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A SHARP ABELIAN THEOREM FOR THE LAPLACE

TRANSFORM

MAEVA BIRET(1), MICHEL BRONIATOWSKI(1,∗) , AND ZANSHENG CAO(1)

Abstract. This paper states asymptotic equivalents for the moments of the
Esscher transform of a distribution on R with smooth density in the upper
tail.

1. Introduction

Let X denote a real-valued random variable with support R and absolutely
continuous distribution PX with density p.

The moment generating function of X

Φ(t) := E[exp(tX)]

is supposed to be finite in a non void neighborhood N of 0. This hypothesis is
usually referred to as a Cramer type condition.

The tilted density of X (or Esscher transform of its distribution) with parameter
t in N is defined on R by

πt(x) :=
exp(tx)

Φ(t)
p(x).

For t ∈ N , the functions

t→ m(t) :=
d

dt
logΦ(t),(1.1)

t→ s2(t) :=
d2

dt2
logΦ(t),(1.2)

t→ µj(t) :=
dj

dtj
logΦ(t), j ∈ (2,∞).(1.3)

are respectively the expectation and the centered moments of a random variable
with density πt.

When Φ is steep, meaning that

(1.4) lim
t→t+

m(t) = ∞

and
lim
t→t−

m(t) = −∞
where t+ := ess supN and t− := ess infN then m parametrizes R (this is

steepness, see Barndorff-Nielsen [1]). We will only require (1.4) to hold.
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This paper presents sharp approximations for the moments of the tilted density
πt under conditions pertaining to the shape of p in its upper tail, when t tends to
the upper bound of N .

2. Notation and hypotheses

The density p is assumed to satisfy the following requirements. It is a density
function of the form

(2.1) p(x) = c exp(−(g(x)− q(x))) x ∈ R+,

where c is some positive normalizing constant. For the sake of this paper, only
the form of p for positive x matters. The function g is positive, convex, twice
differentiable and satisfies

(2.2)
g(x)

x
−→
x→∞

∞.

Define h(x) := g′(x). We assume that there exists some positive constant ϑ,
such that

(2.3) sup
|v−x|<ϑx

|q(v)| =
x→∞

o

(
1√
xh(x)

)
,

Not all positive convex g’s satisfying (2.2) are adapted to our purpose. We follow
the line of Juszczak and Nagaev [5] to describe the assumed regularity conditions
of h.

Two cases will be considered. The first one is adapted to regularly varying func-
tions g, whose smoothness is described through the following condition pertaining
to h.

Case 1: The case when g is a regularly varying function. It will be assumed that
h belongs to the class Rβ , β > 0, which is the class of all measurable real-valued
functions h defined on a neighborhood of +∞, which can be represented by

h(x) = xβ l(x),

where l(x) is a slowly varying function with Karamata representation

(2.4) l(x) = exp

(∫ x

1

ǫ(u)

u
du

)
, x ≥ 1,

with ǫ(x) twice differentiable, ǫ(x) −→
x→∞

0, and

(2.5) lim sup
x→∞

x|ǫ′(x)| <∞, lim sup
x→∞

x2|ǫ′′(x)| <∞

Case 2: In this case, g is a rapidly varying function. The behavior of h at
infinity is described through its inverse function

(2.6) ψ(u) := h←(u)

which is a slowly varying function with some regularity, to be stated through the
following description.
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The class R̃0 consists in all slowly varying functions x 7→ l(x), with l(x) −→
x→∞

∞,

where, in (2.4), ǫ(x) is twice differentiable, ǫ(x) −→
x→∞

0 and

(2.7) lim
x→∞

xǫ′(x)

ǫ(x)
= 0, lim

x→∞
x2ǫ′′(x)

ǫ(x)
= 0

and for some η ∈ (0, 1/6)

(2.8) lim inf
x→∞

xηǫ(x) > 0.

We say that h ∈ R∞ if h is increasing and strictly monotone and its inverse

function ψ belongs to R̃0.

Denote R := (Rβ) ∪ R∞ which covers a large class of functions, with either
regular or rapid variation at infinity.

We will assume that

h belongs to R.

Remark 1. The role of (2.4) is to make h(x) smooth enough. Under (2.4) the third
order derivative of h(x) exists, which is needed in order to use a Laplace method
for the asymptotic evaluation of the moment generating function Φ(t) as t → ∞,
where

Φ(t) =

∫ ∞

0

etxp(x)dx = c

∫ ∞

0

exp(K(x, t) + q(x))dx, t ∈ (0,∞)

in which

(2.9) K(x, t) = tx− g(x).

If h ∈ R, then for large t, K(x, t) takes its maximum at x̂ = h←(t) and is
concave with respect to x.

The evaluation of Φ(t) for large t follows from an expansion of K(x, t) in a
neighborhood of x̂, using Laplace’s method. This expansion yields

K(x, t) = K(x̂, t) +K ′(x̂, t)(x− x̂) +
K ′′(x̂, t)

2
(x− x̂)2 +

K(3)(x̂, t)

6
(x− x̂)3 + ε(x, t)

= K(x̂, t)− 1

2
h′(x̂)(x− x̂)2 − 1

6
h′′(x̂)(x − x̂)3 + ε(x, t),

where ε(x, t) is some error term. Conditions (2.5), (2.7) and (2.8) guarantee
that ε(x, t) goes to 0 when t tends to ∞ and x belongs to some neighborhood of x̂.

Example 1. Weibull density. Let p be a Weibull density with shape parameter
k > 1 and scale parameter 1, namely

p(x) = kxk−1 exp(−xk), x ≥ 0

= k exp(−(xk − (k − 1) log x)).

Take g(x) = xk − (k − 1) log x and q(x) = 0. Then it holds

h(x) = kxk−1 − k − 1

x
= xk−1

(
k − k − 1

xk

)
.
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Set l(x) = k − (k − 1)/xk, x ≥ 1, then (2.4) holds, namely,

l(x) = exp

(∫ x

1

ǫ(u)

u
du

)
, x ≥ 1,

with

ǫ(x) =
k(k − 1)

kxk − (k − 1)
.

The function ǫ is twice differentiable and goes to 0 as x → ∞. Additionally, ǫ
satisfies condition (2.5). Hence we have shown that h ∈ Rk−1.

Example 2. A rapidly varying density. Define p through

p(x) = c exp(−ex−1), x ≥ 0.

Then g(x) = h(x) = ex−1 and q(x) = 0 for all non negative x. We show that
h ∈ R∞. It holds ψ(x) = log x + 1. Since h(x) is increasing and monotone, it

remains to show that ψ(x) ∈ R̃0. When x ≥ 1, ψ(x) admits the representation
(2.4) with ǫ(x) = 1/(logx+ 1). Also conditions (2.7) and (2.8) are satisfied. Thus
h ∈ R∞.

3. An Abelian-type theorem

We have

Theorem 1. Let p(x) be defined as in (2.1) and h ∈ R. Denote by m(t), s2(t) and
µj(t) for j ∈ (2,∞) the functions defined in (1.1), (1.2) and (1.3). Then with ψ
defined as in (2.6), it holds

m(t) =
t→∞

ψ(t)(1 + o(1)),

s2(t) =
t→∞

ψ′(t)(1 + o(1)),

µ3(t) =
t→∞

ψ′′(t)(1 + o(1)),

µj(t) =
t→∞

{
Mjs

j(t)(1 + o(1)), for even j > 3
Mj+3−3jMj−1

6 µ3(t)s
j−3(t)(1 + o(1)), for odd j > 3

where Mi, i > 0, denotes the ith order moment of standard normal distribution.

