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Eigenvalue variance bounds for covariance matrices

 and stated the results for covariance matrices. They are proved in the present paper. Relying on the LUE example, which needs to be investigated first, the main bounds are extended to complex covariance matrices by means of the Tao, Vu and Wang Four Moment Theorem and recent localization results by Pillai and Yin. The case of real covariance matrices is obtained from interlacing formulas.

). One of the main goals of random matrix theory over the past decades was to extend these results to non-Gaussian covariance matrices.

However, in multivariate statistics, quantitative finite-range results are more useful than asymptotic properties. Furthermore, random covariance matrices have become useful in several other fields, such as compressed sensing (see [START_REF] Vershynin | Introduction to the non-asymptotic analysis of random matrices, chapter 5 of Compressed sensing, theory and applications[END_REF]), wireless communication and quantitative finance (see [START_REF] Bai | Spectral analysis of large dimensional random matrices[END_REF]). In these fields too, quantitative results are of high interest. Several recent developments have thus been concerned with non-asymptotic random matrix theory. See for example some recent surveys and papers on this topic [START_REF] Rudelson | Non-asymptotic theory of random matrices: extreme singular values[END_REF], [START_REF] Vershynin | Introduction to the non-asymptotic analysis of random matrices, chapter 5 of Compressed sensing, theory and applications[END_REF] and [START_REF] Vershynin | How close is the sample covariance matrix to the actual covariance matrix?[END_REF]. In this paper, we investigate in this respect variance bounds on the eigenvalues of families of covariance matrices. In a preceding paper [START_REF] Dallaporta | Eigenvalue variance bounds for Wigner and covariance random matrices[END_REF], we established similar bounds for Wigner matrices and the results for covariance matrices were stated but not proved. In the present paper, we provide the corresponding proofs. For the sake of completeness and in order to make the present paper readable separately, we reproduce here some parts of the previous one [START_REF] Dallaporta | Eigenvalue variance bounds for Wigner and covariance random matrices[END_REF].

Random covariance matrices are defined by the following. Let X be a m × n (real or complex) matrix, with m n, such that its entries are independent, centered and have variance 1. Then S m,n = 1 m X * X is a covariance matrix. An important example is the case when the entries of X are Gaussian. Then S m,n belongs to the so-called Laguerre Unitary Ensemble (LUE) if the entries of X are complex and to the Laguerre Orthogonal Ensemble (LOE) if they are real. S m,n is Hermitian (or real symmetric) and therefore has n real eigenvalues. As m n, none of these eigenvalues is trivial. Furthermore, these eigenvalues are nonnegative and will be denoted by 0 λ 1 • • • λ n .

Among universality results, the classical Marchenko-Pastur theorem states that, if m n → ρ 1 when n goes to infinity, the empirical spectral measure L m,n = 1 n n j=1 δ λ j converges almost surely to a deterministic measure, called the Marchenko-Pastur distribution of parameter ρ. This measure is compactly supported and is absolutely continuous with respect to Lebesgue measure, with density

dµ M P (ρ) (x) = 1 2πx (b ρ -x)(x -a ρ )½ [aρ ,bρ] (x)dx,
where a ρ = (1 -√ ρ) 2 and b ρ = (1 + √ ρ) 2 (see for example [START_REF] Bai | Spectral analysis of large dimensional random matrices[END_REF]). We denote by µ m,n the approximate Marchenko-Pastur density

µ m,n (x) = 1 2πx (x -a m,n )(b m,n -x)½ [am,n ,bm,n] (x),
with a m,n = 1 -m n 2 and b m,n = 1 + m n 2 . The behavior of individual eigenvalues was more difficult to achieve. At the edge of the spectrum, it was proved by Bai et al (see [START_REF] Bai | On the limit of the largest eigenvalue of the large-dimensional sample covariance matrix[END_REF], [START_REF] Bai | A note on the largest eigenvalue of a largedimensional sample covariance matrix[END_REF] and [START_REF] Bai | Limit of the smallest eigenvalue of a large-dimensional sample covariance matrix[END_REF]) under a condition on the fourth moments of the entries that, almost surely,

a m,n -λ 1 → n→∞ 0 and λ n -b m,n → n→∞ 0. (1) 
Once the behavior of eigenvalues at the edge of the spectrum is known, some local information on eigenvalues in the bulk can be deduced from the Marchenko-Pastur theorem. Indeed the Glivenko-Cantelli Theorem gives that almost surely

sup x∈R |F m,n (x) -G m,n (x)| → n→∞ 0,
where F m,n is the distribution function of the empirical spectral distribution L m,n and G m,n is the distribution function of the approximate Marchenko-Pastur law.

Combining this with crude bounds on the Marchenko-Pastur density and with (1) leads to the following law of large numbers. For all η > 0, for all ηn j (1-η)n, i.e. for eigenvalues in the bulk of the spectrum, At the fluctuation level, the behavior of individual eigenvalues depends heavily on their location in the spectrum and on the value of the parameter ρ, at least for the smallest eigenvalues. Indeed, when ρ > 1, the left-side of the limiting support a ρ is positive. As a consequence, eigenvalues, and in particular smallest eigenvalues, can be less than a ρ , which is therefore called a soft edge. On the contrary, when ρ = 1, a ρ = 0 and no eigenvalue can be less than a ρ . In this case, the left-side is called a hard edge. Even the behavior of the Marchenko-Pastur density is different at the lower edge in these two cases. Indeed, when ρ > 1, the Marchenko-Pastur density function is bounded whereas it goes to ∞ when x → 0 if ρ = 1. Therefore, the behavior of the smallest eigenvalue is expected to be different according to ρ. Indeed, on the one hand, when m = n (which implies ρ = 1), Edelman proved that, for LUE matrices,

n 2 λ 1 (d) → n→∞ E (1) 
,

where E(1) is an exponential random variable with parameter 1. A similar result is available for LOE matrices, see [START_REF] Edelman | Eigenvalues and condition numbers of random matrices[END_REF] for more details. This theorem was later extended to more general covariance matrices by Tao and Vu in [START_REF] Tao | Random matrices: the distribution of the smallest singular values[END_REF]. On the other hand, when ρ > 1, Borodin and Forrester proved that, for LUE matrices,

n 2/3 a m,n -λ 1 a 2/3 m,n m n -1/6 (d) → n→∞ F 2 ,
where F 2 is the so-called Tracy-Widom law (see [START_REF] Borodin | Increasing subsequences and the hard-to-soft edge transition in matrix ensembles[END_REF]). A similar result holds for LOE matrices. These theorems were later extended to some non-Gaussian covariance matrices by Feldheim and Sodin in [START_REF] Feldheim | A universality result for the smallest eigenvalues of certain sample covariance matrices[END_REF] and then to large families of covariance matrices by Wang (see [START_REF] Wang | Random covariance matrices: universality of local statistics of eigenvalues up to the edge[END_REF]). On the contrary, the behavior of the largest eigenvalue relies much less on the value of the parameter ρ. Indeed Johansson (see [START_REF] Johansson | Shape fluctuations and random matrices[END_REF]) proved that, for LUE matrices,

