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Abstract

We estimate the support of a uniform density, when it is assumed to be a convex

polytope or, more generally, a convex body in R
d. In the polytopal case, we construct

an estimator achieving a rate which does not depend on the dimension d, unlike the

other estimators that have been proposed so far. For d ≥ 3, our estimator has a better

risk than the previous ones, and it is nearly minimax, up to a logarithmic factor.

We also propose an estimator which is adaptive with respect to the structure of the

boundary of the unknown support.

Keywords: adaptation; convex set; density support; minimax; polytope.

1 Introduction

Assume we observe a sample of n i.i.d. random variables Xi, i = 1, . . . , n, with uniform

distribution on some subset G of Rd, d ≥ 2. We are interested in the problem of estimation

of G. In particular, this problem is of interest in detection of abnormal behavior, cf.

Devroye and Wise [11]. In image recovering, when an object is only partially observed,

e.g. if only some pixels are available, one would like to recover the object as accurately as

possible. When G is known to be compact and convex, the convex hull of the sample is

quite a natural estimator. The properties of this random subset of Rd have been extensively

studied since the early 1960’s, from a geometric and probabilistic prospective. The very

original question associated to this object was the famous Sylvester four-point problem:

what is the probability that one of the four points chosen at random in the plane is

inside the triangle formed by the three others ? We refer to [1] for a historical survey and
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extensions of Sylvester problem. Of course, this question is not well posed, since the answer

should depend on the probability measure of those four points, and the many answers that

were proposed, in the late 18th century, accompanied the birth of a new field: stochastic

geometry. Rényi and Sulanke [22, 23] studied some basic properties of the convex hull

of Xi, i = 1, . . . , n when G is a compact and convex subset of the plane (d = 2). More

specifically, if this convex hull is denoted by CH(X1, . . . ,Xn), its number of vertices by Vn

and its missing area |G\CH(X1, . . . ,Xn)| by An, they investigated the asymptotics of the

expectations E[Vn] and E[An]. Their results are highly dependent on the structure of the

boundary of G. The expected number of vertices is of the order n1/3 when the boundary

of G is smooth enough, and r lnn when G is a convex polygon with r vertices, r ≥ 3. The

expected missing area is of the order n−2/3 in the first case and, if G is a square, it is of the

order (lnn)/n. May the square be arbitrarily large or small, only the constants and not

the rates are affected, by a scale factor. Rényi and Sulanke [22, 23] provided asymptotic

evaluations of these expectations with the explicit constants, up to two or three terms. In

1965, Efron [14] showed a very simple equality which connects the expected value of the

number of vertices Vn+1 and that of the missing area An. Namely, if |G| stands for the

area of G, one has

E[An] =
|G|E[Vn+1]

n+ 1
, (1)

independently of the structure of the boundary of G. In particular, (1) allows to extend

the results of [22, 23] about the missing area to any convex polygon with r vertices. If G

is such a polygon, E[An] is of the order r(lnn)/n, up to a factor of the form c|G|, where
c is positive and does not depend on r or G. More recently, many efforts were made to

extend these results to dimensions 3 and more. We refer to [28], [15], [13] and the references

therein. Notably, Efron’s identity (1) holds in any dimension if G ⊆ R
d is a compact and

convex set and |G| is its Lebesgue measure.

Bàràny and Larman [4] (see [3] for a review) proposed a generalization of these results

with no assumption on the structure of the boundary of G. They considered the ε-wet part

of G, denoted by G(ε) and defined as the union of all the caps of G of volume ε|G|, where a
cap is the intersection of G with a half space. Here, 0 ≤ ε ≤ 1. This notion, together with

that of floating body (defined as G\G(ε)) had been introduced by Dupin [12] and, later, by

Blaschke [5]. In [4], the authors prove that the expected missing volume of the convex hull

of independent random points uniformly distributed in a convex body is of the order of the

volume of the 1/n-wet part. Then the problem of computing this expected missing volume
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becomes analytical, and learning about its asymptotics reduces to analyzing the properties

of the wet part, which have been studied extensively in convex analysis and geometry. In

particular we refer to [24], [25], [27], [20] and the references therein. In particular, it was

shown that if the boundary of the convex body G is smooth enough, then the expected

missing volume is of the order n−2/(d+1), and if G is a polytope, the order is (lnn)d−1n−1.

All these works were developed in a geometric and probabilistic prospective. No efforts

were made at this stage to understand whether the convex hull estimator is optimal if

seen as an estimator of the set G. Only in the 1990’s, this question was invoked in the

statistical literature. Mammen and Tsybakov [19] showed that under some restrictions on

the volume of G, the convex hull is optimal in a minimax sense (see the next section for

details). Korostelev and Tsybakov [17] give a detailed account of the topic of set estimation.

See also [8], [9], [10], [16], for an overview of recent developments about estimation of the

support of a probability measure. A different model was studied in [7], where we considered

estimation of the support of the regression function. We built an estimator which achieves

a speed of convergence of the order (lnn)/n when the support is a polytope in R
d, d ≥ 2.

Moreover, we proved that no estimator can achieve a better speed of convergence, so the

logarithmic factor cannot be dropped. Although our estimator depends on the knowledge

of the number of vertices r of the true support of the regression function, we proposed an

adaptive estimator, with respect to r, which achieves the same speed as for the case of

known r.

