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IO vs OI in Higher-Order Recursion Schemes

We propose a study of the modes of derivation of higher-order recursion schemes, proving that value trees obtained from schemes using innermost-outermost derivations (IO) are the same as those obtained using unrestricted derivations.

Given that higher-order recursion schemes can be used as a model of functional programs, innermost-outermost derivations policy represents a theoretical view point of call by value evaluation strategy.

Introduction

Recursion schemes have been first considered as a model of computation, representing the syntactical aspect of a recursive program [START_REF] Nivat | On the interpretation of recursive program schemes[END_REF][START_REF] Courcelle | A Representation of Trees by Languages I[END_REF][START_REF] Courcelle | A Representation of Trees by Languages II[END_REF][START_REF] Courcelle | The Algebraic Semantics of Recursive Program Schemes[END_REF] . At first, (order-1) schemes were modelling simple recursive programs whose functions only take values as input (and not functions). Since, higher-order versions of recursion schemes [START_REF] Indermark | Schemes with Recursion on Higher Types[END_REF][START_REF] Damm | Higher type program schemes and their tree languages[END_REF][START_REF] Damm | Languages Defined by Higher Type Program Schemes[END_REF][START_REF] Damm | The IO-and OI-Hierarchies[END_REF][START_REF] Engelfriet | IO and OI[END_REF][START_REF] Engelfriet | IO and OI[END_REF] have been studied.

More recently, recursion schemes were studied as generators of infinite ranked trees and the focus was on deciding logical properties of those trees [START_REF] Knapik | Higher-Order Pushdown Trees Are Easy[END_REF][START_REF] Engelfriet | IO and OI[END_REF][START_REF] Hague | Collapsible Pushdown Automata and Recursion Schemes[END_REF][START_REF] Aehlig | A Finite Semantics of Simply-Typed Lambda Terms for Infinite Runs of Automata[END_REF][START_REF] Kobayashi | Types and higher-order recursion schemes for verification of higher-order programs[END_REF][START_REF] Kobayashi | A Type System Equivalent to the Modal Mu-Calculus Model Checking of Higher-Order Recursion Schemes[END_REF].

As for programming languages, the question of the evaluation policy has been widely studied. Indeed, different policies results in the different evaluation [START_REF] Engelfriet | IO and OI[END_REF][START_REF] Engelfriet | IO and OI[END_REF][START_REF] Damm | The IO-and OI-Hierarchies[END_REF]. There are two main evaluations policy for schemes: outermost-innermost derivations (OI) and inner-outermost IO derivations, respectively corresponding to call by need and call by value in programming languages.

Standardization theorem for the lambda-calculus shows that for any scheme, outermost-innermost derivations (OI) lead to the same tree as unrestricted derivation. However, this is not the case for IO derivations. In this paper we prove that the situation is different for schemes. Indeed, we establish that the trees produced using schemes with IO policy are the same as those produced using schemes with OI policy. For a given a scheme of order n, we can use a simplified continuation passing style transformation, to get a new scheme of order n + 1 in which IO derivations will be the same as OI derivations in the initial scheme (Section 3). Conversely, in order to turn a scheme into another one in which unrestricted derivations lead to the same tree as IO derivations in the initial scheme, we adapt Kobayashi's [START_REF] Kobayashi | Types and higher-order recursion schemes for verification of higher-order programs[END_REF] recent results on HORS model-checking, to compute some key properties over terms (Section 4.1). Then we embed these properties into a scheme turning it into a self-correcting scheme of the same order of the initial scheme, in which OI and IO derivations produce the same tree (Section 4.2).

Preliminaries

Types are defined by the grammar τ ::= o | τ → τ; o is called the ground type. Considering that → is associative to the right (i.e. τ 1 → (τ 2 → τ 3 ) can be written τ 1 → τ 2 → τ 3 ), any type τ can be written uniquely as τ 1 → ... → τ k → o. The integer k is called the arity of τ. We define the order of a type by order(o) = 0 and order(τ 1 → τ 2 ) = max(order(τ 1 ) + 1, order(τ 2 )). For instance o → o → o → o is a type of order 1 and arity 3, (o → o) → (o → o), that can also be written (o → o) → o → o is a type of order 2. Let τ → τ be a shortcut for τ → ... → τ times → τ .

Let Γ be a finite set of symbols such that to each symbol is associated a type. Let Γ τ denote the set of symbols of type τ. For all type τ, we define the set of terms of type T τ (Γ) as the smallest set satisfying: Γ τ ⊆ T τ (Γ) and τ {t s | t ∈ T τ →τ (Γ), s ∈ T τ (Γ)} ⊆ T τ (Γ). If a term t is in T τ (Γ), we say that t has type τ. We shall write T (Γ) as the set of terms of any type, and t : τ if t has type τ. The arity of a term t, arity(t), is the arity of its type. Remark that any term t can be uniquely written as t = α t 1 ...t k with α ∈ Γ. We say that α is the head of the term t. Let t : τ, t : τ be two terms, x : τ be a symbol of type τ , then we write t [x →t ] : τ the term obtained by substituting all occurences of x by t in the term t. A τ-context is a term C[• τ ] ∈ T (Γ {• τ : τ}) containing exactly one occurrence of • τ ; it can be seen as an application turning a term into another, such that for all t : τ,

C[t] = C[• τ ] [• τ →t] .
In general we will only talk about ground type context where τ = o and we will omit to specify the type when it is clear. For instance, if

C[•] = F • (H (H a)) and t = G a then C[t ] = F (G a) (H (H a)).
Let Σ be a set of symbols of order at most 1 (i.e. each symbols has type o or o → ... → o) and ⊥ : o be a fresh symbol. A tree t over Σ ⊥ is a mapping t : dom t → Σ ⊥, where dom t is a prefix-closed subset of {1, ..., m} * such that if u ∈ dom t and t(u) = a then { j | u j ∈ dom t } = {1, ..., arity(a)}. Note that there is a direct bijection between ground terms of T o (Σ ⊥) and finite trees . Hence we will freely allow ourselves to treat ground terms over Σ ⊥ as trees. We define the partial order over trees as the smallest relation satisfying ⊥ t and t t for any tree t, and a t 1 ...t k a t 1 ...t k iff t i t i . Given a (possibly infinite) sequence of trees t 0 ,t 1 ,t 2 , ... such that t i t i+1 for all i, one can prove that the set of all t i has a supremum that is called the limit tree of the sequence.

A higher order recursion scheme (HORS) G = V , Σ, N , R, S is a tuple such that: V is a finite set of typed symbols called variables; Σ is a finite set of typed symbols of order at most 1, called the set of terminals; N is a finite set of typed symbols called set of non-terminals; R is a set of rewrite rules, one per non terminal F :

τ 1 → ... → τ k → o ∈ N , of the form F x 1 ... x k → e with e : o ∈ T (Σ N {x 1 , ..., x k }); S ∈ N is the initial non-terminal.
We define the rewriting relation

→ G ∈ T (Σ N ) 2 (or just → when G is clear) as t → G t iff there exists a context C[•], a rewrite rule F x 1 ...x k → e, and a term F t 1 ... t k : o such that t = C[F t 1 ...t k ] and t = C[e [x 1 →t 1 ]...[x k →t k ] ]. We call F t 1 ... t k : o a redex. Finally we define → *
G as the reflexive and transitive closure of → G .

We define inductively the ⊥-transformation (•)

⊥ : T o (N Σ) → T o (Σ {⊥ : o}): (F t 1 ... t k ) ⊥ = ⊥ ∀F ∈ N and (a t 1 ... t k ) ⊥ = a t ⊥ 1 ...t ⊥ k for all a ∈ Σ.
We define a derivation, as a possibly infinite sequence of terms linked by the rewrite relation. Let

t 0 = S → G t 1 → G t 2 → G .
.. be a derivation, then one can check that (t 0 ) ⊥ (t 1 ) ⊥ (t 2 ) ⊥ ..., hence it admits a limit. One can prove that the set of all such limit trees has a greatest element that we denote G and refer to as the value tree of G. Note that G is the supremum of {t ⊥ | S → * t}. Given a term t : o, we denote by G t the scheme obtained by transforming G such that it starts derivations with the term t, formally,

G t = V , Σ, N {S }, R {S → t}, S . One can prove that if t → t then G t = G t .
Example. Let G = V , Σ, N , R, S be the scheme such that:

V = {x : o, φ : o → o, ψ : (o → o) → o → o}, Σ = {a : o 3 → o, b : o → o → o, c : o}, N = {F : (o → o) → o → o → (o → o) → o → o, H : (o → o) → o → o, I, J, K : o → o
, S : o}, and R contains the following rewrite rules:

F ψ φ x → ψ φ x I x → x H φ x → a (J x) (K x) (φ x) J x → b (J x) (J x) K x → K (K x) S → F H I c
Here is an example of finite derivation:

S → F H I c → H I c → a (J c) (K c) (I c) → a (J c) (K (K c)) (I c) → a (J c) (K (K (K c))) (I c)
If one extends it by always rewriting a redex of head K, its limit is the tree a ⊥ ⊥ ⊥, but this is not the value tree of G. The value tree G is depicted below. 

