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Eigenvalue variance bounds for covariance
matrices

S. Dallaporta
University of Toulouse and CMLA, ENS Cachan

Abstract. This work is concerned with finite range bounds on the variance
of individual eigenvalues of random covariance matrices, both in the bulk and at
the edge of the spectrum. In a preceding paper, the author established analogous
results for Wigner matrices [7] and stated the results for covariance matrices. They
are proved in the present paper. Relying on the LUE example, which needs to be
investigated first, the main bounds are extended to complex covariance matrices by
means of the Tao, Vu and Wang Four Moment Theorem and recent localization
results by Pillai and Yin. The case of real covariance matrices is obtained from
interlacing formulas.

Random covariance matrices, or Wishart matrices, were introduced by the
statistician Wishart in 1928 to model tables of random data in multivariate statis-
tics. The spectral properties of these matrices are indeed useful for example for
studying the properties of certain random vectors, elaborating statistical tests and
for principal component analysis. Similarly to Wigner matrices, which were intro-
duced by the physicist Wigner in the fifties in order to study infinite-dimensional
operators in statistical physics, the asymptotic spectral properties were soon con-
jectured to be universal in the sense they do not depend on the distribution of
the entries (see for example [1] and [19]). Eigenvalues were studied asymptotically
both at the global and local regimes, considering for instance the global behav-
ior of the spectrum, the behavior of extreme eigenvalues or the spacings between
eigenvalues in the bulk of the spectrum. In the Gaussian case, the eigenvalue joint
distribution is explicitly known, allowing for a complete study of the asymptotic
spectral properties (see for example [1], [3], [21]). One of the main goals of random
matrix theory over the past decades was to extend these results to non-Gaussian
covariance matrices.



However, in multivariate statistics, quantitative finite-range results are more
useful than asymptotic properties. Furthermore, random covariance matrices have
become useful in several other fields, such as compressed sensing (see [31]), wireless
communication and quantitative finance (see [3]). In these fields too, quantitative
results are of high interest. Several recent developments have thus been concerned
with non-asymptotic random matrix theory. See for example some recent surveys
and papers on this topic [24], [31] and [30]. In this paper, we investigate in this
respect variance bounds on the eigenvalues of families of covariance matrices. In
a preceding paper [7], we established similar bounds for Wigner matrices and the
results for covariance matrices were stated but not proved. In the present paper,
we provide the corresponding proofs. For the sake of completeness and in order to
make the present paper readable separately, we reproduce here some parts of the
previous one [7].

Random covariance matrices are defined by the following. Let X be a m x n
(real or complex) matrix, with m > n, such that its entries are independent,
centered and have variance 1. Then S, , = %X *X is a covariance matrix. An
important example is the case when the entries of X are Gaussian. Then S, ,
belongs to the so-called Laguerre Unitary Ensemble (LUE) if the entries of X are
complex and to the Laguerre Orthogonal Ensemble (LOE) if they are real. S,
is Hermitian (or real symmetric) and therefore has n real eigenvalues. As m > n,
none of these eigenvalues is trivial. Furthermore, these eigenvalues are nonnegative
and will be denoted by 0 < Ay < -+ < A\,

Among universality results, the classical Marchenko-Pastur theorem states
that, if > — p > 1 when n goes to infinity, the empirical spectral measure
Ly = % ?:1 5)\J. converges almost surely to a deterministic measure, called
the Marchenko-Pastur distribution of parameter p. This measure is compactly
supported and is absolutely continuous with respect to Lebesgue measure, with
density

1
dparp(p) () = 2—\/ (b, — ) (x — ap)lja, p,)(7)dx,

i
where a, = (1—,/p)? and b, = (14 /p)* (see for example [3]). We denote by fi,

the approximate Marchenko-Pastur density

1
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with an,, = (1 — \/%)2 and by, , = (1 + \/%)2 The behavior of individual
eigenvalues was more difficult to achieve. At the edge of the spectrum, it was
proved by Bai et al (see [2], [4] and [5]) under a condition on the fourth moments
of the entries that, almost surely,

A, — A1 = 0 and A, —by,, — O (1)

n—oo
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Once the behavior of eigenvalues at the edge of the spectrum is known, some local
information on eigenvalues in the bulk can be deduced from the Marchenko-Pastur
theorem. Indeed the Glivenko-Cantelli Theorem gives that almost surely

sup | Fn(z) — Gun(x)| — 0,
where F,, ,, is the distribution function of the empirical spectral distribution L, ,
and G, is the distribution function of the approximate Marchenko-Pastur law.
Combining this with crude bounds on the Marchenko-Pastur density and with (1)
leads to the following law of large numbers. For all n > 0, for all nn < j < (1—n)n,
i.e. for eigenvalues in the bulk of the spectrum,

Y= o0

almost surely, where the theoretical location 77" € [@n, bmn] of the j-th eigen-
value ); is defined by

J 5"
o= /amm () d.
At the fluctuation level, the behavior of individual eigenvalues depends heavily on
their location in the spectrum and on the value of the parameter p, at least for the
smallest eigenvalues. Indeed, when p > 1, the left-side of the limiting support a,
is positive. As a consequence, eigenvalues, and in particular smallest eigenvalues,
can be less than a,, which is therefore called a soft edge. On the contrary, when
p =1, a, =0 and no eigenvalue can be less than a,. In this case, the left-side is
called a hard edge. Even the behavior of the Marchenko-Pastur density is different
at the lower edge in these two cases. Indeed, when p > 1, the Marchenko-Pastur
density function is bounded whereas it goes to co when x — 0 if p = 1. Therefore,
the behavior of the smallest eigenvalue is expected to be different according to p.
Indeed, on the one hand, when m = n (which implies p = 1), Edelman proved
that, for LUE matrices,

2 Y og),

n— oo
where £(1) is an exponential random variable with parameter 1. A similar result
is available for LOE matrices, see [8] for more details. This theorem was later
extended to more general covariance matrices by Tao and Vu in [27]. On the other
hand, when p > 1, Borodin and Forrester proved that, for LUE matrices,

2/3 a'm,n_)\l (d
2/3 m *1/6 n—o00 2
()

where Fj is the so-called Tracy-Widom law (see [6]). A similar result holds for LOE
matrices. These theorems were later extended to some non-Gaussian covariance



matrices by Feldheim and Sodin in [10] and then to large families of covariance
matrices by Wang (see [33]). On the contrary, the behavior of the largest eigenvalue
relies much less on the value of the parameter p. Indeed Johansson (see [16]) proved
that, for LUE matrices,

A= bmon
n’l BW e

mon

2.