However, to our knowledge, when one estimates the support of a uniform distribution,

there are no results about optimality of the convex hull estimator when that support is a

general convex set. In particular, when no assumptions on the location and on the structure

of the boundary are made, it is not known if a convex set can be uniformly consistently

estimated. In addition, the case of polytopes has not been investigated. Intuitively, the

convex hull estimator can be improved, and the logarithmic factor can be, at least partially,

dropped. Indeed, a polytope with a given number of vertices is completely determined by

the coordinates of its vertices, and therefore belongs to some parametric family. This paper

is organized as follows. In Section 2 we give all notation and definitions. In Section 3 we

propose a new estimator of G when it is assumed to be a polytope and its number of

vertices is known. We show that the risk of this estimator is better than that of the convex

hull estimator, and achieves a rate independent of the dimension d. In Section 4, we show

that in the general case, if no other assumption than compactness, convexity and positive

volume is made on G, then the convex hull estimator is optimal in a minimax sense. In
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Section 5 we construct an estimator which is adaptive to the shape of the boundary of G,

i.e. which detects, in some sense, whether G is a polytope or not and, if yes, correctly

estimates its number of vertices. Section 6 is devoted to the proofs.

2 Notation and Definitions

Let d ≥ 2 a positive integer. Denote by ρ the Euclidean distance in R
d and by Bd

2 the

Euclidean unit closed ball in R
d.

For brevity, we will a call convex body any compact and convex subset of R
d with

positive volume, and we will call a polytope any compact convex polytope in R
d with

positive volume. For an integer r ≥ d + 1, denote by Pr the class of all convex polytopes

in [0, 1]d with at most r vertices. Denote also by K the class of all convex bodies in R
d.

If G is a closed subset of Rd and ǫ is a positive number, we denote by Gǫ the set of all

x ∈ R
d such that ρ(x,G) ≤ ǫ or, in other terms, Gǫ = G + ǫBd

2 . If G is any set, I(· ∈ G)

stands for the indicator function of G.

The Lebesgue measure on R
d is denoted by | · | (for brevity, we do not indicate explicitly

the dependence on d). If G is a measurable subset of Rd, we denote respectively by PG

and EG the probability measure of the uniform distribution on G and the corresponding

expectation operator, and we still use the same notation for the n-product of this distribu-

tion if there is no possible confusion. When necessary, we add the superscript ⊗n for the n

product. We will use the same notation for the corresponding outer probability and expec-

tation when it is necessary, to avoid measurability issues. The Nikodym pseudo distance

between two measurable subsets G1 and G2 of Rd is defined as the Lebesgue measure of

their symmetric difference, namely |G1△G2|.
A subset Ĝn of Rd, whose construction depends on the sample is called a set estimator

or, more simply, an estimator.

Given an estimator Ĝn, we measure its accuracy on a given class of sets in a minimax

framework. The risk of Ĝn on a class C of Borel subsets of Rd is defined as

Rn(Ĝn; C) = sup
G∈C

EG[|G△Ĝn|]. (∗)

The rate (a sequence depending on n) of an estimator on a class C is the speed at which its

risk converges to zero when the number n of available observations tends to infinity. For

all the estimators defined in the sequel we will be interested in upper bounds on their risk,

4



in order to get information about their rate. For a given class of subsets C, the minimax

risk on this class when n observations are available is defined as

Rn(C) = inf
Ĝn

Rn(Ĝn; C), (∗∗)

where the infimum is taken over all set estimators depending on n observations. If Rn(C)
converges to zero, we call the minimax rate of convergence on the class C the speed at

which Rn(C) tends to zero. For a given class C of subsets of Rd, it is interesting to provide

a lower bound for Rn(C). By definition, no estimator can achieve a better rate on C than

that of the lower bound. This bound gives also information on how close the risk of a given

estimator is to the minimax risk. If the rate of the upper bound on the risk of an estimator

matches the rate of the lower bound on the minimax risk on the class C, then the estimator

is said to have the minimax rate of convergence on this class.

For two quantities A and B, and a parameter ϑ, which may be multidimensional, we

will write A .ϑ B (respectively A &ϑ B) to say that for some constant positive constant

c(ϑ) which depends on ϑ only, one has A ≤ c(ϑ)B (respectively A ≥ c(ϑ)B). If we put no

subscript under the signs . or &, this means that the involved constant is universal, i.e.

depends on no parameter.

3 Estimation of polytopes

3.1 Upper bound

Let r ≥ d+ 1 be a known integer. Assume that the underlying set G, denoted by P in

this section, is in Pr. The likelihood of the model, seen as a function of the compact set

G′ ⊆ R
d, is defined as follows, provided that G′ has a positive Lebesgue measure:

L(X1, . . . ,Xn, G
′) =

n
∏

i=1

I(Xi ∈ G′)
|G′| .

Therefore, maximization of the likelihood over a given class C of candidates, maxG′∈C L(X1, . . . ,Xn, G
′),

is achieved when G′ is of minimum Lebesgue measure among all sets of C containing all the

sample points. When C is the class of all convex subsets of Rd, the maximum likelihood

estimator is unique, and it is the convex hull of the sample. As we discussed above, this

estimator has been extensively studied. In particular, using Efron’s identity (1), it turns

out that its expected number of vertices is of the order of r(lnn)d−1. However, the un-

known polytope P has no more than r vertices. Hence, it seems reasonable to restrict the
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estimator of P to have much less vertices; the class of all convex subsets of Rd is too large

and we propose to maximize the likelihood over the smaller class Pr.

