
HAL Id: hal-00865618
https://hal.science/hal-00865618v1

Submitted on 24 Sep 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Propagating Soft Table Constraints
Christophe Lecoutre, Nicolas Paris, Olivier Roussel, Sébastien Tabary

To cite this version:
Christophe Lecoutre, Nicolas Paris, Olivier Roussel, Sébastien Tabary. Propagating Soft Table
Constraints. 18th International Conference on Principles and Practice of Constraint Programming
(CP’12), 2012, Québec, Canada. pp.390-405. �hal-00865618�

https://hal.science/hal-00865618v1
https://hal.archives-ouvertes.fr

Propagating Soft Table Constraints

Christophe Lecoutre, Nicolas Paris, Olivier Roussel, and Sébastien Tabary

CRIL - CNRS, UMR 8188,

Univ Lille Nord de France, Artois

F-62307 Lens, France

{lecoutre,paris,roussel,tabary}@cril.fr

Abstract. WCSP is a framework that has attracted a lot of attention during the

last decade. In particular, many filtering approaches have been developed on the

concept of equivalence-preserving transformations (cost transfer operations), us-

ing the definition of soft local consistencies such as, for example, node consis-

tency, arc consistency, full directional arc consistency, and existential directional

arc consistency. Almost all algorithms related to these properties have been intro-

duced for binary weighted constraint networks, and most of the conducted exper-

iments typically include networks with binary and ternary constraints only. In this

paper, we focus on extensional soft constraints (of large arity), so-called soft ta-

ble constraints. We propose an algorithm to enforce a soft version of generalized

arc consistency (GAC) on such constraints, by combining both the techniques of

cost transfer and simple tabular reduction, the latter dynamically maintaining the

list of allowed tuples in constraint tables. On various series of problem instances

containing soft table constraints of large arity, we show the practical interest of

our approach.

1 Introduction

The Weighted Constraint Satisfaction Problem (WCSP) is an optimization framework

used to handle soft constraints, which has been successfully applied in many applica-

tions of Artificial Intelligence and Operations Research. Each soft constraint is defined

by a cost function that associates a violation degree, called cost, with every possible

instantiation of a subset of variables. Using the (bounded) addition ⊕, these costs can

be combined in order to obtain the overall cost of any complete instantiation. Finding a

complete instantiation with a minimal cost is known to be NP-hard.

Several properties, such as Node Consistency (NC) and Arc Consistency (AC), in-

troduced in the early 70’s for the Constraint Satisfaction Problem (CSP), have been

studied later in the context of WCSP. Since then, more and more sophisticated develop-

ments about the best form of soft arc consistency have been proposed over the years: full

directional arc consistency (FDAC) [3], existential directional arc consistency (EDAC)

[6], virtual arc consistency (VAC) and optimal soft arc consistency (OSAC) [4], among

others. Cost transfer, which is the general principle behind the algorithms enforcing

such properties, preserves the semantics of the soft constraints network while concen-

trating costs on domain values (unary constraints) and a global constant cost (nullary

constraint). Quite interestingly, cost transfer algorithms have been shown to be partic-

ularly efficient to solve real-world problem instances, especially when soft constraints

are binary or ternary (see http://costfunction.org for many such problems).

For soft constraints of large arity, cost transfer becomes a serious issue because the

risk of combinatorial explosion has to be controlled. A first solution is to postpone cost

transfer operations until the number of unassigned variables (in constraint scopes) is

sufficiently low. However, it may dramatically damage the filtering capability of the

algorithms, in particular at the beginning of search. A second solution is to adapt soft

local consistency algorithms to certain families of global soft constraints. This is the

approach followed in [14, 15] where the concept of projection-safe soft constraint is

introduced. A third solution is to decompose soft constraints (cost functions) into soft

constraints of smaller arity [7]. Decomposition of global soft constraints can also be

envisioned [1]. Unluckily, not all soft constraints can be decomposed.

To enforce the property, known as Generalized Arc Consistency (GAC) on soft table

constraints, i.e., soft constraints defined extensionally by listing tuples and their costs,

we propose to combine two techniques, namely, Simple Tabular Reduction (STR) [16]

and cost transfer. Basically, whenever some domain values are deleted during prop-

agation or search, all tuples that become invalid are removed from constraint tables.

This allows us to identify values that are no longer consistent with respect to GAC.

Interestingly, because all valid tuples of tables are iterated over, it is easy and cheap to

compute minimum costs of values. This is particularly useful for performing efficiently

projection operations that are required to establish GAC.

The paper is organized as follows. In the first section, we present the technical back-

ground about WCSP. Next, we present the data structures and the algorithms used in our

approach GACw-WSTR. We prove the correctness and discuss the complexity of our

method. Finally, we introduce some new series of benchmarks and show the practical

interest of our approach.

2 Technical Background

A weighted constraint network (WCN) P is a triplet (X ,C , k) where X is a finite

set of n variables, C is a finite set of e soft (or weighted) constraints, and k > 0
is either a natural integer or ∞. Each variable x has a (current) domain, denoted by

dom(x), which is the finite set of values that can be (currently) assigned to x; the

initial domain of x is denoted by dominit(x). d will denote the greatest domain size.