Johnstone proved a similar result for LOE matrices (see [17]). Soshnikov and Péché
extended these theorems to more general covariance matrices in [25] and [22]. They
were then extended to large families of non-Gaussian covariance matrices by Wang
in [33]. From these central limit theorems, the variances of the smallest (when
p > 1) and largest eigenvalues are guessed to be of the order of n=%/3.

In the bulk of the spectrum, i.e. for all eigenvalues A; such that nn < j <
(1 —n)n for a fixed n > 0, Su proved in [26] that

m,n Aj — fymm (d
Mm,n(f)/j ’ )]171cj>gn nr}oo N(07 1)7
V 272 "n2
in distribution. As for the largest eigenvalue, the value of parameter p does not
change significantly the behavior of eigenvalues in the bulk. This Central Limit
Theorem was extended to families of non-Gaussian matrices by Tao and Vu in

[28]. The variances of eigenvalues in the bulk are then guessed to be of the order of
198" Sy proved in [26] a similar Central Limit Theorem for right-side intermediate

eigenvalues, which means eigenvalues A; with % — 1 and n — j — oo when n goes
to infinity. From this theorem, the variance of such eigenvalues is guessed to
be of the order of %. This theorem was later extended to non-Gaussian

covariance matrices by Wang in [33]. It seems that a similar result holds for left-side
intermediate eigenvalues when p > 1 but Su did not carry out the computations
in this case.

The aim of this paper is to provide sharp non-asymptotic bounds for the vari-
ance of individual eigenvalues of covariance matrices. For simplicity, we basically
assume that p > 1. More precisely, we assume that 1 < A; < ™ < Ay (where
Ay and A, are fixed constants). When m = n (therefore p = 1), it is possible to
show that the following results in the bulk and on the right-side of the spectrum
are true. It will be specified in the corresponding sections. Assume furthermore
that S, is a complex covariance matrix (respectively real) whose entries have
an exponential decay and have the same first four moments as those of a LUE
(respectively LOE) matrix. This condition is called condition (C0) and will be
detailed in Section 2. The main results of this paper are the following theorems.



Theorem 1 (in the bulk of the spectrum). For all 0 < n < %, there exists a
constant C > 0 depending only onn, Ay and Ay such that, for allnn < j < (1-n)n,

logn

Var();) < C (2)

n?
Theorem 2 (between the bulk and the edge of the spectrum). There exists a
constant k > 0 (depending on Ay and As) such that the following holds. For all
K >k, forall 0 <n < %, there exists a constant C' > 0 (depending on K, n, A,
and Ay ) such that for all covariance matriz Sy, ,,, for all (1—n)n < j < n—Klogn,

Var(h;) < C%. (3)

Theorem 3 (at the edge of the spectrum). There exists a constant C' > 0 depend-
ing only on Ay and Ay such that,

Var(),) < Cn~43, (4)

It should be mentioned that Theorem 2 (respectively Theorem 3) probably
holds for left-hand side intermediate eigenvalues (respectively the smallest eigen-
value A1), when p > 1. We refer to Section 1.2 for more details on that topic.
On the contrary, when p = 1, the behavior of eigenvalues on the left-side of the
spectrum is probably very different and much more difficult to study.

The first two theorems do not seem to be known even for LUE matrices. The
first step is then to establish these results for such matrices. The proof relies on
the fact that the eigenvalues of a LUE matrix form a determinantal process and
therefore that the eigenvalue counting function has the same distribution as a sum
of independent Bernoulli variables [15]. Using a standard concentration inequality
for Bernoulli variables, it is then possible to establish a deviation inequality for
individual eigenvalues. A simple integration leads to the desired bounds on the
variances. On the contrary, Theorem 3 on the largest eigenvalue A, of LUE matri-
ces has been known for some time, at least for the largest eigenvalue A, (see [18]).
From these results for the LUE, Theorems 1, 2 and 3 are then extended to large
families of non-Gaussian covariance matrices by means of localization properties
by Pillai and Yin (see [23]) and the Four Moment Theorem by Tao-Vu and Wang
(see [28] and [33]). While the localization properties almost yield the correct order
on the variance, the Four Moment Theorem is used to reach the optimal bound
via a comparison with LUE matrices. Theorems 1, 2 and 3 are established first in
the complex case. The real case is then achieved by means of interlacing formulas.
Note that similar inequalities hold for higher moments of the eigenvalues. The
proofs are exactly the same.



As a corollary of the preceding results on the variances and provided Theorem
2 holds also for left-hand side intermediate eigenvalues, a bound on the rate of
convergence of the empirical spectral distribution L, , towards the Marchenko-
Pastur distribution can be achieved. It can be written in terms of the 2-Wasserstein
distance between the approximate Marchenko-Pastur distribution p,, , and Ly, ,,
defined by the following. For p and v two probability measures on R,

1/2
Wa(p,v) = inf (/ |z — y\Qdﬂ(x,y)> :
R2

where the infimum is taken over all probability measure 7 on R? such that its first
marginal is p and its second marginal is v. Note that the rate of convergence of
this empirical distribution has also been investigated in terms of the Kolmogorov
distance between Ly, ,, and [, (see for example [12] and [13]). This distance is

defined by

)

dK(Lm,ru ,um,n) = sup ‘%Nm - Gm,n<x>

zeR

where N, is the eigenvalue counting function, i.e. N, is the number of eigenvalues
in (—oo,z], and G,,,, is the distribution function of the approximate Marchenko-
Pastur distribution. Gotze and Tikhomirov recently showed that, with high prob-
ability,
(log )

n

dK(Lm,na ,um,n) <

for some universal constant ¢ > 0 (see [13]). The rate of convergence in terms of the
1-Wasserstein distance Wi, also called the Kantorovich-Rubinstein distance, was
studied by Guionnet and Zeitouni in [14], who proved that E[W} (L, ., E[Lmn])]
is bounded by Cn~2/°. The following statement is concerned with the expectation
of Wo(Luyns tmn)-

