
HAL Id: hal-00865682
https://hal.science/hal-00865682v2

Submitted on 10 Oct 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Model Checking and Functional Program
Transformations

Axel Haddad

To cite this version:
Axel Haddad. Model Checking and Functional Program Transformations. IARCS Annual Conference
on Foundations of Software Technology and Theoretical Computer Science, Dec 2013, Guwahati, India.
�hal-00865682v2�

https://hal.science/hal-00865682v2
https://hal.archives-ouvertes.fr

Model Checking and Functional Program
Transformations
Axel Haddad1

1 LIAFA (Univ. Paris Diderot & CNRS) LIGM (Univ. Paris Est & CNRS)

Abstract
We study a model for recursive functional programs called higher order recursion schemes (HORS).
We give new proofs of two verification related problems: reflection and selection for HORS. The
previous proofs are based on the equivalence between HORS and collapsible pushdown automata
and they lose the structure of the initial program. The constructions presented here are based
on shape preserving transformations, and can be applied on actual programs without losing the
structure of the program.

1998 ACM Subject Classification F.3.1 Specifying and Verifying and Reasoning about Programs

Keywords and phrases Higher-order recursion schemes, Model checking, Tree automata

Digital Object Identifier 10.4230/LIPIcs.xxx.yyy.p

1 Introduction

Recursion schemes were introduced in the early 70s as a model of computation, describing
the syntactical part of a functional program [19, 6, 7, 8]. Originally they only handled
order-0 (constants) or order-1 (functions on constants) expressions, but not higher-order
types. Higher-order versions of recursion schemes were later introduced to deal with functions
taking functions as arguments [13, 9, 10].

Recently, the focus came back on higher-order recursion schemes when considering them
as generators of possibly infinite trees [14, 20, 12]. Indeed, roughly speaking a recursion
scheme is a deterministic rewriting system on typed terms that generates ad infinitum a
unique infinite tree. As the trees they generate are very general and as they can capture
the computation tree of (higher-order) functional programs, studying their logical properties
leads to very natural and challenging problems.

The most popular one is (local) model-checking: for a given recursion scheme and a formula
e.g. from monadic second order logic (MSO) or µ-calculus, decide whether the tree generated
by the scheme satisfies the formula. Following partial decidability results for the subclass of
safe recursion schemes [14, 5], Ong proved, using the notion of traversals, the decidability
of MSO model-checking for the whole class of trees generated by recursion schemes [20].
Since then, other proofs of this result have been obtained using different approaches: Hague,
Murawski, Ong and Serre established the equivalence of schemes and higher-order collapsible
pushdown automata (CPDA), and then showed the MSO decidability by reduction to parity
games on collapsible pushdown automata [12]; following ideas from [1], Kobayashi and Ong
[17] developed the type system of [15] to obtain a new proof. Finally, Salvati and Walukiewicz
used Krivine machines to establish the MSO decidability of λ-Y-calculus, which is a typed
lambda calculus with recursion, equivalent to higher order recursion schemes [22].

Another important problem is global model-checking: for a given recursion scheme and
a formula, provide a finite representation of the set of nodes in the tree generated by the
scheme where the formula holds. Broadbent, Carayol, Ong and Serre answered this question

© A. Haddad;
licensed under Creative Commons License CC-BY

Conference title on which this volume is based on.
Editors: Billy Editor, Bill Editors; pp. 1–35

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.xxx.yyy.p
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Model Checking and Functional Program Transformations

using a so-called endogenous approach to represent the set of nodes: they showed how to
construct another scheme generating the same tree as the original scheme except that now
those nodes where the formula holds are marked [3]. They refer to this property as the logical
reflection. The technique they used relies on the equivalence between schemes and CPDA.

Going further with the idea of marking a set of nodes, Carayol and Serre considered in [4]
the following problem called logical selection and generalising global model-checking: for a
given recursion scheme and an MSO formula ϕ[X] with one free set variable, provide (if it
exists) a finite representation of a set S of nodes in the tree generated by the scheme such
that ϕ[S] holds. They show that one can construct another scheme generating the same tree
as the original scheme except that now those nodes are marked and describe a set S with
the previous property. Again, they relied on the equivalence with CPDA.

One interest for logical reflection and logical selection is that they can be used to modify
a scheme in a useful way. Indeed, assume some (syntax tree of a) program is described by
a scheme and that it contains bad behaviours: using logical reflection, one can get a new
scheme where those bad behaviours are marked and this latter scheme can then easily be
modified to remove these behaviours. Using logical selection, one can e.g. select branches in
the syntax tree so that a given property is satisfied in the resulting subtree. A drawback
of the approach in [3, 4] that goes back and forth between schemes and CPDA is that the
scheme that is finally obtained is structurally very far from the original one (the names of
the non terminals as well as the shape of the rewriting rules have been lost): hence this is
a serious problem if one is interested in doing automated correction of programs or even
synthesis.

Our main contribution in this paper is to provide proofs of both logical reflection and
selection without appealing to CPDA as we only reason on schemes. Our constructions
avoid the loss of the structure, i.e. the solution scheme is obtained only by duplicating and
annotating some parts of the initial scheme and the transformation is easily reversible. Our
constructions are based on the type system and the game used by Kobayashi and Ong in their
proof of the model-checking decidability [17]. There is no known correspondence between
these proofs and the former ones. In order to prove the logical reflection, we introduce
the notion of morphism inspired by denotational semantics, and we give a morphism for
MSO. In order to prove the logical selection, we embed carefully a winning strategy of the
model-checking game into the scheme.

In Section 2 we give the basic definitions and in Section 3 we introduce the two problems
we are looking at in the paper. In Section 4 we introduce morphisms, explain how to “embed”
a morphism into a scheme, and give some possible applications. In Section 6, we show how
to use morphisms to obtain a new proof of logical reflection. In Section 7, we deal with
logical selection. In Section 5, we present a simple example that describes how we can use a
morphism describing a property to transform a scheme.

2 Preliminaries

In this section we give the definition of a higher order recursion scheme, which is a deterministic
rewriting system that produces an infinite tree. It handles terms of typed symbols, i.e. each
symbol is a constant or a function that can have functions as arguments. Terms may represent
expressions of higher order programming languages, for example the term Apply Copy File
means “apply the function Copy to the file”. In this example an intuitive rewrite rule for
the function Apply would be the term where the first argument is applied on the second
argument, written: Apply ϕ x→ ϕ x.

A. Haddad 3

Types. Types are defined by the grammar τ ::= o | τ → τ and o is called the
ground type. Considering that → is associative to the right (i.e. τ1 → (τ2 → τ3) can be
written τ1 → τ2 → τ3), any type τ can be written uniquely as τ1 → · · · → τk → o. The
integer k is called the arity of τ . We define the order of a type by order(o) = 0 and
order(τ1 → τ2) = max(order(τ1) + 1, order(τ2)). For instance o → o → o → o is a type of
order 1 and arity 3, (o→ o)→ (o→ o), that can also be written (o→ o)→ o→ o is a type
of order 2.We let τ ` → τ ′ be a shorthand for τ → · · · → τ︸ ︷︷ ︸

` times

→ τ ′.

Terms. Let Γ be a finite set of typed symbols, and Let Γτ denote the set of symbols
of type τ . For all type τ , we define the set of terms of type τ , T τ (Γ) as the smallest set
containing the symbols of type τ and the application of a term of type τ ′ → τ to a term of
type τ ′ for all τ ′; formally: Γτ ⊆ T τ (Γ) and

⋃
τ ′{t s | t ∈ T τ

′→τ (Γ), s ∈ T τ ′(Γ)} ⊆ T τ (Γ).
We shall write T (Γ) for the set of terms of any type, and t : τ if t has type τ . The arity of a
term t, arity(t), is the arity of its type. Remark that any term t can be uniquely written as
t = α t1 . . . tk with α ∈ Γ and 0 ≤ k ≤ arity(α). We say that α is the head of the term t.
For instance, let Γ = {F : (o → o) → o → o , G : o → o → o , H : (o → o) , a : o}. Then
F H and G a are terms of type o→ o; F (G a) (H (H a)) is a term of type o; F a is not a
term since F is expecting a first argument of type o→ o while a has type o.

A set of symbols of order at most 1 (i.e. each symbol has type o or o→ o→ · · · → o) is
called a signature. In the following, we use the letters t, r, s to denote terms, and given a
tuple of term ~t = (t1, . . . , tk) we may use the shorthand s ~t to denote s t1 . . . tk.

Contexts. Let t : τ , t′ : τ ′ be two terms, x : τ ′ be a symbol of type τ ′, then we write
t[x 7→t′] : τ for the term obtained by substituting all occurrences of x by t′ in the term t. A
τ-context is a term C[•τ] ∈ T (Γ]{•τ : τ}) containing exactly one occurrence of •τ ; it can be
seen as an application turning a term into another, such that for all t : τ , C[t] = C[•τ][•τ 7→t].
In general we will only talk about ground type contexts where τ = o and we will omit to
specify the type when it is clear.For instance, if C[•] = F • (H (H a)) and t′ = G a then
C[t′] = F (G a) (H (H a)).

Rewrite Rules. Given two disjoint sets of symbols Γ,V where V is called a set of
variables, we define a (fully applied) rewrite rule on Γ and V as a pair of terms of T (Γ]V)
of type o written F x1 . . . xk → e with F ∈ Γ, x1, . . . , xk ∈ V such that for all i 6= j xi 6= xj ,
and e ∈ T (Γ] {x1, . . . , xk}). Given a set of rewrite rules R, we define the rewriting
relation → ∈ T (Γ)2 as t→ t′ iff there exists a context C[•], a rewrite rule F x1 . . . xk → e,
and a term F t1 . . . tk : o such that t = C[F t1 . . . tk] and t′ = C[e[x1 7→t1]...[xk 7→tk]]. We call
F t1 . . . tk : o a redex. We define →∗ as the reflexive and transitive closure of →. Finally
we say that a set of rewrite rules is deterministic1 if for all F ∈ Γ there exists at most one
rule of the form F x1 . . . xk → e.

Trees. Let Σ be a finite signature, m be the maximum arity in Σ and ⊥ : o be a
fresh symbol. A (ranked) tree t over Σ] ⊥ is a mapping t : domt → Σ] ⊥, where
domt is a prefix-closed subset of {1, . . . ,m}∗ such that if u ∈ domt and t(u) = a then
{j | u · j ∈ domt} = {1, . . . , arity(a)}. Given a node u ∈ domt, we define the subtree of
t rooted at u as the tree tu such that domtu = {j | u · j ∈ domt} and for all v ∈ domtu ,
tu(v) = t(u · v). Given a : ok → o and some trees t1, . . . , tk we use the notation a t1 . . . tk to
denote the tree t′ whose domain is domt′ =

⋃
i i · domti , t′(ε) = a and t′(i · u) = ti(u). Note

that there is a direct bijection between ground terms of T o(Σ] ⊥) and finite trees. Hence
we will freely allow ourselves to treat ground terms over Σ]⊥ as trees. We define the partial

1 Although the rules are deterministics, there may be several possible rules to apply in a term.

4 Model Checking and Functional Program Transformations

order v over trees as t v t′ if domt ⊆ domt′ and for all u ∈ domt, t(u) = t′(u) or t(u) = ⊥.
Given a (possibly infinite) sequence of trees t0, t1, t2, . . . such that ti v ti+1 for all i, the set
of all ti has a supremum that is called the limit tree of the sequence.

Higher Order Recursion Schemes. A higher order recursion scheme (HORS)
G = 〈V,Σ,N ,R, S〉 is a tuple such that: V is a finite set of typed symbols called variables;
Σ is a finite signature, called the set of terminals; N is a finite set of typed symbols
called non-terminals; R is a deterministic set of rewrite rules on Σ]N and V, such that
there is exactly one rule per non terminal and no rule for terminals; S ∈ N is the initial
non-terminal.

We define inductively the ⊥-transformation (·)⊥ : T o(N] Σ) → T o(Σ] {⊥ : o})
turning a ground term into a finite tree as: (F t1 . . . tk)⊥ = ⊥ for all F ∈ N and
(a t1 . . . tk)⊥ = a t⊥1 . . . t

⊥
k for all a ∈ Σ. We define a derivation, as a possibly infinite

sequence of terms linked by the rewrite relation, and we will mainly look at derivations where
the first term of the sequence is equal to the initial non terminal. Let t0 = S → t1 → t2 → · · ·
be a derivation, then one can check that (t0)⊥ v (t1)⊥ v (t2)⊥ v . . ., hence it admits a limit.
One can prove2 that the set of all such limit trees has a greatest element that we denote
‖G‖ and refer to as the value tree of G. Note that ‖G‖ is the supremum of {t⊥ | S →∗ t}.
Given a term t : o, we denote by Gt the scheme obtained by transforming G such that it
starts derivations with the term t, formally, Gt = 〈V,Σ,N] {S′},R] {S′ → t}, S′〉. One
can prove that if t→ t′ then ‖Gt‖ = ‖Gt′‖. We call ‖Gt‖ the value tree of t in G.

Parallel derivation. Intuitively, the parallel rewriting from a term t is obtained by
rewriting all the redexes in t simultaneously. Formally, given a term t = α t1 . . . tk with
α ∈ Σ] N , we define inductively the parallel rewriting t? of t as if α ∈ Σ or k < arity(α),
then t? = α t?1 . . . t

?
k, if α ∈ N and k = arity(α), let α x1 . . . xk → e be the rewrite rule

associated to α, we have t? = e[∀i xi 7→t?i]. Given t, t′, we write t⇒ t′ for the relation “t′ = t?”.
Notice that if t ⇒ t′ and t′ →∗ t′′ then t →∗ t′′ (in particular t →∗ t′). Furthermore the
derivation S ⇒ t1 ⇒ t2 ⇒ . . . leads to ‖G‖.
I Example 1. Let G = 〈Σ,V,N , S,R〉 with Σ = {a, b : o→ o, c : o→
o→ o}, V = {x : o, ϕ : o→ o}, N = {S : o, I, F : (o→ o)→ o,D,A :
(o→ o)→ o→ o} and R = {S → F b, D ϕ x→ ϕ (ϕ x), A ϕ x→
ϕ (a x), I ϕ→ ϕ (I ϕ), F ϕ → c (I (A ϕ)) (F (D ϕ))}.
Remark the rewrite rule associated to D: it means that for any
function t, D t is simply the function obtained by composing t with
itself. The rule associated to I is also interesting: for any function t,
I t leads to the infinite iteration of t. For example the term I a can
be derived to obtain a (a (a (a (. . .)))). The tree ‖G‖ is depicted
on the left, its branches are labelled by cω or cn · (b2(n−1) · a)ω for all
n ≥ 1.

c
c

c
. . .

b
a

b
a

b
a

b
a
...

b
b
a

b
b
a

b
...

b
b
b
b
a

b
...