Assume that there exists a polytope in Pn with the smallest volume among all polytopes

of Pr containing all the sample points. Let P̂
(r)
n be such a polytope, i.e.

P̂ (r)
n ∈ argmin

P∈Pr ,Xi∈P,i=1,...,n
|P |. (2)

The existence of such a polytope is ensured by compactness arguments. Note that P̂
(r)
n

needs not be unique. The next theorem establishes an exponential deviation inequality for

the estimator P̂
(r)
n .

Theorem 1. Let r ≥ d+ 1 be an integer, and n ≥ 2. Then,

sup
P∈Pr

PP

[

n

(

|P̂ (r)
n △P | − 4dr lnn

n

)

≥ x

]

.d e
−x/2,∀x > 0.

From the deviation inequality of Theorem 1 one can easily derive that the risk of the

estimator P̂
(r)
n on the class Pr is of the order lnn

n . Indeed, we have the next corollary.

Corollary 1. Let the assumptions of Theorem 1 be satisfied. Then, for any positive number

q,

sup
P∈Pr

EP

[

|P̂ (r)
n △P |q

]

.d,q

(

r lnn

n

)q

.

Corollary 1 shows that the risk Rn(P̂
(r)
n ;Pr) of the estimator P̂

(r)
n on the class Pr

is bounded from above by r lnn
n , up to some positive constant which depends on d only.

Therefore we have the following upper bound for the minimax risk on the class Pr:

Rn(Pr) .d
r lnn

n
. (3)

It is now natural to ask wether the rate lnn
n is minimax, i.e. whether it is possible to find a

lower bound for Rn(Pr) which converges to zero at the rate lnn
n , or the logarithmic factor

should be dropped. This question is discussed in the next subsection.

3.2 The logarithmic factor

We conjecture that the logarithmic factor can be removed in the upper bound of

Rn(Pr), r ≥ d+1. Specifically, for the class of all convex polytopes with at most r vertices,
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not necessarily included in the square [0, 1]d, which we denote by Pall
r , we conjecture that,

for the normalized version of the risk,

Qn(Pall
r ) .d

r

n
.

What motivates our intuition is Efron’s identity (1). Let us recall its proof, which is very

easy, and instructive for our purposes. Let the underlying set G be a convex body in R
d,

denoted by K, and let K̂n be the convex hull of the sample. Almost surely, K̂n ⊆ K, so

E
⊗n
K [|K̂n△K|] = E

⊗n
K [|K\K̂n|]

= E
⊗n
K

[
∫

K
I(x /∈ K̂n)dx

]

= |K|E⊗n
K

[

1

|K|

∫

K
I(x /∈ K̂n)dx

]

= |K|E⊗n
K

[

PK [X /∈ K̂n|X1, . . . ,Xn]
]

, (4)

where X is a random variable with the same distribution as X1, and independent of

the sample X1, . . . ,Xn, and PK [·|X1, . . . ,Xn] denotes the conditional distribution given

X1, . . . ,Xn. In what follows, we set Xn+1 = X, so that we can consider the bigger sam-

ple X1, . . . ,Xn+1. For i = 1, . . . , n + 1, we denote by K̂−i the convex hull of the sample

X1, . . . ,Xn+1 from which the i-th variable Xi is withdrawn. Then K̂n = K̂−(n+1), and by

continuing (4), and by using the symmetry of the sample,

E
⊗n
K [|K̂n△K|] = |K|P⊗n+1

K [Xn+1 /∈ K̂−(n+1)]

=
|K|
n+ 1

n+1
∑

i=1

P
⊗n+1
K [Xi /∈ K̂−(i)]

=
|K|
n+ 1

n+1
∑

i=1

P
⊗n+1
K [Xi ∈ V (K̂n+1)], (5)

where V (K̂n+1) is the set of vertices of K̂n+1 = CH(X1, . . . ,Xn+1). Indeed, with proba-

bility one, the point Xi is not in the convex hull of the n other points if and only if it is a

vertex of the convex hull of the whole sample. By rewriting the probability of an event as
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the expectation of its indicator function, one gets from (5),

E
⊗n
K [|K̂n△K|] = |K|

n+ 1

n+1
∑

i=1

E
⊗n+1
K [I(Xi ∈ V (K̂n+1))]

=
|K|
n+ 1

E
⊗n+1
K

[

n+1
∑

i=1

I(Xi ∈ V (K̂n+1))

]

=
|K|E⊗n+1

K [Vn+1]

n+ 1
,

where Vn+1 denotes the cardinality of V (K̂n+1), i.e. the number of vertices of the convex

hull K̂n+1. Efron’s equality is then proved.