Corollary 4. Let 1 < A; < Ay. Then there exists a constant C > 0 depending
only on Ay and Ay such that, for all m and n such that 1 < A; <7 < Ay,

logn
B[ W (Lin: fmn)| < O 5 (5)

The proof of this corollary relies on the fact that E[W3 (L, fim.n)] is bounded
above, up to a constant, by the sum of the expectations E[(A; — ~;"")?]. The
previously established bounds then easily yield the result, provided Theorem 2
holds for left-hand side intermediate eigenvalues.

Turning now to the content of this paper, Section 1 describes Theorems 1, 2
and 3 in the LUE case. Section 2 starts with the Localization Theorem of Pillai
and Yin (see [23]) and the Four Moment Theorem of Tao-Vu and Wang (see [28]
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and [33]). Theorems 1, 2 and 3 are then established for families of covariance
matrices. Section 3 is devoted to real matrices. Section 4 deals with Corollary
4 and the rate of convergence of L,,, towards jrp(, in terms of 2-Wasserstein
distance.

Throughout this paper, C' and ¢ will denote positive constants, which depend
on the indicated parameters and whose values may change from one line to another.

1 Deviation inequalities and variance bounds for
LUE matrices

This section is concerned with Gaussian covariance matrices. The results and tech-
niques used here heavily rely on the Gaussian structure, in particular on the de-
terminantal properties of the eigenvalues. As a consequence of this determinantal
structure, the eigenvalue counting function is known to have the same distribution
as a sum of independent Bernoulli variables (see [15], [1]). Its mean and variance
were computed by Su (see [26]). Deviation inequalities can therefore be established
for individual eigenvalues, leading to the announced bounds on the variance. All
the proofs are written in the case when 1 < A; < < Ay, Assuming m = n, if
the results still hold, the proofs are very similar and are therefore not reproduced.

1.1 Inside the bulk of the spectrum

The aim of this section is to prove the following theorem for eigenvalues in the
bulk, i.e. for \; with nn < j < (1 —n)n.

Theorem 5. Let 1 < Ay < Ay. Let S,,,, be a LUE matriz. For any 0 < n < %,
there exists a constant C > 0 depending only on n, Ay and As such that for all
Ay << Ay and allnn < j < (1 —n)n,

logn

B[\ -] < ¢ (6)

n2

In particular,
logn

Var(\;) < C (7)

The proof of this theorem relies on the properties of the eigenvalue counting
function, denoted by N; = > | 1), for every ¢ € R. As announced, N; has the
same distribution as a sum of independent Bernoulli variables [15]. Consequently,
sharp deviation inequalities are available for ;. Applying Bernstein’s inequality
leads to

n2

P(’/\/}—E[ t]‘>u)<26Xp(_2cr§Liu)’ (8)

7



where o} is the variance of N; (see for example [29]). Gétze and Tikhomirov

proved in [12] that, as soon as 1 < A; < % < As, there exists a positive constant
(1 depending only on A; and Aj such that

E[N] — n/too fmn () dz

sup
teR

< Clu (9>

for every LUE matrix S,,,. For simplicity, we denote ffoo fmn(x) dx by py. To-
gether with (8), for every u > 0,

02
P(|M—nut|>u+01)<Zexp<—202+u). (10)
7

Among Su’s results (see [26]), for every § > 0, there exists ¢s > 0 such that

sup o} < cslogn, (11)
tels

where Is = [amn + 0, by, — 6]. Combining (10) and (11), deviation inequalities

for individual eigenvalues in the bulk are then available, as stated in the following
proposition.

Proposition 6. Assume that 1 < A; < 7 < Ay. Let n > 0. Then there exist
positive constants C, ¢, ¢ and 0 such that the following holds. For any LUE matriz
Smns for allmn < j < (1 —n)n, for all c < u < dn,

e ) (12)

u
PN =~ > =) <4 (_
(| i n) P 2¢cslogn + Cu

The constants C, ¢’ and 0 depend only onn and A, whereas the constant ¢ depends
only onn, Ay and As.

Note that this proposition still holds if m = n, as Gotze and Tikhomirov proved
in [12] that (9) holds in that case.

Proof. Let n > 0 and v > 0. Assume first that & <

n
2
estimating the probability that ); is greater than %m’

Jj < (1 —n)n. Start with
+ .

P<>\j > "+ %) = P(/\/%m,u% < j)

(rtager sy = Ny > ey = o))

|Nﬂ/;n’n+% - n:u'y;n’n-i-%‘ > n(:u'y;n’n-i-% - :u'y;n’n))v



where it has been used that p.,mn = ;% In order to use (10), a lower bound on
J
N fymom u — ,u,yjm,n) is needed.
J n J

P
m,n u m,n — _
/JL'YJ' +E /JL'YJ' m,n 27-‘-:6

m/

(b — ) (T — ) dx

—:de

,n

Vi T Amn m,n u/n 3/2
> Vg >3/2(1—(1—b%) )

3Tbm.n mon =i
V" = 124
S V7 T fmn b m,n\1/2 %
- 3Tbm.n ( =) n’
if ’Y;‘mn + % < by, Furthermore, by definition of 7;% "
j /bm,n 1
noJyrr 2mx (2= ) (b, )
S 27?7] / mdx
bm n — Qmmn 3/2
371"}/] ’ ( 7 fy‘] )
Then 2/3
mon 3m m,n j
=" > (" (1-3) "
Moreover

