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INTRODUCTION

Classification of textured images is used in a large field of applications ranging from the classification of orchards from remote sensing images, to quality check of manufactured pieces by comparison of internal structures. Among classification methods, clustering approaches have known an increased interest providing effective and tractable algorithms for various domains. Classification techniques based on clustering such as supervised centroid-based (CB) and unsupervised k-means methods assume that (i) textured images are sorted in k subcollections of samples, i.e. the clusters, (ii) each cluster can be represented by the most centrally localized object, i.e. the barycenter or centroid. Evaluating a centroid implies to define an adapted measure of similarity/dissimilarity between a set of estimated parameters characterizing each sample in the cluster. For texture clustering, the main purpose is thus to define an effective set of parameters and a dissimilarity measure which can be minimized in order to estimate the centroid coordinates in the parameter space knowing the sub-set of samples associated to the cluster. Over the last decade, numerous Thanks TOTAL for funding. works devoted to texture analysis have shown the interest to use jointly scale-space decomposition and stochastic modeling for characterizing the textural content [START_REF] Mallat | A theory for multiresolution signal decomposition: The wavelet representation[END_REF][START_REF] Do | Wavelet-based texture retrieval using generalized Gaussian density and Kullback-Leibler distance[END_REF][START_REF] Choy | Supervised texture classification using characteristic generalized Gaussian density[END_REF][START_REF] Kim | Support vector machines for texture classification[END_REF][START_REF] Varma | A statistical approach to texture classification from single images[END_REF][START_REF] Rabin | Wasserstein barycenter and its application to texture mixing[END_REF]. The more recent works proposed parametric probability density function (pdf), i.e. prior such as Generalized Gaussian density (GGD) or Weibull density, to fit the empirical histogram of sub-band coefficients [START_REF] Do | Wavelet-based texture retrieval using generalized Gaussian density and Kullback-Leibler distance[END_REF][START_REF] Choy | Supervised texture classification using characteristic generalized Gaussian density[END_REF]. Moreover, some works have pointed out the pertinence to consider multivariate modeling such as multivariate GGD [START_REF] Verdoolaege | Wavelet-based colour texture retrieval using the Kullback-Leibler divergence between bivariate generalized Gaussian models[END_REF], Spherically Invariant Random Vector (SIRV) [START_REF] Bombrun | Multivariate texture retrieval using the SIRV representation and the geodesic distance[END_REF][START_REF] Lasmar | Multivariate statistical modeling for texture analysis using wavelet transforms[END_REF], and copulas based models [START_REF] Lasmar | Gaussian copula multivariate modeling for texture image retrieval using Kullback-Leibler divergence[END_REF] in order to take into account the spatial dependency [START_REF] Verdoolaege | Wavelet-based colour texture retrieval using the Kullback-Leibler divergence between bivariate generalized Gaussian models[END_REF][START_REF] Bombrun | Multivariate texture retrieval using the SIRV representation and the geodesic distance[END_REF][START_REF] Lasmar | Multivariate statistical modeling for texture analysis using wavelet transforms[END_REF][START_REF] Lasmar | Gaussian copula multivariate modeling for texture image retrieval using Kullback-Leibler divergence[END_REF] rather than simple univariate modeling. Incorporate the dependency in the model enables us to increase the performance of classification methods. However, regardless of the model used, the result is that homogeneous texture samples are summarized by a finite set of pdfs, one for each detail sub-band of the decomposition, characterized respectively by a limited set of parameters. In complement, these works have also proposed to exploit probabilistic dissimilarity such as Kullback-Leibler divergence (KL) [START_REF] Do | Wavelet-based texture retrieval using generalized Gaussian density and Kullback-Leibler distance[END_REF][START_REF] Choy | Supervised texture classification using characteristic generalized Gaussian density[END_REF], geodesic distance [START_REF] Bombrun | Multivariate texture retrieval using the SIRV representation and the geodesic distance[END_REF], optimal transport [START_REF] Ferradans | Optimal transport mixing of Gaussian texture models[END_REF], or Jeffrey divergence (J) [START_REF] Schutz | Barycentric distribution estimation for texture clustering based on information-geometry tools[END_REF] following the well-founded Bayesian theory. Concerning the issue of the centroid estimation in the context of texture analysis, Choy and Tong [START_REF] Choy | Supervised texture classification using characteristic generalized Gaussian density[END_REF] have developed a solution based on the univariate modeling using the GGD model and the Kullback-Leibler divergence. However, no propositions have yet been made to extend this proposal to non-trivial multivariate model, which is the main contribution of the paper. This paper introduces a CB classification algorithm based on the SIRV distribution for the modeling of wavelet coefficients [START_REF] Lasmar | Multivariate statistical modeling for texture analysis using wavelet transforms[END_REF]. By exploiting the independence between the multiplier τ and the Gaussian vector g, the Jeffrey divergence of the joint vector y = (τ, g) admits a close-form expression. Based on this observation, we propose an algorithm to estimate the centroid from a collection of SIRV parameters. The paper is structured as follows. Section 2 introduces the SIRV distribution for the modeling of wavelet coefficients. Section 3 derives the proposed algorithm to compute the centroid. Some classification results are next presented in Section 4 to evaluate the performance of the proposed CB classification algorithm on texture databases. Conclusions and future works are finally reported in Section 5. 