n 2/3 λ n -b m,n b 2/3 m,n m n -1/6 (d) → n→∞ F 2 .
Johnstone proved a similar result for LOE matrices (see [START_REF] Johnstone | On the distribution of the largest eigenvalue in principal components analysis[END_REF]). Soshnikov and Péché extended these theorems to more general covariance matrices in [START_REF] Soshnikov | A note on universality of the distribution of the largest eigenvalues in certain sample covariance matrices[END_REF] and [START_REF] Péché | Universality results for the largest eigenvalues of some sample covariance matrix ensembles[END_REF]. They were then extended to large families of non-Gaussian covariance matrices by Wang in [START_REF] Wang | Random covariance matrices: universality of local statistics of eigenvalues up to the edge[END_REF]. From these central limit theorems, the variances of the smallest (when ρ > 1) and largest eigenvalues are guessed to be of the order of n -4/3 . In the bulk of the spectrum, i.e. for all eigenvalues λ j such that ηn j (1η)n for a fixed η > 0, Su proved in [START_REF] Su | Gaussian fluctuations in complex sample covariance matrices[END_REF] that

µ m,n (γ m,n j ) λ j -γ m,n j 1 2π 2 log n n 2 (d) → n→∞ N (0, 1),
in distribution. As for the largest eigenvalue, the value of parameter ρ does not change significantly the behavior of eigenvalues in the bulk. This Central Limit Theorem was extended to families of non-Gaussian matrices by Tao and Vu in [START_REF] Tao | Random covariance matrices: universality of local statistics of eigenvalues[END_REF]. The variances of eigenvalues in the bulk are then guessed to be of the order of log n n 2 . Su proved in [START_REF] Su | Gaussian fluctuations in complex sample covariance matrices[END_REF] a similar Central Limit Theorem for right-side intermediate eigenvalues, which means eigenvalues λ j with j n → 1 and nj → ∞ when n goes to infinity. From this theorem, the variance of such eigenvalues is guessed to be of the order of log(n-j) n 4/3 (n-j) 2/3 . This theorem was later extended to non-Gaussian covariance matrices by Wang in [START_REF] Wang | Random covariance matrices: universality of local statistics of eigenvalues up to the edge[END_REF]. It seems that a similar result holds for left-side intermediate eigenvalues when ρ > 1 but Su did not carry out the computations in this case.

The aim of this paper is to provide sharp non-asymptotic bounds for the variance of individual eigenvalues of covariance matrices. For simplicity, we basically assume that ρ > 1. More precisely, we assume that 1 < A 1 m n A 2 (where A 1 and A 2 are fixed constants). When m = n (therefore ρ = 1), it is possible to show that the following results in the bulk and on the right-side of the spectrum are true. It will be specified in the corresponding sections. Assume furthermore that S m,n is a complex covariance matrix (respectively real) whose entries have an exponential decay and have the same first four moments as those of a LUE (respectively LOE) matrix. This condition is called condition (C0) and will be detailed in Section 2. The main results of this paper are the following theorems.

Theorem 1 (in the bulk of the spectrum). For all 0 < η 1 2 , there exists a constant C > 0 depending only on η, A 1 and A 2 such that, for all ηn j (1-η)n,

Var(λ j ) C log n n 2 . ( 2 
)
Theorem 2 (between the bulk and the edge of the spectrum). There exists a constant κ > 0 (depending on A 1 and A 2 ) such that the following holds. For all K > κ, for all 0 < η 1 2 , there exists a constant C > 0 (depending on K, η, A 1 and A 2 ) such that for all covariance matrix S m,n , for all (1-η)n j n-K log n,

Var(λ j ) C log(n -j) n 4/3 (n -j) 2/3 . ( 3 
)
Theorem 3 (at the edge of the spectrum). There exists a constant C > 0 depending only on A 1 and A 2 such that,

Var(λ n ) Cn -4/3 . ( 4 
)
It should be mentioned that Theorem 2 (respectively Theorem 3) probably holds for left-hand side intermediate eigenvalues (respectively the smallest eigenvalue λ 1 ), when ρ > 1. We refer to Section 1.2 for more details on that topic. On the contrary, when ρ = 1, the behavior of eigenvalues on the left-side of the spectrum is probably very different and much more difficult to study.

The first two theorems do not seem to be known even for LUE matrices. The first step is then to establish these results for such matrices. The proof relies on the fact that the eigenvalues of a LUE matrix form a determinantal process and therefore that the eigenvalue counting function has the same distribution as a sum of independent Bernoulli variables [START_REF] Hough | Determinantal processes and independence[END_REF]. Using a standard concentration inequality for Bernoulli variables, it is then possible to establish a deviation inequality for individual eigenvalues. A simple integration leads to the desired bounds on the variances. On the contrary, Theorem 3 on the largest eigenvalue λ n of LUE matrices has been known for some time, at least for the largest eigenvalue λ n (see [START_REF] Ledoux | Small deviations for beta ensembles[END_REF]). From these results for the LUE, Theorems 1, 2 and 3 are then extended to large families of non-Gaussian covariance matrices by means of localization properties by Pillai and Yin (see [START_REF] Pillai | Universality of covariance matrices[END_REF]) and the Four Moment Theorem by Tao-Vu and Wang (see [START_REF] Tao | Random covariance matrices: universality of local statistics of eigenvalues[END_REF] and [START_REF] Wang | Random covariance matrices: universality of local statistics of eigenvalues up to the edge[END_REF]). While the localization properties almost yield the correct order on the variance, the Four Moment Theorem is used to reach the optimal bound via a comparison with LUE matrices. Theorems 1, 2 and 3 are established first in the complex case. The real case is then achieved by means of interlacing formulas. Note that similar inequalities hold for higher moments of the eigenvalues. The proofs are exactly the same.

As a corollary of the preceding results on the variances and provided Theorem 2 holds also for left-hand side intermediate eigenvalues, a bound on the rate of convergence of the empirical spectral distribution L m,n towards the Marchenko-Pastur distribution can be achieved. It can be written in terms of the 2-Wasserstein distance between the approximate Marchenko-Pastur distribution µ m,n and L m,n , defined by the following. For µ and ν two probability measures on R,

W 2 (µ, ν) = inf R 2 |x -y| 2 dπ(x, y) 1/2
, where the infimum is taken over all probability measure π on R 2 such that its first marginal is µ and its second marginal is ν. Note that the rate of convergence of this empirical distribution has also been investigated in terms of the Kolmogorov distance between L m,n and µ m,n (see for example [START_REF] Götze | Rate of convergence in probability to the Marchenko-Pastur law[END_REF] and [START_REF] Götze | On the rate of convergence to the Marchenko-Pastur distribution[END_REF]). This distance is defined by

d K (L m,n , µ m,n ) = sup x∈R 1 n N x -G m,n (x) ,
where N x is the eigenvalue counting function, i.e. N x is the number of eigenvalues in (-∞, x], and G m,n is the distribution function of the approximate Marchenko-Pastur distribution. Götze and Tikhomirov recently showed that, with high probability,

d K (L m,n , µ m,n ) (log n) c
n for some universal constant c > 0 (see [START_REF] Götze | On the rate of convergence to the Marchenko-Pastur distribution[END_REF]). The rate of convergence in terms of the 1-Wasserstein distance W 1 , also called the Kantorovich-Rubinstein distance, was studied by Guionnet and Zeitouni in [START_REF] Guionnet | Concentration of the spectral measure for large matrices[END_REF], who proved that [W 1 (L m,n , [L m,n ])] is bounded by Cn -2/5 . The following statement is concerned with the expectation of W 2 (L m,n , µ m,n ).