An instantiation I of a set X = {x1, . . . , xp} of p variables is a set {(x1, a1), . . .,
(xp, ap)} such that ∀i ∈ 1..p, ai ∈ dominit(xi); each ai is denoted by I[xi]. I is valid

on P iff ∀(x, a) ∈ I, a ∈ dom(x). Each soft constraint cS ∈ C involves an ordered set

S of variables, called its scope, and is defined as a cost function from l(S) to {0, . . . , k}
where l(S) is the set of possible instantiations of S. When an instantiation I ∈ l(S) is

given the cost k, i.e., cS(I) = k, it is said forbidden. Otherwise, it is permitted with

the corresponding cost (0 being completely satisfactory). Costs are combined with the

specific operator ⊕ defined as: ∀α, β ∈ {0, . . . , k}, α⊕β = min(k, α+β). The partial

inverse of ⊕ is ⊖ defined by: if 0 ≤ β ≤ α < k, α ⊖ β = α − β and if 0 ≤ β < k,

k ⊖ β = k. A unary (resp., binary) constraint involves 1 (resp., 2) variable(s), and a

non-binary one strictly more than 2 variables. For any constraint cS , every pair (x, a)
such that x ∈ S ∧ a ∈ dom(x) is called a value of cS .

For any instantiation I and any set of variables X , let I↓X = {(x, a) | (x, a) ∈
I∧x ∈ X} be the projection of I on X . If cS is a soft constraint and I is an instantiation

of a set X ⊇ S, then cS(I) will be considered to be equal to cS(I↓S) (in other words,

projections will be implicit). For a WCN P and a complete instantiation I of P , the cost

of I is
⊕

cS∈C
cS(I). The usual (NP-hard) task of Weighted Constraint Satisfaction

Problem (WCSP) [12] is, for a given WCN, to find a complete instantiation with a

minimal cost.

Many forms of soft arc consistency have been proposed during the last decade (e.g.,

see [4]). We now briefly introduce some of them. Without any loss of generality, the

existence of a nullary constraint c∅ (a constant) as well as the presence of a unary con-

straint cx for every variable x is assumed. A variable x is node-consistent (NC) iff

∀a ∈ dom(x), c∅ ⊕ cx(a) < k and ∃b ∈ dom(x) | cx(b) = 0. Some other consisten-

cies introduced for WCSP are AC* [9, 12], FDAC [3], EDAC [6], VAC and OSAC [4].

Algorithms enforcing such properties are based on equivalence-preserving transforma-

tions (EPT) that allow safe moves of costs among constraints: the cost of any complete

instantiation is preserved. Two basic cost transfer operations are called project and

unaryProject (see e.g., [4]). The former projects a given cost from a non-unary soft

constraint to a unary constraint; for example, it is possible to project on cx(a) the min-

imum cost of a value (x, a) on a soft constraint cS , which is minI∈l(S)∧I[x]=acS(I).
The latter projects a given cost from a unary constraint to the nullary constraint c∅. We

shall note φ(P) the enforcement of property φ (e.g., AC, EDAC, . . .) on the (W)CN P .

For non-binary soft constraints, generalized arc consistency (GAC), a well-known CSP

property, has also been adapted to WCSP [5, 4]. We first need to introduce the notion

of extended cost. The extended cost of an instantiation I ∈ l(S) on a soft constraint cS ,

includes the cost of I on cS as well as the nullary cost c∅ and the unary costs for I of

the variables in S. It is defined by ecost(cS , I) = c∅ +
∑

x∈S cx(I[x]) + cS(I); we

shall say that I is allowed on cS iff ecost(cS , I) < k.

Definition 1. A soft constraint cS is GAC-consistent iff:

– ∀I ∈ l(S), cS(I) = k if ecost(cS , I) = k.

– for every value (x, a) of cS , ∃I ∈ l(S) | I[x] = a ∧ cS(I) = 0.

Below, we propose an alternative to this definition of GAC for WCSP, and call it

weak GAC (GACw for short).

Definition 2. A value (x, a) of a soft constraint cS is GACw-consistent on cS iff ∃I ∈
l(S) | I[x] = a∧cS(I) = 0∧ecost(cS , I) < k. A soft constraint cS is GACw-consistent

iff every value of cS is GACw-consistent.

GAC is stronger than GACw because it identifies instantiations of constraint scopes

that are inconsistent. However, when domains are the only point of interest, we can

observe that the set of values deleted when enforcing GAC on a soft constraint cS is

exactly the set of values deleted when enforcing GACw on cS .

Finally, one alternative approach to cost transfer methods is the algorithm PFC-

MRDAC [8, 11, 10]. This is a classical branch and bound algorithm that computes lower

bounds at each node of the search tree and that is used in our experimentation.

3 GACw-WSTR

The algorithm we propose, called GACw-WSTR, can be applied to any soft table con-

straint cS whose default cost is either 0 or k. Such constraints occur quite frequently

in practice. For example, among the 31 packages of WCSP instances listed on http:

//costfunction.org, 19 packages contain instances where the default cost of all

soft table constraints is 0, and 5 packages contain instances where a various proportion

of soft table constraints have a default cost equal to 0. This means that our approach

can be applied on more than 61% of the packages currently available on this website.

In this section, we first describe the data structures, then we introduce the algorithm

GACw-WSTR, and finally we study its properties (correctness and complexity).

3.1 Data structures

A soft table constraint cS is a constraint defined by a list table[cS] of t tuples1 (built over

S), a list costs[cS] of t integers, and an integer default[cS]. The ith tuple in table[cS]
is given as cost the ith value in costs[cS]. Any implicit tuple, i.e., any tuple that is not

present in table[cS], is given as (default) cost the value default[cS].
An important feature (inherited from STR) of the algorithm we propose is the cheap

restoration of its structures when backtracking occurs. The principle is to split each

constraint table into different sets such that each tuple is a member of exactly one set.

