Introduction 0000	Enhanced Source-Filter Model	Results 000	Demo
irca E Centre Pompid		SAMP Orchest	

Extended Source-Filter Model For Harmonic Instruments For Expressive Control Of Sound Synthesis And Transformation

Henrik Hahn Axel Röbel

henrik.hahn@ircam.fr

IRCAM - CNRS - UMR 9912 - STMS, Paris, France

3rd September 2013

1/22

Henrik Hahn, Axel Röbel

Introduction

Enhanced Source-Filter Model

Results

Demo

2/22 ▲□▶▲圖▶▲볼▶▲볼▶ 볼 카۹९관

Henrik Hahn, Axel Röbel

Introduction

Enhanced Source-Filter Model

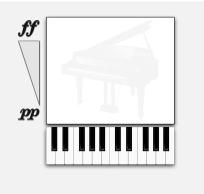
Results

Demo

Henrik Hahn, Axel Röbel

- Based on recordings
- Along two sound dimensions (pitch, intensity)
- Instrument characteristics are discretized
- Synthesis sounds *static*

- Transformations are used to interpolate the sound space
- These are based on local models.

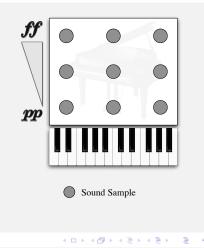

4/22

Э

Henrik Hahn, Axel Röbel

Based on recordings

- ► Synthesis sounds static

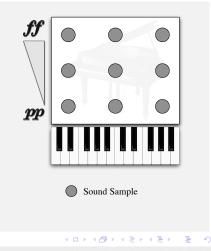

<ロ> <四> <四> <四> <日> <四> < □> < □> <

4/22

3

Henrik Hahn, Axel Röbel

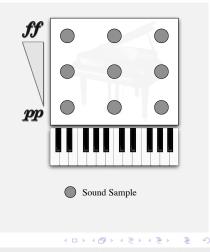
- Based on recordings
- Along two sound dimensions (pitch, intensity)
- ► Synthesis sounds *static*


4/22

Henrik Hahn, Axel Röbel

- Based on recordings
- Along two sound dimensions (pitch, intensity)
- Instrument characteristics are discretized
- Synthesis sounds *static*

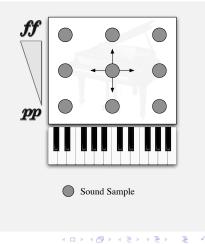
- Transformations are used to interpolate the sound space
- These are based on local models.


4/22

Henrik Hahn, Axel Röbel

- Based on recordings
- Along two sound dimensions (pitch, intensity)
- Instrument characteristics are discretized
- Synthesis sounds static

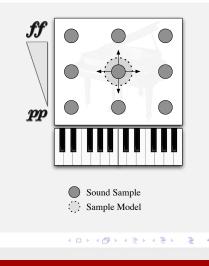
- Transformations are used to interpolate the sound space
- These are based on local models.


4/22

Henrik Hahn, Axel Röbel

- Based on recordings
- Along two sound dimensions (pitch, intensity)
- Instrument characteristics are discretized
- Synthesis sounds static

- Transformations are used to interpolate the sound space
- These are based on local models.



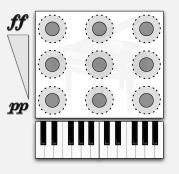
4/22

Henrik Hahn, Axel Röbel

- Based on recordings
- Along two sound dimensions (pitch, intensity)
- Instrument characteristics are ► discretized
- Synthesis sounds static

- Transformations are used to interpolate the sound space
- These are based on local models.

4/22


Henrik Hahn, Axel Röbel

- Trafos do not account for real instrument characteristics
- Interpolation is actually an extrapolation
- One model per sample means high model complexity
- Implicit overfitting

 Note repititons lead to Machine-Gun-Effect

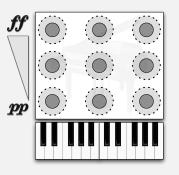
Audible jumps on switching samples.