Corollary 4. Let 1 < A 1 < A 2 .
Then there exists a constant C > 0 depending only on A 1 and A 2 such that, for all m and n such that

1 < A 1 m n A 2 , W 2 2 (L m,n , µ m,n ) C log n n 2 . ( 5 
)
The proof of this corollary relies on the fact that [W 2 2 (L m,n , µ m,n )] is bounded above, up to a constant, by the sum of the expectations [(λ jγ m,n j ) 2 ]. The previously established bounds then easily yield the result, provided Theorem 2 holds for left-hand side intermediate eigenvalues.

Turning now to the content of this paper, Section 1 describes Theorems 1, 2 and 3 in the LUE case. Section 2 starts with the Localization Theorem of Pillai and Yin (see [START_REF] Pillai | Universality of covariance matrices[END_REF]) and the Four Moment Theorem of Tao-Vu and Wang (see [START_REF] Tao | Random covariance matrices: universality of local statistics of eigenvalues[END_REF] and [START_REF] Wang | Random covariance matrices: universality of local statistics of eigenvalues up to the edge[END_REF]). Theorems 1, 2 and 3 are then established for families of covariance matrices. Section 3 is devoted to real matrices. Section 4 deals with Corollary 4 and the rate of convergence of L m,n towards µ M P (ρ) in terms of 2-Wasserstein distance.

Throughout this paper, C and c will denote positive constants, which depend on the indicated parameters and whose values may change from one line to another.

Deviation inequalities and variance bounds for LUE matrices

This section is concerned with Gaussian covariance matrices. The results and techniques used here heavily rely on the Gaussian structure, in particular on the determinantal properties of the eigenvalues. As a consequence of this determinantal structure, the eigenvalue counting function is known to have the same distribution as a sum of independent Bernoulli variables (see [START_REF] Hough | Determinantal processes and independence[END_REF], [START_REF] Anderson | An introduction to random matrices[END_REF]). Its mean and variance were computed by Su (see [START_REF] Su | Gaussian fluctuations in complex sample covariance matrices[END_REF]). Deviation inequalities can therefore be established for individual eigenvalues, leading to the announced bounds on the variance. All the proofs are written in the case when 1

< A 1 m n A 2 .
Assuming m = n, if the results still hold, the proofs are very similar and are therefore not reproduced.

Inside the bulk of the spectrum

The aim of this section is to prove the following theorem for eigenvalues in the bulk, i.e. for λ j with ηn j (1η)n.

Theorem 5. Let 1 < A 1 < A 2 .
Let S m,n be a LUE matrix. For any 0 < η 1 2 , there exists a constant C > 0 depending only on η, A 1 and A 2 such that for all

A 1 m n A 2 and all ηn j (1 -η)n, |λ j -γ m,n j | 2 C log n n 2 . ( 6 
)
In particular,

Var(λ j ) C log n n 2 . ( 7 
)
The proof of this theorem relies on the properties of the eigenvalue counting function, denoted by N t = n i=1 ½ λ i t for every t ∈ R. As announced, N t has the same distribution as a sum of independent Bernoulli variables [START_REF] Hough | Determinantal processes and independence[END_REF]. Consequently, sharp deviation inequalities are available for N t . Applying Bernstein's inequality leads to

È N t -[N t ] u 2 exp - u 2 2σ 2 t + u , ( 8 
)
where σ 2 t is the variance of N t (see for example [START_REF] Van Der | Asymptotic statistics, volume 3 of Cambridge Series in Statistical and Probabilistic Mathematics[END_REF]). Götze and Tikhomirov proved in [START_REF] Götze | Rate of convergence in probability to the Marchenko-Pastur law[END_REF] that, as soon as 1 < A 1 m n A 2 , there exists a positive constant C 1 depending only on A 1 and A 2 such that sup t∈R

[N t ] -n t -∞ µ m,n (x) dx C 1 , (9) 
for every LUE matrix S m,n . For simplicity, we denote t -∞ µ m,n (x) dx by µ t . Together with [START_REF] Edelman | Eigenvalues and condition numbers of random matrices[END_REF], for every u 0,

È |N t -nµ t | u + C 1 2 exp - u 2 2σ 2 t + u . ( 10 
)
Among Su's results (see [START_REF] Su | Gaussian fluctuations in complex sample covariance matrices[END_REF]), for every δ > 0, there exists c δ > 0 such that sup

t∈I δ σ 2 t c δ log n, ( 11 
)
where 10) and ( 11), deviation inequalities for individual eigenvalues in the bulk are then available, as stated in the following proposition.

I δ = [a m,n + δ, b m,n -δ]. Combining (
Proposition 6. Assume that 1 < A 1 m n A 2 . Let η > 0.
Then there exist positive constants C, c, c ′ and δ such that the following holds. For any LUE matrix S m,n , for all ηn j (1η)n, for all c u c ′ n,

È |λ j -γ m,n j | u n 4 exp - C 2 u 2 2c δ log n + Cu . ( 12 
)
The constants C, c ′ and δ depend only on η and A 2 , whereas the constant c depends only on η, A 1 and A 2 .

Note that this proposition still holds if m = n, as Götze and Tikhomirov proved in [START_REF] Götze | Rate of convergence in probability to the Marchenko-Pastur law[END_REF] that (9) holds in that case.

Proof. Let η > 0 and u 0. Assume first that n 2 j (1η)n. Start with estimating the probability that λ j is greater than γ m,n j

+ u n . È λ j > γ m,n j + u n = È N γ m,n j + u n < j = È nµ γ m,n j + u n -N γ m,n j + u n > nµ γ m,n j + u n -j = È nµ γ m,n j + u n -N γ m,n j + u n > n(µ γ m,n j + u n -µ γ m,n j ) È |N γ m,n j + u n -nµ γ m,n j + u n | > n(µ γ m,n j + u n -µ γ m,n j ) ,
where it has been used that µ γ m,n j = j n . In order to use [START_REF] Feldheim | A universality result for the smallest eigenvalues of certain sample covariance matrices[END_REF], a lower bound on n(µ γ m,n j

