staggered at the nodes and computed from a Riemann solver, which is used to ensure
the geometric conservation law (GCL) condition and displace the nodes during the compu-
tation. Using two versions of the velocity therefore ensures the independence between any
method influencing the motion of the nodes (such as a method treating slide lines) and the
preservation of the momentum and total energy.
In this paper, we describe a new method to treat slide lines and adapted to cell-centered
Lagrangian schemes. The method is an extension of the one proposed in our previous work
[1]. In the latter, we reformulate the usual Riemann solvers to take into account any kind
of constraints applying on a set of nodes in the mesh. The new formulation is based on the
minimization of an objective function within a set of admissible velocities that models the
constraints. Although only impact was studied in the previous reference, with the definition
of convenient local constraints, we now evoke the possibility to extend the method to the
treatment of the slide lines which now involves a global set of constraints. We expose in the
first two parts of this paper the extension of our method to this context, using the numer-
ical scheme GLACE [9], and show that the fundamental properties such as conservation of
momentum and total energy are ensured. Then we apply our method to several numerical
test cases which prove its efficiency and robustness.

2. Description of the method

2.1. Continuous formulation of the sliding problem

A schematics of the problem is presented on figure 1. Two fluids with different properties
are in contact and separated by a contact interface Γ. The difference of velocity on each side
of Γ involves a sliding, that we will always suppose pure (without any exchange of momentum
throughout the slide line) in this work.

The properties of both fluids are described by the Euler equations by accounting the
presence of the slide line. In the integral form, such equations are :























































d

dt

∫

V (t)

dV =

∫

V (t)

∇ · udV volume conservation,

d

dt

∫

V (t)

ρdV = 0 mass conservation,

d

dt

∫

V (t)

ρudV +

∫

V (t)

∇pdV = 0 momentum conservation,

d

dt

∫

V (t)

ρedV +

∫

V (t)

∇ (pu) dV = 0 total energy conservation,

(1)
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Figure 1: Simple schematics of a fluid sliding over another one. Γ is the slide line.

Here V(t) is a volume moving with the fluid and
d

dt
=

∂

∂t
+u·∇ is the material derivative.

The physical variables are density ρ (and the specific volume τ = 1/ρ), velocity u, total
energy e and pressure p. Across of the slide line, the normal component of the velocity must
satisfy the sliding condition, that is:

(

u+(x(t), t) − u−(x(t), t), n(x(t), t)
)

= 0 ∀x ∈ Γ (2)

where the superscripts + and - denote values of a quantity on each side of the slide line.
In this sense, u+(x(t), t) and u−(x(t), t) are the velocity vectors at the position x(t) and at
time t on each side of Γ. The vector normal to Γ at the position x(t) is n(x(t), t).

2.2. Semi-discrete nodal solver

For sake of simplicity, we describe the semi-discrete in space algorithm in this section. In
this work, we will perform a Euler scheme for the time integration, but more sophisticated
schemes could be adapted without difficulty. The semi-discrete formulation of the system
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(1) we use in this paper comes from the work of B. Després in the references [9, 14]:

Mjτ
′
j(t) =

∑

r∈N (j)

(Cj,r, ur) (3)

Mju
′
j(t) = −

∑

r∈N (j)

Cj,rpj,r (4)

Mje
′
j(t) = −

∑

r∈N (j)

(Cj,r, ur) pj,r (5)

pj,r = pj + ρjcj

(

ur − uj ,
Cj,r

|Cj,r|

)

(6)

where Mj(t), uj(t) and ej(t) are respectively the mass, the velocity vector and the total
energy within the j-th cell of the mesh. N (j) denotes the set of nodes belonging to the
j-th cell. Cj,r = ∇xr

Vj is a geometric vector depending on the volume Vj of the j-th cell.
pj,r may be seen as the pressure that the j-th cell exerts on the r-th node (also called nodal

pressure). In the GLACE scheme in particular, the nodal pressure is computed from a
linearized Riemann-invariant relation in the direction of the Cj,r, which ensures the entropy
property. Such relation is given by (6).
In the GLACE scheme, two versions of the velocity variables are used: on one side, uj is the
velocity vector of the fluid at the center of the j-th cell which is commonly computed from
the equation of conservation of momentum. On the other side, ur is the velocity of the r-th
node within the mesh, which is involved in the computation of the numerical fluxes in the
equations of conservation of both mass and total energy. The latter velocity is computed at
each node within the mesh from the following Riemann solver:

∀r ∈ [1 : N ] ,
∑

j∈C(r)

Cj,rpj,r = 0

where C(r) denotes the set of cells which the r-th belongs to. The latter relation is equivalent
to solve for each node the linear system:

∀r ∈ [1 : N ] , Arur = br (7)

Ar is a d× d symmetric positive-definite matrix (d is the dimension of the problem - in this
paper, d = 2). Expressions of Ar and br may be found in the reference [9].