Parity tree automaton. A non-deterministic max parity automaton (we will
just refer to them as automata in the following) is a tuple A = 〈Σ, Q, δ, q0,Ω〉 with Σ a
finite signature, Q a finite set called the set of states, δ ⊆ {q a−→ (q1, . . . , qarity(a)) |
a ∈ Σ, q, q1, . . . , qarity(a) ∈ Q} is called the transition relation, q0 ∈ Q the initial state,
Ω : Q→ {1, . . . ,mmax} for some mmax ∈ N the colouring function.

Given an infinite tree t on Σ we define a run r of A on t as a tree on Σ×Q = {aq : ok →
o | a : ok → o, q ∈ Q} such that domr = domt, for all u ∈ domt, if r(u) = aq then t(u) = a

2 The existence of a value tree is a consequence the confluence property of HORS.

A. Haddad 5

and there exists q a−→ q1, . . . , qk ∈ δ such that for all i, r(u · i) = t(u · i)qi , and r(ε) = t(ε)q0 .
We say that the automaton A accepts the tree t, written t |= A, if there exists a run r

on t such that for every infinite branch b = (a0, q0) · j0 · (a1, q1) · j1 · . . . in r, the greatest
colour seen infinitely often in Ω(q0),Ω(q1),Ω(q2), . . . is even. We define Aq as the automaton
obtained by changing in A the initial state to q: Aq = 〈Σ, Q, δ, q,Ω〉, and we say that A
accepts the tree t from state q, if t |= Aq.

I Example 2. Let A = 〈Σ, Q, q0, δ,Ω〉 be an auto-
maton with Σ = {a, b : o → o, c : o → o → o},
Q = {q0, q1, q2}, Ω = {q0 7→ 0, q1 7→ 1, q2 7→ 2}
and δ = {q0

c−→ (q0, q0), q0
b−→ q1, q1

a−→ q2, q1
b−→

q1, q2
a−→ q2, q2

b−→ q1}.
The automaton A accepts the trees whose branches are
labelled by cω or by c∗ · b · (b∗ · a)ω. An accepting run
of A on the tree ‖G‖ of Example 1 is depicted on the
right.

cq0

cq0

cq0
. . .

bq0

aq1

bq2

aq1

bq2

aq1

bq2

aq1
...

bq0

bq1

aq1

bq2

bq1

aq1

bq2
...

bq0

bq1

bq1

bq1

aq1

bq2
...

3 Logical reflection and logical selection

In this section we formalise the notion of annotated tree and we define the problems of logical
reflection and logical selection we are interested in.

Given a signature Σ, a set X and a tree t on the signature Σ, we define the signature
Σ×X = {(a, x) : ok → o | a : ok → o ∈ Σ, x ∈ X} and we say that the tree t′ on the signature
Σ×X is an X-annotation of t, if domt = domt′ and if for all u ∈ domt, t′(u) = (t(u), x)
for some x ∈ X. For example a run of an automaton over a tree t is a Q-annotation of t, with
Q being the set of states of the automaton. Furthermore, for any tree t′ on the signature
Σ×X, we define Unlab(t′) as the tree on Σ obtained by turning all nodes (a, x) of t′ into a
i.e. the tree obtained by removing the annotated part of the tree.

Given a set of nodes S in a tree t, we define an S-marking of t as a {0, 1}-annotation
t′ of t such that for all nodes u, u ∈ S if and only if t′(u) = (t(u), 1). Given a µ-calculus
formula ϕ, we say that t′ is a ϕ-reflection of t if it is a marking of the set of nodes u such
that the subtree of t rooted at u satisfies the formula ϕ. Given a monadic second-order logic
(MSO) formula ϕ[x] with a first order free variable, we say that t′ is a ϕ[x]-reflection of t if
it is a marking of the set of nodes u satisfying ϕ[u]. Given an MSO formula ϕ[X] with a
second order free variable, we say that t′ is a ϕ[X]-selection of t if it is a marking of a set
of nodes S satisfying ϕ[S].

Finally, we define the µ-calculus reflection, MSO reflection, and MSO selection as
follow. Given a class R of generators of trees (i.e. a set of finitely described elements such
that to each g ∈ R we associate a unique tree ‖g‖), we say that R is (effectively) reflective
with respect to the µ-calculus (resp. MSO) if for any µ-calculus formula ϕ (resp. any
MSO formula ϕ[x]) and any tree generator g ∈ R, one can construct another generator g′
such that the ‖g′‖ is a ϕ-reflection (resp. ϕ[x]-reflection) of ‖g‖. We say that R is (effectively)
selective with respect to MSO if for any MSO formula ϕ[X] and any generator g ∈ R
such that there exists a subset S of nodes of ‖g‖ satisfying ϕ[S], one can construct another
generator g′ such that ‖g′‖ is a ϕ[X]-selection.

The main contribution of this paper is to give new proofs of the fact that schemes have
these properties. In order to do so we use the equivalence results between logic and automata,

6 Model Checking and Functional Program Transformations

and we rather prove automata reflexivity and automata selectivity defined as follows.
Given a tree t on the signature Σ and an automaton A = 〈Σ, Q, q0, δ,Ω〉, we define an

A-reflection of A on t as a 2Q-annotation t′ of t, such that for all nodes u, t′(u) = (t(u), Q′)
with Q′ ⊆ Q being the set of states q such that Aq accepts the subtree of t rooted on u; we
define an A-selection of A on t as an accepting run of A on t. We say that a class R of
generators of trees is reflective with respect to automata if for any automaton A and
any generator g ∈ R, one can construct another generator g′ such that ‖g′‖ is an A-reflection
of ‖g‖. We say that R is selective with respect to automata if for any automaton A and
any generator g ∈ R such that ‖g‖ |= A, one can construct another generator g′ such that
‖g′‖ is an A-selection of ‖g‖.

From the equivalence between logics and automata [21] we have that schemes are reflective
with respect to the µ-calculus iff they are reflective with respect to automata, and they are
selective with respect to MSO iff they are reflective with respect to automata. Furthermore,
it is shown in [3] that µ-calculus reflection for schemes implies MSO reflection.

4 Morphisms

4.1 Definitions
In the following we fix a scheme G = 〈Σ,N ,V, S,R〉. We define a typed domain D as a set
such that each element is typed, and to each element d : τ1 → τ2 ∈ D is associated a partial
mapping fd from Dτ1 to Dτ2 , where Dτ = {d ∈ D | d : τ}. We write d d′ the element fd(d′).

We define a morphism J·K : T (Σ]N)→ D from terms on Σ]N to the domain D as
a mapping such that (1) if t : τ then JtK : τ , (2) if t0 : τ1 → τ2 and t1 : τ1, then JtK Jt′K is
defined and equal to Jt t′K. In the following, we refer to JtK as the D-value of the term t.

I Example 3. Let D =
⋃
τ{⊥τ : τ,>τ : τ} such that for all τ1, τ2: >τ1→τ2 >τ1 = >τ2 ;

>τ1→τ2 ⊥τ1 = >τ2 ; ⊥τ1→τ2 >τ1 = >τ2 ; If τ2 = o then ⊥τ1→τ2 ⊥τ1 = >τ2 , otherwise
⊥τ1→τ2 ⊥τ1 = ⊥τ2 . For t : τ , we define JtK as JtK = >τ if t contains a ground subterm and
JtK = ⊥τ otherwise. Then J·K is a morphism since t1 t2 contains a ground subterm iff t1
contains a ground subterm, or t2 contains a ground subterm, or t1 t2 is ground.

Note that a morphism is entirely defined by its value on Σ] N , i.e. from those values
one can compute JtK for any term t. Also remark that given a context C[•] and two terms t
and t′, if JtK = Jt′K then JC[t]K = JC[t′]K.

We say that a morphism J·K is stable by rewriting if for t, t′ ∈ T such that t → t′,
JtK = Jt′K. Finally, given a set of terms T ′ ⊆ T (Σ] N), we say that the morphism J·K
recognises T ′ if there exists a subset D′ of D such that t ∈ T ′ if and only if JtK ∈ D′. In
Example 3, the morphism recognises the set of terms containing a ground term as a subterm.

4.2 Embedding a morphism into a scheme
We fix a scheme G = 〈V,Σ,N ,R, S〉 and a morphism J·K : T (Σ] N) → D on G, stable
by rewriting, such that for all type τ , Dτ is finite. In Appendix A, we transform G into
G′ = 〈V ′,Σ′,N ′,R′, S〉 which, while it is producing a derivation, evaluates Jt′K for any
subterm t′ of the current term and annotates the term with all these D-values. The new
symbols of G′ are symbols of G annotated with elements of the domain D, and we define
a transformation (·)+ from terms of G to terms of G′ such that the transformation t+ of t
will be annotated with the D-values of the subterms of t. The tree generated by G′ will be
annotated and when one removes these annotations, one retreives back the tree generated by
G. More precisely we show the following.

A. Haddad 7

I Theorem 4 (Embedding a morphism). Given two terms t, t′ : o ∈ T (Σ]N), if t⇒G t′, then
t+ ⇒G′ t′+. In particular Unlab(‖G′t+‖) = ‖Gt‖ (where Unlab is the function that removes
the annotations).

I Remark. This transformation keeps the structure of the original scheme i.e. the new
symbols are simple labelings of the original ones, new rewrite rules are obtained by duplicating
some subterms and labeling the symbols, a very simple transformation allows to get back
to the original scheme, and there is a direct correspondence between derivations of the two
schemes.

4.3 Applications
Embedding properties of subterms during a derivation, or properties of subtrees of the
value tree, can be useful for program analysis: instead of saying “There will be a forbidden
behaviour in the program” reflection allows to say during the execution of a program “Here,
the forbidden behaviour will appear in this subexpression, but the rest of the program is
valid”. Furthermore, once a property is embeded into a scheme, one can add some new
rewrite rules that deal explicitly with wether the property is valid or not. For example one
could replace all forbidden subtrees of the value tree by a special symbol forbidden, as
illustrated in Section 5.

Some morphisms generated by type systems are used in [15] to model check a subclass of
trivial acceptance condition automata (i.e. automata where there is no colouring function,
and the acceptance of a tree simply asks if there exists a run of the automaton on the tree).
Then the construction allows one to reflect the accepting states of the automaton (as defined
in Section 3). This result has been improved in [23] to deal with the whole class of trivial
acceptance condition automata. In Section 6 we extend this result to show that for any parity
tree automaton one can create a morphism that reflects the acceptance of the automaton on
the value tree.

One can create a model (for example in [2]) to decide whether or not a ground term t

would be productive or not (i.e. ‖t‖ 6= ⊥). Reflecting the productivity of terms into a scheme
‖G‖ allows one to create a scheme G′ on the signature Σ] {⊥} such that ‖G′‖ = ‖G‖, but
such that no derivation will create some non productive terms. In [11] we developed this
idea to compare evaluation policies.

5 An example of scheme transformation

In this section, we present a simple example that describes how one can use the embedding
procedure to transform a program.

Let Map({0, 1}) be the typed domain inductively defined by Map({0, 1})o = {0, 1},
Map({0, 1})τ→τ ′ is the set of total functions from Map({0, 1})τ to Map({0, 1})τ ′ . And given
f : τ → τ ′ and h : τ in Map({0, 1}), f · h = f(h).

Let G = 〈V,Σ,N , S,R〉 be defined by V = {y : o→ o, x : o}, Σ = {a : o2 → o, b : o, c : o},
N = {S : o,H : o→ o, J : o→ o, F : (o→ o)→ o}, R contains the following rewrite rules:

S → a (F H) (F J) H x → a x (H x)
J x → a (J x) (J x) F y → a (y b) (y c).

The value tree of G is (partially) depicted in Figure 1. We write [u, v] the mapping
f : {0, 1} → {0, 1} such that f(0) = u and f(1) = v for all u, v. We define the morphism ϕ

8 Model Checking and Functional Program Transformations

a
a

a a

a a a a
· · · · · ·

a
a

a

a

· · ·

b

b

b

a

a

a

· · ·

c

c

c

Figure 1 The value tree of the scheme of Section 5.

as follows:

ϕ(b) = 0 ϕ(c) = 1 ϕ(S) = 1 ϕ(a) u v = u ∨ v
ϕ(H) u = u ϕ(J) u = 0 ϕ(F) [u, v] = u ∨ v.

One can check that the morphism ϕ is stable by rewrite. Furthermore it recognises the
property “t has type o, and its value tree contains a c”, with the subset A′ = {1}.

We construct a scheme G′ = 〈V ′,Σ′,N ′, S,R〉 that consists of an embedding of the
morphism ϕ inside the scheme G. V ′ = {x : o, y0, y1 : o → o}, Σ′ = {a0,0, a0,1, a1,0, a1,1 :
o2 → o, b, c : o}, N ′ = {S : o, H0, H1, J0, J1 : o, F [0,0], F [0,1], F [1,0], F [1,1] : (o→ o)2 → o},
R′ contains the following rewrite rules:

S → a1,0 (F [0,1] H0 H1) (F [0,0] J0 J1)
H0 x → a0,0 x (H0 x)
H1 x → a1,1 x (H0 x)
J0 x → a0,0 (J0 x) (J0 x)
J1 x → a0,0 (J1 x) (J1 x)
F [0,0] y0 y1 → a0,0 (y0 b) (y1 c)
F [0,1] y0 y1 → a0,1 (y0 b) (y1 c)
F [1,0] y0 y1 → a1,0 (y0 b) (y1 c)
F [1,1] y0 y1 → a1,1 (y0 b) (y1 c).

