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Abstract. Managing learnt clause database is known to be a tricky task in SAT
solvers. In the portfolio framework, the collaboration between threads through
learnt clause exchange makes this problem even more difficult to tackle. Several
techniques have been proposed in the last few years, but practical results are still
in favor of very limited collaboration, or even no collaboration at all. This is
mainly due to the difficulty that each thread has to manage a large amount of
learnt clauses generated by the other workers. In this paper, we propose new
efficient techniques for clause exchanges within a parallel SAT solver. In contrast
to most of the current clause exchange methods, our approach relies on both
export and import policies, and makes use of recent techniques that proves very
effective in the sequential case. Extensive experimentations show the practical
interest of the proposed ideas.

1 Introduction

The practical resolution of the SAT problem has received major attention these two last
decades. Particularly, due to the wide availability of cheap multicore architectures, the
focus is now on the development of efficient parallel engines, able to solve large real-
world problems. Several of them have been recently proposed, e.g. ManySat [10],
SArTagnan [12], Plingeling [4], ppfolio [16], part-tree-learn [11].

Portfolio schema is a possible approach to tackle parallelism. One idea of portfolio
algorithms is the collaboration between the different workers. In the SAT case, their
joint effort is mainly achieved through the exchange of learnt clauses. Unfortunately, it
is very hard to predict whether a clause generated by a working thread will be useful
for the others, or not. To deal with this problem, ManySAT proposes a dynamic clause
sharing policy which uses pairwise size limits to control the exchange between threads
[9]. However, most of implementations (Plingeling [4], SArTagnan [12], etc.)
only share unit clauses with the other threads. Moreover, in the last SAT competition,
a new portfolio called ppfolio obtained very good results; ppfolio is actually a
simple script that runs different state-of-art sequential solvers in an independent way.
? This work has been supported by CNRS and OSEO, under the ISI project “Pajero”.



Accordingly, no collaboration is achieved within this solver, and yet it proves very ef-
ficient during this competition. This shows that the current clause exchange techniques
are not mature and may be improved.

The problem of predicting the usefulness of a given learnt clause is also known in
the sequential case; recently, a new measure called psm [1] has been proposed to dy-
namically manage learnt clauses. Roughly, it consists in comparing the current (partial)
interpretation to the set of literals of each learnt clause. The main idea is the following:
if the set-theoretical intersection of the current interpretation and the clause is large,
then the clause is unlikely useful in the current part of the search space. On the con-
trary, if this intersection is small, then the clause has a lot of chance to be useful for
unit-propagation, reducing the search space. This measure has been used in a new strat-
egy to manage the learnt clauses database which enables to freeze a clause, namely
to remove it from the set of learnt clauses on a temporary basis, when it is considered
”useless”. Periodically all clauses are reevaluated in other to be frozen or activated. This
technique proves very efficient in an empirical point of view, and succeeds to select rel-
evant learnt clauses.

In this paper, we extend the results of [1] to the portfolio framework, proposing
different efficient heuristical policies for exporting, importing and selecting relevant
clauses for the different threads of a portfolio. This paper is structured as follows: in
the next Section, we present the background knowledge about parallel SAT solving and
learnt clause management. In the Section 3, we present some preliminaries about the be-
havior of a portfolio solver. Next, in Section 4, our case study solver called PeneLoPe
is presented and it is compared to the best parallel SAT solvers in Section 5. Finally, we
conclude with some perspectives.

2 Technical Background

First of all, we assume that the reader is familiar with Satisfiability notions (variables,
literal, clause, unit clause, interpretations, CNF formula). Note that clauses and inter-
pretations will be equally interpreted as set of literals. We just want to recall the global
schema of CDCL (Conflict-Driven, Clause Learning) solvers: a typical branch of a
CDCL solver can be seen as a sequence of decisions followed by propagations, re-
peated until a conflict is reached. Each decision literal, chosen by some heuristic, usu-
ally activity-based ones, is assigned at its own level, shared with all propagated literals
assigned at the same level. Each time a conflict is reached, a nogood is extracted us-
ing a particular method, usually the First UIP (Unique Implication Point) one [14, 19].
The learnt clause is then added to the learnt clause database and a backjumping level is
computed from it. The interested reader can refer to [7] for more details. In the rest of
the section, we give background about important notions for the paper understanding.