We have shown in our previous work that the use of two distinct velocities is very well
adapted to account for any constraint applying on a list of nodes of the computational mesh
[1]. Indeed, the Riemann solver may be reformulated as a minimization problem, where the
function to minimize can be written as:

J : R
N×d → R

U →
1

2
(AU, U) − (B, U) (8)
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where U = (u1, u2, . . . , uN)T and:

A =

















A1 . . . 0
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0 . . . AN
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b1
...
br

...
bN















Given that the matrices Ar are symmetric and positive definite for all r, A has the same
property and J is therefore a strictly convex function.
The solution of any unconstrained problem may be seen as the minimum of the objective
convex function J that lies in the set R

N×d. In the case of a constrained problem, a global
minimum will be searched within a set of admissible velocities K that models all the con-
straints that apply on the computational mesh. If we suppose that K is a non empty, closed
and convex set, this minimum is unique and will be denoted Umin, and we have:

Umin = argmin
U∈K

J(U) (9)

The relation (9) will be referred from now as the nodal solver.

The semi-discrete formulation of the slide condition (2) will be expressed as:

∀k ∈ I,
(

u+
k (t) − u−

k (t), nRES
k (t)

)

= 0 (10)

and the expression of K in the case of a pure sliding is therefore:

K = {U ∈ R
N×d, ∀k ∈ I,

(

u+
k (t) − u−

k (t), nRES
k (t)

)

= 0} (11)

In the relation (11), I ⊂ N denotes the set of indices of the nodes that belong to the slide
line, u+

k (t) and u−
k (t) are the velocity vectors respectively on each side of Γ computed at the

node k and time t, and nRES
k is a local normal defined at the node k at time t. Notations

u+
k (t) and u−

k (t) may be quite ambiguous at first sight, since two distinct velocity vectors
are defined for a single node. The definition of each term used in the relation (11) will be
precisely given in the section below.

2.3. Formulation of the discrete velocities and normals along the slide line

We illustrate our purposes with the figure (2). Let Ω be the domain of computation.
We respectively denote Ω1 and Ω2 the subset occupied by the fluids 1 and 2 at any time.
Let us denote M1 (respectively M2) the part of the mesh used to discretize the domain Ω1

(respectively the domain Ω2). To clarify our work, on each figure gathering M1 and M2,
the nodes belonging to M1 will be filled in black, while the nodes of M2 will be filled in
white. With these notations, we have:

M = M1 ∪M2 (12)
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Figure 2: Example of meshes used for the computation

In our modeling, the slide line Γ is composed of several nodes that belong either to M1 or
to M2. Thus we denote I1 the set of indices of the nodes on Γ belonging to the mesh M1.
Similarly, I2 is the set of indices of the nodes on Γ belonging to the mesh M2. With theses
notations:

I = I1 ∪ I2 (13)

On the figure (2), we may evidence two situations:

1. Nodes belonging to M1 may coincide with nodes belonging to M2. See for instance
the nodes k + 3 and k + 4. Such nodes will be referred as coincident nodes.

2. In the general cases, nodes are not coincident, and such nodes will be referred as
exceptional nodes [15]. Such denomination will be clearly explained in the section 2.6.

In this framework, we define in the next section the terms u+
k (t) and u−

k (t) for all k ∈ I.

2.3.1. Definition of u
+
k (t) and u

−
k (t)

Let us consider the node k on the slide line on figure 2. The latter belongs to the mesh M2.
Therefore, in the expression of the difference in velocity, one of the velocity vectors u+

k (t) or
u−

k (t) will be set naturally to uk . For instance, we set u+
k (t) = uk.

We have then to define the velocity u−
k (t) on the slide line Γ relatively to M1. For this

purpose, we require the existence of a fictive node g (namely a ghost node), at the same
position of the node k, but belonging to the mesh M1. Precisely, the node g belongs to the
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Figure 3: Introduction of a ghost node for the discrete formulation of the sliding condition

cell j. This is illustrated on the figure 3, which is a zoom of the figure 2 in the neighborhood
of the node k. On this figure, we intentionally separate the position of nodes g and k to
clarify our illustration, but readers have to keep in mind that they are coincident at the
initial instant of the sliding. Moreover, arrows indicate the direction of motion for each
mesh and for the nodes k and g. In this example, we suppose that M1 globally moves to the
left (so does the node g), while M2 moves to the right (so does the node k). The velocities
of nodes g and k must then satisfy the sliding condition (2). Denoting u

g
k(t) the velocity of

the node g, we set u−
k (t) = u

g
k(t).

Following the work of A. Claisse [15] about the treatment of exceptional node in cell-
centered Lagrangian schemes, we admit that the velocity of the ghost node u

g
k(t) is a com-

bination of the velocity of its closest neighbours in the cell j, that are nodes k − 1 and k + 2
on the figures 2 and 3. Thus, we denote:

u
g
k(t) = P k

1 (t)uk−1(t) + P k
2 (t)uk+2(t) (14)

where (P k
1 , P k

2 ) ∈ R
2×2 × R

2×2 and satisfy the relation:

∀k ∈ I, P k
1 (t) + P k

2 (t) = I2

I2 is the identity matrix.