Let us explain how the rewrite rule related to F [0,1] has been produced. Recall the original
rule: F y → a (y b) (y c).

The first occurrence of y is applied to b, therefore it should be annotated with ϕ(b) = 0.
Similarly, the second occurrence of y should be annotated with ϕ(c) = 1. This justifies the
occurrence of y0 and y1 on the left hand part of the rule.

The annotation [0, 1] means that this rule will be applied to an argument whose evaluation
is the mapping [0, 1], thus the evaluation of y b is equal to [0, 1] ϕ(b) = [0, 1] 0 = 0 and by a
similar reasoning the evaluation of y c is equal to 1. Therefore the occurrence of a should be
annotated with (0, 1).

We want to transform the scheme in order to forbid the derivation of a subterm when
its associated value tree will not include any c. For instance, the occurrence of a c would
correspond to a completed service, and thus such a situation witnesses a useless derivation.
In the embedded scheme, this can be detected by applying the evaluation of the head over
its annotation. For instance F [0,0]t1 t2 is the annotation of a term F t whose value is
ϕ(F) [0, 0] = 0. Therefore we might turn the rule associated to F [0,0] into F [0,0]y1 y2 →
forbidden, where forbidden : o is a new terminal added to the scheme. Here is the whole
set of rewrite rules transformed this way.

A. Haddad 9

S → a1,0 (F [0,1] H0 H1) (F [0,0] J0 J1)
H0 x → forbidden
H1 x → a1,1 x (H0 x)
J0 x → forbidden
J1 x → forbidden
F [0,0] y0 y1 → forbidden
F [0,1] y0 y1 → a0,1 (y0 b) (y1 c)
F [1,0] y0 y1 → a1,0 (y0 b) (y1 c)
F [1,1] y0 y1 → a1,1 (y0 b) (y1 c).

6 Logical reflection

In the following we present a morphism based on [17] that recognises the acceptance of a
parity tree automaton. Using the construction introduced in Section 4.2, one can construct
a scheme that reflects the accepting states of the automaton, which is equivalent to reflect
the subtrees accepted by a formula of the µ-calculus. In [3], µ-calculus reflection (and MSO
reflection) on schemes is already proven, but this construction uses the equivalence between
schemes and collapsible pushdown automata, and the successive transformations (scheme
→ pushdown automaton → reflective pushdown automaton → reflective scheme) lose the
structure of the scheme. In our construction, the structure of the scheme is the preserved,
in the sense of Remark 4.2. Since our proof of the logical reflection, as well as the one of
logical selection in Section 7, is build on top of the MSO model checking proof of Kobayashi
and Ong [17], we first recall their construction and then we explain how to use this result to
obtain the logical reflection.

6.1 Kobayashi-Ong result
We fix a non deterministic parity tree automaton A = 〈Σ, Q, qI , δ,Ω〉 and a scheme G =
〈Σ,N ,V, S,R〉. We let aritymax, ordermax, and mmax be the maximum arity in Σ]N , order
in Σ]N , colour in Ω(Q). The idea of the result is to define a type system, and to use this
type system in the construction of a two player parity game, such that Eve wins the game if
and only if the automaton accepts the value tree of the scheme.

The type system. Kobayashi and Ong introduced a set of judgement rules that
allow to type a term by an element of the typed set Map, called the set of mappings.
Mappings of type o are the states Q, and mappings of type τ → τ ′ are of the form
(θ1,m1) ∧ . . . ∧ (θk,mk) → θ with for all i θi is a mapping of type τ , mi is a color, and
θ is a mapping of type τ ′. The judgements are of the form Γ ` t . θ meaning that under
the environment Γ, one can judge t with the mapping θ. The environment Γ associates
some mapping and colors to non terminal and variables, and gives some restriction on the
judgements one can make. Terminals are judged according to the transition of the automaton,
i.e. a : ok → o ∈ Σ may be judged as ∅ ` a . (q1,m1) → . . . → (qk,mk) → q with for all i,
mi = max(Ω(qi),Ω(q)) and q a−→ q1, . . . , qk ∈ δ. This type system keeps track of the colours
in order to know exactly what colour has been seen along the term. It is given formally in
Appendix B.

The game. Now we define a game GA in which Eve’s states will be triples made of a
non terminal, mapping and a colour, and Adam’s states will be environments. Eve chooses
an environment that can judge the rewrite rule of the current nonterminal with the current

10 Model Checking and Functional Program Transformations

atomic mapping, while Adam picks one binding in the current environment. Intuitively, Eve
tries to show a well-typing of the terms with respect to the rewrite rules, that would induce
a well-coloured run of the automaton, and Adam tries to show that she is wrong. From the
state (F, θ,m), Eve has to find an environment Γ such that she can prove Γ ` rF : θ, then
Adam picks a F and θ′ in Γ and asks Eve to prove that θ′ is chosen correctly according to
the rewrite rule of F . If at some point of a play, Eve cannot find a correct environment, she
loses the play; if she can choose the empty environment, Adam would have nothing to choose
then she wins the play; if the play is infinite, Eve wins if and only if the greatest colour seen
infinitely often is even. The game is also given formally in Appendix B.

I Theorem 5 (Kobayashi, Ong 09). The tree ‖G‖ is accepted by A from the state q if and
only if Eve has a winning strategy from the vertex (S, q,Ω(q)) in the game GA.

6.2 A morphism for automata reflection
From the winning strategy of Eve, we define a morphism J·K : T (Σ]N)→ D as follows. The
domain D contains the sets of mappings of the same type: for all τ , Dτ = 2Mapτ . Given a
nonterminal F , JF K = {θ | ∃m Eve wins from (F, θ,m)}, given a ∈ Σ, JaK = {θ | ∅ ` a : θ},
and given d : τ1 → τ2 ∈ D and d′ : τ1 ∈ D d d′ = {θ | ∃(θ1,m1) ∧ . . . ∧ (θk,mk) → θ ∈
d ∀i θi ∈ d′}.

I Theorem 6. The morphism J·K recognises the states of the automaton, i.e. for each state
q ∈ Q of the automaton, it recognises the set Tq = {t : o | ‖Gt‖ |= Aq} which is the set
of ground terms whose associated value tree is recognised by the automaton from state q.
Furthermore, it is stable by rewriting.

Using the construction of Section 4.2, we have the following result.

I Corollary 7 (Automata Reflection). Higher order recursion schemes are reflective with
respect to automata (hence they are reflective with respect to µ-calculus, and to MSO).

7 Selection

Given a signature Σ, we recall the selection problem: given an MSO formula ϕ[X] having one
free monadic second order variable X, and a scheme G such that ‖G‖ satisfies the formula
∃X ϕ[X], produce another scheme G′ on the signature Σ× {0, 1} such that their exists a set
S satisfying ϕ[S] and ‖G′‖ is a S-marking of ‖G‖. Note that MSO selection implies MSO
reflection. Indeed, being able to mark the nodes u satisfying the formula ϕ[x] is equivalent
to being able to mark a (unique) set satisfying ψ[X] = ∀x x ∈ X ⇔ ϕ[x].

As mentioned in Section 3, MSO selection is equivalent to automata selection, therefore
we show a construction of a scheme annotating itself with an accepting run of the automaton.
Since we cannot embed this problem into a morphism, we have to define another construction,
similar in some ways to the one of Section 4.2. The construction is also based on the
Kobayashi-Ong result presented in Section 10. The main difference between the two results
(reflexivity and selectivity) is that to construct a reflection of an automaton we embedded the
winning region of the game into the scheme, while here we will embed the winning strategy
of the game to prove the selection.

I Theorem 8 (Automata Selection). Higher order recursion schemes are selective with respect
to automata (hence to MSO).

A. Haddad 11

Proof sketch. In the following, we give an informal glimpse on the proof, the full (technical)
proof can be found in Appendix C. Take a scheme G and an automaton A such that ‖G‖ |= A.
We want to construct a scheme G′ such that ‖G′‖ is an accepting run of A on ‖G‖. The
first observation is that there are some great similarities between the structure of the proof
trees in the type system system and the definition of a term. Indeed, one can type proofs
and one can apply proofs to one another to get new proofs. For example take two terms
t0 : o→ o and t1 : o and assume that we have a proof P0 of t0 . (θ1,m1)→ θ and a proof P1
of t1 . θ1 under some environments. Then one can put together P0 and P1 to obtain a proof
of ` t0 t1 . θ. We can see this proof as P0 P1: the application of P1 to P0.

In the actual construction, the transformed scheme will not deal with such proofs, but we
use this similarity between proofs and terms to create annotations of terms. Given a term t

and a proof P of a judgement Γ ` t . θ, we will define the annotated term tP where each
symbol is annotated by an atomic mapping and a color, verifying that if a non terminal F is
annotated by (θ,m) then Γ assiciate F to (θ,m). The term tP is somehow a trace of the
proof P. Now given a rewrite rule F x1...xk → e in the original scheme, we want to define
for all annotated versions F (θ,m) an associated rewrite rule in the transformed scheme. If
(F, θ,m) is a winning vertex of the game, then Eve can choose an environment Γ such that
Γ ` e.θ. We take a proof P of this judgement and we define F (θ,m)x1 . . . xk → eP . Since Eve
has chosen the environment Γ with respect to her winning strategy, then for all annotated
non terminals H(θ′,m′) appearing in eP , (H, θ′,m′) is winning in the game. In particular, if
the initial non terminal of the transformed scheme is S(θ,m) with (S, θ,m) winning in the
game (as it will be), any non terminal in any term of any derivation will be annotated in
order to represent a winning vertex in the game. Therefore we do not need to care about
which rewrite rule is chosen for F (θ,m) when (F, θ,m) is not winning.

As we said, the initial non terminal is (S, q0,Ω(q0)) which is winning in the game since A
accepts ‖G‖ from state q0. Any terminal a will be annotated by some (q1 → · · · → qk → q,m).
Then to obtain elements of Σ ×Q, we just turn any a(q1→···→qk→q,m) into a non terminal
and we add a rewrite rule transforming it into aq.

The intuition of why this construction works is the following, based on the proof of the
soundness of Kobayashi and Ong construction. To a derivation in the transformed scheme
we associate a tree of plays in the game. The terms will be labeled by some F (θ,m) that Eve
has chosen in the environments she picked, and each time Adam choose one such F (θ,m), it
is rewritten according to Eve’s strategy. Due to the colour constraints in the type systems,
we can show that from the point where F (θ,m) is created to the point where it is on the head
of a redex, the maximum colour that has been seen is m. Furthermore, we have that along
an infinite branch, there is an infinite sequence of nonterminals that are rewritten such that
each non terminal is created when the previous one is rewritten. This means that we can
map an infinite branch to an infinite play in the game. Furthermore the greatest colour seen
infinitely often along this branch is equal to the greatest colour seen infinitely often in the
sequence of maximum colours appearing between the non terminals of the sequence. And
this is equal to the greatest colour seen infinitely often in the play. Since Eve wins in the
game, this colour is even, then for any branch of the value tree of G′ the greatest colour seen
infinitely often is even, hence it is an accepting run. J

8 Conclusion

We have given new shape preserving constructions for logical reflection and logical selection
using a scheme-only approach, which can be useful for correction or synthesis of programs.

12 Model Checking and Functional Program Transformations

The complexity is the same as in the solutions proposed so far, i.e. the problem is n-
EXPTIME complete, and the size of the new scheme is n-EXP the size of the original one n
being the order of the scheme. As possible continuation of these work, we may be interesting
to see if these results scale for actual program verification, and if they can be included in
tools like T-RecS [16], a model-checker for HORS.

References
1 Klaus Aehlig. A finite semantics of simply-typed lambda terms for infinite runs of automata.

In CSL’06, volume 4207 of LNCS, pages 104–118, 2006.
2 R. M. Amadio and P-L. Curien. Domains and Lambda-Calculi. CTTCS, 1998.
3 Christopher H. Broadbent, Arnaud Carayol, C.-H. Luke Ong, and Olivier Serre. Recursion

schemes and logical reflection. In LICS’10, pages 120–129, 2010.
4 Arnaud Carayol and Olivier Serre. Collapsible pushdown automata and labeled recursion

schemes. In LICS’12, pages 165–174, 2012.
5 Didier Caucal. On infinite terms having a decidable monadic theory. In MFCS’02, volume

2420 of LNCS, pages 165–176, 2002.
6 Bruno Courcelle. A representation of trees by languages I. TCS, 6:255–279, 1978.
7 Bruno Courcelle. A representation of trees by languages II. TCS, 7:25–55, 1978.
8 Bruno Courcelle and Maurice Nivat. The algebraic semantics of recursive program schemes.

In MFCS’78, volume 64 of LNCS, pages 16–30, 1978.
9 Werner Damm. Higher type program schemes and their tree languages. In Theoretical

Computer Science, 3rd GI-Conference, volume 48 of LNCS, pages 51–72, 1977.
10 Werner Damm. Languages defined by higher type program schemes. In ICALP’77,

volume 52 of LNCS, pages 164–179, 1977.
11 Axel Haddad. IO vs oi in higher-order recursion schemes. In FICS’12, pages 23–30, 2012.
12 Matthew Hague, Andrzej S. Murawski, C.-H. Luke Ong, and Olivier Serre. Collapsible

pushdown automata and recursion schemes. In LICS’08, pages 452–461, 2008.
13 Klaus Indermark. Schemes with recursion on higher types. In MFCS’76, volume 45 of

LNCS, pages 352–358, 1976.
14 Teodor Knapik, Damian Niwiński, and Pawel Urzyczyn. Higher-order pushdown trees are

easy. In FOSSACS’02, volume 2303 of LNCS, pages 205–222, 2002.
15 Naoki Kobayashi. Types and higher-order recursion schemes for verification of higher-order

programs. In POPL’09, pages 416–428, 2009.
16 Naoki Kobayashi. A practical linear time algorithm for trivial automata model checking of

higher-order recursion schemes. In FOSSACS’11, pages 260–274, 2011.
17 Naoki Kobayashi and C.-H. Luke Ong. A type system equivalent to the modal mu-calculus

model checking of higher-order recursion schemes. In LICS’09, pages 179–188, 2009.
18 Naoki Kobayashi and C.-H. Luke Ong. A type system equivalent to the modal mu-calculus

model checking of higher-order recursion schemes (ext.). Private communication, 2012.
19 M. Nivat. On the interpretation of recursive program schemes. In Symp. Mat., 1972.
20 C.-H. Luke Ong. On model-checking trees generated by higher-order recursion schemes. In

LICS’06, pages 81–90, 2006.
21 M.O. Rabin. Decidability of second-order theories and automata on infinite trees. In Trans.