It turns out that we can follow almost all the proof of this identity when the underlying

set G is a polytope, and when we consider the estimator developed in Section 3.1. Let

r ≥ d + 1 be an integer and P ∈ Pall
r . Let P̂

(r)
n be the estimator defined in (2), where Pr

is replaced by Pall
r . In this section, we denote this estimator simply by P̂n. Note that this

estimator does not satisfy the nice property P̂n ⊆ P , unlike the convex hull. However, by

construction, |P̂n| ≤ |P |, so |P△P̂n| ≤ 2|P\P̂n|, and we have:

E
⊗n
P [|P̂n△P |] ≤ 2E⊗n

P [|P\P̂n|]

= 2|P |E⊗n
P

[

1

|P |

∫

P
I(x /∈ P̂n)dx

]

= 2|P |E⊗n
P

[

PP [X /∈ P̂n|X1, . . . ,Xn]
]

, (6)

where X is a random variable of the same distribution as X1, and independent of the

sample X1, . . . ,Xn, and PP [·|X1, . . . ,Xn] denotes the conditional distribution of X given

X1, . . . ,Xn. We set Xn+1 = X, and we consider the bigger sample X1, . . . ,Xn+1. For

i = 1, . . . , n + 1, we denote by P̂−i the same estimator as P̂n, but this time based on the

sample X1, . . . ,Xn+1 from which the i-th variable Xi is withdrawn. In other words, P̂−i is

a convex polytope with at most r vertices, which contains the whole sample X1, . . . ,Xn+1

but maybe the i-th variable, of minimum volume. Then, P̂n = P̂−(n+1), and by continuing
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(6),

E
⊗n
P [|P̂n△P |] ≤ 2|P |P⊗n+1

P [Xn+1 /∈ P̂−(n+1)]

=
2|P |
n+ 1

n+1
∑

i=1

P
⊗n+1
P [Xi /∈ P̂−(i)]

=
2|P |
n+ 1

E
⊗n+1
P

[

n+1
∑

i=1

I(Xi /∈ P̂−(i))

]

=
2|P |E⊗n+1

P [V ′
n+1]

n+ 1
, (7)

where V ′
n+1 stands for the number of points Xi falling outside of the polytope with at

most r vertices, of minimum volume, containing all the other n points. Note that in this

description we assume the uniqueness of such a polytope, which we conjecture to hold

almost surely, as long as n is large enough. It is not clear that if a point Xi is not in

P̂−i, then Xi lies on the boundary of P̂n+1. However, if this was true, then almost surely

V ′
n+1 would be less or equal to d + 1 times the number of facets of P̂n+1, since any facet

is supported by an affine hyperplane of Rd, which, with probability one, cannot contain

more than d+ 1 points of the sample at a time. Besides, the maximal number of facets of

a d dimensional convex polytope with at most r vertices is bounded by McMullen’s upper

bound [21], [6], and we could have our conjecture proved. However, there might be some

cases when some points Xi are not in P̂−i, though they do not lay on the boundary of

P̂n+1. So it may be of interest to work directly on the variable V ′
n+1. This remains an open

problem.

3.3 Lower bound for the minimax risk in the case d = 2

In the 2-dimensional case, we provide a lower bound of the order 1/n, with a factor

that is linear in the number of vertices r. Namely, the following theorem holds.

Theorem 2. Let r ≥ 10 be an integer, and n ≥ r. Assume d = 2. Then,

Rn(Pr) &
r

n
.

Combined with (3), this bound shows that, as a function of r, Rn(Pr) behaves linearly

in r in dimension two. In greater dimensions, it is quite easy to show that Rn(Pr) &d
1
n ,

but this lower bound does not show the dependency in r. However, the upper bound (3)

shows that Rn(Pr) is at most linear in r.
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4 Estimation of convex bodies

In this section we no longer assume that the unknown support G belongs to a class

Pr, r ≥ d + 1, but only that it is a convex body and we write G = K. Denote by K̂n

the convex hull of the sample. The risk of this estimator cannot be bounded from above

uniformly on the class K, since by (1) for any given n, EK [|K△K̂n|] → ∞ as |K| → ∞.

Moreover there is no uniformly consistent estimator on the class K of all convex bodies if

the risk is defined by (∗). The following result holds.

Theorem 3. For all n ≥ 1, the minimax risk (∗∗) on the class K is infinite:

Rn(K) = +∞.

Therefore we will use another risk measure which is the normalized risk for an estimator

K̃n of K, based of a sample of n observations:

Qn(K̃n;K) = sup
K∈K

EK

[

|K△K̃n|
|K|

]

.

Also define the normalized minimax risk on the class K:

Qn(K) = inf
K̃n

sup
K∈K

EK

[

|K△K̃n|
|K|

]

,

where the infimum is taken over all estimators K̃n based on a sample of n i.i.d. observations.

For the estimator K̂n we do not provide a deviation inequality as in Theorem 1, but only

an upper bound on the normalized risk.

Theorem 4. Let n ≥ 2 be an integer. Then,

Qn(K̂n;K) .d n
− 2

d+1 .

Note that this result gives a bound on EK

[

|K△K̂n|
|K|

]

that is uniform over all convex

bodies in R
d, with no restriction on the location of the set K (such as K ⊆ [0, 1]d) or on

the volume of K, unlike in [19]. From Theorem 4 and the lower bound of [19] (the lower

bound of [19] is for the minimax risk, but the proof still holds for the normalized risk), we

obtain the next corollary.
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Corollary 2. Let n ≥ 2 be an integer. The normalized minimax risk on the class K
satisfies

n− 2
d+1 .d Qn(K) .d n

− 2
d+1 ,

and the convex hull has the minimax rate of convergence on K, with respect to the normal-

ized version of the risk.