The general form of P k
1 (t) and P k

2 (t) may be found geometrically, see the reference [15].
The discrete formulation of the difference in velocity for the node k then writes:

u+
k (t) − u−

k (t) = uk(t) − u
g
k(t) = uk(t) −

(

P k
1 (t)uk−1(t) + P k

2 (t)uk+2

)

For all k ∈ I, the previous relation easily generalizes to:

∀t > 0, ∀k ∈ I, u+
k (t) − u−

k (t) = uk(t) −
(

P k
1 (t)uL

k (t) + P k
2 (t)uR

k (t)
)

(15)
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uL
k (t) and uR

k (t) are defined as the closest neighbors of the ghost node introduced from
the node k in the opposite mesh (’L’ and R denotes Left and Right). The use of a ghost
node finally becomes implicit for the discrete formulation of the difference in velocity.

Let us write the relation (15) for the nodes k + 1 and k + 3 on figure 2. For the node
k + 1, neighbors are the same as those of node k, but matrices P1 and P2 are different. We
suppose that during the simulation, the node k + 3 becomes coincident with the node k + 4.
Naturally, relation (15) leads to:

P k+3
1 = P k+4

1 = I2

P k+3
2 = P k+4

2 = 0

uL
k+3 = uR

k+3 = uk+4

uL
k+4 = uR

k+4 = uk+3

and so:
u+

k+3 − u−
k+3 = u+

k+4 − u−
k+4 = uk+3 − uk+4

Let emphasis we choose a completely explicit time discretization for the constraint. It gives
the discrete formulation of the relation (15):

∀n ∈ N, ∀k ∈ I, u
+,n
k − u

−,n
k = un

k −
(

P k,n
1 u

L,n
k + P k,n

2 u
R,n
k

)

(16)

In the next section, we present the method to compute the normal nRES
k (t).

2.3.2. Definition and computation of the normal nRES

k (t)

The discrete formulation of the normal n(x(t)) is arbitrary. Principally for a reason of
symmetry, we propose the following formulation:

∀t > 0, ∀k ∈ I, nRES
k (t) =

1

2

(

n+
k (t) + n−

k (t)
)

(17)

where n+
k (t) and n−

k (t) are respectively the normals defined on each side of the slide line at
the node k. Both terms have now to be defined.

Let us consider the two possible cases:

• if the node k is an exceptional node, we set n+
k (t) = nk(t) and n−

k (t) = n
g
k(t). This

choice is non restrictive and both normals can be permuted.

• if the node k coincides with a node k + 1, then naturally n+
k (t) = nk(t) and n−

k (t) =
nk+1(t). Again, indices can be permuted.
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r+1 r

T

j,rC

−2 Cj,r

Figure 4: Graphical representation of the vector Cjr for a quadrangular cell j

Let us now compute the normals nk(t) and n
g
k(t), ∀k ∈ I. Such computation is based on

the definition and graphical representation of the vectors Cj,r used in the numerical fluxes.
Our explanation refers to the figure 4. The expression of Cj,r at the r-th vertex in the j-th
cell is:

Cj,r =
1

2

(

yr+1 − yr−1

xr−1 − xr+1

)

Thus, in the triangle T , Cj,r represents half the opposite of a vector normal of the edge
{r − 1, r + 1}, and the vector Cj,r/ |Cj,r| may be interpreted as a outward-pointing normal
at the vertex r.

In the unconstrained version of the GLACE scheme [9], the following property holds for
any node interior to the mesh:

∀r ∈ M/∂M,
∑

j∈C(r)

Cj,r = 0

where ∂M denotes the boundary of the mesh M. Such property ensures the preservation
of the momentum. For a boundary node, the latter does not hold, and the resulting vector
may be interpreting as a local outward-pointing normal.

Recall now a problem in which two distinct meshes are separated by a slide line. Any
node that belongs to the slide line can be considered as a boundary node for its respective
mesh. We refer to the figure 5, on which only one mesh has been drawn. At the node r, the
sum:

nr(t) =
∑

j∈C(r)

Cj,r

|Cj,r|

represents a local outward-pointing normal. If we denote T the triangle whose vertices are
{r−1, r, r+1} on figure 5, then nr(t) represents half the normal to the edge {r−1, r+1}.

9
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Figure 5: Graphical representation of the outward normal at any boundary node

Given that, we set:

∀k ∈ I,nk(t) =



















































∑

j∈C(k)

Cj,k

∣

∣

∣

∣

∣

∑

j∈C(k)

Cj,k

∣

∣

∣

∣

∣

if k ∈ I1

−

∑

j∈C(k)

Cj,k

∣

∣

∣

∣

∣

∑

j∈C(k)

Cj,k

∣

∣

∣

∣

∣

if k ∈ I2

(18)

The change in sign providing that k belongs either to I1 or to I2 is motivated by the
fact that, in the case of two coincident nodes, both normals n+

k and n−
k have to point in the

same direction. Otherwise, we might have n+
k = −n−

k and the resulting normal nk becomes
zero. Obviously, the choice of the direction of n+

k and n−
k is not restrictive (the signs in the

relation (17) can be permuted).