Control of the learnt clauses database

The size of the learnt clauses database is clearly crucial to the solver performance. In-
deed, keeping too many learnt clauses slows down the unit propagation process, while
deleting too many of them breaks the overall learning benefit. To avoid such drawbacks,



solvers periodically remove some clauses considered to be useless. Consequently, iden-
tifying good learnt clauses - relevant to the proof derivation - is clearly an important
challenge. The first proposed quality measure follows the success of the activity-based
VSIDS heuristic. More precisely, a learnt clause is considered relevant to the proof, if
it is often involved in recent conflicts i.e. frequently used to derive asserting clauses.
Clearly, this deletion strategy supposes that a useful clause in the past could be useful
in the future. In [2], another measure called lbd is used to estimate the quality of a learnt
clause (we denote lbd(c) the lbd value of a clause c). This new measure is based on the
number of different decision levels appearing in a learnt clause and is computed when
the clause is generated. Extensive experiments demonstrates that clauses with small
lbd values are used more often than those with higher lbd ones. Note also that lbd of
clauses can be recomputed when they are used for unit propagations, and updated if the
it becomes smaller. This update process is important to get many good clauses. How-
ever, these both measures are obviously heuristical ones and solvers are not safe from
regularly eliminating relevant learnt clauses.

Parallel SAT solving

Two approaches are commonly explored to parallelize SAT solvers. The first one is
mainly a divide-and-conquer idea, which divides the search space into subspaces, suc-
cessively allocated to SAT workers. Each time a worker finish its job (whereas the other
ones are still doing their task), a load balancing strategy is invoked, and dynamically
transfers subspaces to this idle worker [5, 6]. A closely related approach is the itera-
tive partitioning one [11]. Note that some of these approaches are able to share clauses
[17, 11] between workers. On the other hand, the parallel portfolio strategy exploits the
complementarity between different sequential CDCL strategies to let them compete and
cooperate on the same formula [10, 4, 12]. Since each worker deals with the whole for-
mula, there is no need to introduce load balancing overheads, and cooperation is only
achieved through the exchange of learnt clauses. With this approach, the crafting of
the strategies is important, especially with a small number of workers. In general, the
objective is to cover the space of good search strategies in the best possible way. Such
strategies are efficient on multicore architectures.

As we said above, the size of the learnt clause database is crucial for sequential
solvers. Then, for a parallel portfolio SAT solver, it is not desirable to share all learnt
clauses between all threads. To deal with this problem, one has to select carefully the
clauses that a thread wants to share with the others. A natural solution is to take into
account the size of learnt clauses and share only the smallest ones (size less than 8 for
example [10]). Based on the observation that small clauses appears less and less during
the search, authors of ManySAT propose a dynamic clause sharing policy which uses
pairwise size limits to control the exchange between threads [9].

However, it is surprising that Plingeling, one of the winner of the SAT’11 com-
petition shares between threads only unit clauses. Furthermore, ppfolio which have
obtained good results in that competition runs different state-of-art sequential solvers
in an independent way without any sharing. This last observations show that current
clause exchange techniques are not mature and may be improved. This is one of the
goal of this paper.



3 Parallelism, Collaboration and Clause Exchange: a Premilinary
Experimentation

To illustrate the current behavior of portfolio solvers with respect to clause exchanges,
we first have conducted preliminaries experiments on a state-of-the-art solver. For a
sequential solver, a ”good” learnt clause is a clause that is used during the unit propa-
gation process and the conflict analysis. For portfolio solvers, one can quite safely state
the same idea: a ”good” shared clause is a clause that helps at least one other thread
reducing its search space, namely propagating.