Note that if instead of the class K we consider the class K1 of all convex bodies that

are included in [0, 1]d, then ∀K ∈ K1, |K| ≤ 1 and therefore, the risk of the convex hull

estimator K̂n on this class is bounded from above by n−2/(d+1), so

Rn(K1) .d n− 2
d+1 .

Besides, the lower bound that is given in [19] still holds for the class K1, and thus we have

the following corollary.

Corollary 3. Let n ≥ 2 be an integer. The minimax risk on the class K1 satisfies

n− 2
d+1 .d Rn(K1) .d n− 2

d+1 ,

and the convex hull has the minimax rate of convergence on K1, with respect to the risk

defined in (∗∗).

5 Adaptative estimation

In Sections 3 and 4, we proposed estimators which highly depend on the structure of

the boundary of the unknown support. In particular, when the support was supposed

to be polytopal with at most r vertices, for some known integer r, our estimator was by

construction also a polytope with at most r vertices. Now we will construct an estimator

which does not depend on any other knowledge than the convexity of the unknown support,

and the fact that it is located in [0, 1]d. This estimator will achieve the same rate as the

estimators of Section 3.1 in the polytopal case, that is, r lnn/n, where r is the unknown

number of vertices of the support, and the same rate, up to a logarithmic factor, as the

convex hull which was studied in Section 4 in the case where the support is not polytopal,

or is polytopal but with too many vertices. Note that if the support is a polytope with

r vertices, where r is larger than (lnn)−1n
d−1
d+1 , then the risk of the convex hull estimator

K̂n has a smaller rate than that of P̂
(r)
n . The idea which we develop here is the same as in
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[7], Theorem 6. The classes Pr, r ≥ d+ 1, are nested, that is, Pr ⊆ Pr′ as soon as r ≤ r′.

So it is better, in some sense, to overestimate the true number vertices of the unknown

polytope P . Intuitively, it makes sense to fit some polytope with more vertices to P , while

the opposite may be impossible (e.g. it is possible to fit a quadrilateral on any triangle, but

not to fit a triangle on a square). We use this idea in order to select an estimator among

the preliminary estimators P̂
(r)
n , r ≥ d+ 1, and K̂n. Note that in [7], Theorem 6, the key

tools for adaptation are the deviation inequalities for the preliminary estimators, but we

do not have such an inequality for the ”last” one, i.e. the convex hull K̂n. This induces

a loss of precision in our estimation procedure. Namely, an extra logarithmic factor will

appear.

Set Rn = ⌊n(d−1)/(d+1)⌋, where ⌊·⌋ stands for the integer part. Let C be any positive

constant greater than 16d + 16
d+1 , and define

r̂ = min

{

r ∈ {d+ 1, . . . , n} : |P̂ (r)
n △P̂ (r′)

n | ≤ Cr′ lnn
n

,∀r′ = r, . . . , n

}

.

The integer r̂ is well defined ; indeed, the set in the brackets in the last display is not

empty, since the inequality is satisfied for r = n. As previously, denote by Vn the number

of vertices of K̂n, the convex hull of the sample. By definition of the convex hull, P̂
(r)
n = K̂n,

for all r ≥ Vn. Therefore r̂ ≤ Vn almost surely.

The adaptive estimator is defined as follows.

P̂ adapt
n =







P̂
(r̂)
n if r̂ ≤ Rn

K̂n, otherwise.

Then, if we denote by P∞ = K1, we have the following theorem.

Theorem 5. Let n ≥ 2. Let φn,r = min
(

r lnn
n , (ln n)n− 2

d+1

)

, for all integers r ≥ d+1 and

r = ∞. Then,

sup
d+1≤r≤∞

sup
P∈Pr

EP

[

φ−1
n,r|P̂ adapt

n △P |
]

.d 1.

Thus, we show that one and the same estimator P̂ adapt
n attains the optimal rate, up to

a logarithmic factor, simultaneously on all the classes Pr, d+ 1 ≤ r and on the class K1 of

all convex bodies in [0, 1]d.

Remark 1. The construction of r̂ is inspired by Lepski’s method [18]. However, we cannot

use the same techniques here since they need deviation inequalities for all the preliminary

estimators, while we do not have such an inequality for K̂n. Our proof uses directly the

properties of the convex hull estimator.
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6 Proofs

6.1 Proof of Theorem 1

Let r ≥ d+1 be an integer, and n ≥ 2. Let P0 ∈ Pr and consider a sample X1, . . . ,Xn

of i.i.d. random variables with uniform distribution on P0. For simplicity’s sake, we will

denote P̂n instead of P̂
(r)
n in this Section.

Let P̂n be the estimator defined in Theorem 1. Let us define P(n)
r as the class of all

convex polytopes of Pr whose vertices lay on the grid
(

1
nZ
)d
, i.e. have as coordinates

integer multiples of 1/n. We use the following lemma, whose proof can be found in [7].

Lemma 1. Let r ≥ d+ 1, n ≥ 2. There exists a positive constant K1, which depends on d

only, such that for any convex polytope P in Pr there is a convex polytope P ∗ ∈ P(n)
r such

that :






|P ∗△P | ≤ K1
n

P ∗ ⊆ P
√
d/n, P ⊆ (P ∗)

√
d/n.