+ u n -µ γ m,n j ) is needed. µ γ m,n j + u n -µ γ m,n j = γ m,n j + u n γ m,n j 1 2πx (b m,n -x)(x -a m,n ) dx γ m,n j -a m,n 2πb m,n γ m,n j + u n γ m,n j b m,n -x dx γ m,n j -a m,n 3πb m,n (b m,n -γ m,n j ) 3/2 1 -1 - u/n b m,n -γ m,n j 3/2 γ m,n j -a m,n 3πb m,n (b m,n -γ m,n j ) 1/2 u n , if γ m,n j + u n b m,n . Furthermore, by definition of γ m,n j , 1 - j n = bm,n γ m,n j 1 2πx (x -a m,n )(b m,n -x) dx b m,n -a m,n 2πγ m,n j bm,n γ m,n j b m,n -x dx b m,n -a m,n 3πγ m,n j b m,n -γ m,n j 3/2 . Then b m,n -γ m,n j 3π b m,n -a m,n γ m,n j 1 - j n 2/3 . ( 13 
)
Moreover

j n = γ m,n j am,n 1 2πx (x -a m,n )(b m,n -x) dx b m,n -a m,n 2π γ m,n j am,n 1 x x -a m,n dx b m,n -a m,n 2π √ γ m,n j -am,n 0 2v 2 v 2 + a m,n dv, with change of variables x = v 2 + a m,n . Therefore, j n b m,n -a m,n π γ m,n j -a m,n .
Then

γ m,n j γ m,n j -a m,n π b m,n -a m,n j n π 2 b m,n -a m,n , ( 14 
)
as j n 2 . Therefore, as 1

-j n η, b m,n -γ m,n j 3 4 2/3 π 2 b m,n -a m,n η 2/3 . ( 15 
)
As a consequence, a lower bound on µ γ m,n j

+ u n -µ γ m,n j is achieved. µ γ m,n j + u n -µ γ m,n j C b m,n (b m,n -a m,n ) η 1/3 u n ,
where

C > 0 is a universal constant. As m n A 2 , µ γ m,n j + u n -µ γ m,n j C 4 √ A 2 (1 + √ A 2 ) 2 η 1/3 u n = C(A 2 , η) u n .
Then

È λ j > γ m,n j + u n È |N γ m,n j + u n -nµ γ m,n j + u n | > C(A 2 , η)u . This is true for all u n(b m,n -γ m,n j
). From ( 15), this will be true when u c ′ n where c ′ > 0 depends only on A 2 and η.

If u c = 2C 1 C(A 2 ,η) , then È λ j > γ m,n j + u n È |N γ m,n j + u n -nµ γ m,n j + u n | > 1 2 C(A 2 , η)u + C 1 .
Consequently, from [START_REF] Feldheim | A universality result for the smallest eigenvalues of certain sample covariance matrices[END_REF], we get

È λ j > γ m,n j + u n 2 exp - u 2 2σ 2 γ m,n j + u n + u .
For u c ′ n (with a maybe smaller c ′ > 0 depending only on η and A 2 ), there exists δ > 0 depending on η and A 2 such that γ m,n j

+ u n ∈ I δ . Consequently, from (11), σ 2 γ m,n j + u n c δ log n. Then, for c u c ′ n, È λ j > γ m,n j + u n 2 exp - u 2 2c δ log n + u .
Repeating the argument leads to the same bound on È λ j < γ m,n j -u n . Therefore,

È |λ j -γ m,n j | u n 4 exp - C 2 u 2 2c δ log n + Cu .
The case when j n 2 is treated similarly. The proposition is thus established.

We turn now to the proof of Theorem 5.

Proof of Theorem 5. Note first that, for every i,

[λ 4 i ] n j=1 [λ 4 j ] = [Tr(S 4 m,n )].
From Hölder inequality,

[Tr(S 4 m,n )] 1 n 4 j 1 ,...,j 4 ∈[[1,m]] i 1 ,...,i 4 [[1,n]] [|X i 1 ,j 1 | 8 ] 1/8 . . . [|X i 4 ,j 1 | 8 ] 1/8 . ( 16 
)
As S m,n is from the LUE, the 8 th moment of its entries is

[|X i,j | 8 ] = 105. Then [Tr(S 4 m,n )] 105m 4 105A 4 2 n 4 .
Consequently, for all n 1, for all 1 i n,

[λ 4 i ] 105A 4 2 n 4 . ( 17 
)
Consider constants C, c, c ′ and δ given by Proposition 6. Choose next M > 0 large enough such that C 2 M 2 2c δ +CM > 8. M depends only on η and

A 2 . Setting Z = n|λ j -γ m,n j |, [Z 2 ] = ∞ 0 È(Z v)2v dv = c 0 È(Z v)2v dv + M log n c È(Z v)2v dv + ∞ M log n È(Z v)2v dv c 2 + I 1 + I 2 .
The two latter integrals are handled in different ways. The first one I 1 is bounded using (12) while I 2 is controlled using the Cauchy-Schwarz inequality and [START_REF] Johnstone | On the distribution of the largest eigenvalue in principal components analysis[END_REF]. Starting thus with I 2 ,

I 2 = +∞ M log n È(Z v)2v dv Z 2 ½ Z M log n Z 4 È Z M log n An 4 È |λ j -γ m,n j | M log n n 2An 4 exp - 1 2 
C 2 M 2 2c δ + CM log n 2A exp 1 2 8 - C 2 M 2 2c δ + CM log n ,
where A > 0 is a numerical constant. As exp 1 2 8 -C 2 M 2 2c δ +CM log n → n→∞ 0, there exists a constant C > 0 (depending only on η and A 2 ) such that

I 2 C.
Turning to I 1 , recall that Proposition 6 gives, for c v c ′ n,

P (Z v) = È |λ j -γ m,n j | v n 4 exp - C 2 v 2 2c δ log n + Cv .
Hence in the range v M log n,

P (Z v) 4 exp - B log n v 2 ,
where

B = B(A 2 , η) = C 2 2c δ +CM .
As a consequence,

I 1 4 M log n c exp - B log n v 2 2v dv 4 log n B ∞ 0 e -v 2 2v dv.
There exists thus a constant C > 0 (depending only on η and A 2 ) such that

I 1 C log n.
Summarizing the previous steps, Z 2 C log n. Therefore

|λ j -γ m,n j | 2 C log n n 2
, C depending only on A 1 , A 2 and η, which is the claim. The proof of Theorem 5 is complete.

Between the bulk and the edge of the spectrum

The aim of this section is to prove an analogous theorem for some eigenvalues between the bulk and the right edge of the spectrum, i.e. for λ j such that (1-η)n j n -K log n. The precise statement is the following. Theorem 7. There exists a constant κ > 0 (depending on A 1 and A 2 ) such that the following holds. For all K > κ, for all 0 < η 1 2 , there exists a constant C > 0 (depending on K, η, A 1 and A 2 ) such that for all covariance matrix S m,n , for all (1η)n j n -K log n,

[(λ j -γ m,n j ) 2 ] C log(n -j) n 4/3 (n -j) 2/3 . ( 18 
)
In particular,

Var(λ j ) C log(n -j) n 4/3 (n -j) 2/3 . ( 19 
)
As for eigenvalues in the bulk, the proof relies on the determinantal structure of LUE matrices. Recall that this structure together with a bound on the mean counting function (9) leads to the following deviation inequality for the counting function N t .