Accordingly, we wanted to know how useful are the clauses shared in a portfolio-
based solver. To this end, we ran some experiments3 using a state-of-the-art portfolio-
based SAT solver. We choose the solver ManySAT 2.0 (based on Minisat 2.2),
because in this solver, the only difference between the working threads are caused by
the first decision variables which are selected randomly. Except this initial interpreta-
tion, each DPLL worker exhibits the exact same behavior (in terms of restart strategy,
branching variable heuristics, etc.), which allows us to make a fair comparison about
clause exchange without any side effect. Hence, it represents a good framework to deal
with parallel SAT solvers and clauses sharing. By default all clauses of size less than 8
are shared. Moreover, ManySAT provides a deterministic mode [8]. Let us emphasize
that we have activated this option to make the obtained results fully reproducible and
we report the detailled results online4.

Let SC be the set of shared clauses, namely the set-theoretical union of each clause
exported by a given thread to all the other ones. In this experiment, for each thread, we
have considered two particular kinds of shared clauses. First, the shared clauses that
are actually used (at least once) by a working thread to propagate. We denote this set
used(SC). Second, we have also focused on the set of shared clauses that are deleted
without having been from any help during the search. This set is denoted unused(SC).
Clearly, SC\(used(SC) ∪ unused(SC)) represents the set of clauses that have neither
been used nor been deleted, yet.

Figure 1 synthetizes the results obtained during this first experiment. The results
are reported in the following way: each point of Figure 1 is associated with an in-
stance, and the x-axys corresponds to the rate #used(SC)/#SC, whereas the y-axys
corresponds to the rate #unused(SC)/#SC, and we report the average rate over the
different threads. Figure 1(a) gives the results for ManySAT. First of all, we can remark
that the rate of useful shared clauses differs greatly over different instances. We can
also note, that in a lot of cases, ManySAT keeps shared clauses during the entire search
(dots near the x-axys). This is due to the non-aggressive cleaning strategy of Minisat
where in many instances no cleaning are performed. Threads can keep useless clauses
a long time and have to support an over cost without any benefit.

3 All experimentations of this paper have been conducted on a dual socket Intel XEON
X5550 quad-core 2.66 GHz with 8 MB of cache and a RAM limit of 32GB, under Linux
CentOS 6 (kernel 2.6.32). All solvers use 8 threads. The timeout was set to 1200 seconds WC
for each instance. If no answer was delivered within this amount of time, the instance was
considered unsolved. We used the application instances (300) of the SAT competition 2011.

4 http://www.cril.fr/˜hoessen/penelope.html
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(a) ManySAT
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(b) aggressive ManySAT

Fig. 1. Comparison between useful share clauses and unused deleted clauses. Each dot corre-
sponds to an instances. x-axis gives the rate of useful shared clauses #used(SC)/#SC, whereas
the y-axis gives the rate of unused deleted shared clauses #unused(SC)/#SC.

We have conducted the same experiment with a much more agressive cleaning strat-
egy. We have choosed the one presented in [1] (see Section 4) and we report the result
in Figure 1(b). Here, in many cases, shared clauses are deleted without any usage and
the percentage of shared clauses that are used at least one time decreases with respect
to the basic version of ManySAT. These results can be explained quite easily. If only
few cleanings are done, the threads have to manage a lot of useful and useless shared
clauses. In one hand, it owns a lot of information about the problem to solve, and prop-
agates many units clauses. On the other hand, such a solver has to maintain a large
number of clauses uselessly, which greatly slows down its exploration.

Conversely, when many cleanings are achieved, another problem occurs. Indeed,
if a given clause is not used in conflict analysis and/or unit propagation very often, it
has then a lot of chances to be quickly removed. Therefore, threads using an agressive
strategy spend a lot of time importing clauses that are never used. We can also notice
that only using the lbd measure for clause usefulness seems not efficient. Indeed, shared
clauses are here small clauses, so they have small lbd values. Even if we can try to tune
the cleaning strategy to obtain a stronger solver, we think that the classical strategy used
to manage learnt clauses is not appropriate in the case of clauses sharing and multicore
architectures. We propose a new scheme in the next section.

4 Selecting, Sharing and Activating Good Clauses

Managing learnt clauses is known to be difficult in the sequential case. Furthermore,
dealing with imported clauses from other threads leads to additional problems:



– Imported clauses can be subsumed by clauses already present in the database. Since
subsumption computation is time consuming, it is necessary to give the possibility
to remove periodically learnt clauses.