(8)

In particular, taking P = P0 or P = P̂n in Lemma 1, we can find two polytopes P ∗ and

P̃n in P(n)
r such that







|P ∗△P0| ≤ K1
n

P ∗ ⊆ P
√
d/n

0 , P0 ⊆ (P ∗)
√
d/n

and






|P̃n△P̂n| ≤ K1
n

P̃n ⊆ P̂
√
d/n

n , P̂n ⊆ P̃
√
d/n

n .

Note that P̃n is random. Let ǫ > 0. By construction, |P̂ | ≤ |P0|, so |P̂n△P0| ≤ 2|P0\P̂n|.
Besides, if G1, G2 and G3 are three measurable subsets of Rd, the following triangle in-

equality holds :

|G1\G3| ≤ |G1\G2|+ |G2\G3|. (9)

Let us now write the following inclusions between the events.
{

|P̂n△P0| > ǫ
}

⊆
{

|P0\P̂n| > ǫ/2
}

⊆
{

|P ∗\P̃n| > ǫ/2− 2K1

n

}

⊆
⋃

P

{

P̃n = P
}

, (10)
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where the latest union is over the class of all P ∈ P(n)
r that satisfy the inequality |P ∗\P | >

ǫ/2 − 2K1
n . Let P be such a polytope, then if P̃n = P , then necessarily the sample

{X1, . . . ,Xn} is included in P
√

d
n , by definition of P̃n, and (10) becomes

PP0

[

P̃n = P
]

≤ PP0

[

Xi ∈ P
√

d
n , i = 1, . . . , n

]

≤
(

1− |P0\P
√

d
n |

|P0|

)n

≤
(

1− |P0\P
√

d
n |
)n

, since |P0| ≤ 1

≤
(

1− |P ∗\P |+ |P ∗\P0|+ |P
√

d
n \P |

)n

, using (9)

≤
(

1− ǫ/2 +
4K1

n

)n

≤ C1 exp(−nǫ/2), (11)

where C1 = e4K1 . Therefore, using (10) and (11) and denoting by #P(n)
r the cardinality of

the finite class P(n)
r ,

PP0

[

|P̂n△P0| > ǫ
]

≤ #P(n)
r C1 exp(−nǫ/2)

≤ (n+ 1)drC1 exp(−nǫ/2)

≤ C1 exp(−nǫ/2 + 2dr lnn). (12)

It turns out that if we take ǫ of the form
4dr lnn

n
+

x

n
, (12) becomes

PP0

[

n

(

|P̂n△P0| −
4dr lnn

n

)

≥ x

]

≤ C1e
−x/2, (13)

which holds for any x > 0 and any P0 ∈ Pr. Theorem 1 is proved.

Corollary 1 comes by applying Fubini’s theorem (see [7] for details).

6.2 Proof of Theorem 2

Let r ≥ 10 be an integer, supposed to be even without loss of generality and assume

n ≥ r. Consider a regular convex polytope P ∗ in [0, 1]2 with center C = (1/2, 1/2) and with

r/2 vertices, denoted by A0, A2, . . . , Ar−2, such that for all k = 0, . . . , r/2− 1, the distance

between A2k and the center C is 1/2. Let A1, A3, . . . , Ar−1 be r/2 points built as in Figure 1:

for k = 0, . . . , r/2 − 1, A2k+1 is on the mediator of the segment [A2k, A2k+2], outside P ∗,

14



Figure 1: Construction of hypotheses for the lower bound

at a distance δ = h/2 cos(2π/r) tan(4π/r) of P ∗, with h ∈ (0, 1) to be chosen. Note that

by our construction, A2k and A2k+2 are vertices of the convex hull of A0, A2, . . . , Ar−2 and

A2k+1.

Let us denote by Dk the smallest convex cone with apex C, containing the points

A2k, A2k+1 and A2k+2, as drawn in Figure 1. For ω = (ω0, . . . , ωr/2−1) ∈ {0, 1}r/2, we
denote by Pω the convex hull of P ∗ and the points A2k+1, k = 0, . . . , r/2 − 1 such that

ωk = 1. Then we follow the scheme of the proof of Theorem 5 in [7].

For k = 0, . . . , R/2 − 1, and (ω0, . . . , ωk−1, ωk+1, . . . , ωr/2−1) ∈ {0, 1}r/2−1, we denote

by

ω(k,0) = (ω1, . . . , ωk−1, 0, ωk+1, . . . , ωr/2−1) and by

ω(k,1) = (ω1, . . . , ωk−1, 1, ωk+1, . . . , ωr/2−1).

Note that for k = 0, . . . , r/2 − 1, and (ω1, . . . , ωk−1, ωk+1, . . . , ωr/2−1) ∈
{0, 1}r/2−1,

|Pω(k,0)△Pω(k,1) | = δ

2
cos(2π/r).