As a direct by product of Theorem 1 we obtain the following Abel type result.
Define

σ2(v) = (h′(v))−1, v ∈ R+.

It holds

Theorem 2. Under the same hypotheses as in Theorem 1,

Φ(t) = c
√
2πσeK(x̂,t)(1 + o(1)),

where K(x̂, t) is defined as in (2.9) and σ := σ (x̂) .

Remark 2. It is easily verified that this result is in accordance with Theorem
4.12.11 of [2], Theorem 3 of [3] and Theorem 4.2 of [5].

Corollary 1. Let p(x) be defined as in (2.1) and h(x) ∈ R. Then it holds

µ3(t)

s3(t)
−→
t→∞

0.
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The proofs of these results rely on Lemmas 2, 3, 4 and 5. Lemma 1 is instrumen-
tal for Lemma 5. The proof of these Lemmas, Theorem 1, Theorem 2 and Corollary
1 are left to Section 4.

Thereafter we will use indifferently the notation f(t) ∼
t→∞

g(t) and f(t) =
t→∞

g(t)(1 + o(1)) to specify that f and g are asymptotically equivalent functions.

4. Appendix: Proofs

For density functions p(x) defined as in (2.1) satisfying also h(x) ∈ R, denote by
ψ(x) the inverse function of h(x). For brevity, we write x̂, σ and l instead of x̂(t),
σ(ψ(t)) and l(t).

4.1. Some useful Lemmas. The following Lemmas will be useful for proving
Theorem 1 and Corollary 1.

Lemma 1. It holds

(4.1)
log σ(ψ(t))∫ t
1
ψ(u)du

−→
t→∞

0.

Proof:
Case 1: If h ∈ Rβ , by Theorem (1.5.15) of [2], there exists some slowly varying

function l1 such that ψ(x) ∼ x1/β l1(x) holds. Hence (see Theorem 1 of [4], Chapter
8.9 or Proposition 1.5.8 of [2])

(4.2)

∫ t

1

ψ(u)du ∼
t→∞

t1+
1
β l1(t)

1
β + 1

=
βtψ(t)

1 + β
.

On the other hand, h′(x) = xβ−1l(x)(β + ǫ(x)). Thus we have as x→ ∞

| log σ(x)| =
∣∣∣log(h′(x))− 1

2

∣∣∣

=

∣∣∣∣
1

2
((β − 1) log x+ log l(x) + log(β + ǫ(x)))

∣∣∣∣ .

Firstly, l(x) is a slowly varying function thus log l(x) =
x→∞

o(xα), for α > 0.

Hence for x large enough and for all δ > 0, we have | log l(x)| ≤ δxα. Secondly,
| log x| ≤ θxγ , for γ > 0, and x large enough, and for all θ > 0. Thirdly, ǫ(x) −→

x→∞
0

which implies that for x large enough, |ǫ(x)| ≤ C, for some positive constant C.
Hence | log(β + ǫ(x))| ≤ ϑ(β + ǫ(x))η ≤ ϑ(β + C)η, for η > 0, x large enough and
for all ϑ > 0. Consider the special case α = δ = γ = θ = ϑ = η = 1. We obtain

| log σ(x)| ≤ 1

2
(βx+ (β + C)).

Set x = ψ(t); we get for t large enough

| log σ(ψ(t))| ≤ 1

2
(βψ(t) + (β + C)),
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which, together with (4.2), gives

| log σ(ψ(t))|∫ t
1
ψ(u)du

≤ βψ(t) + (β + C)

2βtψ(t)
(1 + β) = (1 + β)

(
1

2t
+

β + C

2βtψ(t)

)
−→
t→∞

0,

which yields (4.1).

Case 2: If h ∈ R∞, then since ψ(x) ∈ R̃0 is slowly varying as x→ ∞ it holds

(4.3)

∫ t

1

ψ(u)du ∼
t→∞

tψ(t)

(see Theorem 1 of [4], Chapter 8.9 or Proposition 1.5.8 of [2]).
Additionally, we have h′(x) = (ψ−1(x))′ = 1/(ψ′(ψ−1(x))) = 1/ψ′(t) with x =

ψ(t). It follows

| log σ(x)| = | log(h′(x))− 1
2 | = 1

2
| logψ′(t)|.

Since ψ(t) ∈ R̃0, it holds

(4.4) | log σ(ψ(t))| = 1

2

∣∣∣∣log
(
ψ(t)

ǫ(t)

t

)∣∣∣∣ ≤ C1t,

for some positive constant C1, using (2.8).
(4.3) and (4.4) imply (4.1)

| log σ(ψ(t))|∫ t
1
ψ(u)du

≤ C1

ψ(t)
−→
t→∞

0.

This completes the proof.

Lemma 2. For p(x) as in (2.1), h ∈ R and for any slowly varying function l such
that
l(t) −→

t→∞
∞, it holds

(4.5) sup
|x|≤σl

h(3)(x̂+ x)σ4l4 −→
t→∞

0.

where l := l(t).

Proof:
Case 1: If h ∈ Rβ , then we have h(x) = xβ l0(x), l0(x) ∈ R0, β > 0, for x large

enough. The function h is three times differentiable

h′(x) = βxβ−1l0(x) + xβ l′0(x),

(4.6)

h′′(x) = β(β − 1)xβ−2l0(x) + 2βxβ−1l′0(x) + xβl′′0 (x),

h(3)(x) = β(β − 1)(β − 2)xβ−3l0(x) + 3β(β − 1)xβ−2l′0(x) + 3βxβ−1l′′0 (x) + xβl
(3)
0 (x).
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Since l0 ∈ R0, it is easy to obtain

l′0(x) =
l0(x)

x
ǫ(x),(4.7)

l′′0 (x) =
l0(x)

x2
(ǫ2(x) + xǫ′(x)− ǫ(x)),

l
(3)
0 (x) =

l0(x)

x3
(ǫ3(x) + 3xǫ′(x)ǫ(x) − 3ǫ2(x)− 2xǫ′(x) + 2ǫ(x) + x2ǫ′′(x)).

Since ǫ(t) −→
t→∞

0, and making use of (2.5) together with the above formulas there

exists some positive constants Q1 and Q2 such that, for x large enough,

|l′′0 (x)| ≤ Q1
l0(x)

x2
and |l(3)0 (x)| ≤ Q2

l0(x)

x3
.

Including these results in (4.6) and followings yields with some positive constant
Q3 and for x large enough,

(4.8) |h(3)(x)| ≤ Q3
h(x)

x3
.

By definition, we have σ2(x) = 1/h′(x) with h′(x) = βxβ−1l0(x) + xβl′0(x) =
xβ−1l0(x)(β + ǫ(x)) = h(x)(β+ ǫ(x))/x, thus σ2(x) = x/(h(x)(β + ǫ(x))). Hence it
follows that

(4.9) σ2 =
x̂

h(x̂)(β + ǫ(x̂))
=

ψ(t)

t(β + ǫ(ψ(t)))
=

t→∞
ψ(t)

βt
(1 + o(1)),

where the last equality follows from ψ(t) −→
t→∞

∞ and ǫ(x) −→
x→∞

0, which implies,

by composition, ǫ(ψ(t)) −→
t→∞

0.