⊥ c

Evaluation Policies

We now put constraints on the derivations we allow. If there are no constraints, then we say that the derivations are unrestricted and we let Acc G = {t : o | S → * t} be the set of accessible terms using unrestricted derivations. Given a rewriting t → t such that t = C[F s 1 ... s k ] and t = C[e [∀ j x j →s j ] ] with F x 1 ...x k → e∈ R.

• We say that t → t is an outermost-innermost (OI) rewriting (written t → OI t ) there is no redex containing the occurrence of • as a subterm of C[•].

• We say that t → t is an innermost-outermost (IO) rewriting (written t → IO t ), if for all j there is no redex as a subterm of s j .

Let Acc G OI = {t : o | S → * OI t} be the set of accessible terms using OI derivations and Acc G IO = {t : o | S → * IO t} be the set of accessible terms using IO derivations. There exists a supremum of Acc G OI (resp. Acc G IO ) which is the maximum of the limit trees of OI derivations(resp. IO derivations). We write it G OI (resp. G IO ). For all recursive scheme G, (Acc

G ) ⊥ = (Acc G OI ) ⊥ , in particular G OI = G . But G IO
G and in general, the equality does not hold (see the example is the next section).

3 From OI to IO Fix a recursion scheme G = V , Σ, N , R, S . Our goal is to define another scheme G = V , Σ, N , R, I such that G IO = G . The idea is to add an extra argument (∆) to each non terminal, that will be required to rewrite it (hence the types are changed). We feed this argument to the outermost non terminal, and duplicate it to subterms only if the head of the term is a terminal. Hence all derivations will be IO-derivations. We define the (•) transformation over types by o = o → o, and

τ 1 → τ 2 = τ 1 → τ 2 . In particular, if τ = τ 1 → ... → τ k → o then τ = τ 1 → ... → τ k → o → o.
Note that for all τ, order(τ) = order(τ) + 1.

For all x : τ ∈ V we define x : τ as a fresh variable. Let ar max be the maximum arity of terminals, we define η 1 , ..., η arity max : o → o and δ : o as fresh variables, and we let V = {x : τ | x ∈ V } {η 1 , ..., η ar max } {δ : o}. Note that δ is the only variable of type o. For all a : τ ∈ Σ define a : τ as a fresh non-terminal and for all F : τ ∈ N define F : τ as a fresh non-terminal. Let N = {a : τ | a ∈ Σ} {F : τ | F ∈ N } {∆ : o, I : o}. Note that I and ∆ are the only symbols in N of type o.

Let t : τ ∈ T (V Σ N ), we define inductively the term t : τ ∈ T (V N ):

If t = x ∈ V (resp. t = a ∈ Σ, t = F ∈ N ), we let t = x ∈ V (resp. t = a ∈ Σ, t = F ∈ N ), if t = t 1 t 2 : τ then t = t 1 t 2 .
Let F x 1 ... x k → e be a rewrite rule of R. We define the (valid) rule F x 1 ... x k δ → e ∆ in R. Let a ∈ Σ of arity k, we define the rule a η 1 ... η k δ → a (η 1 ∆) ... (η k ∆) in R. We also add the rule

I → S ∆ to R. Finally let G = V , Σ, N , R, I .
Example. Let G = V , Σ, N , R, S be the order-1 recursion scheme with Σ = {a, c : o}, N = {S : o, F : o → o → o, H : o → o}, V = {x, y : o}, and the following rewrite rules:

S → F (H a) c F x y → y H x → H (H x)
Then we have G OI = c while G IO = ⊥ (indeed, the only IO derivation is the following

S → F (Ha) c → F (H (H a)) c → F (H (H (H a))) c → ...). The order-2 recursion scheme G = V , Σ, N , R, I is given by N = {I, ∆ : o, S, a, c : o → o, F : (o → o) → (o → o) → o → o, H : (o → o) → o → o},V = {δ : o,
x, y : o → o} and the following rewrite rules:

I → S ∆ S δ → F (H a) c ∆ F x y δ → y ∆ H x δ → H (H x) ∆ c δ → c a δ → a
Note that in the term F (H a) c ∆, the subterm H a is no longer a redex since it lacks its last argument, hence it cannot be rewritten, then the only IO derivation, which is the only unrestricted derivation is

I → S ∆ → F (H a) c ∆ → c ∆ → c. Therefore Ḡ IO = Ḡ = c = G . Lemma 1.
Any derivation of G is in fact an OI and an IO derivation. Hence that G IO = G .

Proof (Sketch). The main idea is that the only redexes will be those that have ∆ as last argument of the head non-terminal. The scheme is constructed so that ∆ remains only on the outermost non-terminals, that is why any derivation is an OI derivation. Furthermore, we have that if t = F t 1 ...t k ∆ is a redex, then none of the t i contains ∆, therefore they do not contain any redex, hence t is an innermost redex.

Note that OI derivations in G acts like OI derivations in G, hence G = G . Theorem 2 (OI vs IO). Let G be an order-n scheme. Then one can construct an order-(n + 1) scheme G such that G = G IO .

From IO to OI

The goal of this section is to transform the scheme G into a scheme G such that G = G IO . The main difference between IO and OI derivations is that some redex would lead to ⊥ in IO derivation while OI derivations could be more productive. For example take F : o → o such that F x → c, and H : o such that H → a H, with a : o → o and c : o being terminal symbols. The term F H has a unique OI derivation, F H → OI c, it is finite and it leads to the value tree assiocated. On the other hand, the (unique) IO derivation is the following F H → F(a H) → F (a (a H)) → ... which leads to the tree ⊥.

The idea of the transformation is to compute a tool (based on a type system) that decides if a redex would produce ⊥ with IO derivations (Section 4.1); then we embed it into G and force any such redex to produce ⊥ even with unrestricted derivations (Section 4.2).

The Type System

Given a term t : τ ∈ T (Σ N ), we define the two following properties on t: P ⊥ (t) ="The term t has type o and its associated IO valuation tree is ⊥", and P ∞ (t) ="the term t has not necessarily ground type, it contains a redex r such that any IO derivation from r producing it's IO valuation tree is infinite". Note that P ∞ (t) is equivalent to "the term t contains a redex r such that G r IO is either infinite or contains ⊥". In this section we describe a type system, inspired from the work of Kobayashi [START_REF] Kobayashi | Types and higher-order recursion schemes for verification of higher-order programs[END_REF], that characterises if a term verifies these properties.

Let Q be the set {q ⊥ , q ∞ }. Given a type τ, we define inductively the sets (τ) atom and (τ) ∧ called respectively set of atomic mappings and set of conjunctive mappings:

(o) atom = Q , (o) ∧ = { {θ 1 , ..., θ i } | θ 1 , ..., θ i ∈ Q} , (τ 1 → τ 2 ) atom = {q ∞ } {(τ 1 ) ∧ → (τ 2 ) atom } (τ 1 → τ 2 ) ∧ = { {θ 1 , ..., θ i } | θ 1 , ..., θ i ∈ (τ 1 → τ 2 ) atom }.
We will usually use the letter θ to represents atomic mappings, and the letter σ to represent conjunctive mappings. Given a conjunctive mapping σ (resp. an atomic mapping θ ) and a type τ, we write σ :: τ (resp. θ :: a τ) the relation σ ∈ (τ) ∧ (resp. θ ∈ (τ) atom ). For the sake of simplicity, we identify the atomic mapping θ with the conjunctive mapping {θ }.