– Imported clauses may be useless during a long time, and suddenly become useful.
– Each thread has to manage many more clauses.
– Characterizing good imported clauses is a real challenge.

For all of these reasons, we propose to use the dynamic management policy of learnt
clauses proposed in [1] inside each thread. This recent technique enables to activate or
freeze some learnt clauses, imported or locally generated. The advantage is twofold.
The overhead caused by imported clauses is greatly reduced since clauses can be frozen.
Nevertheless, clauses estimated useful in the next future of the search are activated. Let
us present more precisely this method in the next Section.

Freezing clauses

The strategy proposed in [1] differs from the other ones proposed in the past (see Section
2). Indeed, it is based on a dynamic freezing and activation principle of learnt clauses.
At a given search state, it activates the most promising learnt clauses while freezing
irrelevant ones. In this way, learned clauses can be discarded from the current step, but
may be activated again in future steps of the search process. This strategy cannot be
used with the other known measures such as activity or lbd-based ones. Indeed, the
activity (VSIDS-based) measure is dynamic but can only be used to update the activity
of learnt clauses currently in the database, while the lbd value of a given learnt clause is
either static (and does not change during search) or dynamic but, in this case, the same
problem as VSIDS-based one occurs. Then, this strategy is associated with another
measure, defined in the following, for identifying good learnt clauses [1].

Let Σ be a CNF formula, c be a clause learnt by the solver, and ω the current in-
terpretation saved from the polarity choice of decision variables [15]. The psm value of
the clause c w.r.t. ω, denoted psmω(c), is equal to:

psmω(c) = |ω ∩ c|

psm is a highly dynamic measure, since it is mainly based on the current interpreta-
tion. It aims at selecting relevant context (i.e. learnt clauses) with respect to the search in
progress. To this end, the clauses that exhibit a low psm are considered relevant. Indeed,
the lower is a psm value, the more likely the related clause is about to unit-propagate
some literal, or to be falsified. On the opposite, a clause with a large psm value has a lot
of chance to be satisfied by many literals, making it irrelevant for the search in progress.

Thus, only clauses that exhibit a low psm are selected and currently used by the
solver, the other clauses being frozen. When a clause is frozen, it is removed from the
list of the watched literals of the solver, in order to avoid the computational overhead
of maintaining the data structure of the solver for this useless clause. Nevertheless, a
frozen clause is not erased but it is kept in memory, since this clause may be useful in the
next future of the search. As the current interpretation evolves, the set of learnt clauses
actually used by the solver evolves, too. In this respect, the psm value is computed



periodically, and sets of clauses are frozen or unfrozen with respect to their freshly
computed new value.

Let Pk be a sequence where P0 = 500 and Pi+1 = Pi + 500+ 100× i. A function
”updateDB ” is called each time the number of conflict reaches Pi conflicts (where
i ∈ [0..∞]). This function computes new psm values for every learnt clauses (frozen or
activated). A clause that has a psm value less than a given limit l is activated in the next
part of the search. If its psm does not hold this condition, then it is frozen. Moreover, a
clause that is not activated after k (equal to 7 by default) time steps is deleted. Similarly,
a clause remaining active more than k steps without participating to the search is also
permanently deleted.

Given the psm and lbd measures, we now define different policies for clause ex-
change. In a typical CDCL procedure, a nogood clause is learnt after each conflict.
It appears that all clauses cannot be shared, especially because some of them are not
useful in a long term. So, when collaboration is achieved, this is limited through some
criterion. To the best of our knowledge, in all current portfolio solvers, this criterion
is only based on the information from the sender of the clause, the receiver having to
accept any clause judged locally relevant by another worker.

We present in the next Section a technique where both the sender and the receiver of
a clause havea strategy. Obviously, any sender (export strategy) tries to find in its own
learnt clause database the most relevant information to help the other workers. However,
the receiver (import strategy) here does not accept the shared clauses in a blind way. We
have called our case study solver PeneLoPe5 (Parallel Lbd Psm solver).