One of these sets contains all tuples that are currently valid: tuples in this set constitute

the content of the current table. For simplicity, data structures related to backtracking

are not detailed in this paper (see [13]).

For a (soft) constraint table cS , the following arrays provide access to the disjoint

sets of valid and invalid tuples within table[cS]:

– position[cS] is an array of size t that provides indirect access to the tuples of

table[cS]. At any given time, the values in position[cS] are a permutation of {1, 2,
. . . , t}. The ith tuple of cS is table[cS][position[cS][i]], and its cost is given by

costs[cS][position[cS][i]].
– currentLimit[cS] is the position of the last current tuple in table[cS]. The cur-

rent table of cS is composed of exactly currentLimit[cS] tuples. The values in

position[cS] at indices ranging from 1 to currentLimit[cS] are positions of the

current tuples of cS .

The top half of Figure 1 illustrates the use of our data structures for a given con-

straint. The array table is composed of 7 tuples (ranging in lexicographic order from τ0
to τ6). For each tuple, an associated cost is given by the array costs. The array position
provides an indirect access to the tuples. The last valid tuple of the table is marked by

a pointer: currentLimit. Initially all tuples of the table are valid and the current table

is composed of exactly currentLimit tuples. In our example the value of c∅ is set to

0 and the upper-bound k is set to 5. The data structure c1 represents the unary cost of

each value (x, a). The data structure position′′ represents the state of position after

applying our algorithm. Changes in this data structure will be explained in Section 3.2.

1 A tuple can be seen as an instantiation over the variables of the scope of a constraint.

0 5c∅ k

w

x

y

z

0

0

0

1

b

0

0

1

c

0

a

0

0

0

0

zyxw

b c a

c

b

ac

a bb b 3

c c 0b c

a a 1bc

c b a

bc c c 1

coststableposition

a 2

a 0

0

τ1

τ2

τ3

τ4

τ5

τ6

c1

currentLimit

1

5

0

6

3

2

4

τ0

w

x

y

z

k

k

b

k

k

k

ca

k k

k

k w

x

y

z

1

1

b

1

0

k

ca

k

0

k

0

1 w

x

y

z

1

0

b

1

0

k

ca

2

0

0

0

0

k

k

k k

0 0

k

minCosts′

Ssup
= {w, x, y, z} Ssup

= {x, y}

τ2, τ0, τ3, τ6τ1, τ4, τ5

minCosts minCosts′′

position′′

currentLimit

1

4

5

2

0

3

6

Fig. 1. Example of our data structures and their evolution after removing a from dom(x)

As in [13], we also introduce two sets of variables, called Ssup and Sval. On the

one hand, as soon as all values in the domain of a variable have been detected GACw-

consistent, it is futile to continue to seek supports for values of this variable. We there-

fore introduce the set Ssup of uninstantiated variables (from the scope of the constraint)

whose domains contain each at least one value for which a support has not yet been

found. All main operations in our algorithm will only handle variables in Ssup. To

update Ssup, we use an array to count the number nbGacValues [cS][x] of GACw-

consistent values identified for each variable x.

On the other hand, at the end of an invocation of GACw-WSTR for a constraint cS ,

we know that for every variable x ∈ S, every tuple τ such that τ [x] 6∈ dom(x) has

been removed from the current table of cS . If there is no backtrack and dom(x) does

not change between this invocation and the next invocation, then at the time of the next

invocation it is certainly true that τ [x] ∈ dom(x) for every tuple τ in the current table of

cS . In this case, there is no need to check whether τ [x] ∈ dom(x); efficiency is gained

by omitting this check. We implement this optimization by means of set Sval, which is

the set of uninstantiated variables whose domain has been reduced since the previous

invocation of GACw-WSTR. To set up Sval, we need to record the domain size of each

variable x ∈ S right after the execution of GACw-WSTR on cS : this value is recorded

in lastSize[cS][x].

For enforcing GACw on a given constraint cS , we need to compute minimum costs

of values on cS . This can be achieved at low cost while traversing the current table of cS .

We just need an array minCosts[cS] to record those minimum costs; minCosts[cS][x][a]
will denote the minimum cost of (x, a) on cS Finally, when the default cost of cS is 0, it

is useful to count the number nbTuples [cS][x][a] of valid explicit tuples for each value

(x, a), so as to determine whether a valid implicit tuple may exist.

To conclude this section, we briefly discuss how transfers of tuple costs can be im-

plemented. Actually, to keep unchanged our table representation (i.e., keeping the same

list of explicit tuples), we need to adopt the solution proposed in [5, 12], which has a

reasonable O(|S|d) complexity. The principle is to keep original values in costs[cS]
while recording in an auxiliary structure called deltas[cS] the cumulated cost of all

projections performed with respect to each value. The current cost of a given tuple

τ (at position index in our representation) is then computed as follows: cS(τ) =
costs[cS][index]⊖x∈S deltas[cS][x][τ [x]].

3.2 Algorithm

Whereas STR for crisp table constraints just requires simple iterations, for soft table

constraints, we have to handle several potential iterations over table tuples (due to cost

transfer operations). This is what we show now with Algorithm 10 that enforces GACw

on any soft table constraint cS whose default cost is either 0 or k. The first instruction

is a call to Function initialize, Algorithm 5, which initializes both sets Ssup and Sval.