Result (4.9) implies
σl

ψ(t)
∼

t→∞
l√

βtψ(t)
−→
t→∞

0,

since l is slowly varying, hence negligible compared to any power of t. This
means that

σl =
t→∞

o(ψ(t)) = o(x̂).

By (4.8) we have

(4.10) sup
|x|≤σl

|h(3)(x̂ + x)| ≤ sup
|x|≤σl

Q3
h(x̂+ x)

(x̂+ x)3
.

Since x =
t→∞

o(x̂) on {x : |x| ≤ σl}, then (x̂ + x)3 ∼
t→∞

x̂3. Moreover, since

h(x) = xβl0(x) for x large enough and l0(x) ∈ R0, then h(x̂+ x) = (x̂ + x)βl0(x̂ +
x) ∼

t→∞
x̂βl0(x̂+ x). By (2.4),

l0(x̂+ x)

l0(x̂)
= exp

(∫ x̂+x

x̂

ǫ(u)

u
du

)
−→
t→∞

1.

Thus we obtain h(x̂+ x) ∼
t→∞

h(x̂). Together with (4.10), we have

sup
|x|≤σl

|h(3)(x̂+ x)| ≤ Q3
h(x̂)

x̂3
= Q3

t

ψ3(t)
,
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which, combined with (4.9) yields

sup
|x|≤σl

|h(3)(x̂+ x)|σ4l4 ≤ Q3
t

ψ3(t)
× ψ2(t)

β2t2
l4 =

Q3l
4

β2tψ(t)
−→
t→∞

0,

since l varies slowly. This proves (4.5).

Case 2: If h ∈ R∞, we have h′(x) = 1/ψ′(h(x)). Since x̂ = ψ(t), we have
h(x̂) = t. Thus it holds

h′(x̂) =
1

ψ′(t)
,(4.11)

h′′(x̂) = −h
′(x̂)ψ′′(h(x̂))

(ψ′(h(x̂)))2
= − ψ′′(t)

(ψ′(t))3
,

h(3)(x̂) = −ψ
(3)(t)ψ′(t)− 3(ψ′′(t))2

(ψ′(t))5
.

Also

ψ′(t) =
ψ(t)

t
ǫ(t),(4.12)

ψ′′(t) = −ψ(t)
t2

ǫ(t)

(
1− ǫ(t)− t

ǫ′(t)

ǫ(t)

)

ψ(3)(t) =
ψ(t)

t3
ǫ(t)

(
2 + ǫ2(t) + 3tǫ′(t)− 3ǫ(t)− 2tǫ′(t)

ǫ(t)
+
t2ǫ′′(t)

ǫ(t)

)
.

Putting the above formulas into (4.11), we get

h(3)(x̂) = t
1 + 2ǫ2(t)− 3ǫ(t) + 3tǫ′(t)− 4t ǫ

′(t)
ǫ(t) − t2 ǫ

′′(t)
ǫ(t) + 3t2 (ǫ′(t))2

ǫ2(t)

ψ3(t)ǫ3(t)

∼
t→∞

t

ψ3(t)ǫ3(t)
,

using (2.7).
By (2.8), tηǫ(t) > C with C some positive constant and η ∈ (0, 1/6). Thus we

obtain
(4.13)

sup
|v|≤t/4

h(3)(ψ(t+v)) ∼
t→∞

sup
|v|≤t/4

t+ v

ψ3(t+ v)ǫ3(t+ v)
≤ sup
|v|≤t/4

(t+ v)1+3η

C3ψ3(t+ v)
≤ Q4

t1+3η

ψ3(t)
,

where Q4 = (5/4)1+3η/C3 is a positive constant. The last inequality holds
from the slowly varying property of ψ(t) which implies ψ(t + v) ∼

t→∞
ψ(t). Using

σ2 = ψ′(t), it holds

sup
|v|≤t/4

h(3)(ψ(t+ v))σ4l4 ≤ Q4
t1+3η

ψ3(t)

ψ2(t)ǫ2(t)

t2
l4 = Q4

ǫ2(t)l4

ψ(t)t1−3η
−→
t→∞

0,

since η ∈ (0, 1/6) and l is a slowly varying function. Setting ψ(t + v) = x̂ + x,
we obtain the following equality

sup
|v|≤t/4

h(3)(ψ(t+ v)) = sup
x∈[ξ1,ξ2]

h(3)(x̂ + x),
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where

ξ1 = ψ

(
3t

4

)
− x̂, ξ2 = ψ

(
5t

4

)
− x̂.

Thus we obtain
sup

x∈[ξ1,ξ2]
h(3)(x̂+ x)σ4l4 −→

t→∞
0.

For completing the proof, it remains to show that [−σl, σl] ⊂ [ξ1, ξ2] as t → ∞,
namely for t large enough

(4.14) σl ≤ min(−ξ1, ξ2).
The first order Taylor-Lagrange expansion of ψ(3t/4) and ψ(5t/4) yields for some

α1 ∈ (0, 1) and α2 ∈ (0, 1)

ξ1 = ψ

(
3t

4

)
− ψ(t) = −ψ′

(
t− α1t

4

)
t

4
= −ψ

(
t− α1t

4

)

4− α1
ǫ

(
t− α1t

4

)
,

ξ2 = ψ

(
5t

4

)
− ψ(t) = ψ′

(
t+

α2t

4

)
t

4
=
ψ
(
t+ α2t

4

)

4 + α2
ǫ

(
t+

α2t

4

)
.

By (2.8), for large t, ǫ(t) ≥ C/tη, for C some positive constant and η ∈ (0, 1/6),
and slowly varying property of ψ(t), it holds as t→ ∞

−ξ1 ≥ ψ
(
t− α1t

4

)

4
ǫ

(
t− α1t

4

)
∼

t→∞
ψ(t)

4
ǫ

(
t− α1t

4

)
≥ ψ(t)

4

C(
t− α1t

4

)η ≥ C

4

ψ(t)

tη
,

ξ2 ≥ Cψ
(
t+ α2t

4

)

5
(
t+ α2t

4

)η ∼
t→∞

Cψ(t)

5
(
t+ α2t

4

)η ≥ 4ηCψ(t)

5η+1tη
,

which, together with σ =
√
ψ′(t) =

√
ψ(t)ǫ(t)/t, yields

σl

−ξ1
≤ 4tη−

1
2

√
ǫ(t)l

C
√
ψ(t)

−→
t→∞

0,

σl

ξ2
≤ 5η+1

4ηC

tη−
1
2

√
ǫ(t)√

ψ(t)
l −→
t→∞

0,

since η < 1/6, ǫ(t) −→
t→∞

0 and l is a slowly varying function. Hence σl =
t→∞

o(−ξ1)
and σl =

t→∞
o(ξ2), which imply (4.14). Then

sup
|x|≤σl

h(3)(x̂+ x)σ4l4 ≤ sup
x∈[ξ1,ξ2]

h(3)(x̂+ x)σ4l4 −→
t→∞

0,

which completes the proof.