L/%‘”’"L T b —od
n am.n  2TX <x am’")( e :1:) v

\/ bm,n — Qmn 'Y;nyn 1

< —/ —\/T = Uy
X

\/ mn — Qmn /\/ " —am,n 2'02

—— dv,
Ve + Ay

with change of variables z = v? + a,, ,,. Therefore,

SI=
/N



Then

m,n m,n ™ i T
Vi > v _am,n> == , (14)
\/ i 2\ Z mn z QW
as j > 5. Therefore, asl—%}n,
2
m,n 3 2/3 (e 2/3
b =5 2 (2) (15

As a consequence, a lower bound on faromg = flymon 18 achieved.

m,m , u — m,n > C 1/3E
:u’Yj B by :u’Yj = bm,n<bm,n _ amm)ﬁ nu
where C' > 0 is a universal constant. As ™ < Ay,
C 13U u
mmn | u — mn > /3—:CA, .
Hogeries = By 2 4\/A_2(1+\/A_2)2n n (4; n)n

Then
m,n Uu
P()\j >0+ ﬁ) < P(\./\/’%m,mr% - nﬂﬁ"v”+%| > C(AQ,n)u).

This is true for all u < n(by, —v;""). From (15), this will be true when u < ¢'n

where ¢ > 0 depends only on Ay and n. If u > c= %, then

m,n U
P (Aj > 7+ 5) <P (N s = nppgrn | > 3C(Ag,m)u+ ).

Consequently, from (10), we get

P\ mn | Y <2 —u2
( P> +ﬁ)\ eXp<_203m,n+ﬁ+u>'
J n

For v < ¢'n (with a maybe smaller ¢ > 0 depending only on 7 and A,), there
exists 6 > 0 depending on 7 and A, such that 47" 4 % € I5. Consequently, from
(11), o2 < ¢slogn. Then, for ¢ < u < dn,

mmn | u X
0 + n

P(N > m”+u)<2 ( w )
; P —) < 2exp | — —— ).
77 n P 2¢cslogn + u

Repeating the argument leads to the same bound on P ()\j <= %) Therefore,

P<|)\ ’”"|>u) <4 ( Sl )
=t > — ) <dexp | — :
77 n P 2¢slogn + Cu

n

The case when j < 7 is treated similarly. The proposition is thus established.

0
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We turn now to the proof of Theorem 5.
Proof of Theorem 5. Note first that, for every 1,
<2 E E[Tr (S, n)]-
J=1

From Holder inequality,

E[Tr(Sp,.,)] < pril > (E[|Xi17jl|8])1/8'__(E[|Xi47j1|8])1/8' (16)

As Sy, is from the LUE, the 8 moment of its entries is E[|X; ;|®] = 105. Then
E[Tr(S;,,)] < 105m* < 105A5n".

Consequently, for all n > 1, for all 1 <7 < n,

E[A] < 105A43n". (17)
Consider constants C, ¢, ¢ and § given by Proposition 6. Choose next M > 0
large enough such that % > 8. M depends only on 1 and A,. Setting

Z = nld; — "),
E[Z%] = /OOP(Z v)2v dv

M logn [e%S)
_/ 2vdv+/ P(Z > wv)2vdv + P(Z > v)2vdv
M logn

\C +[1—|—[2

The two latter integrals are handled in different ways. The first one [; is bounded
using (12) while I, is controlled using the Cauchy-Schwarz inequality and (17).
Starting thus with I,

+oo

I :/ P(Z >z v)2vdv
M logn
E[Z21Z2Mlogn}

< \/E[Zﬂ \/P(Z > Mlogn)
< An“\/P(IAj — ] Ml;zg”)

1 M2
< 24n* (-—71 )
n* exp 5% 7 CM ogn
1 C2M2
<24 —<8—7)1 ,
P (2 %5 + CM Og")

11



where A > 0 is a numerical constant. As exp (% (8 — %) log n) = 0, there
n o

exists a constant C' > 0 (depending only on 1 and A,) such that
I, < C.

Turning to I, recall that Proposition 6 gives, for ¢ < v < n,

C?v?
" 2cslogn + CU).

/N

Pz =r(IN - > 2)

4 exp <
n

Hence in the range v < M logn,

P(Z > v) <4exp<—lB v2>,
ogn

where B = B(Ay,n) = As a consequence,

C2
2¢c5+CM
M logn B 41 o]
I <4/ exp(——v2>2vdv< ogn/ eV 20 dv.
c logn B Jo

There exists thus a constant C' > 0 (depending only on 1 and A,) such that
I; < Clogn.

Summarizing the previous steps, E {Z 2} < C'logn. Therefore

logn
n? "’

B[13; -] < €

C depending only on Ay, As and 7, which is the claim. The proof of Theorem 5 is
complete. O

1.2 Between the bulk and the edge of the spectrum

The aim of this section is to prove an analogous theorem for some eigenvalues
between the bulk and the right edge of the spectrum, i.e. for A; such that (1—n)n <
7 <n— Klogn. The precise statement is the following.

Theorem 7. There ezists a constant k > 0 (depending on Ay and As) such that
the following holds. For all K > k, for all 0 < n < %, there exists a constant
C >0 (depending on K, n, Ay and Ay) such that for all covariance matriz S, ,,
for all (1 —n)n < j<n— Klogn,

log(n — j)

. A2 o\  JIJ
E[()\j 7] ) ] < Cn4/3<n_j)2/3'

(18)
In particular,
log(n — j)

(19)

12



As for eigenvalues in the bulk, the proof relies on the determinantal structure
of LUE matrices. Recall that this structure together with a bound on the mean
counting function (9) leads to the following deviation inequality for the counting
function N;.

U2
PN = npue| > u+Cy) < 2exp(— 202+u)-
t

Among Su’s results (see [26]), for every § > 0, for every K >0, there exists
cs > 0 such that for all ¢ satisfying 0 < by, —t < 9 and n(by,.» —1)%2 > Klogn,

0? < ¢  log (b — )2 (20)

Combining (10) and (20), deviation inequalities for individual intermediate eigen-
values are then available.