More precisely, Ssup is initialized to contain future variables only, which is exactly

S \ past(P); the set past(P) denotes the set of variables of the WCN P explicitly

instantiated by the search algorithm. The set Sval contains the future variables whose

domains have been changed since the last call to the algorithm (for the same constraint

cS). At line 6 of Algorithm 5, we have |dom(x)| which is the size of the current domain

of x, and lastSize[cS][x] which is the size of the domain of x, the last time the specific

constraint cS was processed; initially we have lastSize[cS][x] = −1 for every pair

composed of a constraint cS and a variable x in S. Additionally, Sval also contains the

last assigned variable, denoted by lastPast(P) here, if it belongs to the scope of the

constraint cS . Indeed, after any variable assignment x = a, some tuples may become

invalid due to the removal of values from dom(x). The last assigned variable is the only

instantiated variable for which validity operations must be performed.

First, let us assume that default[cS] = k. In this case, a call to Function traverse-

k, Algorithm 7, is performed at line 4 of Algorithm 10. Lines 1-4 of Algorithm 7 allow

us to initialize the arrays nbGacValues [cS] and minCosts[cS]: initially, no value has

been proved to be GACw-consistent and no tuple with a cost lower than k has been

found. Then the loop at lines 6 − 24 successively processes all current tuples of the

table of cS . At line 10 of Algorithm 7, a validity check is performed on tuple τ when

cnt > 2 (the operator ‘or else’ uses a short-circuit evaluation). This means that validity

checks are only performed during the two first traversals of the table (i.e., two first calls

to traverse-k) because after the second traversal, no other value can be deleted. The

validity check is performed by Function isValidTuple, Algorithm 3, that deals only with

variables in Sval. At line 11 of Algorithm 7, the extended cost of τ is computed (see

Algorithm 4) and compared with k when cnt > 1. This means that such a computation

is only performed during the first traversal of the table because the extended cost of any

tuple on cS remains constant after that traversal (projections do not modify extended

costs as shown by Lemma 1). If tuple τ (whose cost is γ) is both valid and allowed, the

array minCosts[cS] is subject to potential update (line 16). Besides, when the cost γ of

τ is 0, we know that we have just found a support for (x, a) on cS , so we can increment

nbGacValues [cS][x] (line 18), and discard x from Ssup (line 20) in case (x, a) was the

last value in dom(x) without any proved support. In constant time at line 23 a tuple τ
that is either invalid or forbidden is removed from the current table: actually it is moved

to the end of the current table before the value of currentLimit[cS] is decremented.

The next instruction of Algorithm 10 is a call to Function pruneVars (Algorithm

6). This function allows us to remove all values proved to be inconsistent wrt GACw:

they are the values (x, a) such that minCosts[cS][x][a] = k. When at least one value is

removed from the domain of a variable x, x is added to the set Y val (line 6). Besides,

after processing x, the value of lastSize[cS][x] is updated to record the new domain

size (line 9). In Y sup, we only keep variables for which at least one support must be

sought (line 8). Finally, the sets Y sup and Y val become the new Ssup and Sval. Note

that Ssup and Sval are not handled exactly as in STR2 [13], the difference residing

mainly in Algorithm 6.

The main loop of Algorithm 10 aims at making successive projections in order to

exhibit a support for each remaining value of cS . All variables in Ssup require such

operations. Each such variable is picked in turn at line 9, and projections (potentially

followed by a unary projection) are performed at lines 10-16. If Ssup still contains at

least one variable, the counter cnt is incremented, and traverse-k is called again. This

new call permits to update the array minCosts[cS] as well as the set Ssup.

Now, let us assume that default[cS] = 0. In that case, Function traverse-0 (Al-

gorithm 9) is called instead of Function traverse-k, at lines 6 and 22 of Algorithm 10.

The main difference between traverse-0 and traverse-k is that forbidden tuples must

be kept in order to be able to count the number of valid tuples in the current table.

Counting is managed at lines 5 and 16. Once the current table has been iterated over,

we need to look for the existence of a valid implicit tuple for each value (lines 27-31).

Function allowedImplicitTuple determines whether there exists such a valid implicit

tuple containing the value (x, a).

The bottom half of Figure 1 illustrates the evolution of the data structure minCosts
during a call to Algorithm 7. We suppose that the event x 6= a has triggered a reconsid-

eration of the constraint. Note that before calling Algorithm 7 the structure minCosts
has been initialized (with value k) using Algorithm 5 and the set Ssup contains all the

unassigned variables involved in the scope of the constraint. First, tuple τ1 is consid-

ered. This tuple is valid (all values of the tuple belong to the current domains) and the

tuple is also allowed since the extended cost of the tuple is equal to 0 (which is less

than k = 5). Then the data structure minCosts is updated for each value of τ1. Next

τ4 is considered. Due to x 6= a, τ4 is no more valid. So τ4 is swapped with the last valid

tuple and the pointer currentLimit is decremented. In the figure, a cross identifies the

removed tuple. The minimal cost of (x, a) remains k. The structure minCosts′ depicts

the state of minCosts after considering tuples τ1, τ4 and τ5. Next when considering τ2,

this tuple is identified as not allowed because its extended cost is equal to k = 5. Hence,

τ2 is removed. The structure minCosts′′ represents the state of minCosts after con-

sidering all tuples. Finally, as all values of w have a minimal cost equal to 0, it means