Lemma 3. For p(x) in (2.1), h ∈ R and for some slowly varying function l(t) −→
t→∞

∞, it holds

(4.15) sup
|x|≤σl

h(3)(x̂ + x)

h′′(x̂)
σl −→

t→∞
0

and

(4.16) h′′(x̂)σ3l −→
t→∞

0, h′′(x̂)σ4 −→
t→∞

0.

where l := l(t). We may assume l(t) := (log t)
3
.
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Proof:
Case 1: h ∈ Rβ . We get

h′′(x) ∼
x→∞

xβ−2l0(x)(β(β − 1) + xǫ′(x)).

By (2.5), for some real M , we have x|ǫ′(x)| ≤ M which implies xǫ′(x) ≥ −M .
Let N := β(β − 1)−M . Since x̂ = ψ(t), for t large enough it holds

(4.17) h′′(x̂) ≥ N
h(x̂)

x̂2
= N

t

ψ2(t)
,

which, together with (4.9), yields

sup
|x|≤σl

∣∣∣∣
h(3)(x̂+ x)

h′′(x̂)
σl

∣∣∣∣ ≤
Q3

N

t

ψ3(t)

ψ2(t)

t

√
ψ(t)

βt
l =

Q3l

N
√
βtψ(t)

−→
t→∞

0

since l varies slowly. Hence we get (4.15).

Using above equivalents obtained in Lemma 1 we obtain for t large enough and
some positive constant Q5

h′′(x̂)σ3l ≤ Q5
t

ψ2(t)

ψ
3
2 (t)

β
3
2 t

3
2

l =
Q5

β
3
2

l√
tψ(t)

−→
t→∞

0,

as sought previously. This implies that the first limit in (4.16) holds. Likewise
we get the second limit in (4.16) since

h′′(x̂)σ4 ≤ Q5
t

ψ2(t)

ψ2(t)

β2t2
=
Q5

β2t
−→
t→∞

0

Case 2: h ∈ R∞. We obtain

(4.18) h′′(x̂) = − ψ′′(t)

(ψ′(t))3
=

t→∞
1

8

t

ψ2(t)ǫ2(t)
(1 + o(1)).

Combining (4.13) and (4.18), using σ = (h′(x̂))−
1
2 , we have as t→ ∞

sup
|v|≤t/4

h(3)(ψ(t+ v))

h′′(x̂)
σl ≤ 8Q4

ǫ
5
2 (t)l√

ψ(t)t
1
2−3η

−→
t→∞

0,

since ǫ(t) −→
t→∞

0, l is some slowly varying function and by (2.8), η ∈ (0, 1/6). In

the same way as case 2 in Lemma 2, we get (4.15).

Using (4.18), we have

h′′(x̂)σ3l ∼
t→∞

l

8
√
tψ(t)ǫ(t)

≤ l

8
√
Cψ(t)t1−η/2

−→
t→∞

0,

where ψ and l vary slowly and ǫ(t) > C/tη, for η ∈ (0, 1/6) by (2.8). This implies
that the first limit in (4.16) holds.

Likewise we have

h′′(x̂)σ4 ∼
t→∞

1

8t
−→
t→∞

0,

hence the proof of the second limit in (4.16).
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Lemma 4. For some slowly varying function l such that l(t) −→
t→∞

∞, it holds

sup
y∈[−l,l]

|ξ(σy + x̂, t)|
h′′(x̂)σ3

−→
t→∞

0,

where ξ(x, t) = ε(x, t) + q(x) and l := l(t). We may assume l(t) := (log t)
3
.

.

Proof:
A close look to the proof of Lemma 3 shows that (4.15) can be slightly modified

into

sup
|x|≤σl

|h
(3)(x̂+ x)

h′′(x̂)
σl4| −→

t→∞
0.

Hence for y ∈ [−l, l], it holds
∣∣∣∣
ε(σy + x̂, t)

h′′(x̂)σ3

∣∣∣∣ ≤
∣∣∣∣
h(3)(x̂+ θσy)(σy)4

h′′(x̂)σ3

∣∣∣∣ ≤
∣∣∣∣
h(3)(x̂+ θσy)σl4

h′′(x̂)

∣∣∣∣ ,

with θ ∈ (0, 1). Let x = θσy. It then holds |x| ≤ σl. Therefore
∣∣∣∣
ε(σy + x̂, t)|
h′′(x̂)σ3

∣∣∣∣ ≤
∣∣∣∣
h(3)(x̂+ x)σl4

h′′(x̂)

∣∣∣∣ .

Hence by Lemma 3
∣∣∣∣
ε(σy + x̂, t)|
h′′(x̂)σ3

∣∣∣∣ ≤ sup
|x|≤σl

∣∣∣∣
h(3)(x̂ + x)

h′′(x̂)
σl4
∣∣∣∣ −→t→∞ 0.

Under condition (2.3), setting x = ψ(t), we get

sup
|v−ψ(t)|≤ϑψ(t)

|q(v)| =
t→∞

o

(
1√
tψ(t)

)
,

We have to prove that ∣∣∣∣
q(σy + x̂)

h′′(x̂)σ3

∣∣∣∣ −→t→∞ 0.

Case 1: h ∈ Rβ . We have h(x) = xβl0(x), l0(x) ∈ R0, β > 0. Hence

h′(x) = xβ−1l0(x)(β + ǫ(x)).

By (4.9), it holds

(4.19)
σl

ϑψ(t)
∼

t→∞

√
ψ(t)

βt

l

ϑψ(t)
=

1

ϑ
√
β

l√
tψ(t)

−→
t→∞

0,

since ψ(t) ∼
t→∞

t
1
β l1(t) −→

t→∞
∞ for some slowly varying function l1 and l varies

slowly. We can write (4.19) as

σl =
t→∞

o(ϑψ(t)).

Thus {v : |v − ψ(t)| ≤ σl} ⊂ {v : |v − ψ(t)| ≤ ϑψ(t)} which implies

(4.20) sup
|v−ψ(t)|≤σl

|q(v)| ≤ sup
|v−ψ(t)|≤ϑψ(t)

|q(v)| =
t→∞

o

(
1√
tψ(t)

)
.
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By (4.9) and (4.17), it holds for t large enough
∣∣∣∣
q(σy + x̂)

h′′(x̂)σ3

∣∣∣∣ ≤ |q(σy + x̂)|β
3
2

N

√
tψ(t).

Let v = σy + x̂, then |v − ψ(t)| = |σy| ≤ σl. Thus we obtain

(4.21)

∣∣∣∣
q(σy + x̂)

h′′(x̂)σ3

∣∣∣∣ ≤ sup
|v−ψ(t)|≤σl

|q(v)|β
3
2

N

√
tψ(t) −→

t→∞
0,

where the last step follows from (4.20).

Case 2: h ∈ R∞. For any slowly varying function l(t) it holds

σl

ϑψ(t)
=

√
ǫ(t)

tψ(t)

l

ϑ
−→
t→∞

0,

hence we have, by (2.3)

sup
|v−ψ(t)|≤σl

|q(v)| =
t→∞

o

(
1√
tψ(t)

)
.