イロン イボン イヨン

Pompidou

5/22

Э


Henrik Hahn, Axel Röbel

- Trafos do not account for real instrument characteristics
- Interpolation is actually an extrapolation
- One model per sample means high model complexity
- Implicit overfitting

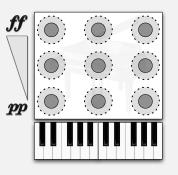
 Note repititons lead to <u>Machine-Gun-Effect</u>

Audible jumps on switching samples.

ヘロン ヘヨン ヘヨン ヘヨン

Pompidou

5/22


Э

Henrik Hahn, Axel Röbel

- Trafos do not account for real instrument characteristics
- Interpolation is actually an extrapolation
- One model per sample means high model complexity

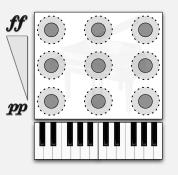
Pompidou

5/22

Э

Sound Sample Sample Model

ヘロン ヘヨン ヘヨン ヘヨン


Henrik Hahn, Axel Röbel

- Trafos do not account for real instrument characteristics
- Interpolation is actually an extrapolation
- One model per sample means high model complexity
- Implicit overfitting

 Note repititons lead to <u>Machine-Gun-Effect</u>

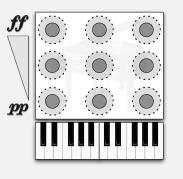
Audible jumps on switching samples

ヘロン ヘヨン ヘヨン ヘヨン

Pompidou

5/22

Э



Henrik Hahn, Axel Röbel

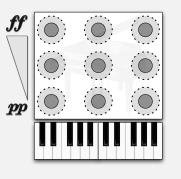
- Trafos do not account for real instrument characteristics
- Interpolation is actually an extrapolation
- One model per sample means high model complexity
- Implicit overfitting

- Note repititons lead to Machine-Gun-Effect
- Audible jumps on switching samples

ヘロン ヘヨン ヘヨン ヘヨン

Э

Pompidou

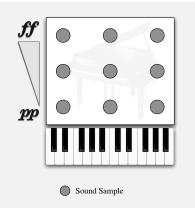


Henrik Hahn, Axel Röbel

- Trafos do not account for real instrument characteristics
- Interpolation is actually an extrapolation
- One model per sample means high model complexity
- Implicit overfitting

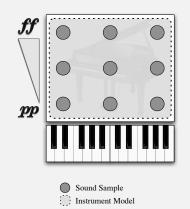
- Note repititons lead to <u>Machine-Gun-Effect</u>
- Audible jumps on switching samples

・ロン ・回 と ・ ヨン・


ъ

Pompidou

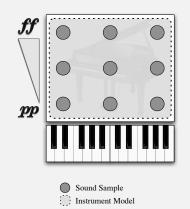
Henrik Hahn, Axel Röbel



- Parametric model describing the sound space according to pitch and global note intensity
- and the temporal evolution of a sound (Attack-Sustain-Release)
- With these 3 parameters being the Gestural Control Parameters
- Process harmonic and noise content separately
- Model parameters shall be learned from standard databases
- Model shall be applicable for all harmonic instruments

イロト イポト イヨト イヨト

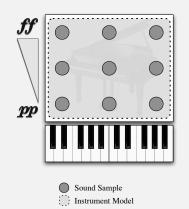
6/22


- Parametric model describing the sound space according to pitch and global note intensity
- and the temporal evolution of a sound (Attack-Sustain-Release)
- With these 3 parameters being the Gestural Control Parameters
- Process harmonic and noise content separately
- Model parameters shall be learned from standard databases

ヘロト ヘヨト ヘヨト ヘヨト

6/22

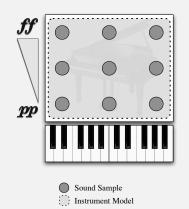
 Model shall be applicable for all harmonic instruments