Given a term t and a conjunctive mapping σ , we define a judgment as a tuple Θ t σ , pronounce "from the environment Θ, one can prove that t matches the conjunctive mapping σ ", where the environment Θ is a partial mapping from V N to conjunctive mapping. Given an environment Θ, α ∈ V N and a conjunctive mapping σ , we define the environment Θ = Θ, α σ as Dom(Θ ) = Dom(Θ) ∪ {α} and

Θ (α) = σ if α ∈ Dom(Θ), Θ (α) = σ ∧ Θ(α) otherwise, and Θ (β ) = Θ(β ) if β = α.
We define the following judgement rules:

Θ t θ 1 ... Θ t θ n Θ t {θ 1 , ..., θ n } (Set) Θ, α {θ 1 , ..., θ n } α θ i (At) (for all i) Θ a σ 1 → ... → σ i≤arity(a) → q ∞ (Σ) ( for a ∈ Σ and ∃ j σ j = q ∞ ) Θ t 1 σ → θ Θ t 2 σ Θ t 1 t 2 θ (App) Θ t q ∞ → q ∞ (q ∞ → q ∞ I) (if t : τ 1 → τ 2 ) Θ t 1 q ∞ Θ t 1 t 2 q ∞ (q ∞ I)
Remark that there is no rules that directly involves q ⊥ , but it does not mean that no term matches q ⊥ , since it can appear in Θ. Rules like (At) or (App) may be used to state that a term matches q ⊥ .

We say that (G,t) matches the conjunctive mapping σ written (G,t) σ if there exists an environment Θ, called a witness environment of (G,t) σ , such that ( 1)

Dom(Θ) = N , (2) ∀F : τ ∈ N Θ(F) :: τ, (3) if F x 1 ...x k → e∈ R and Θ F σ 1 → ... → σ i≤k → q then either there exists j such that q ∞ ∈ σ j , or i = k and Θ, x 1 σ 1 , ..., x k σ k e q, (4) Θ t σ .
The following two results state that this type system matches the properties P ⊥ and P ∞ and furthermore we can construct a universal environment, Θ , that can correctly judge any term.

Theorem 3 (Soundness and Completeness). Let G be an HORS, and t be term (of any type), (G,t) q ∞ (resp. (G,t) q ⊥ ) if and only if P ∞ (t) (resp. P ⊥ (t)) holds.

Proposition 4 (Universal Witness

). There exists an environment Θ such that for all term t, the judgment (G,t) σ holds if and only if Θ t σ .

Proof (Sketch). To compute Θ , we start with an environment Θ 0 satisfying Properties (1) and (2) ( Dom(Θ 0 ) = N and ∀F : τ ∈ N Θ 0 (F) :: τ ) that is able to judge any term t : τ with any conjunctive mapping σ :: τ. Then let F be the mapping from the set of environments to itself, such that for all F :

τ 1 → ... → τ k → o ∈ N , if F x 1 ...x k → e∈ R then, F (Θ)(F) = {σ 1 → ... → σ k → q | q ∈ Q ∧ ∀i σ i :: τ i ∧ Θ, x 1 σ 1 , ..., x k σ k e : q} ∪ {σ 1 → ... → σ i≤k → q ∞ | ∧ ∀i σ i :: τ i ∧ ∃ j q ∞ ∈ σ j } ∪ {σ 1 → ... → σ k → q ⊥ | ∀i σ i :: τ i ∧ ∃ j q ∞ ∈ σ j }.
We iterate F until we reach a fixpoint. The environment we get is Θ , it verifies properties (1) ( 2) and ( 3). Furthermore we can show that this is the maximum of all environment satisfying these properties, i.e. if (G,t) σ then Θ t σ .

Self-Correcting Scheme

For all term t : τ ∈ T (Σ N ), we define t ∈ (τ) ∧ , called the semantics of t, as the conjunction of all atomic mappings θ such that Θ t θ (recall that Θ is the environment of Proposition 4). In particular P ⊥ (t) (resp. P ∞ (t)) holds if and only if q ⊥ ∈ t (resp. q ∞ ∈ t ). Given two terms t 1 : τ 2 → τ and t 2 : τ 2 the only rules we can apply to judge Θ t 1 t 2 θ are (App), (q ∞ → q ∞ I) and (q ∞ I). We see that θ only depends on which atomic mappings are matched by t 1 and t 2 . In other words t 1 t 2 only depends on t 1 and t 2 , we write

t 1 t 2 = t 1 t 2 .
In this section, given a scheme G = V , Σ, N , R, S , we transform it into G = V , Σ, N , R , S which is basically the same scheme except that while it is producing an IO derivation, it evaluates t for any subterm t of the current term and label t with t . Note that if t → IO t , then t = t . Since we cannot syntactically label terms, we will label all symbols by the semantics of their arguments, e.g. if we want to label F t 1 ...t k , we will label F with the k-tuple ( t 1 , ..., t k ).

A problem may appear if some of the arguments are not fully applied, for example imagine we want to label F H with H : o → o. We will label F with H , but since H has no argument we do not know how to label it. The problem is that we cannot wait to label it because once a non-terminal is created, the derivation does not deal explicitly with it. The solution is to create one copy of H per possible semantics for its argument (here there are four of them: {}, {q ⊥ }, {q ∞ }, {q ⊥ , q ∞ }). This means that F H would not have the same type as

F: F has type (o → o) → o, but F G will have type (o → o) 4 → o.
Hence, F H will be labelled the following way:

F H H {} H {q ⊥ } H {q ∞ } H {q ⊥ ,q ∞ }
. Note that even if F has 4 arguments, it only has to be labelled with one semantics since all four arguments represent different labelling of the same term. We now formalize these notions.

Let us generalize the notion of semantics to deals with terms containing some variables. Given an environment on the variables Θ V such that Dom(Θ V ) ⊆ V and if x : τ then Θ V (x) :: τ, and given a term t : τ ∈ T (Σ N Dom(Θ V )), we define t Θ V ∈ (τ) ∧ , as the conjunction of all atomic mappings θ such that Θ , Θ V t θ . Given two terms t 1 : τ 2 → τ and t 2 : τ 2 we still have that t 1 t 2 Θ V only depends on

t 1 Θ V and t 2 Θ V . To a type τ = τ 1 → ... → τ k → o we associate the integer τ = Card({(σ 1 , ..., σ k ) | ∀i σ i ∈ (τ i ) ∧ }) and a complete ordering of {(σ 1 , ..., σ k ) | ∀i σ i ∈ (τ i ) ∧ } denoted σ τ 1 , σ τ 2 , ... , σ τ τ . We define inductively the type τ + = (τ + 1 ) τ 1 → ... → (τ + k ) τ k → o.
To a non terminal F :

τ 1 → ... → τ k → o (resp. a variable x : τ 1 → ... → τ k → o
) and a tuple σ 1 :: τ 1 , ..., σ k :: τ k , we associate the non-terminal F σ 1 ,...,σ k :

τ τ 1 1 → ... → τ τ k k → o ∈ N (resp. a variable x σ 1 ,...,σ k : τ τ 1 1 → ... → τ τ k k → o ∈ V ). Given a term t : τ = τ 1 → ... → τ k → o ∈ T (V Σ N
) and an environment on the variables Θ V such that Dom(Θ V ) ⊆ V contains all variables in t, we define inductively the term t +σ 1 ,...,σ k

Θ V : τ + ∈ T (V Σ N ) for all σ 1 :: τ 1 , ..., σ k :: τ k . If t = F ∈ N (resp. t = x ∈ V ), t +σ 1 ,...,σ k Θ V = F σ 1 ,...,σ k (resp. t +σ 1 ,...,σ k Θ V = x σ 1 ,...,σ k ), if t = a ∈ Σ, t +σ 1 ,...,σ k Θ V = a.
Finally consider the case where t = t 1 t 2 with t 1 : τ → τ and t 2 :

τ . Let σ = t 2 Θ V . Remark that t 1 +σ ,σ 1 ,...,σ k Θ V : (τ + ) τ → τ + . We define (t 1 t 2 ) +σ 1 ,...,σ k Θ V = t 1 +σ ,σ 1 ,...,σ k Θ V t 2 + σ τ 1 Θ V ... t 2 + σ τ τ Θ V
. Note that since this transformation is only duplicating and anotating, given a term t +σ 1 ,...,σ k we can uniquely find the unique term t associated to it.