È |N t -nµ t | u + C 1 2 exp - u 2 2σ 2 t + u .
Among Su's results (see [START_REF] Su | Gaussian fluctuations in complex sample covariance matrices[END_REF]), for every δ > 0, for every K > 0, there exists cδ , K > 0 such that for all t satisfying 0 < b m,nt < δ and n(b m,nt) 3/2 K log n,

σ 2 t cδ , K log n(b m,n -t) 3/2 . ( 20 
)
Combining ( 10) and ( 20), deviation inequalities for individual intermediate eigenvalues are then available.

Proposition 8. Assume that 1 < A 1 m n

A 2 . There exists κ > 0 depending only on A 1 and A 2 such that the following holds. Let K > κ and 0 < η 1 2 . Then there exist positive constants C, c, C ′ and c ′ such that the following holds. For any LUE matrix S m,n , for all (1η)n j n -K log n, for all c u c ′ n,

È |λ j -γ m,n j | u n 2/3 (n -j) 1/3 4 exp - C 2 u 2 C ′ log(n -j) + Cu . ( 21 
)
The constants C, C ′ and c ′ depend only on K, η and A 2 , whereas the constant c depends only on K, η, A 1 and A 2 .

Note that this proposition still holds when m = n, for eigenvalues on the rightside of the spectrum. The proof of Proposition 8 is very similar to what was done for eigenvalues in the bulk. Therefore some details are not reproduced.

Proof. Let η > 0, K > 0 and u 0. Assume that (1η)n j n -K log n. Set u n,j = u n 2/3 (n-j) 1/3 . As for the bulk case, we start with estimating the probability that λ j is greater than γ m,n j + u n,j . We get

È λ j > γ m,n j + u n,j È |N γ m,n j +u n,j -nµ γ m,n j +u n,j | > n(µ γ m,n j +u n,j -µ γ m,n j ) . Furthermore, µ γ m,n j +u n,j -µ γ m,n j γ m,n j -a m,n 3πb m,n (b m,n -γ m,n j ) 1/2 u n,j , if γ m,n j + u n,j b m,n . From (13), b m,n -γ m,n j 3π b m,n -a m,n γ m,n j n -j n 2/3
. Moreover, as η 1 2 , from [START_REF] Guionnet | Concentration of the spectral measure for large matrices[END_REF],

γ m,n j γ m,n j -a m,n π 2 b m,n -a m,n . Therefore b m,n -γ m,n j 3 4 2/3 π 2 b m,n -a m,n n -j n 2/3 , ( 22 
)
and

µ γ m,n j +u n,j -µ γ m,n j C b m,n (b m,n -a m,n ) u n ,
where

C > 0 is a universal constant. As m n A 2 , µ γ m,n j +u n,j -µ γ m,n j C 4 √ A 2 (1 + √ A 2 ) 2 u n = C(A 2 ) u n .
Similarly to the bulk case, we get [START_REF] O'rourke | Gaussian fluctuations of eigenvalues in Wigner random matrices[END_REF], for all c u c ′ (nj),

È(λ j > γ m,n j + u n,j ) 2 exp - u 2 2σ 2 γ m,n j +u n,j + u . This relation holds if c u n 2/3 (n -j) 1/3 (b m,n -γ m,n
m,n -t n 3b m,n b m,n -a m,n 1 -η η 2/3 6(A 2 ) 1/4 (1 + √ A 2 ) 2 1 -η η 2/3 = δ for all n. Moreover, n(b m,n -t n ) 3/2 = n(b m,n -γ m,n j ) 3/2 1 - u n,j b m,n -γ m,n j 3/2 3π 3 4(b m,n -a m,n ) 3/2 (n -j) 1 - c ′ (n -j) 2/3 n 2/3 (b m,n -γ m,n j ) 3/2 3π 3 4(4 √ A 2 ) 3/2 (1 -α) 3/2 K log n K log n, where K = 3π 3 4(4 √ A 2 ) 3/2 (1 -α) 3/2 K > 0. From
Var(N γ m,n j +u n,j ) c η, K log n(b m,n -t n ) 3/2 . But n(b m,n -t n ) 3/2 n b m,n -γ m,n j 3/2 .
Using the same techniques as for [START_REF] Götze | On the rate of convergence to the Marchenko-Pastur distribution[END_REF], it is possible to show that

(b m,n -γ m,n j ) 3/2 6b m,n b m,n -a m,n n -j n 12(A 2 ) 1/4 1 + A 2 2 n -j n . Hence log n(b m,n -t n ) 3/2 log(n -j) + log(12(A 2 ) 1/4 (1 + √ A 2 ) 2
). For K > κ with κ large enough depending only on A 2 and for n

2, n -j K log n 12(A 2 ) 1/4 (1 + √ A 2 ) 2 and Var(N γ m,n j +u n,j ) 2cδ , K log(n -j). Therefore È λ j > γ m,n j + u n,j 2 exp - C 2 u 2 4cδ , K log(n -j) + Cu .
The proof is concluded similarly to Proposition 6.

We turn now to the proof of Theorem 7, in which some details are skipped, due to the similarity with the proof of Theorem 5.

Proof of Theorem 7. Setting

Z = n 2/3 (n -j) 1/3 |λ j -γ m,n j |, [Z 2 ] = ∞ 0 È(Z v)2v dv = c 0 È(Z v)2v dv + C ′ C log(n-j) c È(Z v)2v dv + c ′ (n-j) C ′ C log(n-j) È(Z v)2v dv + ∞ c ′ (n-j) È(Z v)2v dv c 2 + J 1 + J 2 + J 3 ,
where c, c ′ , C and C ′ are given by Proposition 8. Repeating the computations carried out with I 2 in the proof of Theorem 5 yields

J 3 2n 4/3 (n -j) 2/3 [(λ j -γ m,n j ) 4 ] exp - 1 2 C 2 C ′2 (n -j) 2 C ′ log(n -j) + Cc ′ (n -j) 2An 4 exp - 1 2 C 2 c ′2 (n -j) 2 C ′ log(n -j) + Cc ′ (n -j) ,
where A > 0 is a numerical constant. The last inequality is due to [START_REF] Johnstone | On the distribution of the largest eigenvalue in principal components analysis[END_REF]. For n large enough (depending on η, A 2 and K), C ′ log(nj) Cc ′ (nj) and

J 3 2A exp 4 log n - Cc ′ 4 (n -j) .
Then, as nj K log n,

J 3 2A exp 4 - KCc ′ 4 log n .
Recall from the proof of Proposition 8 that c ′ = αc ′ (A 2 ) where α ∈ (0, 1) is a universal constant and c ′ (A 2 ) depends only on A 2 . Furthermore, the constant C depends only on A 2 . Therefore, if we choose κ > 0 such that κ > 16 Cc ′ (A 2 ) , then

KCc ′ 4 > 4.
The right-hand side goes thus to 0 when n goes to infinity. As a consequence, there exists a constant C > 0 depending only on A 2 , η and K such that

J 3 C.
The integral J 1 is handled as I 1 , using that, in the range

v C ′ C log(n -j), P (Z v) 4 exp - B log(n -j) v 2 ,
where B depends only on K, η and A 2 (this is due to Proposition 8). Hence, there exists a constant C depending only on A 2 , η and K such that

J 1 C log(n -j).
Finally, J 2 is handled similarly. In the range C ′ C log(nj) v c ′ (nj), from Proposition 8,

P (Z v) 4 exp - C 2 v .
Thus

J 2 4 c ′ (n-j) C ′ C log(n-j) exp - C 2 v 2v dv 4 ∞ 0 exp - C 2 v 2v dv.
Then J 2 is bounded by a constant, which depends only on A 2 . There exists thus a constant C > 0 such that

J 2 C.
Summarizing the previous steps, [Z 2 ] C log(nj), where C depends only on A 1 , A 2 , η and K. Therefore

|λ j -γ j | 2 C log(n -j) n 4/3 (n -j) 2/3 ,
which is the claim.