- Parametric model describing the sound space according to pitch and global note intensity
- and the temporal evolution of a sound (Attack-Sustain-Release)
- With these 3 parameters being the Gestural Control Parameters
- Process harmonic and noise content separately
- Model parameters shall be learned from standard databases

ヘロト ヘヨト ヘヨト ヘヨト

6/22

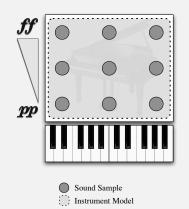
 Model shall be applicable for all harmonic instruments


- Parametric model describing the sound space according to pitch and global note intensity
- and the temporal evolution of a sound (Attack-Sustain-Release)
- With these 3 parameters being the Gestural Control Parameters
- Process harmonic and noise content separately
- Model parameters shall be learned from standard databases

イロン 不良 とうほう 不良 と

6/22

 Model shall be applicable for all harmonic instruments

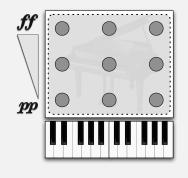

- Parametric model describing the sound space according to pitch and global note intensity
- and the temporal evolution of a sound (Attack-Sustain-Release)
- With these 3 parameters being the Gestural Control Parameters
- Process harmonic and noise content separately
- Model parameters shall be learned from standard databases

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

6/22

 Model shall be applicable for all harmonic instruments

- Parametric model describing the sound space according to pitch and global note intensity
- and the temporal evolution of a sound (Attack-Sustain-Release)
- With these 3 parameters being the Gestural Control Parameters
- Process harmonic and noise content separately
- Model parameters shall be learned from standard databases


・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

6/22

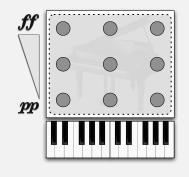
 Model shall be applicable for all harmonic instruments

Henrik Hahn, Axel Röbel



- Transformations based on real instrument characteristics
- Synthesis with continuous pitch and intensity values
- as well as arbitrary note durations

 Expressive sound synthesis with gestural control parameters

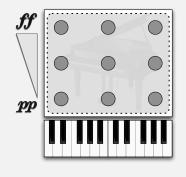

Replacement of samples

Creation of instrumental hybrids

Henrik Hahn, Axel Röbel

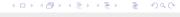
- Transformations based on real instrument characteristics
- Synthesis with continuous pitch and intensity values
- as well as arbitrary note durations

 Expressive cound synthesis with gestural control parameters

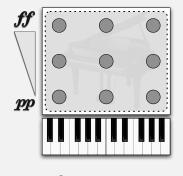

Replacement of samples

Creation of instrumental hybrids

Henrik Hahn, Axel Röbel



- Transformations based on real instrument characteristics
- Synthesis with continuous pitch and intensity values
- as well as arbitrary note durations

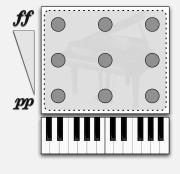

Replacement of samples

Creation of instrumental hybrids

Henrik Hahn, Axel Röbel

- Transformations based on real instrument characteristics
- Synthesis with continuous pitch and intensity values
- as well as arbitrary note durations
- Expressive sound synthesis with gestural control parameters

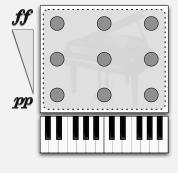
Replacement of samples


Creation of instrumental hybrids

・ロン ・回 と ・ ヨン・

3

Henrik Hahn, Axel Röbel



- Transformations based on real instrument characteristics
- Synthesis with continuous pitch and intensity values
- as well as arbitrary note durations
- Expressive sound synthesis with gestural control parameters
- Replacement of samples
- Creation of instrumental hybrids

ヘロト ヘヨト ヘヨト ヘヨト

Henrik Hahn, Axel Röbel

- Transformations based on real instrument characteristics
- Synthesis with continuous pitch and intensity values
- as well as arbitrary note durations
- Expressive sound synthesis with gestural control parameters
- Replacement of samples
- Creation of instrumental hybrids