STOCHASTIC MODEL

To model wavelet coefficients, Spherically Invariant Random Vectors (SIRV) have been proposed in [START_REF] Lasmar | Multivariate statistical modeling for texture analysis using wavelet transforms[END_REF]. This class of models has been introduced to take into account the non-Gaussianity of the signal. Compared to other multivariate models (copula, MGGD, ...), this family of distributions has found a great interest in modeling the spatial dependency of wavelet coefficients. Let x be a d-dimensional vector following a SIRV distribution, it yields that x admits the stochastic representation:

x = √ τ g, (1) 
where τ is a scalar random variable called multiplier (τ ∈ R + ) and g a real Gaussian vector with zero mean and covariance matrix Σ = E{ g g T }. Processes τ and g are assumed independent. In the literature [START_REF] Bombrun | Multivariate texture retrieval using the SIRV representation and the geodesic distance[END_REF], various models issued from the Pearson system have been introduced to represent the multiplier τ such as Gamma, Inverse Gamma and Fisher distributions. In this paper, the univariate Weibull distribution is considered to model the multiplier. Its pdf is:

p w (τ ; a, b) = a b τ b a-1 exp - τ b a ( 2 
)
where a and b are respectively the shape and scale parameters.

Since the SIRV model is uniquely defined with respect to the covariance matrix parameter up to a multiplicative constant, the multiplier τ is normalized to have an unitary mean, i.e. E{τ } = 1. It yields that b = (Γ (1/a + 1)) -1 . SIRV parameters are hence extracted according to the SIRV estimation scheme developed in [START_REF] Gini | Covariance matrix estimation for CFAR detection in correlated heavy tailed clutter[END_REF].

To evaluate the benefit of the SIRV model for characterizing texture content, the empirical histogram of the multiplier τ has been computed for each sub-band of textured images from the VisTex database. This histogram is then modeled Fig. 2. Principal component analysis on dissimilarity matrix between -textured images: left the 2 principal directions, right the 2nd and 3rd direction. by three univariate distributions [START_REF] Bombrun | Multivariate texture retrieval using the SIRV representation and the geodesic distance[END_REF] i.e. Weibull, Gamma, and Inverse Gamma. The Kolmogorov distance, denoted d K , is next used to evaluate the goodness-of-fit of the multplier. The Kolmogorov distance is defined as:

d K = sup τ |F (τ ) -F N (τ )|. ( 3 
)
where F N (•) is the empirical cumulative distribution function (cdf) and F (•) is the theoretical (hypothesized) cdf. Fig. 1 draws three box-plots of the Kolmogorov distance for three multiplier models, namely Weibull, Gamma and Inverse gamma pdfs. In this experiment, the steerable pyramid decomposition has been used and a 3×3 neighborhood has been considered to model the spatial dependency of the wavelet coefficients. As observed, the Weibull model exhibits the best performance. In the following, the Weibull distribution will be considered as prior model for the multiplier. Unfortunately, no closed-form expression exists for the pdf of the multivariate vector x for the case of Weibull distributed multiplier. However, characterizing texture content can be provided considering vector y = (τ, g) resulting from the SIRV representation. In this case and using the independence between τ and g, the joint pdf of vector y is

p Y ( y; λ) = p w (τ ; a) p G ( g; Σ) (4) 
where λ = {a, Σ} is the parametric vector associated to the SIRV model. The components λ form a parametric Riemannian manifold. In the sequel of the paper, we call M the corresponding manifold.

In the general context of classification, a dissimilarity measure is required to compute the similarity of two images based on their respective set of features. In this paper, the Jeffrey divergence (J) is considered to compute the probabilistic distance between two parametric vectors. By working on the vector y = (τ, g), the Jeffrey divergence is obtained using the chain rule, since the multiplier parameter τ and the Gaussian process g are independent in the SIRV model. J p( y; λ), p( y; λ ′ ) = J p G ( g; Σ), p G ( g; Σ ′ ) + J p w (τ ; a), p w (τ ; a ′ ) .