Let

F : τ 1 → ... → τ k → o ∈ N , σ 1 :: τ 1 , ..., σ k :: τ k , and Θ V = x 1 σ 1 , ..., x k σ k . If F x 1 ...x k → e∈ R,
we define in R the rule F σ 1 ,...,σ k x

+ σ τ 1 1 1 ... x + σ τ 1 τ 1 1 ... x + σ τ k 1 k ... x + σ τ k τ k k → e + Θ V . Finally, recall that G = V , Σ, N , R , S .
The following theorem states that G is just a labeling version of G and that it acts the same.

Theorem 5 (Equivalence between G and G ). Given a term t : o, G t + IO = G t IO .

We transform G into the scheme G that will directly turn into ⊥ a redex t such that q ⊥ ∈ t . For technical reason, instead of adding ⊥ we add a non terminal Void : o and a rule Void → Void. G = V , Σ, N {Void : o}, R , S such that R contains the rule Void → Void and for all F ∈ N , if

q ⊥ ∈ F σ 1 ... σ k then F σ 1 ,...,σ k x + σ τ 1 1 1 ... x + σ τ 1 τ 1 1 ... x + σ τ k 1 k ... x + σ τ k τ k k → Void otherwise we keep the rule of R .
The following theorem concludes Section 4.

Theorem 6 (IO vs OI). Let G be a higher-order recursion scheme. Then one can construct a scheme G having the same order of G such that G = G IO .

Proof (Sketch). First, given a term t : o, one can prove that G t + IO = G t + IO .

Then take a redex t such that G t IO = ⊥, i.e. q ⊥ ∈ G t . There is only one OI derivation from t: t → Void → Void → ..., then G t = ⊥. We can extend this result saying that if there is the symbol

⊥ at node u in G t IO , then there is ⊥ at node u in G t . Hence, since G t IO G t , we have G = G IO . Then G = G IO = G IO = G IO .

Conclusion

We have shown that value trees obtained from schemes using innermost-outermost derivations (IO) are the same as those obtained using unrestricted derivations. More precisely, given an order-n scheme G we create an order-(n + 1) scheme G such that G IO = G . However, the increase of the order seems unavoidable. We also create an order-n scheme G such that G = G IO . In this case the order does not increase, however the size of the scheme deeply increases while it remains almost the same in G.

Appendices

A From OI to IO Complement of Definitions A n holes context is a term C[• τ 1 1 , ..., • τ n n ] ∈ T (Γ {• τ i i : τ i | 1 ≤ i ≤ n})
containing exactly one occurrence of • i for all i. (We will generally omit to write the type τ i in the notation • τ i i ). For all i 1 , ..., i k ≤ n we are interested in the application

t 1 , ...,t k → C[• 1 , ..., • n ] [∀ j≤k • i j →t j ]
with t j ∈ T τ i j (Γ) for all j. (notice that the order of the substitution is not important). One can consider

C[• 1 , ..., • n ] [∀ j≤k • i j →t j ] as a n -k holes context. We may write C[• 1 ]...[• n ] to denote the con- text C[• 1 , ..., • n ] and extend this notation to C[• 1 , ..., • n ] [∀ j≤k • i j →t j ]
, for example, given the context

C[• 1 ][• 2 ][• 3 ], we define C[t 1 ][• 2 ][t 3 ] = C[• 1 ][• 2 ][• 3 ] [• 1 →t 1 ,• 3 →t 3 ]
Given a one hole context C[•], we define inductively the head symbol sequence hss(C) which is a finite sequence of symbols of

Γ: if C[•] = •, then hss(C) is the empty sequence, if C[•] = α t 1 , ...,t i-1 C [•]t i+1 ...t k , then hss(C) = α, hss(C ). Proposition 7. Given a n holes context C[• 1 ]...[• n ],
for all i, for all t 1 , ... , t i-1 , t i+1 , ... , t n and s 1 , ... , s i-1 , s i+1 , ... , s n : 

hss(C[t 1 ]...[t i-1 ][•][t i+1 ]...[t n ]) = hss(C[s 1 ]...[s i-1 ][•][s i+1 ]...[
]...[t i-1 ][•][t i+1 ]...[t n ]) = a, hss(C [t j 1 ]...[• i ][t j l ]) and hss(C[s 1 ]...[s i-1 ][•][s i+1 ]...[s n ]) = a, hss(C [s j 1 ]...[• i ][s j l ]) Since hss(C [t j 1 ]...[• i ][t j l ]) = hss(C [s j 1 ]...[• i ][s j l ]
) by hypothesis of induction, we have 

hss(C[t 1 ]...[t i-1 ][•][t i+1 ]...[t n ]) = hss(C[s 1 ]...[s i-1 ][•][s i+1 ]...[s n ]) Proposition 
[•] = C 1 [C 1 [•]] (1), Or there exists a context C 2 such that C 1 [•] = C 2 [C 2 [•]] (2), or there exists a two hole context C[• 1 ][• 2 ] such that C[t 1 ][•] = C 2 [•] and C[•][t 2 ] = C 1 [•] (3).
of Proposition 8. We proceed by induction.

If C 1 [•] = •, then C 2 [•] = C 1 [C 2 [•]], in the same way, if C 2 [•] = •, C 1 [•] = C 2 [C 1 [•]]. Else C 1 [•] = a s 1 ...s i-1 C 1 [•]s i+1 ...s k and C 2 [•] = a s 1 ...s j-1 C 2 [•]s j+1 ...s k . If i = j (we assume w.l.o.g. that i < j) we set C[• 1 ][• 2 ] = a s 1 ...s i-1 C 1 [• 1 ]s i+1 ...s j-1 C 2 [• 2 ]s j+1 ...s k , we have that C[t 1 ][•] = C 2 and C[•][t 2 ] = C 1 [•]. If i = j, then C 1 [t 1 ] = C 2 [t 2 ]
, by induction:

• Either there exists a two hole context

C [• 1 ][• 2 ] such that C [t 1 ][•] = C 2 [•] and C [•][t 2 ] = C 1 [•], in that case we set C[• 1 ][• 2 ] = a s 1 ...s i-1 C [• 1 ][• 2 ]s i+1 ...s k , and we have C[t 1 ][•] = C 2 [•] and C[•][t 2 ] = C 1 [•],
• Or there exists a context

C 1 such that C 2 [•] = C 1 [C 1 [•]], in that case C 2 [•] = C 1 [C 1 [•]].
• Or there exists a context

C 2 such that C 1 [•] = C 2 [C 2 [•]], in that case C 1 [•] = C 2 [C 2 [•]].

Correctness of the Transformation

We remark that t does not contain any occurrence of ∆, I or δ . We also remark that any subterms of t has type τ for some type τ, hence it can not have ground type and in particular, it is not a redex. Moreover, given two terms t 1 ,t 

F ∈ N . If F x 1 ...x k → G e∆ ∈ R, let t = C[e [∀i x i →t i ] ∆]. Let C [•] a context and red = γ s 1 ...s arity(γ) with γ ∈ N a redex such that t = C [red].
First, we notice that since e [∀i x i →t i ] ∆ is a ground type term only containing non-terminal symbols, it is a redex , let ρ r 1 ...r arity(ρ)-1 ∆ = e [∀i x i →t i ] ∆.

Using Proposition 8 we now that there are four options:

1. either C[•] = C [γ s 1 ...s i-1 C [•]s i+1 ...s arity(γ) ] with C a context, 2. or C [•] = C[ρ r 1 ...r i-1 C [•]r i+1 ...r arity(ρ)-1 ∆] with C a context, 3. or C [•] = C[•],
4. or there exists a two holes context

C[• 1 ][• 2 ] such that C[•] = C[•][red] and C [•] = C[e [∀i x i →t i ] ∆][•]
. Option 1 is impossible, otherwise γ would be an element of hss(C). Option 2 would imply that e [∀i x i →t i ] = ρ r 1 ...r i-1 C [red]r i+1 ...r arity(ρ)-1 then e [∀i x i →t i ] contains a ground typed term, which can't be true, see Remark A. If Option 3 is true. Then hss(C ) = hss(C) which by induction only contains terminal symbols. Since there is no terminal symbols in e and in t i for all i, there is no terminal in e∆ = red. Hence t satisfies Claim 9.