Let us now compute the normal at the ghost node n
g
k(t), ∀k ∈ I. We have supposed that

each ghost node closely depends on its neighbors in a specific cell. For instance, the ghost
node on figure 3 depends on nodes k− 1 and k +1 and belongs fictively to the cell j. In this
sense, we may compute a local Cj,g for the ghost node, which is expressed as:

Cj,g =
1

2

(

yk+1 − yk−1

xk−1 − xk+1

)

The normal at the ghost node is then expressed as:

n
g
k(t) =















−
Cj,g

|Cj,g|
if k ∈ I1

Cj,g

|Cj,g|
if k ∈ I2

(19)

Again, the signs of n
g
k(t) depend on the ones in the expression of nk(t) and have been chosen

so that both normal must point in the same direction. If signs are permuted in the relation
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(18), so are they in the relation (19).

We end this section by the fully discrete (in time) formulation of the relation (17):

∀n ∈ N, ∀k ∈ I, n
RES,n
k =

1

2

(

n
+,n
k + n

−,n
k

)

(20)

for which all vectors Cj,r are evaluated at time tn.

From relations (16) and (20), we give the discrete formulation of the set K in the next
section.

2.4. Final expression and properties of K

The full discrete expression of the set K is:

Kn = {U ∈ R
N×d, ∀k ∈ I,

(

un
k −

[

P k,n
1 u

L,n
k + P k,n

2 u
R,n
k

]

, n
RES,n
k

)

= 0 (21)

Note that the constraint may be rewritten as:

∀k ∈ I, tn
RES,n
k un

k − tn
RES,n
k

[

P k,n
1 u

L,n
k + P k,n

2 u
R,n
k

]

= 0

If we denote kL and kR respectively the indices in the set I of the velocity vectors uL
k

and uR
k , then the previous relation can be reformulated in a matrix form LU = 0. L is a

N × 2N matrix which is defined as:

L = (lij)
1 ≤ i ≤ N

1 ≤ j ≤ N

=











tn
RES,n
k , if j = k

− tn
RES,n
k P k

1 , if j = kL

− tn
RES,n
k P k

2 , if j = kR

(22)

Finally, we have:

Kn = {U ∈ R
N×d, LU = 0} (23)

Notice that all nodes of the sliding line Γ are coupled through this definition.

The discrete formulation (23) confers to Kn the following properties:

➀ Kn is non empty (0 = (0, 0, . . . , 0)t ∈ Kn) and closed.

➁ Kn is convex.

These two properties guarantee the existence and the uniqueness (given that J is strictly
convex) of the minimum Umin. In addition, Kn has the two important following properties:

➂ Translations are elements of Kn. A translation is an element that is written in the
form Wa, where Wa = (a, a, . . . , a)T . Thus, elements in the form U + Wa are in Kn,
which implies the preservation of the momentum [1].

11
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Figure 6: Schematics of boundary ndoes sliding on a wall. The normal to the wall is nW .

➃ Kn is a cone, that is λU ∈ Kn, ∀λ > 0 and ∀U ∈ Kn. This property naturally implies
the preservation of total energy [1].

Now that the formulation of Kn has been clarified, an important remark about the
conservation of volume will be proposed in the following section.

2.5. Treatment of the boundary nodes

There is no difference in treating nodes interior to the mesh and boundary nodes, except
for boundary nodes on which may apply a wall condition. These ones must slide simultane-
ously over the slide line and the wall, so an additional sliding condition must be provided.

Let us consider the figure 6. We index the nodes sliding simultaneously over the slide line
and the wall by kB and k′

B. Again, we intentionally separate both nodes on the figure 6, but
they remain coincident as long as they slide on the wall. Let us denote kR the closest neighbor
of both nodes in the sliding line. On the wall, nodes kB and k′

B will remain coincident as
long as they slide over the wall. They must satisfy the condition (10):

(

ukB
− uk′

B
, nB

)

= 0 (24)

where nB is the normal of the edge defined by the pair of nodes {kB, kR}, that is nB =
(kBkR)⊥. We provide in the matrix L two additional conditions, that express the sliding
over the wall:

{

(ukB
, nW ) = 0

(

uk′
B
, nW

)

= 0
(25)

where nW is the normal at the wall.
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Figure 7: Illustration for the computation of the volume

2.6. Conservation of the volume

In the unconstrained version of the GLACE scheme [9], the computation of the volume
of a cell with a specific geometry is expressed as:

d

dt
Vj =

∑

r∈N (j)

Cj,rur (26)

where the cardinal number of the set N (j) is equal to the number of nodes that define the
cell. It is equal to 3 for a triangle cell and 4 for a quadrangle cell.