At the edge of the spectrum

In [START_REF] Ledoux | Small deviations for beta ensembles[END_REF], Ledoux and Rider gave unified proofs of precise small deviation inequalities for the largest eigenvalues of β-ensembles. The results hold in particular for LUE matrices (β = 2) and for LOE matrices (β = 1). The following theorem summarizes some of the relevant inequalities for the LUE. Theorem 9. [START_REF] Ledoux | Small deviations for beta ensembles[END_REF] Let A 1 > 1. There exists a constant C > 0 depending only on A 1 such that the following holds. Let S m,n be a LUE matrix. Denote by λ n the maximal eigenvalue of S m,n . Then, for all n ∈ N, for all m ∈ N such that m > A 1 n and for all 0 < ε 1,

È λ n b m,n (1 -ε) C 2 exp - 2 C n 2 ε 3 , ( 23 
)
and

È λ n b m,n (1 + ε) C exp - 2 C nε 3/2 . ( 24 
)
The large deviation tails are also known. The following corollary can be deduced by integrating these inequalities. Corollaire 10. [START_REF] Ledoux | Small deviations for beta ensembles[END_REF] Let S m,n be a LUE matrix. Then there exists a universal constant C > 0 such that for all n 1, for all m ∈ N such that m > A 1 n,

Var(λ n ) (λ n -b m,n ) 2 Cn -4/3 .
Similar results are probably true for the k th largest eigenvalue (for k ∈ N fixed). The authors established also a left-side deviation inequality for the smallest eigenvalue in the case when m > A 1 n.

È λ 1 a m,n (1 -ε) C exp - 2 C nε 3/2 , ( 25 
)
for all 0 < ε 1. But no right-side deviation inequality seems to be known for the smallest eigenvalue λ 1 and therefore we cannot deduce a precise bound on the variance of the smallest eigenvalue.

Variance bounds for families of covariance matrices

The previously achieved bounds on the variance of eigenvalues for LUE matrices are then extended to families of more general covariance matrices. It is due to the combination of two very recent results, some localization properties established by Pillai and Yin [START_REF] Pillai | Universality of covariance matrices[END_REF] and to the Four Moment Theorem proved by Tao and Vu [START_REF] Tao | Random covariance matrices: universality of local statistics of eigenvalues[END_REF] and Wang [START_REF] Wang | Random covariance matrices: universality of local statistics of eigenvalues up to the edge[END_REF].

Localization properties and the Four Moment Theorem

This subsection is devoted to the statement of the previously mentioned results which will be used in order to extend variance bounds to large families of non Gaussian covariance matrices. Matrices which are considered in this section are covariance matrices S m,n satisfying condition (C0), defined by the following. Say that S m,n satisfies condition (C0) if its entries X ij are independent and have an exponential decay: there are positive constants B 1 and B 2 such that

∀ i ∈ {1, . . . , n}, ∀ j ∈ {1, . . . , m}, |X ij | t B 1 e -t
for all t B 2 .

Pillai and Yin proved in [START_REF] Pillai | Universality of covariance matrices[END_REF] a Localization Theorem similar to the one proved by Erdös, Yau and Yin in [START_REF] Erdös | Rigidity of eigenvalues of generalized wigner matrices[END_REF]. This theorem establishes that the eigenvalues are highly localized around their theoretical locations γ m,n j . Theorem 11 (Localization [START_REF] Pillai | Universality of covariance matrices[END_REF]). Let S m,n be a random covariance matrix whose entries satisfy condition (C0). Suppose that 1 < A 1 m n A 2 < +∞. There are positive universal constants c and C such that, for any 1 j n,

È |λ j -γ m,n j | (log n) C log log n n -2/3 min(j, n+1-j) -1/3 Ce -(log n) c log log n . ( 26 
)
This deviation inequality ( 26) can be used to reach an almost optimal bound on the variance. Indeed, due to [START_REF] Su | Gaussian fluctuations in complex sample covariance matrices[END_REF] and the Cauchy-Schwarz inequality, Var(λ j ) may be bounded by (log n) 2C log log n n 2 in the bulk of the spectrum, which is almost the right order for the variance. In order to remove the log log n term, we turn now to the Four Moment Theorem. This theorem was proved for the bulk of the spectrum by Tao and Vu [START_REF] Tao | Random covariance matrices: universality of local statistics of eigenvalues[END_REF] and extended to the edge by Wang [START_REF] Wang | Random covariance matrices: universality of local statistics of eigenvalues up to the edge[END_REF]. From now, we consider covariance matrices S m,n which satisfy condition (C0) and whose entries match the entries of a LUE matrix up to order 4. Say that two complex random variables ξ and ξ ′ match to order k if

ℜ(ξ) m ℑ(ξ) l = ℜ(ξ ′ ) m ℑ(ξ ′ ) l
for all m, l 0 such that m + l k.

Theorem 12 (Four Moment Theorem [START_REF] Tao | Random covariance matrices: universality of local statistics of eigenvalues[END_REF][START_REF] Wang | Random covariance matrices: universality of local statistics of eigenvalues up to the edge[END_REF]). There exists a small positive constant c 0 such that the following holds. Let S m,n = 1 n X * X and S ′ m,n = 1 n X ′ * X ′ be two random covariance matrices satisfying condition (C0). Assume that, for 1 i n, X ij and X ′ ij match to order 4. Let G : R → R be a smooth function such that:

∀ 0 k 5, ∀x ∈ R, G (k) (x) n c 0 . ( 27 
)
Then, for all 1 i n and for n large enough (depending on constants B 1 and

B 2 in condition (C0)), [G(nλ i )] -[G(nλ ′ i )] n -c 0 . ( 28 
)
Suppose Theorem 12 apply with G j : x ∈ R → (xnγ m,n j ) 2 . Then [START_REF] Götze | Rate of convergence in probability to the Marchenko-Pastur law[END_REF] writes

n 2 [(λ j -γ m,n j ) 2 ] -n 2 [(λ ′ j -γ m,n j ) 2 ] n -c 0 . As [(λ ′ j -γ m,n j ) 2 ] is bounded by log n n 2 , log(n-j) n 4/3 (n-j) 2/3
or n -4/3 , which are bigger than n -2-c 0 , the bounds could be extended. Unfortunately, G j does not satisfy [START_REF] Tao | Random matrices: the distribution of the smallest singular values[END_REF]. To get round this difficulty, the Four Moment Theorem 12 is applied to a smooth truncation of G j . The Localization Theorem 11 provides a small area around γ m,n j where λ j is very likely to be in so that the error due to the truncation is well controlled. Details are contained in the following subsection.