Proposition 8. Assume that 1 < A; < ™ < Ay. There exists k > 0 depending
only on Ay and Ay such that the following holds. Let K > k and 0 < n < % Then
there exist positive constants C, ¢, C' and ¢ such that the following holds. For
any LUE matriz Sy, ,, for all (1 —n)n < j <n— Klogn, for all ¢ <u < dn,

U C?u? )

PN =" 2 75 ) <4 B 2!
(‘ i ‘ n2/3(n—j)1/3) eXp( C’log(n—j)+cu ( )

The constants C, C' and ¢ depend only on K, n and A, whereas the constant c
depends only on K, n, Ay and A,.

Note that this proposition still holds when m = n, for eigenvalues on the right-
side of the spectrum. The proof of Proposition 8 is very similar to what was done
for eigenvalues in the bulk. Therefore some details are not reproduced.

Proof. Let n >0, K > 0 and u > 0. Assume that (1 —n)n < j < n— Klogn. Set

Up; = W As for the bulk case, we start with estimating the probability

that \; is greater than 77" + u, ;. We get

m,n
P()‘j > T un,j) < P(|Nv;~”’"+un,j - n:uv;”’"-kun,j‘ > n(:“v;"’”-i-un,j - :u“/”’">)-

J

Furthermore,

m,n
’Yj = Amn

m,n\1/2
oy~ b 2 g (b = 2"
if 77" + U < by From (13),
3 n _] 2/3
bmJL - ’Ym’n = < ’Ym?n >
’ - bm,n — Amn ’ ( n )



Moreover, as n < %, from (14),

™

Y Z A G 2 QW'
Therefore 2 ‘
b — 2 (%)2/3bmn7:amn(n;j)2/3’ (22)
and
C u
H b~ P 2 bisn (bnn — Gmn) 11

where C' > 0 is a universal constant. As 7 < Ay,

< C u C(A )u
Py I 2 A0+ A
Similarly to the bulk case, we get
( ) “
P(\; >fy;-n’"+un,j <2exp(— 5 )
207?,%%7], +u

This relation holds if ¢ < u < n*3(n—5)Y3(byn —;""), with ¢ depending only on
Ay and Ay, Let v € (0,1). Set ¢ = a(%)2/34\7/rf4—2, depending only on o and Ay. If
u < d(n — j), then, due to (22), the preceding relation holds. The bound (20) on
o obtained by Su holds when 0 < by, ,, —t,, < 4 and (b —t,)%% > Klogn. Set
by =" Ftng. Asu>0,0<bpp—t, <bpyu—7;". Therefore, as j > (1—n)n,
similar computations as for (15) lead to

3brnr /b — Qo \ 2/3 1/4 2 \2/3
7 : 77}) <(6(A2) (1+vAy) TI) _;

’ L=n L—mn

for all n. Moreover,

Uy i 3/2
n(bm,n - tn)3/2 = n(bm,n - ,Y;TL,TL)?,/Q <1 — b77]m7n>

I — 3)2/3 3/2
4(bm,n - am,n) n (bm,n - 7j )

14



where K = «)*2K > 0. From (20), for all ¢ < u < ¢(n — j),

4(4W 4(4/A3)372 (1 -
Var(/\/%mmjwn’j) < ¢ i log (n(bmm — tn)3/2).

But

(b — tn)3/2 < n(bm,n — 7;”’")3/2.

Using the same techniques as for (13), it is possible to show that

- .
(bman = 75" < b o — 2 < 12(A2) V(1 4/ A2) 7

Hence log (n(bmn —t )3/2) < log(n — j) +log(12(Ax)Y4(1 + /A3)?). For K > K
with x large enough depending only on A; and forn > 2, n — 7 > Klogn >
12(A9)Y4(1 + \/A3)? and Var(Nmny, ;) < 2¢5 g log(n — j). Therefore

C?u? >

P(XN, >~"" 4w, ) <2 (— , )
(N> 2" ) < 2exp Acs g log(n — j) + Cu

The proof is concluded similarly to Proposition 6.
O

We turn now to the proof of Theorem 7, in which some details are skipped,
due to the similarity with the proof of Theorem 5.

Proof of Theorem 7. Setting Z = n?3(n — j)Y/3|\; — v
E[Z?] —/ P(Z > v)2vdv

< log(n—j)
—/ 21)dv+/ P(Z > v)2vdv

' (n—j)
+/ P(Z >v)2vdv+/ P(Z > v)2vdv
¢ (n—j)

2 log(n—j)
<E+ N+ T+ Js,

where ¢, ¢, C' and C’ are given by Proposition 8. Repeating the computations
carried out with 5 in the proof of Theorem 5 yields

1 C*C"™(n —j)?
2C"og(n — j) + Cc'(n — j))
1 C?*c*(n — j)?

2C"og(n —j) + Cc'(n — j))

Jy < 23 = )P Rl = 27 exp (

< 2An exp ( —

15



where A > 0 is a numerical constant. The last inequality is due to (17). For n
large enough (depending on 7, As and K), C’"log(n — j) < Cd(n — j) and

/

J3 < 2Aexp (4logn — %(n —j)).

Then, as n — 57 > K logn,

J3 < 2Aexp <<4 — de) log n)

Recall from the proof of Proposition 8 that ¢ = ac(As) where o € (0,1) is a
universal constant and ¢’(As) depends only on Ay. Furthermore, the constant C'
depends only on A,. Therefore, if we choose k > 0 such that x > %, then
%CI > 4. The right-hand side goes thus to 0 when n goes to infinity. As a
consequence, there exists a constant C' > 0 depending only on Ay, n and K such

that

J3 < C.
The integral J; is handled as I, using that, in the range v < % log(n — j),
B
P(Z > v) <4exp < — 7,1)2),
log(n — j)

where B depends only on K, n and Ay (this is due to Proposition 8). Hence, there
exists a constant C' depending only on A,, n and K such that

J1 < Clog(n — j).
Finally, J5 is handled similarly. In the range % log(n —j) < v < d(n—7), from
Proposition 8,
C
P(Z >v) <4exp ( - 52})

Thus

' (n—j) C o0 C

J2<4// exp(——v)devgél/ exp(——v)dev.
% log(n—j) 2 0 2

Then Js is bounded by a constant, which depends only on A,. There exists thus
a constant C' > 0 such that
Jy < C.