Let H be the Hellinger distance between probability measures. For the definition and
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some properties, see [26], Section 2.4. We have, by a simple computation,

1− H(Pω(k,0) , Pω(j,1))2

2
=

√

1− |Pω(k,1)\Pω(k,0) |
|Pω(k,1) |

=

√

1− δ/2 cos(2π/r)

|Pω(k,1) |

≥
√

1− δ cos(2π/r)

4

since |Pω(k,1) | ≥ |P ∗| ≥ 1/2. Now, let P̂n be any estimator of P ∗, based on a sample of

n i.i.d. random variables. By the same computation as in the proof of Theorem 5 in [7],

based on the 2r/2 hypotheses that we constructed, we get

sup
P∈Pr

EP

[

|P△P̂n|
]

≥ rδ cos(2π/r)

8

(

1− δ cos(2π/r)

4

)n

≥ rh cos
(

2π
r

)2
tan

(

4π
r

)

8

(

1− h cos
(

2π
r

)2
tan

(

4π
r

)

8

)n

. (14)

Note that if we denote by x =
2π

r
> 0 and φ(x) =

1

x
cos(x) tan(2x), then φ(x) & 1

since r is supposed to be greater or equal to 10. Therefore, by the choice h = r/n ≤ 1 (we

assumed that n ≥ r), (14) becomes

sup
P∈Pr

EP

[

|P△P̂n|
]

&
r

n
,

and Theorem 2 is proved.

6.3 Proof of Theorem 3

Let t > 0 be fixed. Let G1 = t1/dBd
2 and G2 = (2t)1/dBd

2 . Let us denote respectively by

P1 and P2 the uniform distributions on G1 and G2, and by E1 and E2 the corresponding

expectations. We denote by P
⊗n
1 and P

⊗n
2 the n-product of P1 and P2, respectively, i.e.

the probability distribution of a sample of n i.i.d. random variables of distribution P1 and

P2, respectively. The corresponding expectations are still denoted by E1 and E2. Then,

for any estimator Ĝn based on a sample of n random variables, we bound from bellow the
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minimax risk by the Bayesian one.

sup
G∈K

EG[|Ĝn△G|] ≥ 1

2

(

E1[|Ĝn△G1|] + E2[|Ĝn△G2|]
)

≥ 1

2

∫

(Rd)n

(

|Ĝn△G1|+ |Ĝn△G2|
)

min(dP⊗n
1 , dP⊗n

2 )

≥ 1

2

∫

(Rd)n
|G1△G2|min(dP⊗n

1 , dP⊗n
2 )

≥ t|Bd
2 |

4

(

1− H(P⊗n
1 ,P⊗n

2 )2

2

)2

,

whereH is the Hellinger distance between probability measures, as in the proof of Theorem

2. Therefore,

sup
G∈K

EG[|Ĝn△G|] ≥ t|Bd
2 |

4

(

1− H(P1,P2)
2

2

)2n

, (15)

and a simple computation shows that

1− H(P1,P2)
2

2
=

1√
2
,

and (15) becomes

sup
G∈K

EG[|Ĝn△G|] ≥ t|Bd
2 |

2n+2
.

This ends the proof of Theorem 3 by taking t arbitrarily large.

6.4 Proof of Theorem 4

We first state the following result, due to Groemer [15].

Lemma 2. Let K ∈ K and n be an integer greater than the dimension d. Let K̂n be the

convex hull of a sample of n i.i.d. random variables uniformly distributed in K. Then, if

B denotes a Euclidean ball in R
d, of the same volume as K,

EK [|K△K̂n|] ≤ EB[|B△K̂n|].

If K ∈ K, we denote by K1 = 1
|K|1/dK, so K1 is homothetic to K and has volume 1.

Besides, ifX1, . . . ,Xn are i.i.d. with uniform distribution inK, then 1
|K|1/dX1, . . . ,

1
|K|1/dXn

are i.i.d. with uniform distribution in K1, and

EK

[

|K△K̂n|
|K|

]

= EK1[|K1△K̂n|]
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Therefore, one gets, from the previous lemma, that if B = Bd
2 is the unit Euclidean ball in

R
d,

EK

[

|K△K̂n|
|K|

]

≤ EB

[

|B△K̂n|
|B|

]

,∀K ∈ K.

In other terms,

Qn(K̃n;K) ≤ EB

[

|B△K̂n|
|B|

]

.

By [2], n
2

d+1EB

[

|B△K̂n|
|B|

]

tends to the affine surface area of B = Bd
2 times some positive

constant which depends on d only, that is,

n
2

d+1EB

[

|B△K̂n|
|B|

]

→ C(d),

where C(d) is a positive constant which depends on d only. Thus, Theorem 4 is proved.

6.5 Proof of Theorem 5

Let r̂ be chosen as in Section 5. Let d+1 ≤ r∗ ≤ Rn and P ∈ Pr∗ . We distinguish two

cases,

EP [|P̂ adapt
n △P |] = EP [|P̂ adapt

n △P |I(r̂ ≤ r∗)] + EP [|P̂ adapt
n △P |I(r̂ > r∗)], (16)

and we bound separately the two terms in the right side. Note that if r̂ ≤ r∗, then, r̂ ≤ Rn,

so P̂ adapt
n = P̂

(r̂)
n , and by definition of r̂

|P̂ (r∗)
n △P̂ (r̂)

n | ≤ Cr∗ lnn
n

. (17)

Therefore, using the triangle inequality,

EP [|P̂ adapt
n △P |I(r̂ ≤ r∗)]

≤ EP [|P̂ adapt
n △P̂ (r∗)

n |I(r̂ ≤ r∗)] + EP [|P̂ (r∗)
n △P |I(r̂ ≤ r∗)]

.d
r∗ lnn

n
, by (17) and Corollary 1. (18)

The second term of (16) is bounded differently. First note that P̂ adapt
n ⊆ [0, 1]d, so

P△P̂ adapt
n ⊆ [0, 1]d and |P△P̂ adapt

n | ≤ 1 almost surely. Besides, note that if r̂ > r∗, then for

some r ∈ {r∗+1, . . . , n}, |P̂ (r∗)
n △P̂

(r)
n | > Cr lnn

2n . Otherwise, for any r1, r2 ∈ {r∗, . . . , n}, one
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would have, by the triangle inequality, |P̂ (r1)
n △P̂

(r2)
n | ≤ Cr lnn

n , and this would contradict

that r̂ > r∗. Thus, we have the following inequalities.