ヘロト ヘヨト ヘヨト ヘヨト

Introduction

Enhanced Source-Filter Model

Results

Demo

Henrik Hahn, Axel Röbel

Introduction Enhanced Source-Filter Mo	del Results 000	Demo
Overview	SRMPLE Orchestrator®	ircam Eentre Pompidou

Analysis

Parameter Estimation

Flattening & Synthesis

Henrik Hahn, Axel Röbel

- ▶ By means of partial tracking
- Residual obtained by subtraction of partials
- Smoothed cepstral envelope is obtained from residual

Gesture Analysis

- Constant pitch and global intensity
- Amplitude envelope over time

Temporal Segmentation

Henrik Hahn, Axel Röbel

By means of partial tracking

- Residual obtained by subtraction of partials
- Smoothed cepstral envelope is obtained from residual

Gesture Analysis

- Constant pitch and global intensity
- Amplitude envelope over time

Temporal Segmentation

Henrik Hahn, Axel Röbel

- By means of partial tracking
- Residual obtained by subtraction of partials
- Smoothed cepstral envelope is obtained from residual

Gesture Analysis

- Constant pitch and global intensity
- Amplitude envelope over time

Temporal Segmentation

Henrik Hahn, Axel Röbel

By means of partial tracking

- Residual obtained by subtraction of partials
- Smoothed cepstral envelope is obtained from residual

Gesture Analysis

- Constant pitch and global intensity
- Amplitude envelope over time

Henrik Hahn, Axel Röbel


- By means of partial tracking
- Residual obtained by subtraction of partials
- Smoothed cepstral envelope is obtained from residual

 $A_k^{(\alpha)}(n), \quad f_k^{(\alpha)}, \quad C_l^{(\alpha)}(n)$

Gesture Analysis

- Constant pitch and global intensity
- Amplitude envelope over time

Temporal Segmentation

Henrik Hahn, Axel Röbel

- By means of partial tracking
- Residual obtained by subtraction of partials
- Smoothed cepstral envelope is obtained from residual

 $A_k^{(\alpha)}(n), \quad f_k^{(\alpha)}, \quad C_l^{(\alpha)}(n)$

Gesture Analysis

- Constant pitch and global intensity
- Amplitude envelope over time

Temporal Segmentation

Henrik Hahn, Axel Röbel

Sinusoidal/Noise segregation

- By means of partial tracking
- Residual obtained by subtraction of partials
- Smoothed cepstral envelope is obtained from residual

 $A_k^{(\alpha)}(n), f_k^{(\alpha)}, C_l^{(\alpha)}(n)$

Gesture Analysis

- Constant pitch and global intensity
- Amplitude envelope over time

Henrik Hahn, Axel Böbel

By means of partial tracking

- Residual obtained by subtraction of partials
- Smoothed cepstral envelope is obtained from residual

 $A_k^{(\alpha)}(n), f_k^{(\alpha)}, C_l^{(\alpha)}(n)$

Gesture Analysis

- Constant pitch and global intensity
- Amplitude envelope over time

 $\Theta^{(\alpha)}(n) = \{I, E(n), P\}^{(\alpha)}$

Temporal Segmentation

Henrik Hahn, Axel Böbel

Sinusoidal/Noise segregation

- By means of partial tracking
- Residual obtained by subtraction of partials
- Smoothed cepstral envelope is obtained from residual

 $A_k^{(\alpha)}(n), \quad f_k^{(\alpha)}, \quad C_l^{(\alpha)}(n)$

Gesture Analysis

- Constant pitch and global intensity
- Amplitude envelope over time

 $\Theta^{(\alpha)}(n) = \{I, E(n), P\}^{(\alpha)}$

Temporal Segmentation

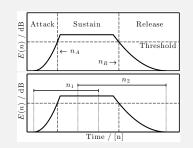


Figure: Temporal segmentation scheme for sustained (left) and impulsive (right) instrument signals.