<
Summarizing the previous steps, E[Z%] < C'log(n — j), where C' depends only on
Ay, As, n and K. Therefore

log(n — j)
n*3(n — j)2/3°

which is the claim. O

B[N -l <C
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1.3 At the edge of the spectrum

In [18], Ledoux and Rider gave unified proofs of precise small deviation inequali-
ties for the largest eigenvalues of -ensembles. The results hold in particular for
LUE matrices (f = 2) and for LOE matrices (8 = 1). The following theorem
summarizes some of the relevant inequalities for the LUE.

Theorem 9. [18] Let Ay > 1. There exists a constant C' > 0 depending only
on Ay such that the following holds. Let S,,, be a LUE matriz. Denote by A,
the mazimal eigenvalue of S,,,. Then, for all n € N, for all m € N such that
m > An and for all 0 < e < 1,

2
P()\n < by (1 — 5)) < C?exp ( — 571253), (23)

and 5
P()\n > byn(l+ 8)) < Cexp ( — 57}53/2). (24)

The large deviation tails are also known. The following corollary can be de-
duced by integrating these inequalities.

Corollaire 10. [18] Let S, be a LUE matriz. Then there exists a universal
constant C' > 0 such that for allmn > 1, for all m € N such that m > An,

Var(A,) < B[ (An = bmn)?| < Cn 2,

Similar results are probably true for the k' largest eigenvalue (for & € N
fixed). The authors established also a left-side deviation inequality for the smallest
eigenvalue in the case when m > An.

2
P()\l < Ay (1 — 5)) < Cexp ( — ane?’/Z), (25)

for all 0 < ¢ < 1. But no right-side deviation inequality seems to be known for
the smallest eigenvalue A\; and therefore we cannot deduce a precise bound on the
variance of the smallest eigenvalue.

2 Variance bounds for families of covariance ma-
trices

The previously achieved bounds on the variance of eigenvalues for LUE matrices
are then extended to families of more general covariance matrices. It is due to the
combination of two very recent results, some localization properties established by
Pillai and Yin [23] and to the Four Moment Theorem proved by Tao and Vu [28]
and Wang [33].

17



2.1 Localization properties and the Four Moment Theo-
rem

This subsection is devoted to the statement of the previously mentioned results
which will be used in order to extend variance bounds to large families of non
Gaussian covariance matrices. Matrices which are considered in this section are
covariance matrices S, , satisfying condition (C0), defined by the following. Say
that S, , satisfies condition (C0) if its entries X;; are independent and have an
exponential decay: there are positive constants By and By such that

Vie{l,...,.n},Vje{l,.. m}POXM t&)ge%

for all t > Bs.

Pillai and Yin proved in [23] a Localization Theorem similar to the one proved
by Erdés, Yau and Yin in [9]. This theorem establishes that the eigenvalues are
highly localized around their theoretical locations ~;""

Theorem 11 (Localization [23]). Let S, be a random covariance matriz whose
entries satisfy condition (C0). Suppose that 1 < Ay < ™ < Ay < +o00. There are
positive universal constants ¢ and C' such that, for any 1 < j < n,

P<|)\j_7;n,n| > (logn)Cloglognn 2/3 mln(j,n+1 ]) 1/3> < Ce™ 10gn)cloglogn. (26)

This deviation inequality (26) can be used to reach an almost optimal bound
on the variance. Indeed, due to (26) and the Cauchy-Schwarz inequality, Var(};)
may be bounded by M in the bulk of the spectrum, which is almost the
right order for the Varlance In order to remove the loglogn term, we turn now to
the Four Moment Theorem. This theorem was proved for the bulk of the spectrum
by Tao and Vu [28] and extended to the edge by Wang [33]. From now, we consider
covariance matrices S, ,, which satisfy condition (C0) and whose entries match the
entries of a LUE matrix up to order 4. Say that two complex random variables &
and ¢ match to order k if

for all m,l > 0 such that m +1 < k.

Theorem 12 (Four Moment Theorem [28, 33]). There exists a small positive
constant cy such that the following holds. Let S, , = 1X*X and S, = 1X'*X/
be two random covariance matrices satisfying condztzon (C0). Assume that for
1 <i < n, Xy and Xj; match to order 4. Let G : R — R be a smooth function
such that:

VO<k<5, YreR, |GP(@)]<ne. (27)

18



Then, for all 1 < i < n and for n large enough (depending on constants By and
By in condition (CO)),

(G ()] = E[G(nA))]| < ne. (28)

Suppose Theorem 12 apply with G; : z € R+ (z —ny;"")?. Then (12) writes
(B[ = 77" = n?B[(X) =) < 7

As B[(X); —~"")?] i logn_ % or n~43 which are bigger than

n~?7¢, the bounds could be extended. Unfortunately, G; does not satisfy (27).

To get round this difficulty, the Four Moment Theorem 12 is applied to a smooth

truncation of GG;. The Localization Theorem 11 provides a small area around fy;-n’"

where ); is very likely to be in so that the error due to the truncation is well
controlled. Details are contained in the following subsection.

2.2 Comparison with LUE matrices

Let Sp,» be a covariance matrix and Sy, , be a LUE matrix such that they satisfy
the hypotheses of Theorem 12. Note that the following procedure is valid for
eigenvalues in the bulk and at the edge of the spectrum, as well as for intermediate
eigenvalues.