Algorithm 1: project(cS : soft constraint, x: variable, a: value, α: integer)

1 cx(a)← cx(a)⊕ α
2 deltas[cS][x][a]← deltas[cS][x][a]⊕ α;

Algorithm 2: unaryProject(x: variable, α: integer)

1 foreach value a ∈ dom(x) do

2 cx(a)← cx(a)⊖ α

3 c∅ ← c∅ ⊕ α

Algorithm 3: isValidTuple(cS : soft constraint, τ : tuple): Boolean

1 foreach variable x ∈ Sval do

2 if τ [x] /∈ dom(x) then

3 return false

4 return true

Algorithm 4: ecost(cS : soft constraint, γ: integer, τ : tuple): integer

1 return c∅
⊕

x∈S
cx(τ [x])⊕ γ

Algorithm 5: initialize(cS : soft constraint)

1 Ssup ← ∅ ; Sval ← ∅
2 if lastPast(P) ∈ S then

3 Sval ← Sval ∪ {lastPast(P)}

4 foreach variable x ∈ S | x /∈ past(P) do

5 Ssup ← Ssup ∪ {x}
6 if |dom(x)| 6= lastSize[cS][x] then

7 Sval ← Sval ∪ {x}

Algorithm 6: pruneVars(cS : soft constraint)

1 Y sup ← ∅, Y val ← ∅
2 foreach variable x ∈ Ssup do

3 foreach a ∈ dom(x) do

4 if minCosts[cS][x][a] = k then

5 remove a from dom(x)

6 add x to Y val

7 else if minCosts[cS][x][a] > 0 then

8 add x to Y sup

9 lastSize[cS][x]← |dom(x)|

10 Sval ← Y val ; Ssup ← Y sup

Algorithm 7: traverse-k(cS : soft constraint, cnt: integer)

1 foreach variable x ∈ Ssup do

2 nbGacValues[cS][x]← 0
3 foreach a ∈ dom(x) do

4 minCosts[cS][x][a]← k

5 i← 1
6 while i ≤ currentLimit [cS] do

7 index← position[cS][i]
8 τ ← table[cS][index] // current tuple

9 γ ← costs[cS][index]⊖x∈S deltas[cS][x][τ [x]] // tuple cost

10 valid← cnt > 2 or else isValidTuple(cS , τ)
11 allowed← cnt > 1 or else ecost(cS , γ, τ) < k

12 if valid ∧ allowed then

13 foreach variable x ∈ Ssup do

14 a← τ [x]
15 if γ < minCosts[cS][x][a] then

16 minCosts[cS][x][a]← γ

17 if γ = 0 then

18 nbGacValues[cS][x] + +
19 if nbGacValues[cS][x] = |dom(x)| then

20 Ssup ← Ssup \ {x}

21 i← i+ 1

22 else

23 swap(position[cS], i, currentLimit [cS])
24 currentLimit [cS]−−

that all values have at least a support in this constraint. The variable w can then be safely

removed from Ssup. One can apply a similar reasoning for the variable z. Actually, the

value (z, b) will be removed when Algorithm 6 is called (since its minimal cost is equal

to k), and since all the other values have a support then z can be safely removed from

Ssup. Note that if τ2 had not been removed (by omitting to compute its extended cost),

the minimal cost of (z, b) would have been 3 (instead of k). Consequently this value

would not have been removed. After the execution of Algorithms 7 and 6, the set Ssup

only contains variables x and y.

3.3 Properties

Lemma 1. Let cS be a soft constraint, and (x, a) be a value of cS . The extended cost

of every tuple τ ∈ l(S) remains constant, whatever the operation project(cS , x, a, α)
or unaryProject(x, α) is performed (Proof omitted)

Under our assumptions, a preliminary observation is that we do not have to keep

track of the effect of projections project(cS , x, a, α) on the default cost. Indeed, if

Algorithm 8: allowedImplicitTuple(cS : soft constraint, x: variable, a: value)

1 foreach τ ∈ l(S) | τ [x] = a do

2 if ¬binarySearch(τ ,table[cS]) then

3 return true

4 return false

Algorithm 9: traverse-0(cS : soft constraint, cnt: integer)

1 foreach variable x ∈ Ssup do

2 nbGacValues[cS][x]← 0
3 foreach a ∈ dom(x) do

4 minCosts[cS][x][a]← k

5 nbTuples[cS][x][a]← 0

6 i← 1
7 while i ≤ currentLimit [cS] do

8 index← position[cS][i]
9 τ ← table[cS][index] // current tuple

10 γ ← costs[cS][index]⊖x∈S deltas[cS][x][τ [x]] // tuple cost

11 valid← cnt > 2 or else isValidTuple(cS , τ)
12 allowed← ecost(cS , γ, τ) < k

13 if valid then

14 foreach variable x ∈ Ssup do

15 a← τ [x]
16 nbTuples[cS][x][a] + +
17 if allowed ∧ γ < minCosts[cS][x][a] then

18 minCosts[cS][x][a]← γ

19 if γ = 0 then

20 nbGacValues[cS][x] + +
21 if nbGacValues[cS][x] = |dom(x)| then

22 Ssup ← Ssup \ {x}

23 i← i+ 1

24 else

25 swap(position[cS], i, currentLimit [cS])
26 currentLimit [cS]−−

27 foreach variable x ∈ Ssup do

28 nb← |Πy∈S|y 6=xdom(y)|
29 foreach a ∈ dom(x) do

30 if nbTuples[cS][x][a] 6= nb ∧minCosts[cS][x][a] > 0 then

31 if allowedImplicitTuple(cS , x, a) then

32 minCosts[cS][x][a]← 0

Algorithm 10: GACw-WSTR(cS : soft constraint)