If Option 4 is true, then t = C[F t 1 ...t n ][red]. Then by induction, hss(C[F t 1 ...t n ][•]
) only contains terminal symbols. But, using Proposition 7, we know that

hss(C [•]) = hss(C[e [∀i x i →t i ] ∆][•]) = hss(C[F t 1 ...t n ][•]).

Then hss(C [•]

) only contains terminal symbols. Furthermore, since red is a subterm of t, by induction it only contains non-terminal symbols, which proves that t satisfies Claim 9.

Assume that t = C[a t 1 ...t k ] satisfies Claim 9 with a ∈ Σ and k = arity(a), and let t = C[a (t 1 ∆)...(t k ∆)]. We can prove that t satisfies Claim 9 in a similar way).

Let t = C[red] an accessible term with red a redex , let exp be the rewrite expression of red, and let's look at the derivation t

= C[red] → G t = C[exp].
Claim 9 tells us that hss(C) only contains terminals, hence there is no redex containing an occurence of • in C, hence the derivation is OI.Assume that red = γ t 1 .. ]) contains a non terminal symbol γ, hence Claim 9 tells that t is not a redex , so no non-trivial subterm of red is a redex , so the derivation is IO.

Proof of Theorem 2. Lemma 1 shows that we only have to prove that G OI = G . Concretely we will show that:

∀t ∈ Acc G , ∃t ∈ Acc G : t ⊥ (t ) ⊥ (1) ∀t ∈ Acc G , ∃t ∈ Acc G : (t ) ⊥ t ⊥ (2)
Definition 1 ( • -transformation). We define inductively the transformation

• : T o (Σ N ) → T o (Σ N ) :
• a t 1 ...t arity(a) = a t 1 ... t arity(a) for all a ∈ Σ,

• red = red ∆ for red a redex .

Remark 1. Notice that t ⊥ = ( t ) ⊥ . Claim 10. If t ∈ T o (Σ N ) then t ∆ → G t .
Proof. 

G . Given that F x 1 ...x k → e ∈ R, let t = C[e [∀i x i →t i ] ].
First, given a ground type context C[• o ], we can define the associated ground type context C [• o ] by adding to Definition 1 the fact

• o = • o . Hence we can say that t = C [F t 1 ...t k ∆]. We see that t → G C [e [∀i x i →t i ] ∆]. Claim 10 shows that e [∀i x i →t i ] ∆ = e [∀i x i →t i ] ∆ → * G e [∀i x i →t i ] , hence t → G C [e [∀i x i →t i ] ∆] → * G C [ e [∀i x i →t i ] ] = t .
Claim 12. Given a term t ∈ Acc G there exists a term t ∈ Acc G such that t → G t . This claim implies property (2).

Proof of Claim 12. We will divide the relation → G in two relations : → G =→ Σ → N depending of the head symbol of the redex we're rewritting. Let t → G t if the rewrite rule applied is r a for some a ∈ Σ then t → Σ t , if the rewrite rule is r F with F ∈ N , then t → N t . The proof is in four steps:

1. Given a term t ∈ Acc G , there is only a finite number of derivation t → * Σ t , furthermore, if t → * Σ t 1 and t → * Σ t 2 such that there is no t such that t 1 → * Σ t or t 2 → * Σ t , then t 1 = t 2 . We name this unique term t Σ , and we notice that if t → * Σ t then t → * Σ t Σ . Basically this step comes from the fact that the relation → Σ strictly decrease the number of occurrences of terms headed by some a with a ∈ Σ.

2. Let t = C[F t 1 ...t arity(F) ], then t Σ = C Σ [F t 1 ...t arity(F) ], C Σ being defined inductively: if C[•] = • then C Σ [•] = •, if C[•] = a t 1 ...C [•]...t k , then C Σ [•] = a t Σ 1 ...C Σ [•]...t Σ k (Claim 9
shows that these are the only possibilities). This step is shown by induction.

3. If t → N t i.e. t = C[F t 1 ...t k ] and t = C[e [∀i x i →t i ] ∆] with the appropriate e, let t = C Σ [e [∀i x i →t i ] ∆],
then t Σ = t Σ .

4. Finally we prove by induction that for all t , there exists t ∈ Acc G such that t Σ = t , which proves the claim.

B The Type System Detailed

We give here a complete proof of Theorem 3 and Proposition 4. We first recall the type system, and the definition of (G,t) σ .

Θ t θ 1 ... Θ t θ n Θ t {θ 1 , ..., θ n } (Set) Θ, α {θ 1 , ..., θ n } α θ i (At) (for all i) Θ a σ 1 → ... → σ i≤arity(a) → q ∞ (Σ)( for a a ∈ Σ and ∃ j σ j = q ∞ ) Θ t 1 σ → θ Θ t 2 σ Θ t 1 t 2 θ (App) Θ t q ∞ → q ∞ (q ∞ → q ∞ I) (if t : τ 1 → τ 2 ) Θ t 1 q ∞ Θ t 1 t 2 q ∞ (q ∞ I)
Remark that:

• Using rule (Set) one can always prove, for any term t, Θ t {}.

• Θ t {θ 1 , ..., θ k } if and only if , for all i, Θ t θ i .

• There is no rules that directly involve q ⊥ , but that does not mean that no term matches q ⊥ , since it can appears in Θ. Rules like (At) or (App) may be use to state that a term matches q ⊥ .

We say that (G,t) matches the conjunctive mapping σ written (G,t) σ if there exists an environment Θ, called a witness environment of (G,t) σ , which verifies the following properties:

1. Dom(Θ) = N , 2. ∀F : τ ∈ N Θ(F) :: τ, 3. if F x 1 ...x k → e ∈ R
and Θ F σ 1 → ... → σ i≤k → q then either there exists j such that q ∞ ∈ σ j , or i = k and Θ, x 1 σ 1 , ..., x k σ k e q, 4. Θ t σ . Lemma 13 (Isolated Non Terminals). Given a non terminal F that has not ground type. Then if Θ verifies properties 1 to 3, one cannot prove Θ F q ∞ . Proof of lemma 13. The proof comes from the fact that Θ verifies property 3. Assume Θ F σ 1 → ... → σ i → q ∞ . Property 3 states that if i < arity(F) then there exists j ≤ i such that q ∞ ∈ σ j in particular i = 0. If i = arity(F) then by hypothesis, i = 0. Then, one cannot prove Θ F q ∞ . Lemma 14 (Non fully-applied terminals). Let Θ be an environment that verifies properties 1 to 3, let F be a non terminal that has not ground type and let t = F t 1 ...t i with i < arity(F). If Θ F t 1 ...t i q ∞ then there exists j ≤ i such that Θ t i q ∞ . Proof of Lemma 14. We prove by induction on l the following more general result: if Θ F t 1 ...t l σ l+1 → ... → σ i → q ∞ with F ∈ N and i < arity(F), then there exists j ≤ i such that Θ t j q ∞ if j ≤ l or q ∞ ∈ σ j if j > l.

If l = 1, then the rule we used to prove Θ F t 1 σ 2 → ... → σ i → q ∞ could not be (q ∞ I) since one cannot prove Θ F q ∞ . If the rule we used were

(q ∞ → q ∞ I), then q ∞ ∈ σ 2 . If it is rule (App) then Θ F σ 1 → σ 2 → ... → σ i → q ∞ and Θ t 1 σ 1 ,
and since i < arity(F), property 3 states that there exists j < l such that Θ t 1 q ∞ if j = 1, q ∞ ∈ σ j elseway. These are the only rules we could have applied.

If l > 1. If we applied rule (q ∞ I) then Θ F t 1 ...t l-1 q ∞ by induction hypothesis there exists j ≤ l -1 such that Θ t j q ∞ . If we applied rule (q ∞ → q ∞ I), then q ∞ ∈ σ l+1 . If we applied rule (App) then Θ F t 1 ...t l-1 σ l → σ l+1 → ... → σ i → q ∞ and Θ t l σ 1 then by induction hypothesis there exists j ≤ i such that either Θ t j q ∞ if j < l or q ∞ ∈ σ j if j ≥ l. If j ≤ l then either j < l and then Θ t j q ∞ , or j = l and q ∞ ∈ σ j hence Θ t j q ∞ , if j > l then q ∞ ∈ σ j if j ≥ l.