Let 1 < j <n. Set RY) = (logn)Coslernl/3min(j,n+1—35)"3 and ¢, =
Ce~ o) Cloglog". Then Theorem 11 leads to:

P =71 7)) <ea (20)
Let ¢ be a smooth function with support [—2,2] and values in [0, 1] such that
Y(x) = 5a? for all z € [-1;1]. Set G;:z € R — w(x Z)%) We want to apply
Tao and Vu’s Four Moment Theorem 12 to G;. As ¢ is smooth and has compact
support, its first five derivatives are bounded by M > 0. Then, for all 0 < k < 5,
for all x € R,

6 @) < —m— < ne

(Ri)k
where the last inequality holds for n large enough (depending only on M and ).
Then, the Four Moment Theorem 12 yields:

)

[B[G;(n)y)] — B[G; (n)))]| < n (30)

19



for large enough n. But

E[G;(nA;)]
1 n)\j—n'y;n’n 2
0B\ TRy ) e | TE Gj(”/\j)lwmj—mm’"\>1
rRY T 7D
n? m,n\2
10(RY )2 [O\] ) |Aj—w?’”|<—R§)] " [GJ(M]) i i) >1]

Ry

On the one hand,

"7
< P (|)\j - | > o )
< &

On the other hand,

. [(Aj - R(ﬂ} =B[(\ — 7" —F [(Aj — M
‘)‘J'_'Yj ’ ‘<%

)]
m,n R
RY; - |>%

As condition (C0) is satisfied, the 8-th moment of the entries is uniformly bounded
by a constant which depends only on constants B; and Bs in condition (C0). Then,
from the Cauchy-Schwarz inequality and (16),

By ] < R0y - > 5)
|>‘j77j’ ‘>%
< An?\/e,

where A > 0 is a numerical constant. Then

B[G(n\)] = ﬁ;’f (E [y =72 + O(n%}ﬁ)) +0(e)

= B[Oy =]+ O(n'eY2(RD) ) + Ofen).

10(79)

Repeating the same computations gives similarly

TLQ

E{Gj(n)\;)] = WE[O\; — fy;n’")ﬂ + O(n4e,11/2 (jo))i ) + O(g,).
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Then (30) yields
E{()\j - 7}”’ ) } = E[(AA — % ™) } + O(n%}/Z +n_2(Rﬁf))25n i (an’))zn_co_z)

As the first two error terms are smaller than the third one, the preceding equation
becomes

E[(A =9 =B[N =47 + O((RY)?n=072). (31)

2.3 Variance bounds

(31) is true for all eigenvalue A;. We estimate the error term O((R,@)Qn*c@”)
differently according to the location of the eigenvalue in the spectrum, in order to
get the announced bounds.

2.3.1 Inside the bulk of the spectrum
Let 0 <n < % and nn < j < (1 —n)n. From Theorem 5, E[(X. — m’")ﬂ Clog"

Thus, from (31), it remains to show that the error term is smaller than log" But

R7(1j) _ (10gn)010g10gnn1/3 min(j,n +1 —j)_1/3 < n—l/B(logn)Cloglogn.

Then (RV)2p—c0"2 = on(log"). As a consequence,

n2

and we get the desired result

B[Oy =] < 055

C' depending only on 1, A; and As.

2.3.2 Between the bulk and the edge of the spectrum

Let 0 < n < ;, K > rkand (1 —=n)n < j < n— Klogn. From Theorem 7,
[()\' —")? } < C—ed) — Thus, from (31), it remains to show that the error

nA73(n—j)2/3

term is smaller than %. But

Rg) = (logn)moglognnl/g(n +1— j)—1/3'
Then (RY))*n=0"? = O(%). As a consequence,
E[(\ —2"")?] = B[(X; — )7 +O<M)
J ’YJ ’YJ n4/3<n - j)2/3

21



and we get the desired result

m,n log(n - j)
E{()\J_ 7 )2} <0n4/3<n_j)2/37

C depending only on 7, A;, As and K. A similar result probably holds for the
left-side of the spectrum, when p > 1.

2.3.3 At the edge of the spectrum
From Corollary 10, E[(Xn - ym’”)z} = E[()\;L — bmm)Q] < On~3. By means of

n

(31), it remains to prove that the error term is smaller than n=%3. We have
R1(1n) _ (log n)Cloglognnl/B'

Consequently (R{™)?n=¢0=2 = 0(n‘4/ 3). Then

E[(An = bmn)?] = E[(N, = 2)2] + o(n ")

and
B[\ —2)° <On 2,

If this bound holds for the smallest eigenvalue A\; of LUE matrices, the same result
is available for non Gaussian covariance matrices.

3 Real Wishart matrices

The aim of this section is to prove Theorems 1, 2 and 3 for real covariance ma-
trices. The Four Moment Theorem (Theorem 12) by Tao, Vu and Wang as well
as Pillai and Yin’s Localization Theorem (Theorem 11) still hold for real covari-
ance matrices. Section 2 is therefore valid for real matrices. The point is then to
establish the results in the LOE case.

As announced in Section 1.3, the variance of eigenvalues at the right edge of
the spectrum is known to be bounded by n~*? for LOE matrices (see [18]). The
conclusion for the largest eigenvalue is then established for large families of real
covariance matrices. g

Var(\,) < i

For eigenvalues in the bulk of the spectrum, following O’Rourke’s approach
(see [20]), a Central Limit Theorem similar to the one established by Su in [26]
may be proved. In particular, the normalization is still of the order of (107%)1/ 2 and
differs from the complex case only by a constant. It is therefore natural to expect
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the same bound on the variance for LOE matrices. The situation is completely
similar for intermediate eigenvalues. But LOE matrices do not have the same
determinantal properties as LUE matrices, and it is therefore not clear that a
deviation inequality (similar to (10)) holds for the eigenvalue counting function.
However, LOE and LUE matrices are linked by interlacing formulas established
by Forrester and Rains (see [11]). These formulas lead to the following relation
between the eigenvalue counting functions in the complex and real cases: for all
t eR,

@ %(A@(sﬁﬁm) + N8R ,)) + (D), (32)

where ng,n is from the LUE, Sﬁlfibvn, S’En are independent matrices from the LOE
and (n(t) takes values in t—g

Ni(Spn)

5 —1, —%, 0, %, 1, %} See [20] for more details.

The aim is now to establish a deviation inequality for the eigenvalue counting
function similar to (10). From (10), we know that for all u > 0,

2

C (%
P(WG(S5) — ] 20+ C1) < 25 (= g ).