Amer. Math. Soc., 1969.
22 Sylvain Salvati and Igor Walukiewicz. Krivine machines and higher-order schemes. In

ICALP’11, pages 162–173, 2011.
23 Sylvain Salvati and Igor Walukiewicz. Using models to model-check recursive schemes. In

Typed Lambda Calculi and Applications, pages 189–204. Springer, 2013.

A. Haddad 13

A Proofs of Results in Section 4

A.1 Embedding a Morphism Into a Scheme, the construction
The construction is adapted from [11]. For technical convenience, we will annotate all symbols
by the D-value of their arguments, for example in the term F t1...tk, we will label F with
the k-tuple (Jt1K, ..., JtkK).

A problem may appear if some of the arguments are not fully applied. For example,
imagine we want to annotate F H, where F : (o→ o)→ o and H : o→ o: we will annotate
F with JHK, but since H misses its argument we do not know how to annotate it. The
problem is that we cannot wait to annotate it because once a non-terminal is created, the
derivation does not deal explicitly with it. The solution is to create one copy of H per
possible D-value of its arguments, i.e. one per element of Do. For example assume that
there are 4 of them: Do = {d1, d2, d3, d4} hence, F H will be annotated in the following way:
F JHK Hd1 Hd2 Hd3 Hd4 . Note that F JHK will not have the same type as F : F has type
(o→ o)→ o, but F JHK has type (o→ o)4 → o. Also note that, even if F has 4 arguments,
it only has to be labelled with a single D-value since all four arguments represent different
labellings of the same term. We now formalise these notions.

Types
To a type τ = τ1 → ...→ τk → o we associate the integer

nτ = Card
({

(d1, ..., dk) | ∀i di ∈ Dτi
})
,

and we fix an ordering {~dτ1 , ..., ~dτnτ } over the set {(d1, ..., dk) | ∀i di ∈ Dτi
}
. We define

inductively the type τ+ as τ+ = (τ+
1)nτ1 → ... → (τ+

k)nτk → o. Note that, as no = 1,
(ok → o)+ = ok → o.

Symbols
To a terminal a : ok → o and a tuple d1, ..., dk ∈ Do, we associate the terminal ad1,...,dk :
ok → o ∈ Σ′.

To a non terminal F : τ = τ1 → ... → τk → o (resp. a variable x : τ) and a tuple
d1 : τ1, ..., dk : τk, we associate the non-terminal F d1,...,dk : τ+ ∈ N ′ (resp. the variable
xd1,...,dk : τ+ ∈ V ′).

Terms
Given a mapping ρ : W → D with W ⊆ V, such that if x : τ , ρ(x) : τ , let J·Kρ be the
morphism from T (Σ] N] W) to D defined by letting JαKρ = JαK for α ∈ Σ] N and
JxKρ = ρ(x) for x ∈ W.

Given a term t : τ = τ1 → ... → τk → o ∈ T (V] Σ] N) and a mapping ρ : W → D
such that W ⊆ V contains all the variables appearing in t, we define inductively the term
t+d1,...,dk
ρ : τ+ ∈ T (V ′] Σ′] N ′) for all d1 : τ1, ..., dk : τk. If t = F ∈ N (resp. t = x ∈ V),
t+d1,...,dk
ρ = F d1,...,dk (resp. t+d1,...,dk

ρ = xd1,...,dk), if t = a ∈ Σ, t+d1,...,dk
ρ = ad1,...,dk . Finally

consider the case where t = t1 t2 with t1 : τ ′ → τ and t2 : τ ′. Let d = Jt2Kρ. Remark that
t1

+d,d1,...,dk
ρ has type (τ ′+)nτ′ → τ+. We define

(t1 t2)+d1,...,dk
ρ = t1

+d,d1,...,dk
ρ

~t2ρ,

14 Model Checking and Functional Program Transformations

where ~t2ρ = t2
+~dτ

′
1

ρ , . . . , t2
+~dτ

′
n
τ′

ρ . Note that since this transformation is only duplicating
and annotating, given a term t+d1,...,dk we can uniquely find the unique term t associated to
it. In the same way, a tree on Σ′ is simply an annotated tree on Σ.

Rewrite Rules
Let F : τ1 → ... → τk → o ∈ N , d1 : τ1, ..., dk : τk, and ρ = x1 7→ d1, ..., xk 7→ dk . If
F x1...xk → e ∈ R, we define in R′ the rule

F d1,...,dk ~x1...~xk → e+
ρ ,

where for all i, ~xi = x
~d
τi
1
i , . . . , x

~d
τi
nτi

1 . Finally, we let G′ = 〈V ′,Σ′,N ′,R′, S〉.

A.2 Embedding a Morphism Into a Scheme, The Proof..
In the following we prove that this construction satisfies Theorem 4:

Given two terms t, t′ : o ∈ T (Σ] N), if t ⇒G t′, then t+ ⇒G′ t′+. In particular
Unlab(‖G′t+‖) = ‖Gt‖ (where Unlab is the function that removes the annotations).

Proof of Theorem 4.2. First we need the following lemma.

I Lemma 9. Given F : τ1 → ...→ τk → o ∈ N , t1 : τ1, ..., tk : τk ∈ T (Σ]N), F x1...xk →
e ∈ R and ρ = x1 7→ Jt1K, ..., xk 7→ JtkK. Then

(e[∀i xi 7→ti])
+ = e+[

∀i,j x
~d
τi
j
i
7→t

~d
τi
j
i

].
Proof. The proof consists in an induction on the structure of e. J

We prove a slightly more general result that the one stated in the theorem: given two
terms t, t′ : τ ′1 → ... → τ ′` → o ∈ T (Σ] N), and d1 : τ ′1, ..., d` : τ ′` ∈ D, if t ⇒ t′, then
t+d1,...,d` ⇒ t′+d1,...,d` . We prove this result by induction on the structure of t.

Assume that t = α t1, ..., tk with α ∈ Σ]N . If α ∈ Σ or α ∈ N and k < arity(α). Then
t′ = α t′1...t

′
k such that for all i, ti ⇒ t′i. Therefore

t+d1,...,d` = αJt1K,...,JtkK,d1,...,d` t
+~dτ11
1 ... t

+~dτ1nτ1
1 ... t

+~dτk1
k ... t

+~dτknτk
k .

In this term, the head α is also not fully applied, then let s be such that t+d1,...,d` ⇒ s, we
have

s = αJt1K,...,JtkK,d1,...,d` s1
1... s

nτ1
1 ... s1

k... s
nτk
k ,

with for all i, j, t
+~dτi

j

i ⇒ sji . Then by induction hypothesis for all i, j we have sji = t
′+~dτi

j

i .
Then s = t′+d1,...,d` .

If α ∈ N and k = arity(α) (in particular ` = 0). Take α x1...xk → e ∈ R. We have
t′ = e[∀i xi 7→t′i] with ti → t′i. Let s be such that t+ ⇒ s. Then

s = e+
ρ
[
∀i,j x

~d
τi
j
i
7→sj

i

]

A. Haddad 15

with t
+~dτi

j

i ⇒ sji , and ρ = x1 7→ Jt1K, ..., xk 7→ JtkK. Then by induction hypothesis for all i, j

we have sji = t
′+~dτi

j

i . Lemma 9 states then that

s = (e[∀i xi 7→ti])
+ = (t′)+.

J

16 Model Checking and Functional Program Transformations

B Proofs of Results in Section 6.2

B.1 Definition of a two player game
A max parity game is a tuple G = 〈V, (VE , VA), E,Ω〉 where V is a set called the set of
vertices, (VE , VA) is a partition of V where VE (resp. VA) is called the set of vertices
of Eve (resp. of Adam), E ⊆ V × V is called the transition relation, Ω : (VE ∪ VA)→
{1, . . . ,mmax} for some mmax ∈ N is the colouring function.

A play in the game is a possibly infinite maximal sequence p = v0 · v1 · . . . in V ∗ ∪ V ω
such that for all i, (vi, vi+1) ∈ E, and if p = v1 · . . . · vk is finite, there is no v such that
(vk, v) ∈ E. Eve wins the play p if p is finite and the last vertex is in VA or if p is infinite
and the maximum colour seen infinitely often in Ω(v0),Ω(v1), . . . is even.

A (positional) strategy ϕ for Eve is a mapping ϕ : VE → V such that for all v ∈ VE ,
(v, ϕ(v)) ∈ E. Given a play v0 · v1 · . . . we say that Eve respects ϕ if for all vi ∈ VE ,
vi+1 = ϕ(vi). We say that the strategy is winning from a vertex v0 if Eve wins all
play where she respects ϕ and that starts from v0. A strategy ϕ for Eve is a mapping
ϕ : (VE ·VA)∗ ·VE → VA such that for all p = v0, . . . , vk ∈ (VE ·VA)∗ ·VE , (vk, ϕ(p)) ∈ E. Given
a play p we say that Eve plays according to ϕ in p, if for all vi ∈ VE , vi+1 = ϕ(v0, . . . , vi).
We say that the strategy is winning if Eve wins all play p where she plays according to ϕ.
A strategy ϕ is positional (or memoryless) if there exists a mapping f : VE → VA such that
for all or all p = v0, . . . , vk ∈ (VE · VA)∗ · VE , ϕ(p) = f(vk) (usually we directly give f as the
positional strategy).

A well known result is that if there exists a winning strategy for Eve, then there exist a
positional one. Furthermore, deciding if there exists a winning strategy is computable, and
the problem is in NP ∩ coNP.

B.2 A formal presentation of Kobayashi Ong result
In the following we fix a non deterministic parity tree automaton A = 〈Σ, Q, qI , δ,Ω〉 and a
scheme G = 〈Σ,N ,V, S,R〉. We let aritymax, ordermax, and mmax be the maximum arity in
Σ]N (resp. the maximum order in Σ]N , the maximum colour in Ω(Q)).

The idea of the result is to define a type system, and to use this type system in the
construction of a two player parity game, such that Eve wins the game if and only if the
automaton accepts the value tree of the scheme.

B.2.1 The Type System
We define inductively the typed set Map of atomic mappings as Mapo = Q and

Mapτ→τ
′

=
{
σ → θ′ | θ′ ∈ Mapτ ,

σ ⊆ {(θ,m) | θ ∈ Mapτ ,m ≥ max(Ω(θ),Ω(θ′))}
}
,

where Ω(θ) is defined inductively as Ω(θ) = Ω(q) if θ = q ∈ Q and Ω(θ) = Ω(θ′) if θ = σ → θ′.
For all type τ we choose and fix a complete ordering of the finite set Mapτ , and use the
notation (θ1,m1) ∧ ... ∧ (θk,mk) → θ′ to denote the mapping {(θ1,m1), ..., (θk,mk)} → θ′

where the sequence (θ1,m1), ..., (θk,mk) is ordered. In the following we will use the letter θ
to range over atomic mappings.

An environment Γ is a set of tuples α . (θ,m)b (called bindings) with α ∈ N] V, θ an
atomic mapping, m ≤ mmax a colour, and b ∈ {f, t}, called the flag.

A. Haddad 17

Intuitively, α . (θ,m)f means “an occurrence of α can be typed by θ if the greatest colour
seen along the path from the root of the term to the occurrence of α is m”. The binding
α . (θ,m)t is less restrictive, it means “an occurrence of α can be typed by θ if no colour
seen in the path from the root of the term to the occurrence of α is greater or equal than m”.
In the type system the flag will switch from f to t whenever the colour m is seen.

Given the tuple (θ,m)b and a colour m′ we define (θ,m)b ↑ m′ as

(θ,m)b ↑ m′ =


(θ,m)b if m′ < m

(θ,m)t if m′ = m

undefined if m′ > m

Intuitively, (θ,m)b ↑ m′ is the way to inform (θ,m)b that the colour m′ has been seen. We
define {α1.(θ1,m1)b1 , ..., α`.(θ`,m`)b`} ↑ m′ = {α1.(θ1,m1)b1 ↑ m′, ..., α`.(θ`,m`)b` ↑ m′}.
Note that it is undefined if one of the (θi,mi)bi ↑ m′ is undefined.

We define a type judgment as Γ ` t . θ with Γ an environment, t a term and θ an atomic
mapping. We say that a type judgment holds if it can be derived from the following judgment
rules:

{α . (θ,m)b} ` α . θ (T-Var)

if (θ,m)b ↑ Ω(θ) is defined and equal to (θ,m)t,

∅ ` a . (q1,m1)→ ...→ (qk,mk)→ q
(T-Const)

if a ∈ Σ and q a−→ q1, ..., qk ∈ δA and for all i, mi = max(Ω(qi),Ω(q)),

Γ0 ` t0 . (θ1,m1) ∧ ... ∧ (θk,mk)→ θ ∀i Γi ↑ mi ` t1 . θi
Γ0 ∪ Γ1 ∪ ... ∪ Γk ` t0 t1 . θ

(T-App)

if for all i, Γi ↑ mi is defined.

I Remark. Notice that if Γ ` t . θ holds then every binding α . (θ,m)b ∈ Γ needs to be
used in the proof of Γ ` t . θ. For example the judgement {α . (θ,m)b, α . (θ′,m′)b′} ` α . θ
with (θ,m)b 6= (θ′,m′)b′ does not hold, even if {α . (θ,m)b} ` α . θ holds. In particular if
α . (θ,m)b ∈ Γ and Γ ` t . θ then necessarily there is an occurrence of α in t.
In the following, we may use the shorthand

∧
j∈J(θj ,mj) for the sequence (θj1 ,mj1) ∧

... ∧ (θjk ,mjk) with J = {j1, ..., jk}, and α .
∧
j∈J(θj ,mj)bj for the environment α .