Lemma 15 (Redexes and q ∞ ). (1) If Θ verifies properties 1 to 3, then given a term t, if Θ t q ∞ then either t contains a redex r such that Θ r q ∞ . In particular, if t does not contains any redex, then one cannot prove Θ t q ∞ .

(2) If Θ verifies properties 1 to 3, then given a term t, if t contains a redex r such that Θ r q ∞ then one can prove Θ t q ∞ . Proof of Lemma 15. We prove (1) by induction on t. Assume that Θ t q ∞ . If t : o then either t = F t 1 ...t k in which case t is the redex r, or t = a t 1 ...t k then the ony rule we could have applied to prove Θ t q ∞ is (Σ), then there exists t i : o such that Θ t i q ∞ , and the result comes by induction.

If t : τ with τ = o. We could not have t = F ∈ N since one cannot prove Θ F q ∞ if F has not ground type. If t = a t 1 ...t i then again there exists t i : o such that Θ t i q ∞ , and the result comes by induction. If t = F t 1 ...t i , F has not ground type, and i < arity(F) since t has not ground type. Then Lemma 14 states that there exists t j such that Θ t j q ∞ and the result comes by induction.

To prove (2), assume that there is a redex r such that Θ r q ∞ and t = C[r]. We prove the result by induction on C

[•]. If C[•] = •, then t = r therefore Θ r q ∞ . Assume t = t 1 t 2 with t 1 = C [r] or t 2 = C [r]. If t 1 = C [
r] then by induction hypothesis, one can prove Θ t 1 q ∞ and then, using rule q ∞ I, Θ t 1 t 2 q ∞ . If t 2 = C [r], by induction hypothesis, one can prove Θ t 2 q ∞ , using rule (q ∞ → q ∞ I), we have Θ t 1 q ∞ → q ∞ and then, rule (App) gives us Θ t 1 t 2 q ∞ . environment Θ, we show by induction that for all i, if Θ a t 1 ...t i σ then σ = σ 1 → ... → σ l → q ∞ : The term a can only be judge by the rule (Σ) hence it is true if i = 0, the term (a t 1 ...t i ) t i+1 can be judge by rules (q ∞ I), (q ∞ → q ∞ I) and (App) and by induction hypothesis, in all three cases, we get Θ a t 1 ...t i σ 1 → ... → σ l → q ∞ for some l. In particular, we don't have (G,t) q ⊥ , hence (1) holds.

Using Lemma 1 and 2, in order to prove Therorem 17 we can assume that t : o. We prove it by contradiction. Assume that (G,t) q ∞ but P ∞ (t) doesn't hold. Then it means that G t is finite and contains only terminals. Since it's finite, there exists a finite IO derivation from t that leads to G t : t → * IO G t , hence using Lemmas 18 and 19 we can prove P ∞ (( G t ) ⊥ ), but since G t is a tree, G t = ( G t ) ⊥ , hence G t is infinite or contains ⊥ which raises a contradiction.

We treat the case (G,t) q ⊥ the same way: Assume that (G,t) q ⊥ but P ⊥ (t) doesn't hold. Then it means that G t contains some terminals. Then there exists a finite IO derivation from t that leads to a term t such that t ⊥ = ⊥: t → * IO t , hence using Lemmas 18 and 19 we can prove P ⊥ ((t ) ⊥ ) which is false.

Theorem 20 (Completeness). Let G be an HORS, if P ∞ (t) (resp. P ⊥ (t)) holds then (G,t) q ∞ (resp.

(G,t) q ⊥ ).

Proof of Theorem 20.

Using Lemma 15 we can assume without loss of generality that t has ground type. We recall the properties that an environment Θ has to satisfy in order to be a witness of (G,t) σ .

1. Dom(Θ) = N , 2. ∀F : τ ∈ N Θ(F) :: τ, 3. if "F x 1 ...x k → e"∈ R and Θ F σ 1 → ... → σ i≤k → q then either there exists j such that q ∞ ∈ σ j , or i = k and Θ, x 1 σ 1 , ..., x k σ k e q, 4. Θ t σ .

Let E be the set of environment that matches properties 1 and 2. Let F : E → E be a mapping such that for all F : τ

1 → ... → τ k → o ∈ N , if F x 1 ...x k → e∈ R then, F (Θ)(F) = {σ 1 → ... → σ k → q | q ∈ Q ∧ ∀i σ i :: τ i ∧ Θ, x 1 σ 1 , ..., x k σ k e : q} ∪ {σ 1 → ... → σ i≤k → q ∞ | ∧ ∀i σ i :: τ i ∧ ∃ j q ∞ ∈ σ j } ∪ {σ 1 → ... → σ k → q ⊥ | ∀i σ i :: τ i ∧ ∃ j q ∞ ∈ σ j }. Let Θ 0 ∈ E be the environment such that, for all F : τ = τ 1 → ... → τ k → o ∈ N , Θ 0 (F)
is defined and contains all atomic mappings θ :: a τ. Notice that:

Θ 0 (F) = {σ 1 → ... → σ k → q | q ∈ Q ∧ ∀i σ i :: τ i } ∪ {σ 1 → ... → σ i<k → q ∞ | ∀ j σ j :: τ j }.
Lemma 21 (Universal Witness). There exists m ∈ N such that the judgment (G,t) σ holds if and only if F m (Θ 0 ) t σ (This is Proposition 4 with Θ = F m (Θ 0 )).

Proof of Lemma 21. We define the partial order on E such that Θ 1 Θ 2 if and only if, for all F ∈ N , Θ 1 (F) ⊆ Θ 2 (F). Note that if Θ 1 Θ 2 and Θ 1 t σ then Θ 2 t σ . Θ 0 (F) contains all atomic mappings θ :: a τ , hence Θ 0 is a maximum of E with respect to . Note that the mapping F is monotonic with have proven Θ (m) t σ . In order to do it, either we have used rule (q ∞ I) or rule (App), either way we could use the same rule to prove Θ (m) t σ .

Lemma 23 (Terms that contains Void). Given a term t that contains the non terminal Void, one can prove Θ (m) t q ∞ . Proof of Lemma 23. We prove the result by induction on the structure of t : if t = Void then we use rule (At) , if t = G j t 1 ...t i with G j ∈ N (m) and t contains Void for some ≤ i, then by induction hypothesis, Θ (m) t q ∞ . Using rule (Set) we have, for all = , Θ (m) t {}. We have by construction Θ (m) a σ 1 → ... → σ k → q ∞ for σ j = q ∞ and σ i = {} for all i = j. Then, if we apply k times rule (App) we can prove Θ (m) a t 1 ...t k q ∞ . By definition, if σ = = {} and σ = q ∞ , we have

σ 1 → ... → σ i → q ∞ ∈ Θ (m) (G j ). Hence one can prove Θ (m) t i q ∞ .
if t = G j t 1 ...t i with a ∈ Σ and t contains Void for some ≤ i the proof is similar except we use rule (Σ) to prove Θ (m) a σ 1 → ... → σ i → q ∞ with σ = = {} and σ = q ∞ . Lemma 24 (Weak Completeness). Given a term t : o ∈ T (Σ N (m) ), if P ⊥ (t ⊥ ) (resp. P ∞ (t ⊥ )) holds and if there exists no IO allowed rewrite rule we can apply in t, then Θ (m) t q ⊥ (resp. / 0 t ⊥ q ∞ ).