Importing clause policy When a clause is imported, we can consider different cases,
depending on the moment the clause is attached for participating to the search.

– no-freeze: each imported clause is actually stored with the current learnt database
of the thread, and will be evaluated (and possibly frozen) during the next call to
updateDB .

– freeze-all: each imported clause is frozen by default, and is only used later by the
solver if it is evaluated relevant w.r.t. unfreezing conditions.

– freeze: each imported clause is evaluated as it would have been if locally generated.
If the clause is considered relevant, it is added to the learnt clauses, otherwise it is
frozen.

Exporting clause policy Since PeneLoPe can freeze clauses, each thread can import
more clauses than it would with a classical management of clauses, where all of them
are attached. Then, we propose different strategies, more or less restrictive, to select
which clauses have to be shared:

– unlimited: any generated clause is exported towards the different threads.
– size limit: only clauses whose size is less than a given value (8 in our experiments)

are exported [9].
5 in reference to Odysseus’s faithful wife who wove a burial shroud, linking many threads to-

gether



psm used export strategy restart strategy import strategy #SAT #UNSAT #SAT + #UNSAT

3 lbd limit lbd no freeze 94 111 205
3 lbd limit lbd freeze 89 113 202
3 size limit lbd freeze 93 107 200
3 size limit lbd no freeze 89 107 196
3 size limit luby no freeze 97 98 195
3 lbd limit lbd freeze all 89 102 191
3 size limit luby freeze all 96 92 188
3 unlimited lbd freeze 86 102 188
3 size limit luby freeze 92 96 188
3 lbd limit luby freeze 91 97 188

ManySAT - - - 95 93 188
3 lbd limit luby no freeze 90 94 184
3 unlimited luby freeze 91 92 183

size limit luby no freeze 92 90 182
3 unlimited luby no freeze 89 88 177
3 size = 1 lbd freeze 89 88 177

Table 1. Comparison between import, export & restart strategies using deterministic mode

– lbd limit: a given clause c is exported to other threads if its lbd value lbd(c) is less
than a given limit value d (8 by default). Let us also note that the lbd value can vary
over time, since it is computed with respect to the current interpretation. Therefore,
as soon as lbd(c) is less than d, the clause is exported.

Restarts policy Beside exchange policies, we define two restart strategies.

– Luby: Let li be the ith term of the Luby serie[13]. The ith restart is achieved after
li × α conflicts (α is set to 100 by default).

– LBD [2]: Let LBDg be the average value of the LBD of each learnt clause since the
beginning. LetLBD100 be the same value computed only for the last 100 generated
learnt clause. With this policy, a restart is achieved as soon as LBD100 × α >
LBDg (α is set to 0.7 by default). In addition, the VSIDS score of variables that
are unit-propagated thank for a learnt clause whose lbd is equal to 2 are increased,
as detailled in [2].

We have conducted experiments to compare these different import/export/restart
strategies. We ran these different versions and Table 1 presents a sample of the obtained
results This table report for each strategy the number of SAT instances solved (#SAT),
together with the number of UNSAT instances solved (#UNSAT) and total (#SAT +
#UNSAT).

Let us take a first look at the export strategy. Unsurprisingly, the ”unlimited” policy
obtained the worst results. Indeed, none of these versions have been able to solve more
than 190 instances, regardless all other policies (export, restart). Here, every generated
clause is exported, and we reach the maximum level of communication. As expected,
with the multiplicity of the workers, the solvers are soon overwhelmed by clauses and
their performances drop.
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(a) size limit + luby + no freeze (SLN)
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(b) lbd limit + lbd + freeze (LLF)

Fig. 2. Comparison between usefull share clauses and useless deleted clauses. Each dot corre-
sponds to an instances. x-axis gives the rate of useful shared clauses #used(SC)

#SC , whereas the

y-axis gives the rate of unused deleted shared clauses #unused(SC)
#SC .

This was the reason why a size-based limit was introduced with the idea that the
smallest clauses produce the best syntactic filtering, and therefore are preferable. In-
deed, in Table 1, it appears clearly that ”size limit” (clauses containing less than 8
literals) policy outperforms the ”unlimited” one. This simple limit shows its usefulness,
but a main drawback is that it has been shown [3] that longer clauses may greatly reduce
the size of the proof.