This relation is modified by the presence of a slide line. We use the figure 7 to illustrate
our purposes. The volume of the cell j, which is a function of the nodes {k−1, k +1, e, f}
in the mesh M1, also depends on the exceptional node k. The latter must be therefore taken
into account in the computation of its volume, which means that the cardinal number of the
set N (j) is now 5. Then, we would write:

d

dt
Vj =

∑

r∈N (j)

Cj,rur + Cj,k

= Cj,k−1uk−1 + Cj,k+1uk+1 + Cj,eue + Cj,fuf + Cj,kuk (27)

Generally speaking, all exceptional nodes must be taken into account in the computation
of the volume of the concerned cells in the opposite mesh. The term exceptional then refers
to the nodes that do not clearly belong to a specific cell (itself belonging to the opposite
mesh) but whose properties (the geometrical vector and the velocity) must be taken into
account in the volume of such cell. In addition, we may name exceptional cell any cell whose
volume depends on a single or several exceptional nodes.
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A last remark ends this section: let us give a cell for which there is a single exceptional
point. In the case of infinitely small timesteps (that is ∆t → 0), the ghost node and the
exceptional node are nearly coincident and their velocity almost equal. In this case, we may
reformulate the relation (27) by using the expression of the velocity of the ghost node (14):

d

dt
Vj =

∑

r∈N (j)

Cj,rur

= Cj,k−1uk−1 + Cj,k+1uk+1 + Cj,eue + Cj,fuf + Cj,ku
g
k

≈ Cj,k−1uk−1 + Cj,k+1uk+1 + Cj,eue + Cj,fuf +
(

tP k
1 Cj,kuk−1 + tP k

2 Cj,kuk+1

)

≈
(

Cj,k−1 + tP k
1 Cj,k

)

uk−1 +
(

Cj,k+1 + tP k
2 Cj,k

)

uk+1 + Cj,eue + Cj,fuf

The two last relation say that the volume of any exceptional cell may be computed with
the classical relation (26) but with a modification of the Cj,r vectors. These new geometrical
vectors are labeled Dj,r and, with this notation, the computation of the volume, in the case
of infinitely small timesteps, may be written as:

d

dt
Vj ≈

∑

r∈N (j)

Dj,rur (28)

These formulas can be used to analyze the variation of the volume of all cells.

3. Nodal solver

The nodal solver is given by the relation (9), which we remind here:

Umin = argmin
U∈K

J(U) (29)

The problem of minimization under constraints of an objective function, in our case
the function J , is a subject that has been largely described in the literature [16, 17]. The
standard procedure of resolution is to introduce the Lagrangian L related to (9), which is
defined as:

L(U, λ) = J(U) + λ · F (U)

where λ = (λ1, . . . , λM)T are the M Lagrange multipliers which referred to the sliding con-
ditions applying on M nodes in the mesh. In the case of a pure sliding, M is equal to the
cardinal number of I (see (13)). The function F(U) = LU models the sliding condition
applying on each node that belongs to Γ.

The problem of a pure sliding is an equality-constrained problem, for which finding Umin

is equivalent to find the extremal point of the Lagrangian:

∇L = 0

{

AU −B + tLλ = 0

LU = 0
(30)
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From the first equation, U may be expressed as a function of λ:

U = A−1
(

B − tLλ
)

(31)

which is then multiplied by L on the left:

0 = LA−1
(

B − tLλ
)

λ may be now determine as the solution of the system:
(

LA−1 tL
)

λ = LA−1B (32)

Notice that the N ×N matrix LA−1 tL is symmetric and non-negative. In our computation,
we use the conjugate gradient algorithm [16] to solve the equation (32). We denote such
solution λmin. Finally, we deduce the solution Umin from the relation (31). Note that we do
not have any certainty about the positivity of the matrix LA−1 tL, so that the solution of
the equation (32) may be non unique. It may be then written as:

λ = λmin + λ0 (33)

where λ0 ∈ Ker(LA−1 tL) is arbitrary.

Proposition 3.1. Ker(LA−1 tL) = Ker(tL)

Proof. Obviously, Ker(tL) ⊂ Ker(LA−1 tL). The matrix LA−1 tL represents an endomor-
phism and is symmetric, so that we have the relations Ker(LA−1 tL) = (span(LA−1 tL))⊥ ⊂
span(L) = Ker( tL).

This means that the exact solution of the equation (32) is not required to determine the
unique solution Umin but may be found up to an element of Ker( tL).