イロン イボン イヨン イヨン 三日

10/22

Henrik Hahn, Axel Röbel

Sinusoidal/Noise segregation

- By means of partial tracking
- Residual obtained by subtraction of partials
- Smoothed cepstral envelope is obtained from residual

 $A_k^{(\alpha)}(n), \quad f_k^{(\alpha)}, \quad C_l^{(\alpha)}(n)$

Gesture Analysis

- Constant pitch and global intensity
- Amplitude envelope over time

 $\Theta^{(\alpha)}(n) = \{I, E(n), P\}^{(\alpha)}$

Temporal Segmentation

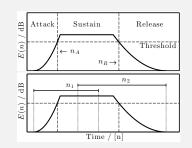


Figure: Temporal segmentation scheme for sustained (left) and impulsive (right) instrument signals.

 $n_s; s \in \{1, 2\}$

・ロト ・回ト ・ヨト ・ヨト … ヨ

10/22

Henrik Hahn, Axel Röbel

Harmonic signal representation

$$X_{h}^{(\alpha)}: \begin{cases} A_{k}^{(\alpha)}(n) \\ \Theta^{(\alpha)}(n) \\ f_{k}^{(\alpha)} \\ n_{s} \end{cases}$$

Noise signal representation

$$X_n^{(\alpha)}: \begin{cases} C_l^{(\alpha)}(n)\\ \Theta^{(\alpha)}(n)\\ n_s \end{cases}$$

11/22 《 □ 》 《 🗗 》 《 볼 》 《 볼 》 집 은

Henrik Hahn, Axel Röbel

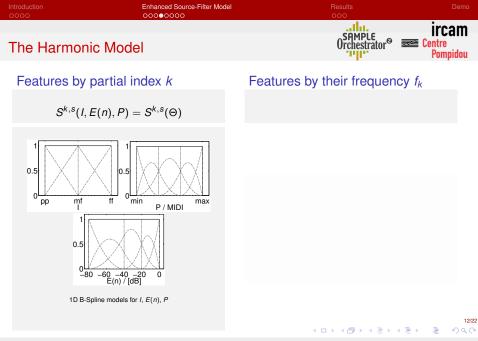
Features by partial index k

Features by their frequency f_k

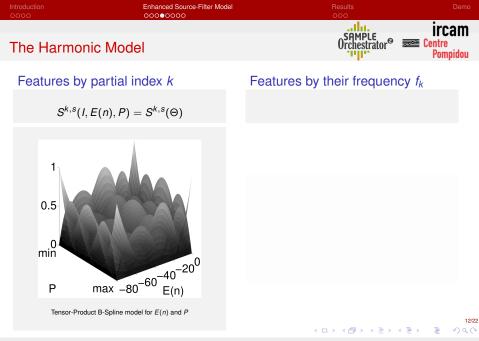
Henrik Hahn, Axel Röbel

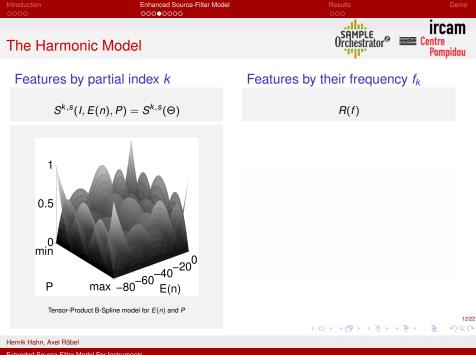
Extended Source-Filter Model For Instruments

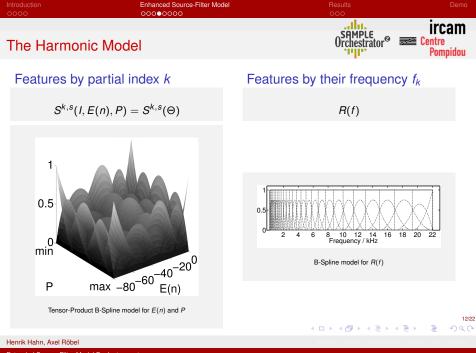
IRCAM - CNRS - UMR 9912 - STMS, Paris, France