(θj1 ,mj1)bj1 , ..., α . (θjk ,mjk)bjk .
Given a rewrite rule rF = F x1...xk → e, an environment Γ and an atomic mapping

θ′ =
∧
j∈J1

(θ1j ,m1j) → ... →
∧
j∈Jk(θkj ,mkj) → θ, we use the notation Γ ` rF . θ′ to

denote the fact that for all i there exists Ii ⊆ Ji such that Γ, x1 .
∧
j∈I1(θ1j ,m1j), ..., xk .∧

j∈Ik(θkj ,mkj) ` e . θ.

B.2.2 The Game
Now we define a game in which Eve’s states will be triples made of a non terminal, an atomic
mapping and a colour, and Adam’s states will be environments. Eve chooses an environment
that can judge the rewrite rule of the current nonterminal with the current atomic mapping,
while Adam picks one binding in the current environment.

18 Model Checking and Functional Program Transformations

Formally, we define the max-parity gameGA = 〈V∀, V∃, E,Ω′〉 as follow: V∃ = {(F, θ,m) | F ∈
N , F : τ, θ : τ}, V∀ = {Γ | ∀α . (θ,m)b ∈ Γ α ∈ N ∧ b = f}, E = {

(
(F, θ,m),Γ

)
| Γ `

rF . θ} ∪
{(

Γ, (F, θ,m)
)
| F . (θ,m)f ∈ Γ

}
, For all (F, θ,m) ∈ V∃, Ω′

(
(F, θ,m)

)
= m and

for all Γ ∈ V∀, Ω′(Γ) = 0.
Intuitively, Eve tries to show a well-typing of the terms with respect to the rewrite rules,

that would induce a well-coloured run of the automaton, and Adam tries to show that she is
wrong. From the state (F, θ,m), Eve has to find an environment Γ such that she can prove
Γ ` rF : θ, then Adam picks a biding F ′ . (θ′,m′)f in Γ and asks Eve to prove that θ′ is
chosen correctly. If at some point of a play, Eve cannot find a correct environment, she loses
the play; if she can choose the empty environment, Adam would have nothing to choose
then she wins the play; if the play is infinite, Eve wins if and only if the greatest colour seen
infinitely often is even.

I Theorem 10 (Kobayashi, Ong 09). The tree ‖G‖ is accepted by A from the state q if and
only if Eve has a positional winning strategy from the vertex (S, q,Ω(q)) in the game GA.

B.3 A Morphism from Kobayashi and Ong Construction, Proof of
Theorem 6.

We recall the morphism J·K : T (Σ] N) → D. The domain D contains the sets of atomic
mappings of the same type: for all τ , Dτ = 2Mapτ . Given a nonterminal F , JF K = {θ |
∃m Eve wins from (F, θ,m)}, given a ∈ Σ, JaK = {θ | ∅ ` a : θ}, and given d : τ1 → τ2 ∈ D
and d′ : τ1 ∈ D:

d d′ =
{
θ
∣∣∣ ∃(θ1,m1) ∧ ... ∧ (θk,mk)→ θ ∈ d ∀i θi ∈ d′

}
.

We will show that for any ground term t : o, JtK = {q | ‖Gt‖ |= Aq}, and that the
morphism is stable by rewriting.

In the following we define an environment Γt and we show that given a term t : o and a
state q, there exists Γ ⊆ Γt such that Γ ` t . q if and only if ‖Gt‖ is recognised by A. Then
we show that given a term t : τ and an atomic mapping θ : τ , there exists Γ ⊆ Γt such that
Γ ` t . θ if and only if θ ∈ JtK.

B.3.1 The Environment witnesses the recognition of the automaton
We show that given a term t : o, A accepts ‖Gt‖ from state q if and only if q ∈ Γt(t).

I Lemma 11. If (F, θ,m) is winning for some m then, for all m′, (F, θ,m′) is winning.

Proof. From (F, θ,m′) Eve follows the exact same strategy. J

Let S = {(F, θ) | there exists a winning vertex (F, θ,m)} (a winning vertex is a vertex
from which Eve has a winning strategy). Note that Theorem 11 states that if (F, θ) ∈ S
then for all m, (F, θ,m) is winning. Let mmax be the maximum color. We define Γt =
{F . (θ,mmax)t | (F, θ) ∈ S} and Γf = {F . (θ,m)f | (F, θ) ∈ S,m a color}.

In the following, we say that an environment Γ witnesses t . θ if there exists a subset Γ′
of Γ such that Γ′ ` t . θ. We write Γ(t) the set of atomic mappings such that Γ witnesses
t . θ.

We define the mapping Π from environments to sets of couple of nonterminal and type as
Π(Γ) = {(F, θ) | ∃m, b F . (θ,m)b ∈ Γ}. Note that Π(Γf) = Π(Γt) = S. Finally note that a
subset Γ of Γt is entirely defined by Π(Γ) (indeed, Γ = {(F, θ,mmax) | (F, θ) ∈ Π(Γ)}).

A. Haddad 19

The idea of the proof is the following : first we show that A accepts ‖Gt‖ from state q if
and only if q ∈ Γf(t), and then we show that for all term t, Γf(t) = Γt(t).

I Lemma 12 (Γf Witnesses the Recognition of A). Given a term t : o and a state q of the
automaton, then A accepts ‖Gt‖ from state q if and only if there exists a subset Γ of Γf such
that Γ ` t : q.

Proof of theorem 12. First, as we pointed out before, notice that if for some Γ, s and θ,
Γ ` s : θ holds then all the elements of Γ have to be used in the proof using rule (T-Var). In
particular, if s does not contain any occurrence of a non-terminal F then there is no element
of Γ of the form F . (θ′,m)b.

Recall that Gt = 〈Σ,N] I,V,R] I → t, I〉. Let G = 〈VA, VE , E,Ω〉 be the game
associated to G and A, and Gt the game associated to Gt and A. Notice that Gt =
〈VA, VE] {(I, q,m) | q ∈ Q,m ∈ N}, E] {(I, q,m) → Γ |Γ ` t : q},Ω}. In particular, any
winning strategy in Gt is also a winning strategy in G, and any winning strategy in G is a
winning strategy in Gt on the vertices of VE .

Assume that A accepts ‖Gt‖ from state q. Then Theorem 10 states that the vertex
(I, q,Ω(q)) is winning in the game, hence there is a positional winning strategy defined on
(I, q,Ω(q)), and let Γ be the choice of Eve of vertex (I, q,Ω(q)) according to the strategy.
Note that Γ does not contains any I . (q′,m)f since I does not appear in t. Furthermore,
since it is a winning strategy, if F : (θ,m)f ∈ Γ then (F, θ,m) is winning in Gt hence it is
winning in G then Γ ⊆ Γf. From the definition of the game comes that Γ ` t . q.

On the other hand, assume that there is a subset Γ of Γf such that Γ ` t . q. Then the
strategy of playing Γ on state (I, q,Ω(q)) and Γ(F,θ,m) on (F, θ,m) for all winning vertices
(F, θ,m) is winning, hence A accepts ‖Gt‖ from state q. J

I Lemma 13. Let Γ be a subset of Γt, and m a color, then Γ ↑ m is defined and is equal to
Γ. Furthermore for any environment Γ, if Γ ↑ m is defined, then Π(Γ ↑ m) = Π(Γ).

Proof. It is sufficient to notice that since mmax ≥ m (θ,mmax)t ↑ m is defined and is equal
to (θ,mmax)t. The second point comes from the fact that the operator ↑ m does not change
the colors. J

I Lemma 14. (Technical, but needed to be formal) Given an environment Γ, a term t, and
F ∈ N . Given some θ′ and m, assume that Γ does not contain neither the binding F .(θ′,m)f

or F . (θ′,m)t.
If Γ] {F . (θ′,m)b} ` t . θ for some b then Γ ∪ {F . (θ′,m′)t} ` t . θ for all m′ ≥ m.

Proof. We prove the result by induction on the structure of t.
We know that t 6= a with a ∈ Σ because if Γ′′ ` a : θ then Γ = {}. We know that t 6= H

with H 6= F a nonterminal because if Γ′′ ` H . θ then Γ′′ = {H . (θ,m′′)b′′} for some m′′
and b′′.

If t = F , then Γ = {}, θ′ = θ and (θ,m)b ↑ Ω(θ) = (θ,m)t, hence m ≥ Ω(θ) therefore,
since m′ ≥ m ≥ Ω(θ), (θ,m′)t ↑ Ω(θ) = (θ,m′)t, thus {F . (θ,m′)t} ` F . θ.

If t = t0 t1 then there exists Γ0,Γ1, ...,Γk such that Γ0 ∪Γ1 ∪ ...∪Γk = Γ]{F . (θ′,m′)t}
, Γ0 ` t0 . (θ1,m1) ∧ ... ∧ (θk,mk) → θ and for all i ∈ {1, ..., k}, Γi ↑ mi ` t1 . θi. If
Γ0 = Γ′0] {F . (θ′,m)b} then by induction hypothesis Γ′0 ∪ {F . (θ′,m′)t} ` t0 . (θ1,m1) ∧
... ∧ (θk,mk) → θ. If for some i ≥ 1, Γi = Γ′i] {F . (θ′,m)b} then (θ′,m)b ↑ mi is
define and (θ′,m)b ↑ mi = (θ′,m)b′ and Γi ↑ mi = (Γ′i ↑ mi)] {F . ((θ′,m)b′}. Then
m ≥ mi hence m′ ≥ mi, thus (θ′,m′)t ↑ mi is define and is equal to (θ′,m′)t then
(Γ′i]{F .(θ′,m)b}) ↑ mi = (Γ′i ↑ mi)∪{F .((θ′,m)b′} ` ti : θi. Then Γ]{F .(θ′,m′)t} ` t.θ.

20 Model Checking and Functional Program Transformations

J

I Corollary 15. Let Γ ⊆ Γf such that Γ ` t : θ. Let Γ′ ⊆ Γt such that Π(Γ′) = Π(Γ) then
Γt ` t . θ.

Proof. The proof proceeds by induction on the number of non terminals in Γ. J

I Lemma 16 (Γt(t) = Γf(t)). Given a term t : τ and an atomic mapping θ : τ , if there is a
subset Γ′ of Γt such that Γ′ ` t . θ, there there is a subset Γ of Γf such that Γ ` t . θ.

Proof. We prove this result by induction of the structure of t.
If t = a with a a terminal then Γ′ = Γ = {}.
If t = F with F a nonterminal, then Γ′ = {F . (θ,mmax)t}, we define Γ = {F . (θ,Ω(θ))f}.

Since (θ,Ω(θ))f ↑ Ω(θ) = (θ,Ω(θ))t, we have Γ ` F . θ.
If t = t0 t1 then Γ′ ` t . θ is obtained using rule (T-App). Γ′ = Γ′0 ∪ Γ′1 ∪ ... ∪ Γ′k

with Γ′0 ` t0 . (θ1,m1) ∧ ... ∧ (θk,mk) → θ and for all i ∈ {1, ..., k} Γ′i ` t1 . θi. Then, by
induction hypothesis let Γ0,Γ1, ...,Γk ⊆ Γf such that Γ0 ` t0 . (θ1,m1) ∧ ... ∧ (θk,mk)→ θ

and for all i ∈ {1, ..., k} Γi ` t1 . θi. For all i ∈ {1, ..., k} we define Γ′′i ⊆ Γf as Γ′′i = Γi ⇑ mi

(defined by Γ′′i = {F . (θ′,max(mi,m
′))f|F . (θ,m′)f ∈ Γ}). Then we have Γ′′i ↑ mi =

{F . (θ′,mi)t|F . (θ,m′)f ∈ Γi,m′ 6= mi} ∪ {F . (θ′,m′)f|F . (θ,m′)f ∈ Γi,m′ > mi}, thus,
using Theorem 14 one can state Γ′′i ↑ mi ` t1 .θi, then if we define Γ = Γ0∪Γ′′1 ∪ ...∪Γ′′k ⊆ Γf,
we have Γ ` t . θ.

J

I Theorem 17 (Γt Witnesses the Recognition of A). Given a term t : o and a state q of the
automaton, then A accepts ‖Gt‖ from state q if and only if there exists a subset Γ′ of Γt

such that Γ′ ` t : q.

Proof. This is just a consequence of Lemma 12 and Lemma 16. J

B.3.2 The Environment witnesses the morphism
We show that for all term t, Γt(t) = JtK. Furthermore we show that the morphism is stable
by rewriting.

I Theorem 18. Given a term t, JtK = Γt(t).

Proof. We prove this result by induction on the structure of t. If t = a ∈ Σ then Γt(a) =⋃
Γ⊆Γt{θ | Γ ` a.θ}, for all Γ 6= ∅ we have {θ | Γ ` a.θ} = ∅, then Γt(a) = {θ | ∅ ` a.θ} = JaK.
If t = F ∈ N then Γt(a) =

⋃
Γ⊆Γt{θ | Γ ` a . θ}, for all Γ 6= {F . (θ′,mmax)t} for some

θ′ we have {θ | Γ ` a . θ} = ∅, then Γt(a) =
⋃

(F,θ′)∈S{θ | {F . (θ′,mmax)t} ` a . θ} =
{θ′ | (F, θ′) ∈ S} = JF K.

If t = t1 t2, take θ ∈ Γt(t). There exists Γ ⊆ Γt such that Γ ` t . θ. Therefore there exists
Γ0,Γ1, ..,Γk, θ1, ..., θk, m1, ...,mk such that

Γ0 ` t0 . (θ1,m1) ∧ ... ∧ (θk,mk)→ θ,
for all i ≥ 1, Γi ↑ mi ` t1 . θi,
Γ0 ∪ Γ1] ... ∪ Γk = Γ.