Proof of Lemma 24. We prove both results simultaneously by induction on the structure of t. If t = Void then one can directly prove both result using rule (At). We know that t = a with a ∈ Σ since P ⊥ (a) (resp. P ∞ (a)) does not hold. If t = a t 1 ...t k , we know that P ⊥ (t ⊥ ) doesn't hold, assume that P ∞ (t ⊥ ) holds. Since t ⊥ contains ⊥, there exists j such that t ⊥ j contains ⊥, i.e. P ∞ (t ⊥ j ). Furthermore there exists no allowed rewrite rule we can apply in t j , elseway we could apply it in t. Therefore, by induction hypothesis, Θ (m) t j q ∞ . Using rule (Set) we have, for all i = j, Θ (m) t i {}. Rule (Σ) gives Θ (m) a σ 1 → ... → σ k → q ∞ for σ j = q ∞ and σ i = {} for all i = j. Then, if we apply k times rule (App) we can prove Θ (m) a t 1 ...t k q ∞ . Assume now that t = F l t 1 ...t k with F l ∈ N (m) . Since there exists no IO allowed rewrite rule we can apply in t it means that there exists i such that t i contains a redex, but this redex can't be applied, in other words, t i contains Void. Using Lemma 23 we have Θ (m) t i q ∞ . By definition, if σ j =i = {} and σ i = q ∞ , we have σ 1 → ... → σ k → q ∈ Θ (m) (F l ) for q ∈ Q. Hence one can prove Θ (m) t q. Now, we can prove the Theorem. Given a term t : o ∈ T (Σ N ), assume that P ⊥ (t) (resp. P ∞ (t)) holds. We define the term t

(m) : o = t [∀F∈N F →F i ] ∈ T (Σ N (m) ). Notice that G (m) t (m) IO is obtained by turning some subtrees of G t IO into ⊥. Hence, P ⊥ (t (m) ) (resp. P ∞ (t (m) )) holds. Let t : o ∈ T (Σ N (m) {⊥}) such that t (m) → * IO t and (t ) ⊥ = G (m)
t (m) IO (we have seen previously that such t exists). Lemma 24 states that Θ (m) t q ⊥ (resp. Θ (m) t q ∞ ), then, Lemma 22 shows that Θ (m) t (m) q ⊥ (resp. Θ (m) t (m) q ∞ ). Since non terminals in t (m) have the form F m , if we restrict the domain of Θ (m) only to {F m | F ∈ N } the proof still holds, furthermore in this proof, if we remove all "m" subscripts, we get F m (Θ 0 ) t q ⊥ (resp. F m (Θ 0 ) t q ∞ ). Lemma 21 allows us to conclude:

(G,t) q ⊥ (resp. (G,t) q ∞ ).

C Selfcorrecting Scheme

Proof of Theorem 5.

Lemma 25 (Equality of Trees). Let t : o ∈ T (V N ) be a term, then t ⊥ = (t + ) ⊥ .

Proof of Lemma 25. We prove it by induction on the structure of t : o. with Θ V (x i ) = s i for all i (in particular, t → t and t + → s).

We have s = (t ) + .

Proof of Lemma 26. Besides the labeling, by construction, s matches (t ) + . Take a subterm e of e, if one can prove Θ e [∀i x i →s i ] σ , then one can prove Θ , Θ V e σ , hence s is well labeled, therefore s = (t ) + . Then t + → * IO (t ) + .

Given two terms t,t , we write t ⇒ IO t if t is obtained by applying in parallel all IO rewrite availables in t. Formally, we define it inductively: if t is an IO-relevant redex and t is the term obtained by rewriting this redex then t ⇒ IO t . If t is not an IO redex and t = t 1 t 2 then t ⇒ IO t if and only if:

• either there exists t 1 ,t 2 such that t 1 ⇒ IO t 1 and t 2 ⇒ IO t 2 , and t = t 1 t 2 ,

• or there exists t 1 such that t 1 ⇒ IO t 1 but no t 2 such that t 2 ⇒ IO t 2 and t = t 1 t 2 ,

• or there exists t 2 such that t 2 ⇒ IO t 2 but no t 1 such that t 1 ⇒ IO t 1 and t = t 1 t 2 .

Notice that if such t exists then it is unique, and it exists if and only if t contains a redex. The • ⇒ IO • relation is known as parallel rewrite, and from a term t : o, the unique associated parallel derivation t ⇒ IO t 1 ⇒ IO t 2 ⇒ IO ... leads to the tree G t .

Lemma 27 (Coincidence of Parallel Derivation). Given a terms t ∈ T (Σ N ), and some conjunctive mappings σ 1 , ..., σ k . There exists t ∈ T (Σ N ) such that t ⇒ IO t , if and only if there exists s ∈ T (Σ N ) such that t +σ 1 ,...,σ k ⇒ IO s . Furthermore, if it is true, then s = (t ) +σ 1 ,...,σ k .

Proof of Lemma 27. The first part of the result comes from the observation that t contains a redex if and only if t +,σ 1 ,...,σ k contains a redex. We prove the second part by induction. If t is an IO-relevant redex, t +σ 1 ,...,σ k is too, and Lemma 26 proves the result. If t = t 1 t 2 , t is not an IO-relevant redex a then t +σ 1 ,...,σ k = t +σ ,σ 1 ,...,σ k 1 t + σ τ and t +σ 1 ,...,σ k is not an IO-relevant redex. Assume that t ⇒ IO t then,

• either there exists t 1 ,t 2 such that t 1 ⇒ IO t 1 and t 2 ⇒ IO t 2 , and t = t 1 t 2 ,

• or there exists t 1 such that t 1 ⇒ IO t 1 but no t 2 such that t 2 ⇒ IO t 2 and t = t 1 t 2 ,

• or there exists t 2 such that t 2 ⇒ IO t 2 but no t 1 such that t 1 ⇒ IO t 1 and t = t 1 t 2 . By induction hypothesis, t i ⇒ IO t i if and only if t + i ⇒ IO t i + for i ∈ {1, 2}, hence

  For instance, let Γ = {F : (o → o) → o → o , G : o → o → o , H : (o → o) , a : o}: F H and G a are terms of type o → o; F(G a) (H (H a)) is a term of type o; F a is not a term since F is expecting a first argument of type o → o while a has type o.

  8. Let t be a term, and let C 1 [•] and C 2 [•] be two contexts such that t = C 1 [t 1 ] and t = C 2 [t 2 ], then: either there exists a context C 1 such that C 2

  2 , if the term t 1 t 2 is valid, then it is equal to t 1 t 2 , in particular, it is an "overlined" term. It follows by induction, that given three terms t,t 1 ,t 2 , if the term t [t 1 →t 2 ] is well defined, then it is equal to t [t 1 →t 2 ] wich is also well defined.

Proof of Lemma 1. First We need the following claim.

Claim 9. For all accessible term t (with unrestricted derivations), for all context C[•] such that t = C[red] with red being a redex , hss(C) only contains terminals symbols. Furthermore, the term red doesn't contain occurence of any terminal symbol.

Proof of Claim 9. We prove it by induction. I satisfies Claim 9, S ∆ too. Assume that t = C[F t 1 ...t k ] satisfies Claim 9, with k = arity(F) and

  .t i-1 C (t)t i+1 ...t arity(γ) with C a context and t a term. Then t = C[γ t 1 ...t i-1 C (t)t i+1 ...t arity(γ) ] then hss(C[γ t 1 ...t i-1 C (•)t i+1 ...t arity(γ)

  If t = F t 1 ...t k with F ∈ N then t ⊥ = ⊥ and t + = F t 1 ,..., t k t ⊥ = ⊥ = t ⊥ .If t = a t 1 ...t k with a : o k → o ∈ Σ and t i : o for all i, then t + = a t 1 ,...,t k t + 1 ...t + k , t ⊥ = a t ⊥ 1 ...t ⊥ k and (t + ) ⊥ = a (t + 1 ) ⊥ ...(t + k ) ⊥ . By induction hypothesis, for all i (t + i ) ⊥ = t ⊥ i , then (t + ) ⊥ = a t ⊥ 1 ...t ⊥ k = t ⊥ .Lemma 26 (Label Conservation in Rewrite Rules). Given a term t :τ = τ 1 → ... → τ k → o ∈ T (Σ N ),such that t = F s 1 ...s k with F ∈ N , and t is an IO-relevant redex. Note that t + = F s 1 ,..., s k s ...x k → e∈ R, let t = e [∀i x i →s i ] and s = e +

	σ 1 τ 1 1 ...t	σ 1	τ k τ k	, then (t + ) σ 1 τ 1 1 ...s σ k	τ k τ k	.
	If F x 1 Θ V	[x i →s σ τ i j	σ i ] τ i j

Lemma 16 (Ground type terms and q ⊥ ). if Θ verifies properties 1 to 3, then if t : τ and Θ t σ , σ :: τ. In particular, if Θ t q ⊥ , then t : o.

Proof of Lemma 16. We can assume, without loss of generality that σ = {θ } for some atomic mapping θ . We prove this by induction on the structure of t.

If t = α with α ∈ Σ N , then the only rules we can apply are (At), (Σ) and (q ∞ → q ∞ I) and they all satisfy the property.