Using the lbd value lbd(c) of a clause c can improve the situation as lbd(c) ≤
size(c). Hence, if the same value v is used for both the size and the lbd limits, more
clauses are exported with the lbd policy. So, specifying a limit on the lbd allows us to
import larger clauses if those ones are heuristically considered as promising. This could
represent a problem for a parallel solver without the ability to freeze some clauses.
Nevertheless, as PeneLoPe contains such mechanism, the impact is greatly reduced.
From an empirical point of view, Table 1 shows that the ”lbd limit” obtains the best
results among all exporting strategies. We have also tried to limit the export to unary
clauses (line size=1) like most current portfolio solvers do, but this does not lead to
good performance, since only 177 instances are solved.

Let us now focus on the restart strategy. Quite obviously, the ”luby” technique ob-
tains overall worst results than the ”lbd ” one. This clearly shows the particular interest
of this lbd concept introduced in [2]. About import strategy, no clear winner appears
when looking at the results in Table 1. Indeed, the best results in term of number of
solved SAT instances is obtained with no freeze (97) when associated with the ”luby”
restart and the ”size limit” export strategy, whereas the best number of solved UNSAT
instances is obtained with the ”freeze” strategy (113). Furthermore, no freeze enables
to obtain the best overall result solving 205 instances out of the 300 used ones. Hence,



it would be audacious to plead for one of the 3 proposed techniques. However, a large
number of our proposed policies performs in practice better than ”classical” clause ex-
change techniques, represented in Table1 by ManySat.

In a second experiment, we wanted to assess the behavior of the solver when us-
ing some of our proposed policies. To this end, we have conducted the exact same
experiments than the one presented in Section 3; the obtained results are reported in
the Figure 2. First, we have tried with size limit, luby, and no freeze policies (denoted
SLN, see Figure 2(a)). Clearly, this version behaves very well, since most of the dots
are located under the diagonal. Moreover, for most instances, #usedSC+#unused(SC)

#SC is
close to 1 (dots near the second diagonal), which indicates that the solver does not carry
useless clauses without deleting them. Most of them proves useful, and the other ones
are deleted.

Then, the experimentation was conducted with the lbd limit, lbd and freeze combo
(denoted LLF, see Figure 2(b)). At first sight, the behavior is here less satisfying than
the SLN version, since for most instances at least half of imported clauses are deleted
without being from any help. Actually, in this version, a much larger number of clauses
are exported due to the ”lbd limit” export policy, which leads to a lower rate of useful
clauses. Fine-tuning parameters (lbd limit values, number of time a clause has to be
frozen before being permanently deleted, etc.) might improve this behavior.

Looking at some detailled statistics provided in Table 2, it indeed appears that the
LLF version shares a lot more clauses than the SLN one (column nbu). Note that this
Table contains some other very interesting information. For instance, it enables to see
that for some benchmarks (e.g. AProVE07-21), about 90% of imported clauses are
actually frozen and do not immediately participate to the search, whereas for other
instances, we face the opposite situation (hwmcc10...) with only 10% of clauses that
are frozen when imported. This reveals the high adaptability of the psm measure. Let
us focus now on the number of imported clauses, compared to the number of conflicts
needed to solve the instance. The SLN version produces very often more conflict clauses
than it imports from other working threads (nbc/nbi < 1), even though this is not true
with some benchmarks (e.g. AProVE07-21, hwmcc10...). Note that the nbc/nbi
rate of the LLF version exhibits a very high variability, from 0.58 for the smallest value
in Table 2 (velev-pipe-o-uns...) to more than 4, meaning that in such cases,
each time the solver produces a conflict (and consequently a clause), it imports more
than 4 clauses on average. Let us also emphasize that the computationnal cost of the psm
measure is not major (see ”psm time” column). During all our experiments, PeneLoPe
have spent at most 5% of the solving time to compute psm.