Using this relation and (4.18), when y ∈ [−l, l], it holds for t large enough
∣∣∣∣
q(σy + x̂)

h′′(x̂)σ3

∣∣∣∣ ∼
t→∞

|q(σy + x̂)|8
√
tψ(t)ǫ(t)

≤ sup
|v−ψ(t)|≤σl

|q(v)|8
√
tψ(t)ǫ(t)

≤ Q6

√
ǫ(t) −→

t→∞
0,(4.22)

for some constant Q6, since ǫ(t) −→
t→∞

0.

Combining (4.21) and (4.22) completes the proof.

Lemma 5. For α ∈ N, denote

Ψ(t, α) :=

∫ ∞

0

(x− x̂)αetxp(x)dx.

Then

Ψ(t, α) =
t→∞

cσα+1eK(x̂,t)T1(t, α)(1 + o(1)),

where

(4.23) T1(t, α) =

∫ l1/3√
2

− l1/3√
2

yα exp(−y
2

2
)dy − h′′(x̂)σ3

6

∫ l1/3√
2

− l1/3√
2

y3+α exp(−y
2

2
)dy,

for some l(t) −→
t→∞

∞; we may choose l(t) = (log t)3.

Proof:
Given a slowly varying function l(t) with l(t) −→

t→∞
∞, we define the interval It

as follows

It :=

(
− l

1
3 σ√
2
,
l
1
3 σ√
2

)
,



ABELIAN THEOREM 13

where l := l(t).
For large enough τ , when t→ ∞ we can partition R+ :

R+ = {x : 0 < x < τ} ∪ {x : x ∈ x̂+ It} ∪ {x : x ≥ τ, x 6∈ x̂+ It},
where τ is large enough so that for x > τ , q(x) < log 2. Thus we have

(4.24) p(x) < 2ce−g(x).

Obviously, for fixed τ , {x : 0 < x < τ} ∩ {x : x ∈ x̂+ It} = ∅ since for large t we

have min(x : x ∈ x̂ + It) −→
t→∞

∞. Therefore τ < x̂ − l
1
3 σ√
2

≤ x̂ for t large enough.

Hence it holds

(4.25) Ψ(t, α) =: Ψ1(t, α) + Ψ2(t, α) + Ψ3(t, α),

where

Ψ1(t, α) =

∫ τ

0

(x− x̂)αetxp(x)dx

Ψ2(t, α) =

∫

x∈x̂+It
(x − x̂)αetxp(x)dx

Ψ3(t, α) =

∫

x 6∈x̂+It,x≥τ
(x− x̂)αetxp(x)dx

We estimate Ψ1(t, α), Ψ2(t, α) and Ψ3(t, α) in Step 1, Step 2 and Step 3.

Step 1: Using (4.24), for τ and t large enough, we have

|Ψ1(t, α)| ≤
∫ τ

0

|x− x̂|α etxp(x)dx ≤ 2c

∫ τ

0

|x− x̂|α etx−g(x)dx ≤ 2c

∫ τ

0

x̂αetxdx,

since when 0 < x < τ < x̂ then |x− x̂| = x̂ − x < x̂ for t large enough and g is
positive.

Since for t large enough
∫ τ

0

x̂αetxdx = x̂α
etτ

t
− x̂α

t
≤ x̂α

etτ

t
,

we obtain

(4.26) |Ψ1(t, α)| ≤ 2cx̂α
etτ

t
,

for τ and t large enough.

We now show that for h ∈ R, it holds

(4.27) x̂α
etτ

t
=

t→∞
o(σα+1eK(x̂,t)h′′(x̂)σ3),

with K(x, t) defined in (2.9). This is equivalent to

x̂αetτ

tσα+4h′′(x̂)
=

t→∞
o(eK(x̂,t)),

which is implied by

exp(−(α+ 4) logσ − log t+ α log x̂+ τt− log h′′(x̂)) =
t→∞

o(eK(x̂,t)).
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Since x̂ = ψ(t), it holds

K(x̂, t) = tψ(t)− g(ψ(t)).(4.28)

Setting u = h(v) in
∫ t
1 ψ(u)du,

(4.29)

∫ t

1

ψ(u)du = tψ(t)− ψ(1)− g(ψ(t)) + g(ψ(1))

by integration by parts, and then using h(x) = g′(x).

Finally (4.28) and (4.29) produce

(4.30) K(x̂, t) =

∫ t

1

ψ(u)du + ψ(1)− g(ψ(1)).

By Lemma 1, log σ =
t→∞

o(
∫ t
1
ψ(u)du). Furthermore K(x̂, t) ∼

t→∞

∫ t
1
ψ(u)du.

Hence log σ =
t→∞

o(K(x̂, t)). It remains to show that t =
t→∞

o(K(x̂, t)), log x̂ =
t→∞

o(K(x̂, t)) and log h′′(x̂) =
t→∞

o(K(x̂, t)).

• If h ∈ Rβ , by Theorem (1.5.12) of [2], it holds ψ(x) ∼
x→∞

x
1
β l1(x) for some

slowly varying function l1(x). Together with (4.2) and (4.30), this yields

K(x̂, t) ∼
t→∞

∫ t

1

ψ(u)du ∼
t→∞

β

1 + β
tψ(t).

Consequently,

t

K(x̂, t)
∼

t→∞
1 + β

β

1

ψ(t)
−→
t→∞

0,

which is equivalent to t =
t→∞

o(K(x̂, t)). In addition, log x̂ = logψ(t) ∼
t→∞

( 1β ) log t + log l1(t) =
t→∞

o(t) =
t→∞

o(K(x̂, t)), using the slow variation of l1

and log t =
t→∞

o(t). For the same reason we have log h′′(x̂)/t ≤ Q(log t −
2 logψ(t))/t −→

t→∞
0 which implies log h′′(x̂) =

t→∞
o(t) =

t→∞
o(K(x̂, t)). Since

K(x̂, t) −→
t→∞

∞ then eo(K(x̂,t)) = o(eK(x̂,t)) and using previous results, we

have that (4.27) holds.

• Assume now that h ∈ R∞, ψ(x) ∈ R̃0 is slowly varying. Thus log x̂ =
logψ(t) =

t→∞
o(t). Therefore, by (4.3) and (4.30), it holds t =

t→∞
o(K(x̂, t));

using the same method as previously. Consequently, log x̂ =
t→∞

o(K(x̂, t)).

(4.18) yields log h′′(x̂) ∼
t→∞

− log 8 + log t− 2 logψ(t)− 2 log ǫ(t). By (2.8),

−2 log ǫ(t) < 2η log t − 2 logC, for η ∈ (0, 1/6). Thus we have log h′′(x̂) <
− log 8+ (1+ 2η) log t− 2 logψ(t)− 2 logC. Hence log h′′(x̂) =

t→∞
o(t) =

t→∞
o(K(x̂, t)). We get (4.27).

(4.26) and (4.27) yield together

(4.31) |Ψ1(t, α)| =
t→∞

o(cσα+1eK(x̂,t)h′′(x̂)σ3).

When α is even, T1(t, α) =
∫ t1/3√

2

− t1/3√
2

yα exp(− y2

2 )dy ∼
t→∞

√
2πMα, whereMα is the

moment of order α of a standard normal distribution. Thus by (4.16) in Lemma 3
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we have
h′′(x̂)σ3

T1(t, α)
−→
t→∞

0.