1 initialize(cS)
2 cnt← 1
3 if default[cS] = k then

4 traverse-k(cS , cnt)
5 else

6 traverse-0(cS , cnt) // default[cS] = 0

7 pruneVars(cS)
8 while Ssup 6= ∅ do

9 pick and delete x from Ssup

10 α← +∞
11 foreach a ∈ dom(x) do

12 if minCosts[cS][x][a] > 0 then

13 project(cS , x, a,minCosts[cS][x][a])

14 α← min(α, cx(a))

15 if α > 0 then

16 unaryProject(x, α)

17 if Ssup 6= ∅ then

18 cnt++
19 if default[cS] = k then

20 traverse-k(cS , cnt)
21 else

22 traverse-0(cS , cnt) // default[cS] = 0

default[cS] = k, we have k ⊖ α = k and if default[cS] = 0 a projection is only

possible when no implicit tuple exists with x = a.

Proposition 1. Algorithm 10 enforces GACw on any soft table constraint cS such that

default[cS] = k.

Proof. Let (x, a) be a value of cS (before calling Algorithm 10), and let the value α =
minCosts[cS][x][a] be obtained (for the minimum cost of (x, a) on cS) just before ex-

ecuting line 7 of Algorithm 10. On the one hand, if α = k then it means that there is no

explicit valid tuple τ in the current table such that τ [x] = a∧ecost(cS , τ) < k (because

all explicit tuples have just been iterated over by Function traverse-k called at line 4).

Besides, as the default cost is k, there is no implicit tuple τ such that ecost(cS , τ) < k.

We can conclude that (x, a) is inconsistent w.r.t. GACw. This is the reason why when

pruneVars is called at Line 7, this value (x, a) is removed (see Line 5 of Algorithm

6). On the other hand, if α < k, it means that there exists a non-empty set X of valid

tuples τ such that τ [x] = a ∧ ecost(cS , τ) < k. Let us first consider the call to Func-

tion pruneVars at line 7. For every value (y, b) removed at line 5 of Algorithm 6, we

have minCosts[cS][y][b] = k, which implies that for every τ ∈ X , we have τ [y] 6= b
(otherwise minCosts[cS][y][b] would have been α). Consequently, all tuples in X re-

main valid and allowed after the execution of pruneVars. Those tuples, present in X ,

will remain valid and allowed throughout the execution of the algorithm because after

executing pruneVars, no more values can be deleted, and cost transfer operations do

not modify extended costs (see Lemma 1). This guarantees that all values detected in-

consistent by GACw are deleted during the call to pruneVars. Now, for (x, a), either

minCosts[cS][x][a] incidentally becomes 0 by means of cost transfers concerning vari-

ables other than x, or 0 < minCosts[cS][x][a] < k at the moment where x is picked at

line 9 of Algorithm 10. When executing lines 11-14, all values of x are made GACw-

consistent. So, this is the case for (x, a). We have just proved that every deleted value

is inconsistent w.r.t. GACw, and that every remaining value is GACw-consistent. ⊓⊔

Proposition 2. Algorithm 10 enforces GACw on any soft table constraint cS such that

default[cS] = 0.

The proof (omitted here) is similar to that of Proposition 1, with the additional

consideration of implicit valid tuples. Notice that Algorithm 10 enforces both GACw

and NC on any soft table constraint whose default cost is either k or 0.

We now discuss the complexity of GACw-WSTR for a given constraint cS . With

r = |S| being the arity of cS , the space complexity is O(tr) for structures table[cS]
and costs[cS], O(t) for position[cS], O(r) for Ssup, Sval, lastSize[cS] and nbGac
V alues[cS], O(rd) for minCosts[cS], nbTuples[cS] and deltas[cS]. Overall, the worst-

case space complexity is O(tr+rd). The time complexity is O(r) for initialize, O(rd+
tr) for traverse-k and O(rd) for pruneVars. Importantly, the number of turns of the

main loop starting at line 8 of Algorithm 10 is at most r because a variable can never

be put two times in Ssup; the complexity for one iteration is O(d) for lines 10-16 aug-

mented with that of traverse-k or traverse-0. Overall, the worst-case time complexity

of GACw-WSTR when default[cS] = k is O(r2(d + t)). On the other hand, the time

complexity of allowedImplicitTuple is O(rt log(t)) because the loop at line 1 of Algo-

rithm 8 is executed at most t times. Indeed, each call to binarySearch is O(r log(t))
and the loop is stopped as soon as a valid tuple cannot be found in the table. traverse-0

is O(rd+tr) for lines 1-26 and O(r2dt log(t)). Finally, the worst-case time complexity

of GACw-WSTR when default[cS] = 0 is O(r3dt log(t)).

4 Benchmarks

We have performed a first experimentation using a new series of Crossword instances

called crossoft, which can be naturally represented by soft table constraints. Given a

grid and a dictionary, the goal is to fill the grid with words present in the dictionary.

To generate those instances, we used three series of grids (Herald, Puzzle, Vg) and

one dictionary, called OGD, that contains common nouns (with a cost of 0) and proper

nouns (with a cost r, where r is the length of the word). Penalties are inspired from the

profits associated with words as described on the french web site http://ledefi.

pagesperso-orange.fr.