EP [|P̂ adapt
n △P |I(r̂ > r∗)] ≤ PP [r̂ > r∗]

≤
n
∑

r=r∗+1

PP

[

|P̂ (r∗)
n △P̂ (r)

n | > Cr lnn

2n

]

≤
n
∑

r=r∗+1

PP

[

|P̂ (r∗)
n △P |+ |P̂ (r)

n △P | > Cr lnn

2n

]

≤
n
∑

r=r∗+1

(

PP

[

|P̂ (r∗)
n △P | > Cr lnn

4n

]

+ PP

[

|P̂ (r)
n △P | > Cr lnn

4n

])

. (19)

Note that since P ∈ Pr∗ , it is also true that P ∈ Pr,∀r ≥ r∗. Therefore, for d + 1 ≤
r∗ ≤ r ≤ n, we have, using Theorem 1, with x = (C/4− 4d)r lnn,

PP

[

|P̂ (r)
n △P | > Cr lnn

4n

]

≤ e−(C/8−2d)r lnn ≤ n−(C/8−2d)(d+1) .d n−1,

by the choice of C.

It comes from (19) that

EP [|P̂ adapt
n △P |I(r̂ > r∗)] .d n

−1. (20)

Finally, using (18) and (20),

EP [|P̂ adapt
n △P |] .d

r∗ lnn
n

.

Let us now assume that the unknown support, which we now denote by K, is any

convex body in P∞ = K1, possibly a polytope with many (more than Rn) vertices. We

write, similarly to the previous case,

EK [|P̂ adapt
n △K|] = EK [|P̂ adapt

n △K|I(r̂ ≤ Rn)] + EK [|P̂ adapt
n △K|I(r̂ > Rn)], (21)

and we bound separately the two terms of the right side. If r̂ ≤ Rn, then P̂ adapt
n = P̂

(r̂)
n .

As we already explained, if Vn is the number of vertices of K̂n, then r̂ ≤ Vn almost surely,
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and K̂n = P̂
(Vn)
n . So we have, |P̂ adapt

n △K̂n| = |P̂ (r̂)
n △P̂

(Vn)
n | ≤ CVn lnn

n . Therefore, using

the triangle inequality,

EK [|P̂ adapt
n △K|I(r̂ ≤ Rn)] ≤ EK [|P̂ adapt

n △K̂n|I(r̂ ≤ Rn)]

+ EK [|K̂n△K|I(r̂ ≤ Rn)]

≤ EK

[

CVn lnn

n
I(r̂ ≤ Rn)

]

+ EK [|K̂n△K|]

≤ CEK[Vn] ln n

n
+ EK [|K̂n△K|]. (22)

We have the following lemma, which is a consequence of Efron’s equality (1) and The-

orem 4.

Lemma 3.

sup
K∈K

EK[Vn] .d n
d−1
d+1 .

Therefore, (22) becomes, using Theorem 4,

EK [|P̂ adapt
n △K|I(r̂ ≤ Rn)] .d (lnn)n

− 2
d+1 . (23)

The second term is easily bounded. If r̂ > Rn, then P̂ adapt
n = K̂n and

EK [|P̂ adapt
n △K|I(r̂ > Rn)] ≤ EK[|K̂n△K|]

.d n
− 2

d+1 , (24)

by Theorem 4.

From (23) and (24) we get

EK [|P̂ adapt
n △K|] .d (lnn)n− 2

d+1 .

Theorem 5 is then proven.
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et chaussées, Paris.

[13] Dwyer R. A. (1988) On the Convex Hull of Random Points in a Polytope, J. Appl.

Prob. 25, 688-699

[14] Efron B. (1965) The Convex Hull of a Random Set of Points, Biometrika, Vol. 52, No

3/4, pp. 331-343.

[15] Groemer H. (1974) On the mean value of the volume of a random polytope in a convex

set, Arch. Math., 25, pp. 86-90.

[16] Guntuboyina A. (2012) Optimal rates of convergence for convex set estimation from

support functions, Annals of Statistics, vol. 40, pp. 385-411.

[17] Korostelev, A.P.,Tsybakov, A.B. (1993) Minimax Theory of Image Reconstruction.

Lecture Notes in Statistics, v.82. Springer, NY e.a.

[18] Lepski, O.V. (1991) Asymptotically minimax adaptive estimation i. upper bounds.

optimally adaptive estimates. Theory Probab. Appl., 36:682-697.

21



[19] Mammen, E., Tsybakov, A. (1995) Asymptotical Minimax Recovery of Sets with

Smooth Boundaries, The Annals of Statistics, Vol. 23, No. 2, pp. 502-524.
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