Features by partial index k

 $S^{k,s}(I, E(n), P) = S^{k,s}(\Theta)$


Features by their frequency f_k




Henrik Hahn, Axel Röbel

Henrik Hahn, Axel Röbel

Harmonic Model

 $\hat{A}_{k,s}(\Theta, f_k) = S_{k,s}(\Theta) + F(f_k)$

Noise Model

 $\hat{C}_{l,s}(\Theta, f_k) = S_{l,s}(\Theta)$

Henrik Hahn, Axel Röbel

Harmonic Model

 $\hat{A}_{k,s}(\Theta, f_k) = S_{k,s}(\Theta) + F(f_k)$

Noise Model

 $\hat{C}_{l,s}(\Theta, f_k) = S_{l,s}(\Theta)$

Henrik Hahn, Axel Röbel

$$R_h^{(\alpha)} = \frac{1}{2} \sum_s \sum_{n_s} \sum_{k=1}^K \left(A_k^{(\alpha)}(n) - \hat{A}_{k,s}(\Theta^{(\alpha)}(n), f_k^{(\alpha)}) \right)^2$$

Problem Size

- The model itself is linear, closed form possible, but
- matrix sizes may exceeds several hundred TBs
- iterative approach using conjugate gradient

Henrik Hahn, Axel Röbel

$$R_{h}^{(\alpha)} = \frac{1}{2} \sum_{s} \sum_{n_{s}} \sum_{k=1}^{K} \left(A_{k}^{(\alpha)}(n) - \hat{A}_{k,s}(\Theta^{(\alpha)}(n), f_{k}^{(\alpha)}) \right)^{2}$$

Problem Size

- The model itself is linear, closed form possible, but
- matrix sizes may exceeds several hundred TBs
- ▶ iterative approach using conjugate gradient

Henrik Hahn, Axel Röbel

$$R_{h}^{(\alpha)} = \frac{1}{2} \sum_{s} \sum_{n_{s}} \sum_{k=1}^{K} \left(A_{k}^{(\alpha)}(n) - \hat{A}_{k,s}(\Theta^{(\alpha)}(n), f_{k}^{(\alpha)}) \right)^{2}$$

Problem Size

- The model itself is linear, closed form possible, but
- matrix sizes may exceeds several hundred TBs
- iterative approach using conjugate gradient

Henrik Hahn, Axel Röbel

$$R_{h}^{(\alpha)} = \frac{1}{2} \sum_{s} \sum_{n_{s}} \sum_{k=1}^{K} \left(A_{k}^{(\alpha)}(n) - \hat{A}_{k,s}(\Theta^{(\alpha)}(n), f_{k}^{(\alpha)}) \right)^{2}$$

Problem Size

- The model itself is linear, closed form possible, but
- matrix sizes may exceeds several hundred TBs
- iterative approach using conjugate gradient

Henrik Hahn, Axel Röbel

э

・ロン ・回 と ・ ヨン ・ ヨン

The Issue

► The data is extremely badly distributed

The cause

Not all partials are present in the DB for all intensities and pitches

This results in

- Malformed model shapes in areas without any data
- Slow training speed

Our solutions

- Adding constraints to R for extrapolation into empty areas
- Preconditioning of the model parameters

Henrik Hahn, Axel Röbel

3

イロン イヨン イヨン

The Issue

The data is extremely badly distributed

The cause

Not all partials are present in the DB for all intensities and pitches

This results in

- Malformed model shapes in areas without any data
- Slow training speed

Our solutions

- Adding constraints to R for extrapolation into empty areas
- Preconditioning of the model parameters

Henrik Hahn, Axel Röbel

The Issue

The data is extremely badly distributed

The cause

Not all partials are present in the DB for all intensities and pitches

This results in

- Malformed model shapes in areas without any data
- Slow training speed

Our solutions

- Adding constraints to R for extrapolation into empty areas
- Preconditioning of the model parameters