If t = t 1 t 2 with t 1 : τ 2 → τ and t 2 : τ 2 , then the rules we can apply are either (q ∞ ) or (App). If it is (q ∞ ) then we have proven Θ t q ∞ and q ∞ :: τ. If it is (App) it means that we have proven Θ t 1 σ → θ and Θ t 2 σ , and by induction hypothesis, σ :: τ 2 and θ :: τ.

Theorem 17 (Soundness). Let G be an HORS, and t be term (of any type), if (G,t) q ∞ (resp. (G,t) q ⊥ ) then P ∞ (t) (resp. P ⊥ (t)) holds.

Proof of Theorem 17.

Lemma 18 (Type Preservation). Let t : τ be a term. If (G,t) σ and t → IO t then (G,t ) σ .

Proof of Lemma 18. Assume that (G,t) σ and t → IO t . Let Θ be a witness environment of (G,t) σ , we will prove that it is also a witness environment of (G,t ) σ (we only have to check that Θ t σ ).

We

If C[•] = •, we can assume without loss of generality that σ = q ∈ Q. We look at the proof of (G,t ) σ and remark that either (1) the proof contains Θ F σ 1 → ... → σ k → σ and Θ s i σ i for all i and the last steps are using the rule (App), or (2) the proving tree contains Θ F s 1 ...s i q ∞ → q ∞ and Θ s i+1 q ∞ , the last steps are using the rule (App) once and then only rule (q ∞ I). The former case is impossible: since t → IO t is an IO derivation there's no redex in s i for all i, hence Lemma 15 shows that one cannot have Θ s i+1 q ∞ . Hence the proving tree contains Θ F σ 1 → ... → σ k → σ and Θ s i σ i for all i, then Θ, x 1 σ 1 , ..., x k σ k e q, and if we replace all statements of x i σ i by the proof of Θ s i σ i , we obtain a proof of Θ e [∀i x i →s i ] σ . Now we prove the induction step. Assume that ). Assume we have proven Θ t σ . In order to do it, either we have use rule (q ∞ I) or rule (App), either way we could use the same rule to prove Θ t σ .

We extend in an intuitive way the properties P ⊥ and P ∞ to trees: if t is a tree then P ⊥ (t) ="t = ⊥" and P ∞ (t) ="t is either infinite or contains ⊥.".

Proof of Lemma 19. We can use Lemma 15 to prove (2): if (G,t) q ∞ then t contains a redex, hence t ⊥ contains ⊥, therefore P ∞ (t ⊥ ) holds.

We prove (1) by induction on the structure of t ⊥ . If t ⊥ = ⊥ then P ⊥ (t ⊥ ) is true hence (1) holds. If t ⊥ = a with a ∈ Σ, then t = a and there is no rule that we can apply to state (G, a) q ⊥ , hence (1) and ( 2) holds. If t ⊥ = a t 1 ...t k with k > 0, then t = a t 1 ...t k with a ∈ Σ and t ⊥ i = t i for all i. For all respect to (i.e. if Θ Θ then F (Θ) F (Θ )). Given Θ ∈ E , we say that Θ is a post-fixpoint of F if and only if Θ F (Θ). Remark that being a post-fixpoint of F is the same as verifying property 3. Since Θ 0 is a maximum of E , and

) is a post-fixpoint of F , hence it verifies properties 1, 2, and 3.

Take a witness Θ of (G,t) σ . Θ is a post-fixpoint of F , and since (m) contains the following rewrite rules:

Notice that Void here is a non-terminal of order 0 that produce itself. Hence applying its rewrite rule to a term would produce the same term. In the following we forbid this rule to be applied. G (m) with this restriction is said to be recursion free, i.e. the graph whose vertices are the non terminals and where there is an edge from F to G if and only if there exist an allowed rewrite rule F x 1 ...x k → e such that e contains an occurence of G, has no loop. Such non-recursive schemes are known to be strongly normalizing, i.e. for any term t all derivations using only allowed rewrite rules are finite. In particular, there exists a finite IO derivation t → * IO t such that (t ) ⊥ = t IO . We define the environment Θ (m) on N (m) {Void}: for all F ∈ N , for all i ≤ j, Θ (m) (F i ) = F i (Θ 0 )(F) and Θ (m) (Void) = {q ∞ , q ⊥ }.

Lemma 22. Given a two terms t,t ∈ T (Σ N (m) ) such that t → IO t is allowed in G (m) . If Θ (m) t σ , then Θ (m) t q.

Proof of Lemma 22. We proceed by induction on the structure of t. We prove the initial case: t = F l s 1 ...s k and t = e [∀i x i →s i ] , with F l x 1 ...x k → e∈ R. We assume without loss of generality that σ is atomic, hence σ = q ∈ Q. Let σ i be the union of all mappings assigned to s i in the proof of Θ (m) e [∀i x i →s i ] q. Then we have m) . If l > 0, e only contains terminals of the form G l-1 , then we can transform the proof of Θ (m) , x 1 σ 1 , ..., x k σ k e q to obtain a proof of F l-1 (Θ 0 ),

For the induction step, We assume without loss of generality that σ = {θ }. Assume that

• either there exists t 1 ,t 2 such that t +σ ,σ 1 ,...,σ k 1 ⇒ IO t 1 + and t

⇒ IO t 2 + for all j, and (t ) +σ 1 ,...,σ k = (t 1 ) +σ ,σ 1 ,...,σ k (t 2 ) + σ τ 1 ...(t 2 )

• or there exists t 1 such that t +σ ,σ 1 ,...,σ k 1

⇒ IO s 2 for all j, and (t ) +σ 1 ,...,σ k = (t 1 ) +σ ,σ 1 ,...,σ k (t 2 ) + σ τ 1 ...(t 2 )

• or there exists t 2 such that t

⇒ IO (t 2 ) + σ τ j but no s 1 such that t +σ ,σ 1 ,...,σ k 1 ⇒ IO s 1 , and (t ) +σ 1 ,...,σ k = (t 1 ) +σ ,σ 1 ,...,σ k (t 2 ) + σ τ 1 ...(t 2 )

+ σ τ τ .

Therefore, t +σ 1 ,...,σ k ⇒ (t ) +σ 1 ,...,σ k .

Given a term t : o let t ⇒ IO t 1 ⇒ IO t 2 ⇒ IO ... be the parallel derivation associated to it. Thanks to Lemma 27 we know that the parallel derivation associated to t

Proof of G IO = G IO . Take a term t ∈ T (Σ N ) we define void(t) ∈ T (Σ N {Void}) as the set of termes obtained by substituing some redex r in t such that G r IO = ⊥ by Void. From the definition comes that if t ∈ void(t) then (t ) ⊥ = t ⊥ . Given a term t ∈ T (Σ N ) and an IO derivation associated t = t 1 → IO t 2 → IO ... in G we construct by induction an IO derivation in G t = t 1 → IO t 2 → IO ... such that for all i t i ∈ void(t i ). The initial step is straightforward: t ∈ void(t), Assume that t i ∈ void(t i ), and assume that t

If this redex is a subterm of another one that is transformed by Void in t i then we just rewrite this void obtaining t i+1 = t i by induction hypothesis, we still have t i+1 ∈ void(t i+1 ). If this redex is not transformed in t i then we rewrite this redex, and either F t 1 ...t k IO = ⊥, in which case the semantics associated contains q ⊥ thanks to Theorem 5, and then e [∀i x i →t i ] is still a redex and is transformed to Void in t i+1 or F t 1 ...t k IO = ⊥ and no more transformation is added to create t i+1 , in both cases t i+1 ∈ void(t i+1 ).

This result gives that G IO G IO . Since G is obtained by from G changing some redex into other that will produce ⊥, it is clear that G IO G IO , then G IO = G IO .

Proof of G = G IO . We already know that G IO G , we just have to show that for all t, if there is ⊥ at node u in G t I O then there is ⊥ at node u in G t IO . We show this by induction on the size of u.

If G t I O = ⊥. Then G t I O = G t I O = ⊥, hence t = ⊥, hence the only derivation in G from t is t → Void → Void → ..., therefore G = ⊥. If u = ju then let a be the terminal at the root of G IO , then there exists an IO derivation t → * a t 1 ...t k , and G t j IO is equal to the subtree of G t IO rooted at node j. Since t → * a t 1 ...t k , G t j is equal to the subtree of G t rooted at node j and by induction hypothesis, since there is ⊥ at node u in G t j IO , there is ⊥ at node u in G t j hence there is ⊥ at node u in G t j .