Comparison with LUE matrices

Let S m,n be a covariance matrix and S ′ m,n be a LUE matrix such that they satisfy the hypotheses of Theorem 12. Note that the following procedure is valid for eigenvalues in the bulk and at the edge of the spectrum, as well as for intermediate eigenvalues.

Let 1 j n. Set R (j) n = (log n) C log log n n 1/3 min(j, n + 1j) -1/3 and ε n = Ce -(log n) c log log n . Then Theorem 11 leads to:

È |λ j -γ m,n j | R (j) n n ε n . ( 29 
)
Let ψ be a smooth function with support [-2, 2] and values in [0, 1] such that

ψ(x) = 1 10 x 2 for all x ∈ [-1; 1]. Set G j : x ∈ R → ψ x-nγ j R (j) n
. We want to apply Tao and Vu's Four Moment Theorem 12 to G j . As ψ is smooth and has compact support, its first five derivatives are bounded by M > 0. Then, for all 0 k 5, for all x ∈ R,

G (k) j (x) M (R (j) n ) k n c 0 ,
where the last inequality holds for n large enough (depending only on M and c 0 ). Then, the Four Moment Theorem 12 yields:

[G j (nλ j )] -[G j (nλ ′ j )] n -c 0 (30) for large enough n. But [G j (nλ j )] = 1 10 nλ j -nγ m,n j R (j) n 2 ½ |nλ j -nγ m,n j | R (j) n 1 + G j (nλ j )½ |nλ j -nγ m,n j | R (j) n >1 = n 2 10(R (j) n ) 2 (λ j -γ m,n j ) 2 ½ |λ j -γ m,n j | R (j) n n + G j (nλ j )½ |nλ j -nγ m,n j | R (j) n >1 .
On the one hand,

G j (nλ j )½ |nλ j -nγ m,n j | R (j) n >1 È |nλ j -nγ m,n j | > R (j) n È |λ j -γ m,n j | > R (j) n n ε n .
On the other hand,

(λ j -γ m,n j ) 2 ½ |λ j -γ m,n j | R (j) n n = (λ j -γ m,n j ) 2 -(λ j -γ m,n j ) 2 ½ |λ j -γ m,n j |> R (j) n n
.

As condition (C0) is satisfied, the 8-th moment of the entries is uniformly bounded by a constant which depends only on constants B 1 and B 2 in condition (C0). Then, from the Cauchy-Schwarz inequality and ( 16),

(λ j -γ m,n j ) 2 ½ |λ j -γ m,n j |> R (j) n n (λ j -γ m,n j ) 4 È |λ j -γ m,n j | > R (j) n n An 2 √ ε n
where A > 0 is a numerical constant. Then

G j (nλ j ) = n 2 10 R (j) n 2 (λ j -γ m,n j ) 2 + O n 2 ε 1/2 n + O(ε n ) = n 2 10 R (j) n 2 (λ j -γ m,n j ) 2 + O n 4 ε 1/2 n R (j) n -2 + O(ε n ).
Repeating the same computations gives similarly

G j (nλ ′ j ) = n 2 10 R (j) n 2 (λ ′ j -γ m,n j ) 2 + O n 4 ε 1/2 n R (j) n -2 + O(ε n ).
Then [START_REF] Vershynin | How close is the sample covariance matrix to the actual covariance matrix?[END_REF] yields

(λ j -γ m,n j ) 2 = (λ ′ j -γ m,n j ) 2 + O n 2 ε 1/2 n + n -2 (R (j) n ) 2 ε n + (R (j) n ) 2 n -c 0 -2 .
As the first two error terms are smaller than the third one, the preceding equation becomes (λ jγ m,n j

) 2 = (λ ′ j -γ m,n j ) 2 + O (R (j) n ) 2 n -c 0 -2 . ( 31 
)
2.3 Variance bounds [START_REF] Vershynin | Introduction to the non-asymptotic analysis of random matrices, chapter 5 of Compressed sensing, theory and applications[END_REF] is true for all eigenvalue λ j . We estimate the error term O (R (j) n ) 2 n -c 0 -2 differently according to the location of the eigenvalue in the spectrum, in order to get the announced bounds.

Inside the bulk of the spectrum

Let 0 < η 1 2 and ηn j (1η)n. From Theorem 5, (λ ′ jγ m,n j ) 2 C log n n 2 . Thus, from [START_REF] Vershynin | Introduction to the non-asymptotic analysis of random matrices, chapter 5 of Compressed sensing, theory and applications[END_REF], it remains to show that the error term is smaller than log n n 2 . But R (j) n = (log n) C log log n n 1/3 min(j, n + 1j) -1/3 η -1/3 (log n) C log log n .

Then (R (j) n ) 2 n -c 0 -2 = o η log n n 2 . As a consequence, (λ j -γ m,n j ) 2 = (λ ′ j -γ m,n j ) 2 + o η log n n 2
and we get the desired result

(λ j -γ m,n j ) 2 C log n n 2 ,
C depending only on η, A 1 and A 2 .

Between the bulk and the edge of the spectrum

Let 0 < η 1 2 , K > κ and (1 -η)n j n -K log n. From Theorem 7, (λ ′ j -γ m,n j ) 2
C log(n-j) n 4/3 (n-j) 2/3 . Thus, from [START_REF] Vershynin | Introduction to the non-asymptotic analysis of random matrices, chapter 5 of Compressed sensing, theory and applications[END_REF], it remains to show that the error term is smaller than log(n-j)

n 4/3 (n-j) 2/3 . But R (j) n = (log n) C log log n n 1/3 (n + 1 -j) -1/3 . Then (R (j) n ) 2 n -c 0 -2 = o log(n-j) n 4/3 (n-j) 2/3 . As a consequence, (λ j -γ m,n j ) 2 = (λ ′ j -γ m,n j ) 2 + o log(n -j) n 4/3 (n -j) 2/3
and we get the desired result (λ jγ m,n j ) 2 C log(nj) n 4/3 (nj) 2/3 , C depending only on η, A 1 , A 2 and K. A similar result probably holds for the left-side of the spectrum, when ρ > 1.

At the edge of the spectrum

From Corollary 10, (λ ′ n -γ m,n n ) 2 = (λ ′ n -b m,n ) 2 Cn -4/3
. By means of (31), it remains to prove that the error term is smaller than n -4/3 . We have

R (n) n = (log n) C log log n n 1/3 . Consequently (R (n) n ) 2 n -c 0 -2 = o n -4/3 . Then (λ n -b m,n ) 2 = (λ ′ n -2) 2 + o n -4/3 and (λ n -2) 2 Cn -4/3 .
If this bound holds for the smallest eigenvalue λ 1 of LUE matrices, the same result is available for non Gaussian covariance matrices.