Henrik Hahn, Axel Röbel

The Issue

The data is extremely badly distributed

The cause

Not all partials are present in the DB for all intensities and pitches

This results in

- Malformed model shapes in areas without any data
- Slow training speed

Our solutions

- Adding constraints to R for extrapolation into empty areas
- Preconditioning of the model parameters

Henrik Hahn, Axel Röbel

The Issue

The data is extremely badly distributed

The cause

Not all partials are present in the DB for all intensities and pitches

This results in

- Malformed model shapes in areas without any data
- Slow training speed

Our solutions

- Adding constraints to R for extrapolation into empty areas
- Preconditioning of the model parameters

ヘロン 人間 とくほ とくほ とう

The Issue

The data is extremely badly distributed

The cause

Not all partials are present in the DB for all intensities and pitches

This results in

- Malformed model shapes in areas without any data
- Slow training speed

Our solutions

- Adding constraints to R for extrapolation into empty areas
- Preconditioning of the model parameters

ヘロン 人間 とくほ とくほ とう

The Issue

The data is extremely badly distributed

The cause

Not all partials are present in the DB for all intensities and pitches

This results in

- Malformed model shapes in areas without any data
- Slow training speed

Our solutions

- Adding constraints to R for extrapolation into empty areas
- Preconditioning of the model parameters

ヘロン 人間 とくほ とくほ とう

The Issue

The data is extremely badly distributed

The cause

Not all partials are present in the DB for all intensities and pitches

This results in

- Malformed model shapes in areas without any data
- Slow training speed

Our solutions

- Adding constraints to R for extrapolation into empty areas
- Preconditioning of the model parameters

- Cepstral coefficients of noise model can directly transformed into spectral envelope
- Partial amplitudes from harmonic model are transformed using cepstral smoothing method.

Flattening

 Preprocessing of the whole data by applying inverted estimated envelopes from ALL harmonic and noise data

16/22

э

・ロン ・回 と ・ ヨン・

Storing them as source data for the synthesizer.

Synthesis

- ▶ Generate model envelopes using modified Gestural Control Parameters
- Filter source harmonic and noise data and downmix

Henrik Hahn, Axel Röbel

- Cepstral coefficients of noise model can directly transformed into spectral envelope
- Partial amplitudes from harmonic model are transformed using cepstral smoothing method.

Flattening

 Preprocessing of the whole data by applying inverted estimated envelopes from ALL harmonic and noise data

16/22

Э

イロン イヨン イヨン イヨン

Storing them as source data for the synthesizer.

Synthesis

- ▶ Generate model envelopes using modified Gestural Control Parameters
- Filter source harmonic and noise data and downmix

Henrik Hahn, Axel Röbel

- Cepstral coefficients of noise model can directly transformed into spectral envelope
- Partial amplitudes from harmonic model are transformed using cepstral smoothing method.

Flattening

 Preprocessing of the whole data by applying inverted estimated envelopes from ALL harmonic and noise data

16/22

Э

イロン イヨン イヨン イヨン

Storing them as source data for the synthesizer

Synthesis

- ▶ Generate model envelopes using modified Gestural Control Parameters
- Filter source harmonic and noise data and downmix

Henrik Hahn, Axel Röbel

- Cepstral coefficients of noise model can directly transformed into spectral envelope
- Partial amplitudes from harmonic model are transformed using cepstral smoothing method.

Flattening

 Preprocessing of the whole data by applying inverted estimated envelopes from ALL harmonic and noise data

16/22

Э

ヘロン 人間 とくほ とくほ とう

Storing them as source data for the synthesizer

Synthesis

- Generate model envelopes using modified Gestural Control Parameters
- Filter source harmonic and noise data and downmix

Henrik Hahn, Axel Röbel

- Cepstral coefficients of noise model can directly transformed into spectral envelope
- Partial amplitudes from harmonic model are transformed using cepstral smoothing method.