We have performed a second experimentation using random WCSP instances. We

have generated different classes of instances by considering the CSP model RB [17].

With some well-chosen parameters, Theorem 2 in [17] holds: an asymptotic phase tran-

sition is guaranteed at a precise threshold point. CSP instances from model RB were

translated into WCSP instances by associating a random cost (between 1 and k) with

each forbidden CSP tuple, and considering a default cost for implicit tuples equal to 0.

This guarantees the hardness of the generated random WCSP instances. Using k = 10,

we generated 5 series of 10 WCSP instances of arity 3; rb-r-n-d-e-t-s is an instance of

arity r with n variables, domain size d and e r-ary constraints of tightness t (generated

with seed s). A second set was obtained by translating random CSP instances (with arity

equal to 10) into WCSP. Such a translation was also used for the series renault-mod.

Next, we have performed experimental trials with a new series of instances called

poker based on the version Texas hold ’em of poker. The goal is to fill an empty 5 × 5
board with cards taken from the initial set of cards so as to obtain globally the best hands

in each row and column. The model used to generate the instances is the following: there

is a variable per cell representing a card picked in the initial set of cards. In Poker-n the

initial set of cards contains n cards of each suit and only combinations of at least 2 cards

are considered. Of course, putting the same card several times on the grid is forbidden.

The cost of each hand is given below:

Royal

Flush

Straight

Flush

Four of

a Kind

Full

House
Flush Straight

Three of

a Kind

Two

Pairs
Pair

High

Card

0 1 2 3 4 5 6 7 8 9

Finally, we have experimented our approach on real-world series from http:

//costfunction.org/en/benchmark. We have used the ergo and the linkage

series which are structured WCSP instances with constraints of arity larger than 3.

5 Experimental Results

In order to show the practical interest of our approach to filter soft table constraints

of large arity, we have conducted an experimentation (with our solver AbsCon) using

a cluster of Xeon 3.0GHz with 1GiB of RAM under Linux. We have implemented a

version of PFC-MRDAC, where minimum costs (required by the algorithm to compute

lower bounds) are obtained by calling Functions traverse-0 and traverse-k. At each

step of the search, only one call to either Function traverse-0 or Function traverse-k

is necessary for each soft table constraint because PFC-MRDAC does not exploit cost

transfer operations (due to lack of space, we cannot give full details). This version will

be called PFC-MRDAC-WSTR, whereas the classical version will be called here PFC-

MRDAC-GEN. We have also implemented the algorithm GACw-WSTR and embedded

it in a backtrack search algorithm that maintains GACw. This search algorithm is also

able to maintain AC* and FDAC, instead of GACw. Note that PFC-MRDAC-GEN,

“maintaining AC*” and “maintaining FDAC” iterate over all valid tuples in order to

compute lower bounds or minimum costs. To control such iterations (that are exponen-

tial with respect to the arity of constraints), we have pragmatically tuned a parameter

that delays the application of the algorithm until enough variables are assigned. We have

conducted an experimentation on the benchmarks described in the previous section. A

time-out of 1, 200 seconds was set per instance. The variable ordering heuristic was

wdeg/dom [2] and the value ordering heuristic selected the value with minimal cost.

The overall results are given in Table 1. Each line of this table corresponds to a se-

ries of instances: crossoft-ogd, rand-3, ergo,. . . The total number of instances for each

series is given in the second column of the table. For each series, we provide the num-

ber of solved instances (optimum proved) by each method within 20 minutes. For series

crossoft, the algorithms PFC-MRDAC-WSTR and “maintaining GACw-WSTR” solve

more instances than the generic algorithms. We obtain the same kind of results with

poker. Unsurprisingly, the STR approaches are not so efficient on RB series (rand-3),

which can be explained by the low arity of the constraints (which are ternary) involved

in these instances. On random problems with high arity (involving 10 variables) results

are clearly better: generic algorithms can not solve any of these instances. Finally, for

ergo and linkage series, results are not so significant. Indeed these instances have ei-

ther constraints with low arity or variable domains with very few values (for example,

the maximum domain size is 2 for the instance cpcs422b). When the size of variable

domains is small, Cartesian products of domains grow slowly with the constraint arity,

and so generic algorithms iterating over valid tuples can still be competitive.

PFC-MRDAC- Maintaining-

Series #Inst WSTR GEN GACw-WSTR AC* FDAC

crossoft-herald 50 33 10 47 11 11

crossoft-puzzle 22 22 9 22 18 18

crossoft-vg 64 14 6 14 7 7

poker 18 10 2 10 5 5

rand-3 (rb) 48 20 29 20 32 30

rand-10 20 20 0 20 0 0

ergo 19 13 10 15 15 17

linkage 30 0 0 0 1 9

renault-mod 50 50 32 50 50 47

Table 1. Number of solved instances per series (a time-out of 1,200 seconds was set per instance).

Table 2 focuses on some selected instances with the same comparison of algorithms.

We provide an overview of the results in terms of CPU time (in seconds). On instances

of series crossoft and poker, our approach (PFC-MRDAC-WSTR and GACw-WSTR)

outperforms the generic ones whatever the envisioned solving approach (i.e., with or

without cost transfer) is. Note that results for maintaining AC* and FDAC are quite

close. Instances of these two problems have constraints with high arity and variables

with rather large domains. Therefore, the STR technique is well-adapted. Note that for

various instances, generic approaches can not find and prove optimum solutions before

the time limit whereas STR-based algorithms solve them in a few seconds.