When α is odd, T1(t, α) = −h′′(x̂)σ3

6

∫ l
1
3√
2

− l
1
3√
2

y3+α exp
(
− y2

2

)
dy ∼

t→∞
−h′′(x̂)σ3

6

√
2πMα+3,

where Mα+3 is the moment with order α + 3 of a standard normal distribution.
Thus we have

h′′(x̂)σ3

T1(t, α)
∼

t→∞
− 6√

2πMα+3

Combined with (4.31), these results imply for α ∈ N

(4.32) |Ψ1(t, α)| =
t→∞

o(cσα+1eK(x̂,t)T1(t, α)).

Step 2: By (2.1) as t→ ∞

Ψ2(t, α) =

∫

x∈x̂+It
(x− x̂)αceK(x,t)+q(x)dx

=

∫

x∈x̂+It
(x− x̂)αc exp

(
K(x̂, t)− 1

2
h′(x̂)(x − x̂)2 − 1

6
h′′(x̂)(x− x̂)3 + ξ(x, t)

)
dx,

where ξ(x, t) = ε(x, t) + q(x). Making the substitution y = x− x̂/σ, it holds

Ψ2(t, α) = cσαeK(x̂,t)

∫ l
1
3√
2

− l
1
3√
2

yα exp

(
−σ

2y2

2
h′(x̂)− σ3y3

6
h′′(x̂) + ξ(σy + x̂, t)

)
σdy

= cσα+1eK(x̂,t)

∫ l
1
3√
2

− l
1
3√
2

yα exp

(
−y

2

2
− σ3y3

6
h′′(x̂) + ξ(σy + x̂, t)

)
dy(4.33)

where the last equality follows from h′(x̂) = 1/σ2.

On {y : y ∈
(
−l 13 /

√
2, l

1
3 /

√
2
)
}, by (4.16),

∣∣h′′(x̂)σ3y3
∣∣ ≤

∣∣h′′(x̂)σ3l
∣∣ /2 3

2 −→
t→∞

0.

Perform the first order Taylor expansion

exp

(
−h
′′(x̂)σ3

6
y3 + ξ(σy + x̂, t)

)
=

t→∞
1− h′′(x̂)σ3

6
y3 + ξ(σy + x̂, t) + o1(t, y),

where

(4.34) o1(t, y) = o

(
−h
′′(x̂)σ3

6
y3 + ξ(σy + x̂, t)

)
.

We obtain

∫ l
1
3√
2

− l
1
3√
2

yα exp

(
−y

2

2
− σ3y3

6
h′′(x̂) + ξ(σy + x̂, t)

)
dy =: T1(t, α) + T2(t, α),

where T1(t, α) is defined in (4.23) and

T2(t, α) :=

∫ l
1
3√
2

− l
1
3√
2

(ξ(σy + x̂, t) + o1(t, y)) y
α exp

(
−y

2

2

)
dy.
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For T2(t, α), using (4.34) we have for t large enough

|T2(t, α)| ≤ sup

y∈[− l
1
3√
2
, l

1
3√
2
]

|ξ(σy + x̂, t)|
∫ l

1
3√
2

− l
1
3√
2

|y|α exp
(
−y

2

2

)
dy

+

∫ l
1
3√
2

− l
1
3√
2

(∣∣∣∣o
(
h′′(x̂)σ3

6
h3
)∣∣∣∣ + |o(ξ(σy + x̂, t))|

)
|y|α exp

(
−y

2

2

)
dy,

where sup
y∈[−l

1
3 /
√
2,l

1
3 /
√
2]
|ξ(σy + x̂, t)| ≤ supy∈[−l,l] |ξ(σy + x̂, t)| since l 13 /

√
2 ≤

l, which is equivalent to l ≥ 1/8, is true for t large enough. This implies [−l 13 /
√
2, l

1
3 /

√
2] ⊂

[−l, l]. Thus

|T2(t, α)| ≤ 2 sup
y∈[−l,l]

|ξ(σy + x̂, t)|
∫ l

1
3√
2

− l
1
3√
2

|y|α exp
(
−y

2

2

)
dy

+

∣∣∣∣o
(
h′′(x̂)σ3

6

)∣∣∣∣
∫ l

1
3√
2

− l
1
3√
2

|y|3+α exp
(
−y

2

2

)
dy

=

∣∣∣∣o
(
h′′(x̂)σ3

6

)∣∣∣∣



∫ l

1
3√
2

− l
1
3√
2

|y|α exp
(
−y

2

2

)
dy +

∫ l
1
3√
2

− l
1
3√
2

|y|3+α exp
(
−y

2

2

)
dy


 ,

where the last equality holds from Lemma 4. Since the integrals in the last
equality are both bounded, it holds

T2(t, α) =
t→∞

o(h′′(x̂)σ3).

When α is even, we have T1(t, α) ∼
t→∞

√
2πMα, where Mα = α!/(2α/2(α/2)!) is

the moment with order α of a standard normal distribution. It follows by (4.16) in
Lemma 3

(4.35)
T2(t, α)

T1(t, α)
≤ h′′(x̂)σ3

√
2πMα

−→
t→∞

0.

When α is odd, we have T1(t, α) ∼
t→∞

−h′′(x̂)σ3

6

√
2πMα+3, where Mα+3 = (α +

3)!/(2(α+3)/2((α + 3)/2)!) is the moment with order α + 3 of a standard normal
distribution. It follows

(4.36)
T2(t, α)

T1(t, α)
=

t→∞
− 6√

2πMα+3

o(1) −→
t→∞

0.

(4.35) and (4.36) imply that, for α ∈ N,

(4.37) T2(t, α) =
t→∞

o(T1(t, α)).

Using (4.33) and (4.37), we get

(4.38) Ψ2(t, α) = cσα+1 exp (K(x̂, t))T1(t, α)(1 + o(1)).

Step 3: For any t, K(x, t) as a function of x is concave.
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The Three Chords Lemma implies, for x 7→ K(x, t) concave and (x, y, z) ∈ R
3
+

such that x < y < z

(4.39)
K(y, t)−K(z, t)

y − z
≤ K(x, t)−K(z, t)

x− z
≤ K(x, t)−K(y, t)

x− y
.

Since x 7→ K(x, t) is concave and attains its maximum in x̂, we consider two
cases: x < x̂ and x ≥ x̂. Consider a positive real x such that x 6∈ x̂+ It and x ≥ τ .

This implies that x > sup(τ, x̂ + l1/3σ√
2
) = x̂ + l1/3σ√

2
> x̂ or τ ≤ x < x̂ − l1/3σ√

2
< x̂.

For x < x̂, by (4.39), we have

K(x, t)−K(x̂, t)

x− x̂
≥
K(x̂− l1/3σ√

2
)−K(x̂, t)

− l1/3σ√
2

.

Since x− x̂ < 0, we have

(4.40) K(x, t)−K(x̂, t) ≤
K(x̂− l1/3σ√

2
)−K(x̂, t)

− l1/3σ√
2

(x− x̂)

Similarly for x ≥ x̂,

(4.41) K(x, t)−K(x̂, t) ≤
K(x̂+ l1/3σ√

2
)−K(x̂, t)

l1/3σ√
2

(x− x̂).