From Γ0 ∪ Γ1] ... ∪ Γk = Γ we get that all Γi are subsets of Γt. Then from Γ0 ` t0 .
(θ1,m1) ∧ ... ∧ (θk,mk) → θ we get that (θ1,m1) ∧ ... ∧ (θk,mk) → θ ∈ Γt(t0), then by
induction hypothesis (θ1,m1) ∧ ... ∧ (θk,mk) → θ ∈ Jt0K. Using Lemma 13 we have that
for all i Γi ↑ mi = Γi, then Γi ` t1 . θi hence θi ∈ Γt(t0) therefore by induction hypothesis
θi ∈ Jt0K. According to the definition of J·K we have θ ∈ Jt0K semt1 = Jt0 t1K.

A. Haddad 21

On the other hand, if θ ∈ Jt0 t1K = Jt0K semt1, then there exist θ1,...,θk and m1,...,mk

such that (θ1,m1) ∧ ... ∧ (θk,mk) → θ ∈ Jt0K and for all i θi ∈ Jt1K. Then by induction
hypothesis there exists Γ0, ..,Γk ⊆ Γt such that Γ0 ` t0 . (θ1,m1) ∧ ... ∧ (θk,mk) → θ and
for all i ≥ 1 Γi ` t1 . θi. Then again, using Lemma 13 we have that for all i Γi ↑ mi = Γi,
then for all i ≥ 1 Γi ↑ mi ` t1 . θi. Therefore Γ0 ∪ Γ1 ∪ ... ∪ Γk ` t1 t2 . θ, and since
Γ0 ∪ Γ1 ∪ ... ∪ Γk ⊆ Γt, θ ∈ Γt(t1 t2). J

I Theorem 19. Given two terms t, t′, if t→ t′ then JtKΓt = Jt′KΓt .

Proof. Since t→ t′, there exist two terms r, r′ : o and a context C[•] such that r → r′, there-
fore we have ‖Gr‖ = ‖Gr′‖. Theorem 17 states that JrK = {q | A accepts ‖Gr‖ from state q},
then we have JrK = Jr′K, hence JtK = JC[r]K = JC[r′]K = JC[t]K. J

B.4 MSO reflection

In order to prove MSO reflexivity, we use the following theorem from [3].

I Theorem 20 (Broadbent, Carayol, Ong, Serre). Let R be a class of generators of trees. If
R is reflective with respect to modal µ-calculus and with respect to regular paths, then it is
also reflective with respect to MSO.

We need to define what means the reflexivity with respect to regular paths. Given
a regular language L in (Σ · {1, ..., aritymax})∗, a scheme G on Σ, one can reflect L on
G if one can construct a scheme G′ on Σ × {0, 1} such that ‖G′‖ is an SL-marking (as
defined in Section 3), SL being the set of node u = j0 · j1 · j2 · ... · jk such that the word
Path(u) = ‖G‖(ε) · j0 · ‖G‖(j0) · j1 · ‖G‖(j0j1) · j2 · ... · ‖G‖(j0...jk−1) · jk is in the language L.

I Remark. The construction of [3] uses the two reflexivity construction one after the other,
and no other transformation, in particular if both reflexivity transformations keep the
structure of the scheme, then the resulting MSO transformation does too.

I Lemma 21. Higher order recursion schemes are reflective with respect to regular paths.

B.5 Schemes are reflective with respect to regular paths, proof of
Lemma 21.

Take a regular language L in (Σ · {1, ..., aritymax})∗. There is a finite word automaton
B = 〈Σ] {1, ..., aritymax}, Q, q0, F ⊆ Q, δB〉 that recognises exactly L. We construct a parity
tree automaton A = 〈Σ, Q, q0, δ,Ω = {q 7→ 0 | q ∈ Q}〉 such that Path(u) ∈ L if and only
if there is a state qf ∈ F that can be reached by A on u. We define the transitions in δ

as q a−→ q1, ..., qk ∈ δ if for all j there exists q′ such that q a−→ q′ ∈ δB and q′ j−→ qj ∈ δB.
A simple induction shows that A satisfies the property we wanted. Now we show that we
can embed the reachable states of A in a scheme, which would conclude the proof, since we
can always turn a terminal labelled by a set of state aQ′⊆Q into a nonterminal, and make it
transforms into the terminal (a, 0) if Q′ ∩ F = ∅ and (a, 1) otherwise.

I Lemma 22 (Reachable States Reflexion). Given an automaton A and a scheme G one can
create a scheme G′ on Σ× 2Q such that the projection on the first component of ‖G′‖ is ‖G‖
and such that for all u, if ‖G′‖(u) = (a,Q′) then Q′ is the set of reachable states at the node
u.

22 Model Checking and Functional Program Transformations

Proof. We use a similar construction as in Section 4.2. In the following let N = Card(2Q),
and let Q1, ..., QN be an enumeration of 2Q. We define inductively the type τ+ = (τ+

1)N →
...→ (τ+

k)N → o.
To a terminal a : ok → o (resp. a nonterminal F : τ variable x : τ)and a set of states

Q′ ⊆ Q, we associate the terminal aQ′ : (ok → o)+ ∈ Σ′ (resp. a nonterminal FQ′ : τ variable
xQ
′ : τ).
Given a term t : τ ∈ T (V ′] Σ′]N ′) and a set Q′ ⊆ Q , we define inductively the term

tQ : τ+ ∈ T (V ′] Σ′] N ′) f. If t = a ∈ Σ a symbol, tQ′ = aQ
′ , if t = α ∈ Σ] V, tQ′ = αQ

′ ,
if t = t1 t2 we define (t1 t2)Q = t1

Q t2
Q1 ... t2

QN . Note that since this transformation is
only duplicating and annotating, given a term tQ

′ we can uniquely find the unique term t

associated to it.
Let F : τ1 → ...→ τk → o ∈ N , Q′ ⊆ Q. If F x1...xk → e ∈ R, we define in R′ the rule

FQ xQ1
1 ... xQN1 ... xQ1

k ... xQNk → eQ.

Finally, We let G′ = 〈V ′,Σ′,N ′,R′, S{q0}〉.

I Lemma 23. Given two terms t, t′ : o ∈ T (Σ]N), if t⇒ t′, then tQ ⇒ t′Q.

Proof. The proof is entirely similar to the one of Section 4.2. J

Now we define the scheme G′′ in which symbols in Σ′ are turned into non terminals and
where the new set of terminals is Σ× 2Q. The rules associated to aQ is :

aQ xQ1
1 ... xQN1 ... xQ1

k ... xQNk → aQ x
Qi1
1 ...x

Qik
k

with for all j, Qij = {qi | ∃q ∈ Q, q
a−→ q1, ..., qi, ..., qk}.

I Lemma 24. Given a term t : o, let t{q0}? be the term obtained by applying all redex whose
head is in Σ′ in t{q0}. We have that the projection of (t{q0}?)⊥ on its first component is equal
to t⊥, furthermore each node is labelled by the reachable sets by the automaton.

Proof. A simple structural induction proves the result. J

Let S = t0 ⇒ t1 ⇒ t2 ⇒ ... be the parallel derivation in G. We know that the limit tree
of t⊥0 , t⊥1 , t⊥2 , ... is equal to ‖G‖, we get by the previous lemma that ‖G‖ v ‖G′′‖|1 (‖G′′‖|1
denote the projection on the first component of ‖G′′‖). Since we can assume without loss of
generality that there are no occurrences of ⊥ in ‖G‖, we get ‖G‖ = ‖G′′‖|1, which concludes
the proof. J

A. Haddad 23

C Proof of Theorem 8: automata selection

C.1 The construction

In the following we fix a scheme G = 〈V,Σ,N , S,R〉 and a non deterministic parity tree
automaton A such that ‖G‖ is accepted by A from state q0. For all vertex (F, θ,m) in the
associated game, let Γ(F,θ,m) be the choice of Eve in a positional winning strategy. We
construct a scheme G′ = 〈V ′,Σ′,N ′, S(q0,Ω(q0)),R′〉 that would consists in annotated version
of G.

We write aritymax the maximum arity of Σ]N , ordermax the maximum order, and mmax
the maximum color of Ω(Q). We define TypesG as the finite set of types of order and arity
less or equal than ordermax and aritymax.

Types

To a type τ we associate the integer

nτ = Card {(θ,m) | ∀i θ : τ,m ≤ mmax} .

We define inductively the type τ+ = (τ+
1)nτ1 → ... → (τ+

k)nτk → o. For example (ok →
o)+ = ok·|Q|·mmax → o.

Symbols

We define

Σ′ = {a(q1→...→qk→q,m) : (ok → o)+ | a : ok → o ∈ Σ, q1, ..., qk, q ∈ Q,m ≤ mmax},

V ′ = {vτ,i|τ ∈ TypesG , i ≤ aritymax}] {x(θ,m) : τ+ | x : τ ∈ V, θ : τ,m ≤ mmax},

N ′ = {V oidτ |τ ∈ TypesG}] {F (θ,m) : τ+ | F : τ ∈ N , θ : τ,m ≤ mmax}.

Terms

Given a term e = τ ∈ T (V] Σ]N), a mapping θ and an environment Γ such that Γ ` e . θ
we define the term eΓ,θ : τ+ by induction on the structure of e.

If e = a ∈ Σ, then Γ = ∅ and θ = q1 → ... → qk → q ∈ Q, we define eΓ,q =
a(q1→...→qk→q,Ω(q)).
If e = F ∈ N , then Γ = {F . (θ,m)b} for some m and b, we define eΓ,θ = F (θ,m).
If e = x ∈ V, then Γ = {x . (θ,m)b} for some m and b, we define eΓ,θ = x(θ,m).
If e = e1 e2 with e2 : τ2, then there exist (θ1,m1),...,(θk,mk) and Γ0,Γ1, ...,Γk such that
Γ0 ∪Γ1 ∪ ...∪Γk = Γ, Γ0 ` t0 . (θ1,m1)∧ ...∧ (θk,mk)→ θ and for all i, Γi ↑ mi ` t1 . θi.
We define

eΓ,θ = e
Γ0,(θ1,m1)∧...∧(θk,mk)→θ
1 eΓ↑m1,θ1

2 ... eΓ↑mk,θk
2 V oidτ2 ... V oidτ2 .

Here V oidτ2 is used to fill the missing arguments.

24 Model Checking and Functional Program Transformations

Rewrite Rules
Given a rewrite rule F x1...xk → e with F : τ1 → ...→ τk → o and a couple (θ,m) with

θ =
`1∧
i

(θ1,i,m1,i)→ ...→
`k∧
i

(θk,i,mk,i)→ θ′

such that (F, θ,m) is winning in the game. For all 1 ≤ j ≤ k we define the tuple ~xj =
(x(θj,1,mj,1)
j , ..., x

(θj,`j ,mj,`j)
j , vτj ,..., ..., vτj ,...), that contains nτi elements of type τ+

i (the first
elements consists in xj annotated with the couples (θj,i,mj,i), and the remaining of the tuple
is filled with some variables vτj ,i).

Let Γ = Γ(F,θ,m), x1 .
∧
j∈I1(θ1j ,m1j), ..., xk .

∧
j∈Ik(θkj ,mkj) such that Γ ` e . θ.

To the nonterminal F (θ,m) ∈ N ′ we associate the rewrite rule

F (θ,m) ~x1... ~xk → eΓ,θ.

Notice that there is no use of variables vτj ,i in eΓ,θ they are only used to match the correct
type.

For other non terminals H(θ′,m′) ∈ N ′ such that (H, θ′,m′) is not winning in the game,
we define the rule H x1...xk′ → V oido but as we will see, such non terminals will never
appears in derivations starting from S(q0,Ω(q0)).

We also add the rule V oidτ x1...xarity(τ) → V oido.

Remarks
By definitions of eΓ,θ, given a reachable term S →∗ t, all terminal symbols occuring in t are
of the form a(q1→...→qk→q,Ω(q)) with q a−→ q1, ..., qk ∈ δ.

A simple induction shows that in t, every fully applied terminal a(q1→...→qk→q,Ω(q)) will
have the structure:

a(q1→...→qk→q,Ω(q))~t1...~tk

with

~tk = tk, V oido, ..., V oido︸ ︷︷ ︸
no arguments

.

It means that every subtree of ‖G′‖ will have the structure

a(q1→...→qk→q,Ω(q)) t1 ⊥...⊥︸ ︷︷ ︸
no arguments

... tk ⊥...⊥︸ ︷︷ ︸
no arguments

.

Finally we define the scheme G′′ obtained from G′ by turning the terminals a(q1→...→qk→q,m)

as non terminals with the rewrite rules

a(q1→...→qk→q,m) ~x1 ... ~xk → (a, q) x1...xk.

We state precisely the Automata Selection Theorem we want to prove in this section.

I Theorem 25. The tree ‖G′′‖ is an accepting run of A on ‖G‖.

A. Haddad 25

The proof of this theorem is based on the proof of the soundness of the construction of
Kobayashi and Ong.

In the following we only consider the OI parallel derivation, which can be shown to
lead to the value tree (using a well known λ-calculus theorem called the Standardisation
Theorem).

Given a term t = α t1...tk with α ∈ Σ]N , we define inductively the OI parallel rewriting
t?OI of t:

if α ∈ Σ or k < arity(α), then t? = α t?1...t
?
k,

if α ∈ N and k = arity(α), let α x1...xk → e be the rewrite rule associated to α, we have
t? = e[∀i xi 7→ti].

Given t, t′, we write t⇒OI t
′ the relation “t′ = t?”.

26 Model Checking and Functional Program Transformations

C.2 Occurrences
In the following we put some formalism on the notion of occurrence of some symbols in terms.
We define a conservation relation and a creation relation that matches the ideas that after a
rewriting t1 → t2 such occurrence in t2 is the same as such other occurrence in t1, or that
such occurrence in t2 has been created during the rewriting t1 → t2.

For example let’s look at a term t1 = a (F H) with the rewriting rule F x → J x x.
The term t1 can be rewritten in t2 = a (J H H). We want to formalise the fact that both
occurrences of H in t2 comes from the one in t1 or the fact that the head a of t2 is the same
as the one in t1. We also want to express the fact that the occurrence of J in t2 has been
created by the occurrence of F in t1.

For technical reason, to each rewriting t→ t′ we associate a canonical context C[•] where
the rewriting take place. This would avoid some ambiguity in the definitions.