Set C] = Cy + % and let v > 0. We can then write
P(M(S}im) —nu = u+ C{)Q
— P (NU(SE,) = e > Y, Ni(SE,) = e > - C)
<P <§( (S + N(SE L)) = e > u+ c;)
< P(M(Sﬁvn) —nps = u+Cp — §)

2
u2
<2 — .
S eXp( 20—3+u>

Repeating the computations for P(M(Sﬁ,n) —npy < —u — C{) and combining
with the preceding yield

2
R u
Note that o7 is still the variance of M(ng) in the preceding formula.
What remains then to be proved is very similar to the complex case. From
(33) and Su’s bounds on the variance o7 (see (11) for the bulk case and (20)
for the intermediate case), deviation inequalities for individual eigenvalues can be
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deduced, as was done to prove Propositions 6 and 8. It is then straightforward to
derive the announced bounds on the variances for LOE matrices. The argument
developed in Section 2 in order to extend the LUE results to large families of
covariance matrices can be reproduced to reach the desired bounds on the variances
of eigenvalues in the bulk and between the bulk and the edge of the spectrum for
families of real covariance matrices.

4 Rate of convergence towards the Marchenko-
Pastur distribution

In this whole section, we suppose that Theorem 2 holds for left-side intermediate
eigenvalues. The bounds on E[(A; —~;"")?] developed in the preceding sections
lead to a bound on the rate of convergence of the empirical spectral measure L,, ,
towards the Marchenko-Pastur distribution in terms of 2-Wasserstein distance.
Recall that W5( Ly, . thm,n) is a random variable defined by

1/2
W2<Lm,n7,um,n) = inf </R2 ‘.CL’ - y|2d7T<l’7y)> ;

where the infimum is taken over all probability measures 7 on R? with respective
marginals L., , and f,,. To achieve the expected bound, we rely on another
expression of Wy in terms of distribution functions, namely

WE (Lo tim) = [ (Fh () = Gl () (34)

where F | (respectively G!,) is the generalized inverse of the distribution func-
tion F,,, (respectively Gp,.) of Ly, (respectively pi,.) (see for example [32]).
On the basis of this representation, the following statement may be derived.

Proposition 13. There ezists a constant C > 0 depending only on Ay such that
forall1< ™ < A,

SN

m,n C
(N ="+ . (35)

WQQ(Lm,na ,um,n) < TL2

n
Jj=

1

Proof. From (34),

WE (Lot = [ (Fh (o) = Gl (@)
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Then,
> L -1 2
W3 (Lnns ) = 3 [ (N = Grlu(@)) " do
2 - 2 - % m,n —1 2
<X =Y [ (O - Gl@) de
j=1""n

But 4" = G;%,L(l) and G! is non-decreasing. Therefore,

W= Gl (2)] <

vt =i forall z € [%, ﬂ Consequently,
2 2 & 2 & m,n m,n\2
W2 (Lm,na,umn X gz _'_ gz(fyj _fyj—l) : (36)
j=1 j=1

1 (/|
=7 = (b — ) (X — Q) dx
n A 2TX

\
)
SR
QN —
S
3
3
3 3
S
3
3
|
I
QL
S

m,n jf’l
VPT = G v =\
bm . m,n\3/2 1 (1 J J >
- 3y r, (b, i= ) b — 7;”—’1

m,n m,n C<A2>
0/ e} SN n2/3(n —j+ 1)2/3'
It may be shown that a similar bound holds if j —1 < 5. As a summary, there
exists a constant ¢ > 0 depending only on A, such that, for all j > 2,

c
mn o man . 37
g Ti-1 n?/3min(j,n + 1 — 5)1/3 (37)

This yields

1
min(j,n+ 1 —j)

Y

S|Q

Z@;ﬂ _71 1) \n4/3z

2/3 S
=1
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where C' > 0 depends only on As. Then (36) becomes
WQQ(Lmna,umn Z)‘ _7] _'_ﬁ’

where C' > 0 depends only on As, which is the claim. O
Proof of Corollary 4. Let n > 2. Due to Proposition 13,

E[W (Lo )] < 2 SB[ =] +

ni=

We then make use of the bounds on E{(Aj — 7;71’")2] produced in the previous
sections. Set 0 < n < % and K > k so that K logn < nn. We first decompose

n Klogn n
SE[ -] = 3 B[ Y B[y -]
=1 j=1 j=Klogn+1
(I=m)n—1 n—Klogn—1
+ > [()\j — 7}”’")2} + > E[()\j _ ,y;n,n)Q}
g=m+l j=(1—mn

+ > B[N -

j=n—Klogn

=21+ g+ 23+ Xy + 5.

The sum X3 will be bounded using the bulk case (Theorem 1), while Theorem 2
will be used to handle ¥, and 4. A crude version of Theorem 11 will be enough
to bound >; and 5. To start with thus, from Theorem 1,

(1=n)n—1

Secondly, from Theorem 2,

< §
Yo+Xy < —5
’I’L4/3 j=Klogn+1 J

log j logn
2/3 < C n

Next ¥, and Y5 have only K logn terms. If each term is bounded by % where C'

2KClogn
n

is a positive universal constant, we get that X; + 5 < , which is enough

to prove the desired result on }°7_| E {()\j — 7;”’")2] For n large enough depending

(log n)C loglogn
n2/3 min(j,n+1—75)

only on constant C' in Theorem 11, % > 75 and Theorem 11 yields

m,n 1 —(lo ncloglogn
P(\)‘j—%‘ \2%)<C€(g) -
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Then, by the Cauchy-Schwarz inequality,

B[Oy =] < B[y =2 oy

< ol = e (o> )

< = 4 /30n2e(ogn)ioslesn
n

—_

—_

As /30n2e—(ogn)cioslosm o(+), there exists a constant C' > 0 such that E{()\j -
%m’")ﬂ < €. Then

]
S 4 55 < 2KC28"

0 .
As a consequence,

n . 1
> [0 -] < ORET,
j=1
Therefore 1
ogn
E{WQ(Lm,nnum,n)Q} <C 52 ’

where C' > 0 depends only on A; and As, which is the claim. The corollary is thus
established. O
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