On a more general view, even if the no-freeze policy seems to be the best in terms
of efficiency in communication between threads of the solver, it has the disadvantage of
adding every imported clause in the set of active clauses. This leads to a lower number
of propagation per second until the next re-examination of the whole clause database.
This might be a problem if we want to increase the number of threads of the solver. On
the other hand, the freeze-all policy does not slow down the solver. Yet, such solver is
not able to use the imported clauses as soon as they are available, and therefore explores
subspaces that would have been pruned with the no-freeze policy.



instance version time nbc nbi(nbc/nbi) nbf nbu nbd psm time
dated-10-17-u SLN TO 1771 278 (0.15) 0% 45% 49% 2%

LLF 949 1047 1251 (0.83) 64% 20% 60% 4%
hwmcc10-. . . SLN TO 5955 7989 (1.34) 0% 35% 60% 3%
k50-eijkbs6669-tseitin LLF 766 3360 15299 (4.55) 10% 11% 80% 5%
velev-pipe-o-uns-1.1-6 SLN 150 981 69 (0.07) 0% 60% 24% 2%

LLF 48 296 173 (0.58) 41% 31% 33% 3%
sokoban-sequential-p145- SLN TO 182 86 (0.47) 0% 92% 4% 0.1%
microban-sequential.040 LLF 530 74 155 (2.09) 5% 58% 17% 0.4%
AProVE07-21 SLN 10 78 83 (1.06) 0% 35% 16% 3%

LLF 31 143 506 (3.53) 89% 9% 57% 5%
slp-synthesis-aes-bottom13 SLN 445 1628 194 (0.11) 0% 58% 30% 3%

LLF 91 309 298 (0.96) 71% 24% 49% 4%
velev-vliw-uns-4.0-9-i1 SLN TO 1664 262 (0.15) 0% 55% 40% 2%

LLF 906 1165 824 (0.70) 35% 37% 48% 5%
x1mul.miter. . . -359 SLN 819 2073 421 (0.20) 0% 51% 37% 5%

LLF 280 680 1134 (1.66) 76% 16% 59% 5%

Table 2. Statistics about some unsatisfiable instance solving. For each instance and each version,
we report the WC time needed to solve it, the number of conficts (nbc, in thousands), the number
of imported clauses (nbi, in thousands) with between brackets the rate between nbi and nbc, the
percentage of clauses frozen at the import (nbf ), the percentage of useful imported clauses (nbu)
and the percentage of unused deleted clauses (nbd). Finally, we provide the rate of time (w.r.t. the
overall solving time) spent on computing the psm value. Except for time, we compute the average
between the 8 threads for these statistics.

5 Comparison with state of the art solvers

In this Section, we propose a comparison of two of our proposed prototypes against
state-of-the-art parallel SAT solvers. We have selected solvers that prove the most ef-
fective during the last competitive events: ppfolio [16], cryptominisat [18],
plingeling [4] and ManySat [10].

For PeneLoPe, we choose for both versions the lbd restart strategy and the lbd
limit for the export policy. These two versions only differ from their import policies:
freeze and no freeze. Let us precise that contrary to previous experiments, we do not
use the deterministic mode in these experiments, in order to obtain the best possible
performance.

Figure 3 shows the obtained results through different representations; Table 3(a)
provides the number of solved instances for the different solvers, Figure 3(b) details the
comparison of PeneLoPe and Plingeling through a scatter plot, and a cactus plot
in Figure 3(c) gives the number of solved instances w.r.t. the time (in seconds) needed
to solve them. PeneLoPe outperforms all other parallel solvers; indeed, it succeeds
to solve 216 instances while no other solver is able to exceed 200 (Table 3(a)). Note
that only considering SAT instances, the best results come from plingeling which
solves 99 instances. This is particularly noticeable in Figure 3(b) where PeneLoPe and
plingeling are more precisely compared; indeed, most of ”SAT dots” are located
above the diagonal, illustrating the strength of plingeling on these instances. How-



Solver #SAT #UNSAT #SAT+#UNSAT

PeneLoPe freeze 97 119 216
PeneLoPe no freeze 96 119 215
plingeling [4] 99 97 196
ppfolio [16] 91 103 194
cryptominisat [18] 89 104 193
ManySat [10] 95 92 187