3.1. Building the slide line

Our method requires an additional procedure that we name the building procedure. The
objective is to design the neighbors of each node, which in consequence allows to compute
the normal nRES, the matrices P1 and P2 , and in a more general way the matrix L. The
method we describe here is inspired from the seminal work of Wilkins [3]. To determine
the neighbors of the node k (see figure 8), we successively consider each pair of consecutive
nodes of the opposite mesh belonging to the slide line. Each pair belongs to a specific cell.
For instance, the pair {kJ , kL} belongs to the cell B, while the pair {kL, kR} belongs to the
cell C. The procedure consists in computing the areas of two triangles involving the node
k, the pair of nodes of the opposite mesh and the center of the cell that owns the pair of
nodes. For instance, we consider the pair {kJ , kL} and compute the areas of the triangles
{k, B, kJ} and {k, B, kL}, where B is the center of the cell B. We find that both areas
are of the same sign, so that the node k is not exceptional for the cell B. Now we consider
the pair {kL, kR}. For this pair, the areas of the triangles {k, C, kL} and{k, C, kR} have
opposite signs. In that latter case, it means that the node k is exceptional to the cell C, so
that the neighbors of the node k are nodes kL and kR.
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Figure 8: Illustration of the procedure to build the slide line

3.2. Condition on coincident nodes

When two nodes get closer and are expected to become coincident, we may observe that
both nodes freeze on the slide line and move together as if there was a single node. Theo-
retically, the problem may be explained from the relation (10). When two nodes coincide,
the normal defined for each node must be rigorously equal. This is given by the relation (6)
and from the fundamental property of the GLACE scheme, that is:

∑

j∈C(r)

Cj,r = 0

It may arise that both normals may not be equal however. The most common reason is that
a small interpenetration of meshes M1 and M2 occurs, or a small void separates the two
nodes. In such cases, let us write the sliding condition (2) for each node, that we denote k
and l:

(

uk − ul, nRES
k

)

= 0
(

uk − ul, nRES
l

)

= 0

nRES
k 6= nRES

l

Both conditions means that the vector uk − ul must be simultaneously orthogonal to both
nRES

k and nRES
l . In our minimization procedure, the unique solution is obviously uk −ul = 0.

This implies that the nodes freeze and moves with a single velocity. At the theoretical level,
this is most probably due to a hidden inf-sup condition that we do not analyze in this work.
Instead we rely on the following procedure which reveals very efficient. Indeed, we impose
that the normals of two nodes getting closer are strictly equal when the distance between
them becomes smaller than a certain value ǫ. Such condition is theoretically expressed as:

∀(k, l) ∈ I1 × I2, |xk − xl| ≤ ǫ ⇒ nRES
k = nRES

l (34)

By setting ǫ = 10−5 in our numerical tests, we have observed that such small even arbitrarily
choice is enough to prevent any freezing pathologies.
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3.3. CFL condition

Our method does not change the usual CFL condition used in the GLACE scheme, which
is written in a general form [9, 11]:

max
j

(

cj

∆xj

)

∆t ≤ 1 (35)

The definition of ∆xj is not obvious for an unstructured mesh. In our case, we use the
following relation:

∆xj =
1

Vj

∑

r∈N (j)

√

Cj,r · Cj,r (36)

In the 2D formalism, ∆xj is the ratio between the perimeter of the j-th cell divided by its
surface.

Note that it is also possible to evaluate the time step restriction from the volume varia-
tion as described in [18].

3.4. Sketch of the algorithm

To conclude the numerical part, we summarize the steps required to update the physical
quantities from time tn to time tn+1.

1. Build the slide line corresponding to time tn, using the algorithm described in sec-
tion 3.1.

2. Compute the geometrical features (normals) using equation (20).

3. Calculate the matrices P k,n
1 and P k,n

2 of equation (16) for all nodes of the slide line.

4. Express the matrix A and L, and the vector B of the system (30) and solve the linear
system (32). Deduce the nodal velocity Umin solution of the constrained problem.

5. Calculate the nodal pressures pj,r using equation (6).

6. Update the cell-centered velocities and specific total energies using equations 4 and 5.

7. Move the nodes thanks to the nodal velocities, compute the new volumes of the cells
and deduce the new density.

8. Update the cell-centered pressure and sound speed with the equations of state.

9. Compute the new timestep and go back to step 1.

Note that step 5 to 9 are common with the classical solver described in [9, 14].
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4. Numerical examples

The sliding algorithm is conservative in momentum and total energy as will be evidenced
for several numerical examples. We think that no other published method exhibits this
property.

4.1. Sliding between two mobiles

The most simple case is a pure sliding between two mobiles without any deformation of the

Figure 9: Pure sliding of a mobile over another one, without any deformation of the slide line. Results are
given for three computational times: (a) t = 0, (b) t = 0.3 and (c) t = 0.7

slide line. It is primarily designed to check whether the procedure of treatment of the ex-
ceptional nodes in the mesh works well. The results proposed on the figure (9) illustrate the
situation. We consider two mobiles in contact, the mobile beneath (that we denote by Ω1)
is fixed and the mobile above (denoted by Ω2) moves to the left with a constant velocity on
the general form u0 = (u, 0)T . The results are given for u = −1. Let us denote M1 the mesh
discretizing the mobile beneath and M2 the one discretizing the mobile above. Dimensions
of Ω1 is L × l = 0.13 × 0.04 and the mesh M1 is composed of square cells of side 0.01. Ω2

have dimensions L× l = 4.10−2×4.10−2 and M2 is composed of square cells of side 2, 5.10−3.