(4.40) and (4.41) are summed up as

(4.42) K(x, t)− (x̂, t) ≤
K(x̂+ sgn(x− x̂) l

1/3σ√
2
)−K(x̂, t)

sgn(x− x̂) l
1/3σ√

2

(x− x̂),

where

sgn(x− x̂) =

{
1 if x ≥ x̂
−1 if x < x̂

A third-order Taylor expansion in the numerator of (4.41) gives

K(x̂+ sgn(x− x̂)
l1/3σ√

2
)−K(x̂, t) ≤ −1

4
h′(x̂)l2/3σ2 = −1

4
l2/3,

which, combined with (4.42), yields

K(x, t)−K(x̂, t) ≤ −
√
2

4

l1/3

σ
|x− x̂|.

We obtain

|Ψ3(t, α)| ≤ 2c

∫

x 6∈x̂+It,x>τ
|x− x̂|αeK(x,t)dx

≤ 2ceK(x̂,t)

∫

|x−x̂|> l1/3σ√
2
,x>τ

|x− x̂|α exp
(
−
√
2

4

l1/3

σ
|x− x̂|

)
dx

= 2ceK(x̂,t)σα+1



∫ +∞

l1/3√
2

yα exp

(
−
√
2

4
l1/3y

)
dy +

∫ − l1/3√
2

τ−x̂
σ

(−y)α exp
(√

2

4
l1/3y

)
dy




:= 2ceK(x̂,t)σα+1(Iα + Jα).
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It is easy but a bit tedious to show by recursion that

Iα =

∫ +∞

l1/3√
2

yα exp

(
−
√
2

4
l1/3y

)
dy

= exp(−1

4
l2/3)

α∑

i=0

2
4i+3−α

2 l
α−(2i+1)

3
α!

(α− i)!

∼
t→∞

2
3−α
2 exp(−1

4
l2/3)l

α−1
3

and

Jα =

∫ − l1/3√
2

τ−x̂
σ

(−y)α exp
(√

2

4
l1/3y

)
dy

= Iα − exp

(√
2

4
l1/3

τ − x̂

σ

)
α∑

i=0

(
x̂− τ

σ

)α−i
l−

i+1
3 2

3i+3
2

α!

(α− i)!

= Iα +M(t),

with x̂/σ −→
t→∞

∞ when h ∈ R and τ − x̂ < 0. Thus M(t) −→
t→∞

0 and we have for

some positive constant Q

|Ψ3(t, α)| ≤ QceK(x̂,t)σα+1 exp(−1

4
l2/3)l

α−1
3 .

With (4.38), we obtain
∣∣∣∣
Ψ3(t, α)

Ψ2(t, α)

∣∣∣∣ ≤
Q exp(− 1

4 l
2/3)l

α−1
3

|T1(t, α)|
.

In Step 2, we saw that T1(t, α) ∼
t→∞

√
2πMα, for α even and T1(t, α) ∼

t→∞

−h′′(x)σ3

6

√
2πMα+3, for α odd. Hence for α even and t large enough

(4.43)

∣∣∣∣
Ψ3(t, α)

Ψ2(t, α)

∣∣∣∣ ≤ Q
exp(− 1

4 l
2/3)l

α−1
3

√
2πMα

−→
t→∞

0,

and for α odd and t large enough
∣∣∣∣
Ψ3(t, α)

Ψ2(t, α)

∣∣∣∣ ≤ Q
exp(− 1

4 l
2/3)l

α−1
3

h′′(x)σ3

6

√
2πMα+3

.

Use now l(t) = (log t)3.

If h ∈ Rβ, using (4.17), we have for t large enough

h′′(x̂)σ3 ≥ N

β3/2

1√
tψ(t)

=
N

β3/2

1

t
1
2+

1
2β

√
l1(t)

,

since ψ(t) ∼
t→∞

t1/βl1(t) for some slowly varying function l1.

With the same choice of l(t) as above, we have
(4.44)∣∣∣∣
Ψ3(t, α)

Ψ2(t, α)

∣∣∣∣ ≤
Qβ3/2

N
exp

(
−1

4
l2/3 + (

1

2
+

1

2β
) log t+

1

2
log l1(t)

)
l
α−1
3√

2πMα+3

−→
t→∞

0,
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since −(log t)2/4 + (1/2 + 1/(2β)) log t+ 1/2 log l1(t) ∼
t→∞

−(log t)2/4 −→
t→∞

−∞.

If h ∈ R∞, using (4.18), then we have

h′′(x̂)σ3 ∼
t→∞

1

8

1√
tψ(t)ǫ(t)

,

with ψ(t) a slowly varying function and ǫ(t) −→
t→∞

0. Thus it holds as t→ ∞ and

with the choice of l as above
(4.45)∣∣∣∣

Ψ3(t, α)

Ψ2(t, α)

∣∣∣∣ ≤ exp

(
−1

4
l2/3 +

1

2
log t+

1

2
logψ(t) +

1

2
log ǫ(t)

)
l
α−1
3√

2πMα+3

−→
t→∞

0.

As a consequence of (4.43), (4.44) and (4.45), for h ∈ R, we obtain

(4.46) Ψ3(t, α) =
t→∞

o(Ψ2(t, α)).

The proof is completed by combining (4.25), (4.32), (4.38) and (4.46).

4.2. Proof of Theorem 1. By Lemma 5, if α = 0, it holds

T1(t, 0) −→
t→∞

√
2π,

since l(t) −→
t→∞

∞. Hence we can approximate the moment generating function

of X as follows

Φ(t) =

∫ ∞

0

etxp(x)dx = Ψ(t, 0)

=
t→∞

cσeK(x̂,t)T1(t, 0)(1 + o(1))

=
t→∞

c
√
2πσeK(x̂,t)(1 + o(1)).(4.47)

If α = 1, it holds

T1(t, 1) =
t→∞

−h
′′(x̂)σ3

6
M4

√
2π(1 + o(1)),

where M4 = 3 denotes the fourth order moment of the standard normal distri-
bution. Consequently, we obtain

T1(t, 1) =
t→∞

−
√
2πh′′(x̂)σ3

2
(1 + o(1)),

and
(4.48)

Ψ(t, 1) =
t→∞

−c
√
2πσ2eK(x̂,t)h

′′(x̂)σ3

2
(1 + o(1)) =

t→∞
−Φ(t)

h′′(x̂)σ4

2
(1 + o(1)),

which, together with the definition of Ψ(t, α), yields
∫ ∞

0

xetxp(x)dx = Ψ(t, 1) + x̂Φ(t) =
t→∞

(
x̂− h′′(x̂)σ4

2
(1 + o(1))

)
Φ(t).

Hence we get

(4.49) m(t) =
d logΦ(t)

dt
= x̂− h′′(x̂)σ4

2
(1 + o(1)).

By (4.16), we obtain

(4.50) m(t) ∼
t→∞

x̂ = ψ(t).
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If α = 2, it follows

T1(t, 2) =
t→∞

√
2π(1 + o(1)).

Thus we have

(4.51) Ψ(t, 2) =
t→∞

σ2Φ(t)(1 + o(1)).