(a) PeneLoPe VS state-of-the-art parallel solvers

 1

 10

 100

 1000

 1  10  100  1000

PeneLope

Plingeling

PeneLope

Plingeling

SAT
UNSAT

(b) PeneLoPe freeze VS Plingeling

 0

 200

 400

 600

 800

 1000

 1200

 100  120  140  160  180  200  220  240

W
C

 ti
m

e 
(s

ec
on

ds
) 

nb instances

PeneLoPe freeze
CryptoMiniSAT

Plingeling
PPfolio

ManySAT

(c) Cactus plot

Fig. 3. Comparison on 8 cores

ever, results for SAT instances are closer from each other (97 for PeneLoPe freeze, 95
for ManySat, etc.), the gap being more important for UNSAT problems.

In addition, we have compared the same solvers on a 32 cores architecture. More
precisely, the considered hardware configuration is now Intel Xeon CPU X7550
(4 processors, 32 cores) 2.00GHz with 18 MB of cache and a RAM limit of 256GB.
The software framework is the same as with previous experiments. Each solver is run
using 32 threads, and the obtained results are displayed in Figure 4 in a similar way
than previously. First, let us remark that except for plingeling, all solvers improve
their results when they are run with a larger number of threads. The benefit is lim-
ited for certain solvers, however. For example, cryptominisat solves 193 instances
with 8 threads, and 201 instances with 32 threads. The improvement is stronger with
PeneLoPe whose both versions solve 15 extra instances when 32 threads are used,
and especially for ManySAT with a gain of 29 instances. The gap can be more re-
markable looking at the cactus plot in Figure 4(c), since our 3 competitors solve about
the same number of instances within the same time (curves very close to each other),
whereas the curve of PeneLoPe and ManySAT clearly shows their ability to solve
a larger number of instances within a more restricted time. Besides, it is worth not-
ing that PeneLoPe solves the same number of instances as Plingeling, ppfolio
and cryptominisat with a (virtual) time limit of only 400 seconds. Finally, we can
also notice than PeneLoPe can be improved on SAT instances. Indeed, it appears that



Solver #SAT #UNSAT #SAT+#UNSAT

PeneLoPe freeze 104 127 231
PeneLoPe no freeze 99 131 230
ManySAT [10] 105 111 216
ppfolio [16] 107 97 204
cryptominisat [18] 96 105 201
Plingeling [4] 100 95 195

(a) PeneLoPe VS state-of-the-art parallel solvers
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Fig. 4. Comparison on 32 cores

Luby restarts are more efficient for SAT than for UNSAT, whereas the exact opposite
phenomenon happens for UNSAT instances with the lbd restart strategy.

Adding computing units has different impacts. For instance, for ppfolio and
plingeling the gain is not major, since augmenting the number of working threads
”just” improves the number of CDCL sequential solvers that explore the search space;
each worker does not benefit from the exploration of the other ones, since with these
solvers, little (if any) collaboration is done. PeneLoPe benefits more from more com-
puting units because the number of exchanged clauses coming from different search
subspaces is greater. This leads to a wider knowledge for each thread without being
slowed down too much, thanks to the freezing mechanism.

Finally, let us emphasize that during all our experiments with PeneLoPe, all work-
ing threads share the exact same parameters and strategies, just like in our prelimi-
nary experimentation in Section 3. Improving diversification in the different sequential
CDCL searches should probably boost even more our case study solver.

6 Conclusion

In this paper, we have proposed new strategies to manage clause exchange within paral-
lel SAT solvers. Based on the recent psm and lbd concepts, the idea is to adopt different
strategies for import and export of clauses. We have carrefully studied different empir-



ical aspects of our proposed ideas and compared our solver to best known parallel SAT
engines, showing that it appears to be a highly competitive prototype.

Clearly, diversifying the different working threads should improve the performance
of our case study solver PeneLoPe, since this technique is known to be the cornerstone
of the efficiency of some portfolio solvers, like ppfolio. We plan to study this point
in the next future.
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