Flattening

 Preprocessing of the whole data by applying inverted estimated envelopes from ALL harmonic and noise data

16/22

Э

ヘロン 人間 とくほ とくほ とう

Storing them as source data for the synthesizer

Synthesis

- Generate model envelopes using modified Gestural Control Parameters
- Filter source harmonic and noise data and downmix

Henrik Hahn, Axel Röbel

- Cepstral coefficients of noise model can directly transformed into spectral envelope
- Partial amplitudes from harmonic model are transformed using cepstral smoothing method.

Flattening

 Preprocessing of the whole data by applying inverted estimated envelopes from ALL harmonic and noise data

16/22

Э

ヘロン 人間 とくほ とくほ とう

Storing them as source data for the synthesizer

Synthesis

- Generate model envelopes using modified Gestural Control Parameters
- Filter source harmonic and noise data and downmix

Henrik Hahn, Axel Röbel

- Cepstral coefficients of noise model can directly transformed into spectral envelope
- Partial amplitudes from harmonic model are transformed using cepstral smoothing method.

Flattening

 Preprocessing of the whole data by applying inverted estimated envelopes from ALL harmonic and noise data

16/22

ヘロン 人間 とくほ とくほ とう

Storing them as source data for the synthesizer

Synthesis

- ▶ Generate model envelopes using modified Gestural Control Parameters
- Filter source harmonic and noise data and downmix

Henrik Hahn, Axel Röbel

- Cepstral coefficients of noise model can directly transformed into spectral envelope
- Partial amplitudes from harmonic model are transformed using cepstral smoothing method.

Flattening

 Preprocessing of the whole data by applying inverted estimated envelopes from ALL harmonic and noise data

16/22

э

ヘロン 人間 とくほ とくほ とう

Storing them as source data for the synthesizer

Synthesis

- ► Generate model envelopes using modified Gestural Control Parameters
- Filter source harmonic and noise data and downmix

- Cepstral coefficients of noise model can directly transformed into spectral envelope
- Partial amplitudes from harmonic model are transformed using cepstral smoothing method.

Flattening

 Preprocessing of the whole data by applying inverted estimated envelopes from ALL harmonic and noise data

16/22

э

ヘロン 人間 とくほ とくほ とう

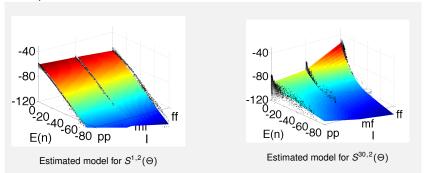
Storing them as source data for the synthesizer

Synthesis

- ► Generate model envelopes using modified Gestural Control Parameters
- Filter source harmonic and noise data and downmix

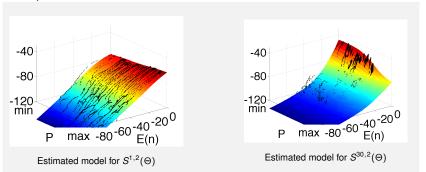
Introduction

Enhanced Source-Filter Model

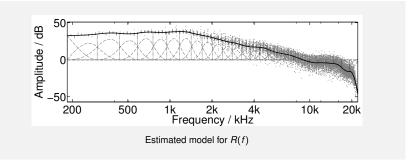

Results

Demo

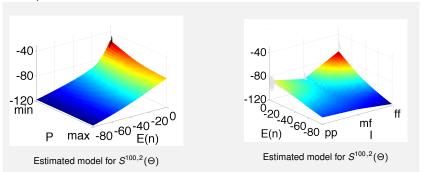
Henrik Hahn, Axel Röbel



Henrik Hahn, Axel Röbel



Henrik Hahn, Axel Röbel



19/22

Э

Henrik Hahn, Axel Röbel

Henrik Hahn, Axel Röbel

Demo

Thanks to Jean-Philippe Lambert and Norbert Schnell

Henrik Hahn, Axel Röbel

	Results Demo
Fin	SAMPLE Orchestrator [®] <mark>≥≊ Centre 11111[™] Pompidou</mark>

Thanks for listening

Questions?

Henrik Hahn, Axel Röbel