On the figure (9), the slide line is set at the upper boundary of the mesh M1 (and the
lower boundary of M2). Such test case simply shows the good behaviour of our method in
the most basic case, that is when the slide line remains fixed during the computation. As
expected, the simulation is stable and the good behaviour of the model is observed.

4.2. The Sod test case

We present the well-know Sod test case [19] in which an artificial slide line has been intro-
duced. Such test case attempts to show that the presence of the slide does not disturb the
symmetry, the stability and the convergence of the numerical solution. Let the domain of
computation be a rectangle with dimensions (L × l : 1 × 0.1). we first set the initial discon-
tinuity at x = 0.5, so that the slide line is initially orthogonal to the flow. The mesh M1

at the left-hand side of the discontinuity is composed of square cells of side 5 × 10−3, while
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the mesh M2 at the right-hand side is composed with square cells of side 10−2. Initially,
some nodes coincide on the slide lines. Physical quantities of the left-hand side are initial-
ized with (ρ, uX , uY , p)T = (1, 0, 0, 1)T , while those at the right-hand side is initialized with
(ρ, uX , uY , p)T = (0.125, 0, 0, 0.1)T .

Figure 10: Presentation of two meshes resulted from the computation of the numerical solution in the Sod
test case with the presence of a slide line at the initial discontinuity. (top) initial mesh, (bottom) mesh at
t = 0.2. The slide line is pointed with arrows on the two figures.

The initial mesh, as well as the mesh compute at the time t = 0.2, are proposed on the
figure (10). First, we check that the scheme is stable under CFL condition. Then, we do not
observe any kind of instability that would break the symmetry of the test case, particularly
near the slide line, and hence cause a crash of the simulation Moreover, the numerical solution
converges to the analytical solution, as seen on the figure 11.
.
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analytical solution
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Figure 11: Study of the convergence of the numerical solution for the Sod test case with an artificial slide
line transverse to the flow and introduced at the initial discontinuity
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Figure 12: Presentation of two meshes resulted from the computation of the numerical solution in the Sod
test case with the presence of a slide line parallel to the flow set at y = 0.25. (top) initial mesh, (bottom)
mesh at t = 0.2. The slide line is pointed with arrows on the two figures.

The same test case is investigated with a slide line initially parallel to the flow. It is set
at the position y = 0.25. The mesh is uniform and composed of square cells of side 5×10−3.
The results are proposed on the figure 12. Our methods is efficient and robust, as in the
previous case.
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Figure 13: Variation E(t)E0 in the Sod test case. E0 = E(0) is the initial total energy.

We end this section by proposing on the figure 13 a numerical result about the conser-
vation of total energy as a function of time for both previous cases. We represent on this
figure the variation E(t)E0, where E0 = E(0) is the initial total energy. This result shows
that the total energy is preserved up to the machine precision, as expected.

4.3. The test case of Caramana

We apply our method to a test case similar to the one described by Caramana in the
reference [7]. The main difference is that we use a different initial mesh. A schematics of the
test case is proposed on the figure 14. We respectively denote M1 and M2 the lower and
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the upper part of the mesh around the slide line. At the initial time, all velocities are zero.
The density in M2 is unity, while it is 10 in M2. The pressure is 10−8 everywhere except in
the right lower part of M2 where it is 20. The pressure will be computed from the ideal gas
law with γ = 5/3. The mesh M is globally composed of square cells of side 5.10−3 except
in the high pressure region where the mesh is highly refined, and cells are quadrangles with
dimensions 5.10−4 × 5.10−3.

uX = 0, uY = 0, p = 1e−8ρ = 10,

uX = 0, uY = 0, p = 1e−8ρ = 1,
ρ = 1

uX = 0, uY = 0
p = 20

L = 1

l =
 0

.5

0.
25

0.1

190 x 50 cells

200 x 50 cells

200 x 50 cells

Figure 14: schematics of the test case similar to the Caramana test case. The slide line is denoted by a dash
line.

We propose a result of our computation on the figure 15, at time t = 0.3. It shows a good
agreement with the one presented by Caramana in the previous reference. One may notice
that the slide line is subjected to local oscillations in some areas, that may be prevented by
refining the mesh.

Again, we end this section by presenting on the figure 16 the result about the conservation
of total energy. The latter is preserved up to the machine precision, as expected.

4.4. Sliding rings

The last test case we proposed is inspired from the recent work of Kucharik [8]. It consists
in an inner ring sliding over an outer ring at the same density (ρ = 1) and the same pressure
(p = 1). The outer ring is fixed while the inner one rotates at a constant velocity ω = 0.25.
The inner radius is R1 = 0.25 and the outer radius is R2 = 1. The slide line is set at
r = 0.5. Well denote M1 and M2 the part of the mesh used to discretize the conservation
laws respectively in the inner ring and the outer ring. M1 is composed of 96 angular sectors
of 25 quadrangle cells, so that the dimensions of a cell is 0.01 × 0.016. M2 is composed of
95 angular sectors of 10 quadrangle cells, so that the dimension of a cell is 0.05 0.016.