I Definition 26 (Occurrences). Given a set of typed symbols Γ and a term t : τ ∈ T (Γ), an
occurrence in t is a couple (C[•], α) with C[• : τ ′] : τ a context and α : τ ′ a symbol in Γ
such that t = C[•].

Notation. We may use subscript to denote occurrence of a symbol, e.g. αi would denote
an occurrence of α. When we do not want to precise the symbol, we use the notation occ or
occi for some i. Given an occurrence occ we write Cocc[•] the associated context. We write
Occt the set of occurrences in the term t.

I Definition 27 (Conservation Relation). Given t1, t2 such that t1 → t2 and let C[•] be
the context associated to t1 → t2, F ∈ Σ, F x1, ..., xk ∈ R, and s1, ..., sk be such that
t1 = C[F s1, ..., sk] and t2 = C[e[∀i x1 7→si]]. Given α ∈ Σ] N and α1 (resp. α2) an
occurrence of α in t1 (resp. in t2). We say that α1 gives α2 in the rewriting t→ t′, written
α1 �t→t′ α2 (or simply α1 � α2 when the rewriting is clear from the context), if:

Either there exist a two holes context C[•1][•2] such that

Cα1 [•] = C[•][F s1, ..., sk] Cα2 [•] = C[•][e[∀i x1 7→si]] C[•] = C[α][•].

Or there exists j and a context C ′[•] such that sj = C ′[α], Cα1 [•] = C[F s1...C
′[•]...sk]

and there exist an occurrence occ = (Cocc[•], xj) of xj in e such that

Cα2 [•] =
(
Cocc

[
C ′[•]

])
[∀i x1 7→si]

Remark. Given α2, there exists at most one α1 such that α1 � α2.

I Definition 28 (Creation Relation). Given t1, t2 such that t1 → t2 and let C[•] be the context
associated to t1 → t2, F ∈ Σ, F x1, ..., xk ∈ R, and s1, ..., sk be such that t1 = C[F s1, ..., sk]
and t2 = C[e[∀i x1 7→si]]. Given α ∈ Σ] N and α2 (resp. α2) an occurrence of α in t2. Let
F1 be the occurrence (CF1 = C[• s1...sk], F) of F in t1, we say that α1 creates α2 in the
rewriting t→ t′, written F1 �t→t′ α2 (or simply F1 � α2 when the rewriting is clear from
the context), if there exists a context C ′[•] such that e = C ′[α] and

Cα2 [•] = C
[(
C ′[•]

)
[∀i xi 7→si]

]
.

I Proposition 29. Given t1 → t2 and occ2 an occurrence in t2 there there exist a unique
occurrence occ1 in t1 such that either occ1 � occ2 or occ1 � occ2 (but not both).

A. Haddad 27

Proof. Let C[•] be the context associated to t1 → t2. The proof comes from the fact that
for any occurrence α2 in t2, there are three disjoint possibilities.
1. Either there exist a two holes context C[•1][•2] such that

Cα2 [•] = C[•][e[∀i x1 7→si]]

and C[•] = C[α][•], in which case there is an occurrence (C[•][F s1...sk], α) in t1 that
gives α2.

2. Or there exist an occurrence occ = (Cocc[•], xj) of xj in e and a context C ′[•] such that

Cα2 [•] =
(
Cocc

[
C ′[•]

])
[∀i x1 7→si]

in which case there is an occurrence (C[F s1...C
′[•]...sk], α) in t1 that gives α2.

3. Or there exists a context C ′[•] such that e = C ′[α] and

Cα2 [•] = C
[(
C ′[•]

)
[∀i xi 7→si]

]
in which case the occurrence (C[•s1...sk], F) creates α2.

J

Now we want to look at occurrences of terms inside a derivation. To specify the term
from which comes an occurrence we say that an occurrence in a derivation is an occurrence of
a term inside the derivation along with the index of the term. This allows to avoid ambiguity
if two terms in the derivation are the same.

In the following we let d = t0 → t1 → t2 → ... be a derivation.

I Definition 30 (Occurrences in derivation). We define the set Occd of occurrences in der as:

Occd = {(i, occi) | occi ∈ ti}

I Definition 31 (Conservation relation in Occd). We define the relation �d (or simply �
when the derivation is clear from the context) on Occd ×Occd as the smallest reflexive and
transitive relation satisfying that if occi and occi+1 are occurrences of respectively ti and
ti+1 such that occi �ti→ti+1 occi+1 then (i, occi)�der (i+ 1, occi+1).

I Definition 32 (Creation relation in Occd). We define the relation �d (or simply � when
the derivation is clear from the context) on Occd ×Occd as (i, occi) �d (j, occj) if occi (resp.
occj) is an occurrence of ti (resp. tj), and if there exists an occurrence occi+1 in ti+1 such
that occi �ti→ti+1 occi+1 and (i+ 1, occi+1)�d (j, occj).

28 Model Checking and Functional Program Transformations

C.3 Definition of (Σ×Q)-contexts
I Definition 33 ((Σ × Q)-context). A (Σ × Q)-context is a context C[• : o] : o such that
either C[•] = • or

C[•] = (a, q) t1 ... C ′[•] ... tk

with (a, q) ∈ Σ×Q and C ′[•] a Σ-context.
We associate to C[•] a finite sequence bC[•] of (Σ×Q · N)∗ as if C[•] = •, bC[•] = ε, if

C[•] = (a, q) t1 ...tj−1 C
′[•] tj+1 ...tk

then

bC[•] = (a, q), j, bC′[•].

I Definition 34 (Color of a sequence b). Given a finite sequence b of (Σ×Q ·N)∗ and a state
q (which represent the state of the node b is pointing on), we define the color of (b, q) by
induction on b: if b = ε then Ω(b, q) = q, if b = (a0, q0)jb′ then Ω(b, q) = max(q0,Ω(b′, q)).

I Definition 35 (Approximation). Given a tree over Σ × Q and an infinite branch b =
(a0, q0), j0, (a1, q1), j1, We say that a (Σ×Q)-context C[•] approximates b if bC[•] is a
prefix of b.

C.4 Correction of the Labelling of Non Terminals
I Lemma 36. Given a reachable term S(q0,Ω(q0)) →∗ t, all non terminal F (θ,m) occurring in
t satisfies that (F, θ,m) is winning in the game.

Proof. First given a rewrite rule H(θ′,m′)x1...xk → e with (H, θ′,m′) winning in the game,
we prove by induction on the structure of e that all non terminal F (θ,m) occurring in e

satisfies that (F, θ,m) is winning in the game.
Then a simple induction on the size of the derivation S(q0,Ω(q0)) →∗ t proves the lemma.

J

I Lemma 37. Given a derivation S(q0,Ω(q0)) = t0 → t1 → ... and two occurrences of
non terminals (F (θ,m)

i , i) and (H(θ′,m′)
j , j) with i < j. If (F (θ,m)

i , i) � (H(θ′,m′)
j , j), then

H . (θ′,m′)f ∈ Γ(F,θ,m).

Proof. Same kind of simple proof as the previous lemma. J

A. Haddad 29

C.5 Main Proof
I Lemma 38. Given a derivation S(q0,Ω(q0)) = t0 → t1 → ..., two indexes i < j, two
occurrences H(θ0,m0)

i in ti and F (θ,m)
j in tj such that:

(H(θ0,m0)
i , i) � (F (θ,m)

j , j),
There exists two Σ-contexts C1[•] and C2[•] such that:

C[•]H(θ0,m0) = C1[• s1...sarity(H(θ0,m0))],

C[•]F (θ,m) = C2[• t1...tarity(F (θ,m))],

bC2[•] = bC1[•] · b′.
Then Ω(b′, q) = m with θ =

∧
i(θ1,i,m1,i)→ ...→

∧
i(θk,i,mk,i)→ q.

I Theorem 39 (Kobayashi, Ong). Given an infinite derivation S(q0,Ω(q0)) = t0 → t1 → ...

and an infinite branch b in the limit tree of this derivation. there exist an infinite strictly
increasing sequence of indexes i0 = 0 < i1 < i2 < ... and an infinite sequence of occurrences
(occ0, i0), (occ1, i1), ... such that:

for all j, (occj , ij) � (occj+1, ij+1),
for all j Coccj [•] = Cj [• s1...sarity(•)] for some Σ-context Cj [•]and terms s1, ..., sarity(•),
for all j, let bj = bCj [•], then bj is a prefix of b,
the sequence b0, b1, b2, ... is increasing and its limit is b.
The greatest colour appearing infinitely often in b is equal to the greatest colour appearing
infinitely often in Ω(b′0),Ω(b′1),Ω(b′2), ... where for all i, bi+1 = bi · b′i.

Proof. See [18]. J

Now we can prove the main theorem.

Proof of Theorem 25. Proving that the value tree is indeed a run of the automaton is
easy and similar to the proof of Theorem 4, so we focus on proving that it is an accepting
run. Take a derivation leading to ‖G′′‖ and an infinite branch b in ‖G′′‖. Take an infinite
sequence of occurrences (occ0, i0), (occ1, i1), ... defined as in Theorem 39. We know that the
maximum colour seen infinitely often in b is the greatest colour appearing infinitely often in
Ω(b′0),Ω(b′1),Ω(b′2), Let F (θi,mi)

i be the non terminal associated to the occurrence occi.
By definition, Fi+1 . {θi+1,mi+1}f is in the environment picked by Eve from (Fi, θi,mi),
then, since Eve wins in the game when she respects her strategy, the infinite colour seen
infinitely often in m0,m1, ... is even. Since for all i, mi = Ω(b′i), it means that the greatest
colour seen infinitely often along b is even, which concludes the proof. J

30 Model Checking and Functional Program Transformations

C.6 Substitution Lemma
The following section consists in a proof of the following proposition.

I Proposition 40 (Substitution). Given e ∈ T (Σ]N] V), x : τ ∈ V, t : τ ∈ T (Σ]N] V),
if

Γx = Γ0, x . (θ1,m1)f, ..., x . (θk,mk)f ` e . θ,

∀i Γ′i = Γi ↑ mi ` t . θi

then

Γ0 ∪ Γ1 ∪ ... ∪ Γk ` e[x 7→t] . θ,

and if we let Γ = Γ0 ∪ Γ1 ∪ ... ∪ Γk we have(
eΓx,θ

)[
∀i x(θi,mi) 7→tΓ

′
i
,θi

] = (e[x 7→t])Γ,θ

I Lemma 41. If Γ ↑ m is well-defined, and if Γ ` t . θ holds then Γ ↑ m ` t : θ and
tΓ,θ = tΓ↑m,θ.

Proof. Straightforward induction on the derivation of Γ ` t . θ. J

I Lemma 42. If Γ ` t . θ then Γ ↑ Ω(θ) is well defined. Furthermore, if Γ ↑ Ω(θ) = Γ′ ↑ Ω(θ)
then Γ′ ` t . θ and tΓ′,θ = tΓ,θ.

Proof. The proof proceeds by induction on the derivation of Γ ` t . θ.
If the last rule applied is (T-Var), then t = α ∈ V] N and Γ = α . (θ,m)b with
(θ,m)b ↑ Ω(θ) = (θ,m)t. Thus Γ ↑ Ω(θ) is well defined. If Γ ↑ Ω(θ) = Γ′ ↑ Ω(θ) then
Γ′ = α . (θ,m)b′ and (θ,m)b ↑ Ω(θ) = (θ,m)t therefore Γ′ ` t . θ. We also have that
tΓ
′,θ = α(θ,m) = tΓ,θ.

If the last rule applied is (T-Const) then t = a ∈ Σ, Γ = ∅ and the result is trivial.
If the last rule applied is (T-App) then t = t0 t1 Γ = Γ0 ∪ Γ1 ∪ ... ∪ Γk with Γ0 `
t0 . (θ1,m1) ∧ ... ∧ (θk,mk)→ θ and for all i, Γi ↑ mi ` ti . θi. By induction hypothesis
Γ0 ↑ θ is well defined. Furthermore by the well formedness of (θ1,m1)∧ ...∧ (θk,mk)→ θ

we have for all mi ≥ Ω(θ) for all i then since Γi ↑ mi is well defined, we have that
Γi ↑ Ω(θ) is well defined, therefor Γ ↑ Ω(θ) = Γ0 ↑ Ω(θ) ∪ Γ1 ↑ Ω(θ) ∪ ... ∪ Γk ↑ Ω(θ) is
well defined.
If Γ ↑ Ω(θ) = Γ′ ↑ Ω(θ) then there exists Γ′0 ∪ Γ′1 ∪ ... ∪ Γ′k = Γ′ such that for all i
Γ′i ↑ Ω(θ) = Γi ↑ Ω(θ). Since mi ≥ Ω(θ) we have for all i > 0 Γi ↑ mi = Γi ↑ mi ↑ Ω(θ) =
Γi ↑ Ω(θ) ↑ mi = Γ′i ↑ Ω(θ) ↑ mi = Γ′i ↑ mi ↑ Ω(θ) = Γ′i ↑ mi thus Γ′i ↑ mi ` t1 . θi.
Furthermore by induction hypothesis, since Ω((θ1,m1) ∧ ... ∧ (θk,mk)→ θ) = Ω(θ) we
have Γ′0 ` t0 . (θ1,m1) ∧ ... ∧ (θk,mk)→ θ, hence Γ′ ` t . θ.
Also by induction hypothesis,

t
Γ′0,(θ1,m1)∧...∧(θk,mk)→θ
0 = t

Γ0,(θ1,m1)∧...∧(θk,mk)→θ
0

and since Γi ↑ mi = Γ′i ↑ mi, for all i, t
Γ′i↑mi,θi
1 = tΓi↑mi,θi1 then by definition tΓ,θ = tΓ

′,θ.
J

A. Haddad 31

Given b ∈ {f, t}, we define Γ ↑b m by:

Γ ↑b m =
{

Γ ↑ m if b = f
Γ if b = t and Γ ↑ m is well defined.

To conclude, we prove the following Lemma which is a generalisation of Proposition 40.