Using (4.48), (4.49) and (4.51), it follows
∫ ∞

0

(x−m(t))2etxp(x)dx =

∫ ∞

0

(x− x̂+ x̂−m(t))2etxp(x)dx

=

∫ ∞

0

(x− x̂)2etxp(x)dx+ 2(x̂−m(t))

∫ ∞

0

(x− x̂)etxp(x)dx + (x̂−m(t))2Φ(t)

= Ψ(t, 2) + 2(x̂−m(t))Ψ(t, 1) + (x̂−m(t))2Φ(t)

=
t→∞

σ2Φ(t)(1 + o(1))− σ2Φ(t)
(h′′(x̂)σ3)2

4
(1 + o(1)) =

t→∞
σ2Φ(t)(1 + o(1)),

where the last equality holds since h′′(x̂)σ3 goes to 0 by (4.16).
Since ∫∞

0
(x −m(t))2etxp(x)dx

Φ(t)
=

∫∞
0
x2etxp(x)dx

Φ(t)
− (m(t))2,

we obtain

(4.52) s2(t) =

∫∞
0 (x−m(t))2etxp(x)dx

Φ(t)
∼

t→∞
σ2 = ψ′(t).

If α = 3, it holds

T1(t, 3) = −h
′′(x̂)σ3

6

∫ l
1
3√
2

− l
1
3√
2

y6e−
y2

2 dy.

Thus we have

Ψ(t, 3) = −c
√
2πσ4eK(x̂,t)h

′′(x̂)σ3

6

∫ l
1
3√
2

− l
1
3√
2

1√
2π
y6e−

y2

2 dy

=
t→∞

−M6
h′′(x̂)σ6

6
Φ(t)(1 + o(1)),(4.53)

whereM6 = 15 denotes the sixth order moment of standard normal distribution.
Using (4.48), (4.49), (4.51) and (4.53), we have
∫ ∞

0

(x −m(t))3etxp(x)dx =

∫ ∞

0

(x− x̂+ x̂−m(t))3etxp(x)dx

= Ψ(t, 3) + 3(x̂−m(t))Ψ(t, 2) + 3(x̂−m(t))2Ψ(t, 1) + (x̂−m(t))3Φ(t)

=
t→∞

−5
h′′(x̂)σ6

2
Φ(t)(1 + o(1)) + 3

h′′(x̂)σ4

2
σ2Φ(t)(1 + o(1))

− 3

(
h′′(x̂)σ4

2

)2

Φ(t)
h′′(x̂)σ4

2
(1 + o(1)) +

(
h′′(x̂)σ4

2

)3

Φ(t)(1 + o(1))

=
t→∞

−h′′(x̂)σ6Φ(t)(1 + o(1))− h′′(x̂)σ6Φ(t)
(h′′(x̂)σ3)2

4
(1 + o(1))

=
t→∞

−h′′(x̂)σ6Φ(t)(1 + o(1)),
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where the last equality holds since h′′(x̂)σ3 −→
t→∞

0 by (4.16). Hence we get

µ3(t) =
d3 logΦ(t)

dt3
=

∫∞
0 (x−m(t))3etxp(x)dx

Φ(t)

∼
t→∞

−h′′(x̂)σ6 =
ψ′′(t)

(ψ′(t))3
(ψ′(t))3 = ψ′′(t).(4.54)

Now we consider α = j > 2 for even j. Using (4.49) and Lemma 5, we have

∫ ∞

0

(x−m(t))jetxp(x)dx =

∫ ∞

0

(x− x̂+ x̂−m(t))jetxp(x)dx

=

j∑

i=0

(
j

i

)(
h′′(x̂)σ4

2

)i
cσj−i+1eK(x̂,t)T1(t, j − i)(1 + o(1)),(4.55)

with

T1(t, j − i) =





∫ l
1
3√
2

− l
1
3√
2

yj−ie−
y2

2 dy for even i

−h′′(x̂)σ3

6

∫ l
1
3√
2

− l
1
3√
2

y3+j−ie−
y2

2 dy for odd i

=
t→∞

{ √
2πMj−i(1 + o(1)) if i is even

−
√
2π h

′′(x̂)σ3

6 M3+j−i if i is odd

Since Φ(t) =
t→∞

c
√
2πσeK(x̂,t)(1 + o(1)), we obtain

∫ ∞

0

(x−m(t))jetxp(x)dx

=
t→∞

j∑

i=0

(
j

i

)(
h′′(x̂)σ4

2

)i
Φ(t)×

[
σj−iMj−i(1 + o(1))Ieven i −

h′′(x̂)σ4

2
σj−i−1

M3+j−i
3

(1 + o(1))Iodd i

]

=
t→∞

j/2∑

k=0

(
j

2k

)(
h′′(x̂)σ4

2

)2k

Φ(t)σj−2kMj−2k(1 + o(1))

−
j/2−1∑

k=0

(
j

2k + 1

)(
h′′(x̂)σ4

2

)2(k+1)

Φ(t)σj−2k−2
M3+j−2k−1

3
(1 + o(1))

∼
t→∞

σjΦ(t)×

Mj +

j/2∑

k=1

(
j

2k

)
(h′′(x̂)σ3)2k

Mj−2k
22k

−
j/2−1∑

k=0

(
j

2k + 1

)
(h′′(x̂)σ3)2(k+1)M3+j−2k−1

3× 22(k+1)




=
t→∞

Mjσ
jΦ(t)(1 + o(1)),
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since h′′(x̂)σ3 −→
t→∞

0 by (4.16). Hence we get for even j

µj(t) =
dj logΦ(t)

dtj
=

∫∞
0

(x−m(t))jetxp(x)dx

Φ(t)

∼
t→∞

Mjσ
j ∼
t→∞

Mjs
j(t),(4.56)

by (4.52).

To finish, we consider α = j > 2 for odd j. (4.55) stays true but

T1(t, j − i) =





∫ l
1
3√
2

− l
1
3√
2

yj−ie−
y2

2 dy for odd i

−h′′(x̂)σ3

6

∫ l
1
3√
2

− l
1
3√
2

y3+j−ie−
y2

2 dy for even i

=
t→∞

{ √
2πMj−i(1 + o(1)) if i is odd

−
√
2π h

′′(x̂)σ3

6 M3+j−i if i is even

Thus, with the same tools as above, some calculus and making use of (4.16),
∫ ∞

0

(x−m(t))jetxp(x)dx =
t→∞

Mj+3 − 3jMj−1
6

× (−h′′(x̂)σj+3)Φ(t).

Hence we get for odd j

µj(t) =
dj logΦ(t)

dtj
=

∫∞
0

(x−m(t))jetxp(x)dx

Φ(t)

∼
t→∞

Mj+3 − 3jMj−1
6

× (−h′′(x̂)σj+3)

∼
t→∞

Mj+3 − 3jMj−1
6

µ3(t)s
j−3(t),(4.57)

by (4.52) and (4.54).

The proof is complete by combining (4.50), (4.52), (4.54), (4.56) and (4.57).

4.3. Proof of Theorem 2. It is proved incidentally in (4.47).

4.4. Proof of Corollary 3.1. The proof follows from (4.16), from which h′′(x̂)σ3 −→
t→∞

0 since l(t) −→
t→∞

∞. By (4.52) and (4.54), it holds

µ3

s3
∼

t→∞
−h′′(x̂)σ3 −→

t→∞
0.
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