PFC-MRDAC- Maintaining-

Instances WSTR GEN GACw-WSTR AC* FDAC

crossoft-ogd-15-09 26.5 > 1, 200 25.2 273 269

crossoft-ogd-23-01 > 1, 200 > 1, 200 565 > 1, 200 > 1, 200

crossoft-ogd-puzzle-18 6.29 > 1, 200 6.66 > 1, 200 > 1, 200

crossoft-ogd-vg-5-6 0.4 155 0.77 31.5 32.3

poker-5 0.26 92.4 0.24 1.39 1.5

poker-6 0.38 463 0.39 6.58 6.99

poker-9 0.79 > 1, 200 0.63 782 1022

poker-12 1.51 > 1, 200 0.89 > 1, 200 > 1, 200

rb-3-12-12-30-0.630-0 4.13 1.2 3.61 0.79 0.86

rb-3-16-16-44-0.635-2 94.3 7.41 51.6 2.31 3.11

rb-3-20-20-60-0.632-0 614 34.4 830 24.3 23.3

pedigree1 > 1, 200 > 1, 200 890 819 35.0

barley > 1, 200 > 1, 200 40.7 23 20.3

cpcs422b 7.4 113 8.61 58.3 111

link 68.6 > 1, 200 5.41 4.55 6.5

rand-10-20-10-5-9 3.94 > 1, 200 2.39 > 1, 200 > 1, 200

rand-10-20-10-5-10 5.27 > 1, 200 2.67 > 1, 200 > 1, 200

renault-mod-12 1.74 680 1.39 6.01 14.4

renault-mod-14 2.49 > 1, 200 1.49 6.83 14.9

Table 2. CPU time (in seconds) to prove optimality on various selected instances (a time-out of

1,200 seconds was set per instance).

6 Conclusion

In this paper, we have introduced a filtering algorithm that enforces a form of general-

ized arc consistency, called GACw, on soft table constraints. This algorithm combines

simple tabular reduction and cost transfer operations. The experiments that we have

conducted show the viability of our approach when soft table constraints have large

arity, whereas usual generic soft consistency algorithms are not applicable to their full

extent. The algorithm we propose can be applied to any soft table constraint with a de-

fault cost of either 0 or k, which represents a large proportion of practical instances.

A direct perspective of this work is to generalize our approach to soft table constraints

with any default cost.

Acknowledgments

This work has been supported by both CNRS and OSEO within the ISI project ’Pajero’.

References

1. D. Allouche, C. Bessiere, P. Boizumault, S. de Givry, P. Gutierrez, S. Loudni, J.-P. Métivier,

and T. Schiex. Decomposing global cost functions. In Proceedings of AAAI’12, 2012.

2. F. Boussemart, F. Hemery, C. Lecoutre, and L. Sais. Boosting systematic search by weighting

constraints. In Proceedings of ECAI’04, pages 146–150, 2004.

3. M. Cooper. Reduction operations in fuzzy or valued constraint satisfaction. Fuzzy Sets and

Systems, 134(3):311–342, 2003.

4. M. Cooper, S. de Givry, M. Sanchez, T. Schiex, M. Zytnicki, and T. Werner. Soft arc consis-

tency revisited. Artificial Intelligence, 174(7-8):449–478, 2010.

5. M.C. Cooper and T. Schiex. Arc consistency for soft constraints. Artificial Intelligence,

154(1-2):199–227, 2004.

6. S. de Givry, F. Heras, M. Zytnicki, and J. Larrosa. Existential arc consistency: Getting closer

to full arc consistency in weighted CSPs. In Proceedings of IJCAI’05, pages 84–89, 2005.

7. A. Favier, S. de Givry, A. Legarra, and T. Schiex. Pairwise decomposition for combinatorial

optimization in graphical models. In Proceedings of IJCAI’11, pages 2126–2132, 2011.

8. E.C. Freuder and R.J. Wallace. Partial constraint satisfaction. Artificial Intelligence, 58(1-

3):21–70, 1992.

9. J. Larrosa. Node and arc consistency in weighted CSP. In Proceedings of AAAI’02, pages

48–53, 2002.

10. J. Larrosa and P. Meseguer. Partition-Based lower bound for Max-CSP. Constraints, 7:407–

419, 2002.

11. J. Larrosa, P. Meseguer, and T. Schiex. Maintaining reversible DAC for Max-CSP. Artificial

Intelligence, 107(1):149–163, 1999.

12. J. Larrosa and T. Schiex. Solving weighted CSP by maintaining arc consistency. Artificial

Intelligence, 159(1-2):1–26, 2004.

13. C. Lecoutre. STR2: Optimized simple tabular reduction for table constraint. Constraints,

16(4):341–371, 2011.

14. J. Lee and K. Leung. Towards efficient consistency enforcement for global constraints in

weighted constraint satisfaction. In Proceedings of IJCAI’09, pages 559–565, 2009.

15. J. Lee and K. Leung. A stronger consistency for soft global constraints in weighted constraint

satisfaction. In Proceedings of AAAI’10, pages 121–127, 2010.

16. J.R. Ullmann. Partition search for non-binary constraint satisfaction. Information Science,

177:3639–3678, 2007.

17. K. Xu, F. Boussemart, F. Hemery, and C. Lecoutre. Random constraint satisfaction: easy

generation of hard (satisfiable) instances. Artificial Intelligence, 171(8-9):514–534, 2007.