I Lemma 43 (Generalised Substitution). Given e ∈ T (Σ] N] V), x : τ ∈ V, t : τ ∈
T (Σ]N] V), if

Γ0, x . (θ1,m1)b1, ..., x . (θk,mk)bk ` e . θ,

∀i Γi ↑bi mi ` t . θi
then

Γ0 ∪ Γ1 ∪ ... ∪ Γk ` e[x 7→t] . θ,

and if we let Γx = Γ0, x . (θ1,m1)f, ..., x . (θk,mk)f, Γ = Γ0 ∪ Γ1 ∪ ... ∪ Γk and for all i,
Γ′i = Γi ↑bi mi then(

eΓx,θ
)[
∀i x(θi,mi) 7→tΓ

′
i
,θi

] = (e[x 7→t])Γ,θ

Proof. The proof proceeds by induction on the derivation of Γ0, x.(θ1,m1)b1, ..., x.(θk,mk)bk `
e . θ.

If the last rule applied is (T-Const), the result is trivial.
If the last rule applied is (T-Var), and e = α 6= x the result is trivial.
If the last rule applied is (T-Var), and e = x, then Γ0 = ∅, k = 1, θ = θ1, (θ1,m1)b1 ↑
Ω(θ) = (θ1,m1)t, and Γ1 ↑b1 m1 ` t . θ1.
If b1 = t then Γ1 ↑b1 m1 = Γ therefore Γ1 ` t . θ. Furthermore e{(θ1,m1)b1},θ = x(θ1,m1)

therefore(
e{(θ1,m1)b1},θ

)
[x(θ1,m1) 7→tΓ1↑m1,θ1]

= tΓ1,θ = (e[x 7→t])Γ1,θ.

If b1 = f then since (θ1,m1)b1 ↑ Ω(θ) = (θ1,m1)t, m1 = Ω(θ). Then since Γ1 ↑b1 m1 ` t.θ1
and Γ1 ↑b1 m1 = Γ1 ↑ Ω(θ1), Lemma 42 states that Γ1 ` t . θ1. It also states that
tΓ1↑Ω(θ),θ = tΓ1,θ then(

e{(θ1,m1)b1},θ
)

[x(θ1,m1) 7→tΓ1↑m1,θ1]
= tΓ1↑Ω(θ),θ = tΓ1,θ = (e[x 7→t])Γ1,θ.

If the last rule applied is (T-App), we have:

e = e0 e1

Γ0 = ∆0 ∪∆1 ∪ ... ∪∆`

S0 ∪ S1 ∪ ... ∪ S` = {1, ..., k}

θ′ = (θ′1,m′1) ∧ ... ∧ (θ′`,m′`)→ θ

∆x
0 = ∆0 ∪ {x . (θi,mi)bi | i ∈ S0} ` e0 . θ

′

∆x
j =

(
∆j ∪ {x . (θi,mi)bi | i ∈ Sj}

)
↑ m′j ` e1 . θ

′
j

Γi ↑bi mi ` t . θi

32 Model Checking and Functional Program Transformations

From the induction hypothesis,we have

∆′0 = ∆0 ∪
⋃
i∈S0

Γi ` e0 . (θ′1,m′1) ∧ ... ∧ (θ′`,m′`)→ θ,

(
e

∆x
0 ,θ
′

0

)[
∀i∈S0 x(θi,mi) 7→tΓi↑bi ,θi

] = (e0[x 7→t])∆′0,θ
′
.

Now we want to show that for all j,

∆′j =

∆j ∪
⋃
i∈Sj

Γi

 ↑ m′j ` e1[x 7→t] . θ
′
j ,

and(
e

∆x
j ,θ
′
j

0

)[
∀i∈Sj x(θi,mi) 7→tΓi↑bi ,θi

] = (e1[x 7→t])∆′j ,θ
′
j ,

which by simple application would conclude.
For i ∈ Sj , we define (θi,mi)bi,j = (θi,mi)bi ↑ m′j . In particular we have:

(1) ∆j ↑ m′j ∪ {x . (θi,mi)bi,j | i ∈ Sj} = ∆x
j ` e1 . θ

′
j .

Since (θi,mi)bi ↑ m′j is well define, we have m′j ≤ mi, and since Γi ↑bi mi is well define,
we get that m′j is less or equal than any color in Γi.
Furthermore since Γi ↑bi mi ` t . θi, Lemma 41 states that Γi ↑bi mi ↑ m′j = Γi ↑ m′j ↑bi
mi ` t . θi (indeed, one can commute the ↑), and tΓi↑bi ,θi = tΓi↑m

′
j↑bimi,θi .

Notice that Γi ↑ m′j ↑bi mi = Γi ↑ m′j ↑bi,j mi, then

(2) Γi ↑ m′j ↑bi,j mi ` t . θi,

and

(3) tΓi↑bi ,θi = tΓi↑m
′
j↑bimi,θi = tΓi↑m

′
j↑bi,jmi,θi .

Then by induction hypothesis on (1) and (2), and using (3), one can state that

∆′j =

∆j ∪
⋃
i∈Sj

Γi

 ↑ m′j ` e1[x 7→t] . θ
′
j ,

and(
e

∆x
j ,θ
′
j

0

)[
∀i∈Sj x(θi,mi) 7→tΓi↑bi ,θi

] = (e1[x 7→t])∆′j ,θ
′
j .

J

A. Haddad 33

C.7 Proof of Lemma 38
Take the infinite OI parallel derivation in the initial scheme S = t0 ⇒ t1 ⇒

I Definition 44 (Painting of a term). Given a term t a painting of t is a mapping that
associates to every Σ-context C[•] such that there exist a term tC[•] : o satisfying C[tC[•]] = t,
a state qi,C[•], and if tC[•] is a redex an environment ΓC[•] such that:

If t is a redex, ΓC[•] ⊆ {F . (θ,m)b | (F, θ,m) winning, b ∈ {f, t}},
if t is a redex, ΓC[•] ` tC[•] . q for some qC[•] ∈ Q,
If tC[•] = a s1...sk let q = qC[•] and for all j, let qj = qC[a s1...sj−1•sj+1...sk], we have

q
a−→ (q1, ..., qk) ∈ δ.

In the following we define a painting of all terms of the derivation.

I Claim 45. Given a term t : o if we have Γ ` t . q with

Γ ⊆ {F . (θ,m)b | (F, θ,m) winning, b ∈ {f, t}}

then we can construct a painting of t.

Proof. Simple induction on the derivation. J

I Proposition 46. If we have a painting of a redex red = F s1...sk, with F x1...xk → e,
then we can construct a painting of e[∀i xi 7→si].

Proof. Take Γ ` F s1...sk . q•.
We know that there exists

θ =
∧
p∈J1

(θ1,p,m1,p)→ ...→
∧
p∈Jk

(θk,p,mk,p)→ q,

(θ,m)b and Γj,p for all j and p ∈ Jj such that

{F . (θ,m)b} ` F . θ,

for all j and p ∈ Jj

Γj,p ↑ mj,p ` sj . θj,p,

and

Γ = {F . (θ,m)b} ∪
⋃
j,p

Γj,p.

We have (F, θ,m) wining in the game, then for all j there exists Ij ⊆ Jj such that

Γ0 = Γ(F,θ,m) ∪ {xj . (θ1,p,m1,p)f | p ∈ Ij} ` e . q.

Then using substitution property we know that

Γ′ = Γ0 ∪
⋃

j,p∈Ij

Γj,p ` e[∀j xj 7→sj] . q•,

And the previous claim concludes. J

I Proposition 47. If we have a painting of t, we can create a painting of t′ with t⇒ t′.

34 Model Checking and Functional Program Transformations

Proof. By induction, if t is a redex then we get the painting from the previous Proposition.
If t = a t1...tk then t′ = a t′1...t

′
k we define q• in t′ as q• in t and the rest of the painting by

induction. J

I Proposition 48. We construct the painting of ti for all i in the parallel derivation.

Proof. For t0 we define the painting of • as {S . (q0,Ω(q0))} ` S . q0 and we define the other
paintings by induction on i. J

I Definition 49 (Term Transformation). Given a term t : o painted by π. We define the term
t++ in G′ by induction. If t is a redex then t++ = tΓ,q with π(•) = (Γ, q). If t = a t1...tk then

t++ = a(q1,m1)→...→(qk,mk)→q ~t++
1 ... ~t++

k ,

with q the painting of • and qi the painting of a t1...ti−1•ti+1...tk, and ~t++
1 = t++

1 V oido...V oido.

Given a term t : o painted by π. We define the term t+ in G′′ by induction. If t is a redex
then t+ = tΓ,q with π(•) = (Γ, q). If t = a t1...tk then t+ = (a, q) t+1 ...t

+
k .

I Proposition 50. Let t = F s1...sk and a painting π of t, with F x1...xk → e, and
t′ = e[∀i xi 7→si], then t′++ = t′Γ

′,q with Γ′ defined as in Proposition 46.

Proof. A simple induction. J

I Definition 51 (The rewritting ⇒Σ). Given a term t in G′′ we define the term t⇒Σ t′ as
the one obtained by rewriting at once all the aθ.

I Proposition 52. Given a term t, then t++ ⇒Σ t+.

Proof. A simple induction J

I Definition 53 (Canonic rewriting⇒+). Given a term t in G′′ we define its canonic rewriting
t′ by t⇒OI t

′′ ⇒Σ t′.

I Proposition 54. Given a term t : o painted by π. If t⇒ t′ then t+ ⇒+ (t′)+.

Proof. We just need to show the case where t is a redex. Take t = F s1...sk and Γ `
F t1...tk → q with Γ ⊆ {H . (θ,m)b | (H, θ,m) winning}. We know that there exists

θ =
∧
p∈J1

(θ1,p,m1,p)→ ...→
∧
p∈Jk

(θk,p,mk,p)→ q,

(θ,m)b and Γj,p for all j and p ∈ Jj such that

{F . (θ,m)b} ` F . θ,

for all j and p ∈ Jj

Γj,p ↑ mj,p ` sj . θj,p,

and

Γ = {F . (θ,m)b} ∪
⋃
j,p

Γj,p.

A. Haddad 35

We have (F, θ,m) wining in the game, then for all j there exists Ij ⊆ Jj such that

Γ0 = Γ(F,θ,m) ∪ {xj . (θj,p,mj,p)f | p ∈ Ij} ` e . q.

Then using substitution property we know that

Γ′ = Γ(F,θ,m) ∪
⋃

j,p∈Ij

Γj,p ` e[∀j xj 7→sj] . q•,

and(
eΓ0,θ

)[
∀j,p∈Ij x

(θj,p,mj,p)
j

7→t
Γ′
j,p

,θj,p

] = (e[x 7→t])Γ′,θ.

Since

(t′)++ = (e[x 7→t])Γ′,θ

and

t+ ⇒
(
eΓ0,θ

)[
∀j,p∈Ij x

(θj,p,mj,p)
j

7→t
Γ′
j,p

,θj,p

],
we have

t+ ⇒ (t′)++ ⇒Σ (t′)+.

J

I Proposition 55. The derivation S(q0,Ω(q0)) ⇒ · ⇒Σ t1 ⇒ · ⇒Σ t2 ⇒ · ⇒Σ ... is maximal.
Proof. A very simple way to prove it is to suppose that the tree ‖G‖ does not contain ⊥ and
then since we know that this derivation produce ‖G‖ which is maximal, then the derivation
is maximal. J

Take the derivation S = t0 ⇒ t1 ⇒ t2 ⇒ Take i and j = i + ` such that ti = C[s]
with s a redex and C[•] a Σ-context. Assume that there is an occurrence (Fi, i) of a non
terminal F in s and another one (Fj , j) in tj such that CFj [•] = C ′[• s1...sk] with C ′[•] a
Σ-context and (Fi, i)� (Fj , j). Notice that bC′[•] = bC[•] · b′ for some b′.
I Lemma 56. Given a term t : o, such that Γ ` t . q and let π be the painting on t induced
by Γ ` t . q. Let C[•] be a Σ-context such that t = C[F s1...sk] and let F . (θ,m)b be the
head binding of Γ′ ` F s1...sk . q

′ with π(C[•]) = (Γ′, q′). Then
either (θ,m)f ∈ Γ and, Ω(bC[•]) = m,
or (θ,m)t ∈ Γ and, Ω(bC[•]) ≤ m.

With Ω(bC[•]) is the maximum colour appearing in the sequence of states painting the term.
Proof. Simple Induction. J

The following theorem allow to concludes the proof of Lemma 38.
I Theorem 57. Let (Γ0, q0) be the painting of C[•] in ti and (Γ, q) be the painting of C ′[•],
And let F . (θ,m)b be the binding in Γ used for (Fj , j) in the proof of Γ ` F s1...sk . q. then
F . (θ,m)b0 in Γ0 and

if b0 = f, Ω(b′, q) = m,
if b0 = t, Ω(b′, q) ≤ m.

Proof. The proof proceeds by induction on ` and on b′. If ` = 0, we have q0 = q, Γ0 = Γ
and b′ = ε. Thus looking at the proof of Γ ` F s1...sk . q concludes. If s = a s1...sk with
a ∈ Σ, we can add a to b′ and looking at the si that contains (Fi, i). If s is a redex, then
combining Proposition 46 and Lemma 56 concludes. J

	Introduction
	Preliminaries
	Logical reflection and logical selection
	Morphisms
	Definitions
	Embedding a morphism into a scheme
	Applications

	An example of scheme transformation
	Logical reflection
	Kobayashi-Ong result
	A morphism for automata reflection

	Selection
	Conclusion
	Proofs of Results in Section 4
	Embedding a Morphism Into a Scheme, the construction
	Embedding a Morphism Into a Scheme, The Proof..

	Proofs of Results in Section 6.2
	Definition of a two player game
	A formal presentation of Kobayashi Ong result
	The Type System
	The Game

	A Morphism from Kobayashi and Ong Construction, Proof of Theorem 6.
	The Environment witnesses the recognition of the automaton
	The Environment witnesses the morphism

	MSO reflection
	Schemes are reflective with respect to regular paths, proof of Lemma 21.

	Proof of Theorem 8: Automata Selection
	The Construction
	Occurrences
	Definition of (Q)-contexts
	Correction of the Labelling of Non Terminals
	Main Proof
	Substitution Lemma
	Proof of Lemma 38