Real Wishart matrices

The aim of this section is to prove Theorems 1, 2 and 3 for real covariance matrices. The Four Moment Theorem (Theorem 12) by Tao, Vu and Wang as well as Pillai and Yin's Localization Theorem (Theorem 11) still hold for real covariance matrices. Section 2 is therefore valid for real matrices. The point is then to establish the results in the LOE case. As announced in Section 1.3, the variance of eigenvalues at the right edge of the spectrum is known to be bounded by n -4/3 for LOE matrices (see [START_REF] Ledoux | Small deviations for beta ensembles[END_REF]). The conclusion for the largest eigenvalue is then established for large families of real covariance matrices.

Var(λ n ) C

n 4/3 . For eigenvalues in the bulk of the spectrum, following O'Rourke's approach (see [START_REF] O'rourke | Gaussian fluctuations of eigenvalues in Wigner random matrices[END_REF]), a Central Limit Theorem similar to the one established by Su in [START_REF] Su | Gaussian fluctuations in complex sample covariance matrices[END_REF] may be proved. In particular, the normalization is still of the order of ( log n n 2 ) 1/2 and differs from the complex case only by a constant. It is therefore natural to expect deduced, as was done to prove Propositions 6 and 8. It is then straightforward to derive the announced bounds on the variances for LOE matrices. The argument developed in Section 2 in order to extend the LUE results to large families of covariance matrices can be reproduced to reach the desired bounds on the variances of eigenvalues in the bulk and between the bulk and the edge of the spectrum for families of real covariance matrices.

Rate of convergence towards the Marchenko-Pastur distribution

In this whole section, we suppose that Theorem 2 holds for left-side intermediate eigenvalues. The bounds on [(λ jγ m,n j

) 2 ] developed in the preceding sections lead to a bound on the rate of convergence of the empirical spectral measure L m,n towards the Marchenko-Pastur distribution in terms of 2-Wasserstein distance. Recall that W 2 (L m,n , µ m,n ) is a random variable defined by

W 2 (L m,n , µ m,n ) = inf R 2 |x -y| 2 dπ(x, y) 1/2
, where the infimum is taken over all probability measures π on R 2 with respective marginals L m,n and µ m,n . To achieve the expected bound, we rely on another expression of W 2 in terms of distribution functions, namely

W 2 2 (L m,n , µ m,n ) = 1 0 F -1 m,n (x) -G -1 m,n (x) 2 dx, ( 34 
)
where F -1 m,n (respectively G -1 m,n ) is the generalized inverse of the distribution function F m,n (respectively G m,n ) of L m,n (respectively µ m,n ) (see for example [START_REF] Villani | Topics in optimal transportation[END_REF]). On the basis of this representation, the following statement may be derived.

Proposition 13. There exists a constant C > 0 depending only on

A 2 such that for all 1 m n A 2 , W 2 2 (L m,n , µ m,n ) 2 n n j=1 (λ j -γ m,n j ) 2 + C n 2 . ( 35 
)
Proof. From (34), We then make use of the bounds on (λ jγ m,n j ) 2 produced in the previous sections. Set 0 < η 1 2 and K > κ so that K log n ηn. We first decompose The sum Σ 3 will be bounded using the bulk case (Theorem 1), while Theorem 2 will be used to handle Σ 2 and Σ 4 . A crude version of Theorem 11 will be enough to bound Σ 1 and Σ 5 . To start with thus, from Theorem 1, Σ 

λ j -γ m,n j →

 j n→∞ 0, almost surely, where the theoretical location γ m,n j ∈ [a m,n , b m,n ] of the j-th eigenvalue λ j is defined by j n = γ m,n j am,n µ m,n (x) dx.

j) 4 ) 2 /3 π 2 4 √A 2 ,

 4242 , with c depending only on A 1 and A 2 . Let α ∈ (0, 1). Set c ′ = α( 3 depending only on α and A 2 . If u c ′ (nj), then, due to (22), the preceding relation holds. The bound (20) on σ 2 tn obtained by Su holds when 0 < b m,n -t n δ and n(b m,n -t n ) 3/2 K log n. Set t n = γ m,n j + u n,j . As u 0, 0 < b m,nt n b m,nγ m,n j . Therefore, as j (1η)n, similar computations as for (15) lead to b
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 21 Σ 2 + Σ 3 + Σ 4 + Σ 5 .
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 2212422 which is enough to prove the desired result on n j=1 (λ jγ m,n j For n large enough depending only on constant C in Theorem 11, 1 √ n (log n) C log log n n 2/3 min(j,n+1-j) 1/3 and Theorem 11 yieldsÈ |λ j -γ m,n j | 1 √ n Ce -(log n) c log log n .Then, by the Cauchy-Schwarz inequality,(λ jγ m,n j ) 2 (λ jγ m,n j |λ j -γ m,n j | n + (λ jγ m,n j |λ j -γ m,|λ jγ m,n j -(log n) c log log n . As √ 3Cn 2 e -(log n) c log log n = o( 1 n ), there exists a constant C > 0 such that (λ jγ mL m,n , µ m,n ) 2 C log n n 2, where C > 0 depends only on A 1 and A 2 , which is the claim. The corollary is thus established.
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the same bound on the variance for LOE matrices. The situation is completely similar for intermediate eigenvalues. But LOE matrices do not have the same determinantal properties as LUE matrices, and it is therefore not clear that a deviation inequality (similar to [START_REF] Feldheim | A universality result for the smallest eigenvalues of certain sample covariance matrices[END_REF]) holds for the eigenvalue counting function. However, LOE and LUE matrices are linked by interlacing formulas established by Forrester and Rains (see [START_REF] Forrester | Interrelationships between orthogonal, unitary and symplectic matrix ensembles[END_REF]). These formulas lead to the following relation between the eigenvalue counting functions in the complex and real cases: for all t ∈ R,

where

See [START_REF] O'rourke | Gaussian fluctuations of eigenvalues in Wigner random matrices[END_REF] for more details. The aim is now to establish a deviation inequality for the eigenvalue counting function similar to [START_REF] Feldheim | A universality result for the smallest eigenvalues of certain sample covariance matrices[END_REF]. From [START_REF] Feldheim | A universality result for the smallest eigenvalues of certain sample covariance matrices[END_REF], we know that for all u 0,

and let u 0. We can then write

Repeating the computations for È N t (S R m,n )nµ t -u -C ′ 1 and combining with the preceding yield

Note that σ 2 t is still the variance of N t (S C m,n ) in the preceding formula. What remains then to be proved is very similar to the complex case. From (33) and Su's bounds on the variance σ 2 t (see [START_REF] Forrester | Interrelationships between orthogonal, unitary and symplectic matrix ensembles[END_REF] for the bulk case and (20) for the intermediate case), deviation inequalities for individual eigenvalues can be