We propose on figures 17 and 18 the meshes computed respectively at times t = 0 and
t = 0.3. A pressure boundary condition is applied for the computation of the velocity of
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Figure 15: Presentation of the mesh computed in the Caramana test case at time t = 0.3
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Figure 16: Variation E(t)E0 in the Caramana test case. E0 = E(0) is the initial total energy.

the outer nodes while a wall condition is applied on the inner ones. Both conditions consist
in modifying the matrices Ar ≡ Ãr and b ≡ b̃r for all r ∈ [1 : N ] respectively to take into
account the exterior pressure value or the normal vector to the wall in the nodal solver (See
[9] for details). We observe that our method preserves the initial position and the circular
shape of the slide line, without any stabilization procedure.

Momentum and total energy are preserved up to the machine precision (10−14 in our
case), as seen on figure 19. Until t = 0.05, the change in energy undergoes some oscillations
of amplitude 10−10, which remains relatively small and does not contradict the conservation
of total energy. After that time, the latter is preserved up to 10−14.

However, a curious behaviour of the nodes belonging to the slide line can be noticed : the
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latter seem to slow down and consequently, the mesh curves at the slide line, as shown on the
figure 20. The latter represents a part of the mesh around the slide line at the time t = 0.3.
The mesh curves until the simulation crash at larger times, due to a too strong deformation.
Such behaviour doesnt not result from the new nodal solver, but, according to us, from the
treatment of the boundary conditions in the GLACE scheme. To precise this argument, we
refer to the result proposed on the figure 21 which represents a zoomed region near the inner
boundary in the mesh at time t = 0.3. As said above, the velocity of the nodes belonging
to the inner boundary is computed using the traditional formulation of the nodal solver (7)
with modified Ãr and b̃r. We however observe the same behaviour: the nodes seem to slow
down. We do not have any certainties about this behaviour, but we assume that it results
from the non-preservation of the angular moment L = r×p (where r and p are respectively
the position vector and the momentum vector) in the GLACE scheme. Indeed, for the j-th
cell, the angular moment is discretized as:

d

dt
Lj =

d

dt

(

rj × pj

)

=
d

dt
rj × pj + rj ×

d

dt
pj

= rj ×
d

dt
pj

= rj ×



−
∑

r∈N (j)

Cj,rpj,r





= −
∑

r∈N (j)

(rj × Cj,r) pjr

which is generally non zero.

Further investigations must be performed to precisely understand the reasons that forces
the mesh to curve and to propose a remedy.
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Figure 17: 2D initial mesh for the Sliding ring test case.

Figure 18: 2D mesh at t = 0.2 for the Sliding ring test case.
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Figure 19: Variation E(t)E0 on the sliding rings test case. E0 = E(0) is the initial total energy.

Figure 20: Zoom on the interior boundary at t = 0.3 for the Sliding ring test case.

Figure 21: Zoom on the slide line at t = 0.3 for the Sliding ring test case.
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5. Conclusions and perspectives

A new method to treat slide line in cell-centered Lagrangian schemes has been presented.
It is based on a minimization procedure of an objective function under constraints. Such con-
straints model the sliding condition on each point of the slide line. Our method exploits the
double discretization of the velocity in the cell-centered Lagrangian schemes: in particular,
the objective function is defined from the nodal velocities and the minimization procedure
is actually a reformulation of usual Riemann Solvers encountered in such schemes.
A discrete formulation of the set of admissible velocities K within which the minimum of the
objective function is searched has been proposed. We prove that such formulation satisfies
the four properties ➀ , ➁ , ➂ and ➃ that are sufficient conditions to ensure the existence and
the uniqueness of the solution of the nodal solver, as well as the preservation of momentum
and total energy.
We demonstrate the efficiency and the robustness of our method through several test cases.
The slide line is correctly treated for all the proposed numerical test cases. In particular, for
symmetrical sliding problems, the symmetry is preserved. We do not observe any hydrody-
namical instability around the slide line, preventing the use of any stabilization procedure.
In each case, momentum and total energy were preserved up to the machine precision. Fi-
nally, in the sliding rings test case, nodes belonging to boundaries that are treated with a
sliding condition behave in an unexpected way, which was imputed to the non-preservation
of the angular momentum in the employed scheme.
In our previous paper, only impact was considered. In this paper, pure sliding is studied. A
future work would be then to treat the case where both impact and sliding occur. In addi-
tion, we might imagine that the sliding will not be pure any more but for which an exchange
of momentum between the mobiles occurs. Surface tension may also be considered, as well
as material strength as in [12].
Finally, our method should be easily extended to the 3D formalism. The key point is to find
a convenient expression, similar to the relation (14), for the velocity of the ghost node.
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[8] M. Kucharik, R. Loubére, L. Bednarik, R. Liska, Computers & Fluids, in Press (2012).
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