(

The first term in (5) corresponds to J for the multivariate Gaussian process, while the second term corresponds to J between the stochastic model of the multiplier. Both terms admit a closed-form expression recalled below:

J (p G ( g; Σ), p G ( g; Σ ′ )) = 1 2 T r (Σ ′ ) -1 Σ + 1 2 T r Σ -1 Σ ′ -d (6) 
and

J(p w (τ ; a), p w (τ ; a ′ )) = 2 - a ′ a - a a ′ Ψ(1) -2+ A(a, a ′ ) + A(a ′ , a) + (a -a ′ ) log Γ(1/a ′ + 1) Γ(1/a + 1) (7) 
where Γ denotes the gamma function defined by Γ(z) =

R + t z-1 e -1 .dt, Ψ is the digamma function Ψ(z) = Γ ′ (z)/Γ(z) and 
A(a, a ′ ) = Γ(1/a ′ + 1) Γ(1/a + 1) a ′ Γ a ′ a + 1 . (8) 
To evaluate the potential of the proposed SIRV model for representing texture images, a spectral clustering technique is used. After computing the similarity matrix based on the Jeffrey divergence, a dimensionality reduction algorithm is performed to observe the repartition of the initial images. Fig. 2 displays, for six classes of textured images from the VisTex database, principal component analysis of their respective dissimilarity. As observed, for each class, the cluster can be well approximated by one element: the centroid.

CENTROID COMPUTATION

Let Λ = (λ n ) N T r
n=1 be a collection of N T r parametric vectors from a specific class of textured images. In [START_REF] Choy | Supervised texture classification using characteristic generalized Gaussian density[END_REF], Choy and Tong have introduced an iterative algorithm to estimate the barycentric sample λ (also called centroid) from this collection of samples. Let l(λ) be the cost function defined by:

l(λ) = 1 N T r N T r n=1 J(p( y; λ), p( y; λ n )), (9) 
the centroid λ is obtained as the solution of the following optimization problem:

λ = arg min λ∈M l(λ). ( 10 
)
By combining ( 5) and ( 10), the optimization problem can be split into two simpler problems: one for the multivariate Gaussian part and one for the univariate Weibull part. It yields that the centroid λ = {ā, Σ} is composed by two centroids:

ā = arg min a∈Mw 1 N T r N T r n=1 J p w (τ ; a), p w (τ ; a n ) ; (11) 
Σ = arg min Σ∈M G 1 N T r N T r n=1 J p G ( g; Σ), p G ( g; Σ n ) . ( 12 
)
In the following subsection, we sequentially present how those two centroids are computed.

Centroid for the multivariate Gaussian part

Let (Σ n ) N T r
n=1 be a collection of covariance matrices. Banerjee et al. have considered the Kullback-Leibler divergence as similarity measure and have derived a closed-form expression for the right-sided ( ΣR ) and left-sided ( ΣL ) centroids [START_REF] Banerjee | Clustering with Bregman divergences[END_REF], it yields:

ΣR = 1 N T r N T r n=1 Σ -1 n -1 and ΣL = 1 N T r N T r n=1 Σ n . (13) 
Nielsen and Nock have further extended this work to compute the Jeffrey centroid Σ. They proved in [START_REF] Nielsen | Sided and symmetrized bregman centroids[END_REF] that Σ is inside the geodesic existing between ΣR and ΣL :

∃ξ ∈ [0, 1] such that Σ = (1 -ξ) ΣR + ξ ΣL , (14) 
and that Σ is equidistant to each centroid. It yields: KL(p g ( g; ΣR ) p g ( g; Σ)) = KL(p g ( g; Σ) p g ( g; ΣL )). [START_REF] Nielsen | Sided and symmetrized bregman centroids[END_REF] This first optimization problem is solved by dichotomy on the geodesic linking left-sided centroid ΣL to right-sided centroid ΣR .

Centroid of Weibull

Let (a n )

N T r
n=1 be a collection of Weibull shape parameters. The centroid ā, solution of [START_REF] Ferradans | Optimal transport mixing of Gaussian texture models[END_REF], is obtained by finding the root of:

dl w da (a) = A 1 Ψ(1) -A 2 Ψ 1 a + 1 + A 3 + A 4 , (16) 
where

A 1 = 1 a 2 N T r n=1 1 N T r a n - 1 N T r N T r n=1 1 a n , (17) 
A 2 = 1 a 2 N T r n=1 1 N T r a n (1 -A(a, a n )) - 1 a + 1 a N T r n=1 1 N T r A(a n , a), (18) 
Algorithm 1 Pseudo-code to compute the centroid λ

Require: Collection of parametric vector Λ = (a n , Σ n )

N T r n=1
Ensure: Centroid λ = (ā, Σ) 1: Compute ΣL and ΣR with (13) 2: Initialization ξ m = 0 and ξ M = 1 3: for i = 1, . . . , N iter do

4: ξ ← 1 2 (ξ m + ξ M ) 5: Σ ← (1 -ξ) ΣR + ξ ΣL 6:
tmp ← KL(p G ( g; ΣR ) p G ( g; Σ))

7:
si ← tmp -KL(p G ( g; Σ) p G ( g; ΣL ))

8:
if si < 0 then ξ m ← ξ else ξ M ← ξ endif 9: end for 10: Let f be the derivative [START_REF] Picard | Vision texture database[END_REF] 11: ā ← root of f

A 3 = - 1 a 2 N T r n=1 1 N T r a n A(a, a n )Ψ a n a + 1 , (19) 
and

A 4 = N T r n=1 1 N T r (1 -A(a n , a)) log Γ(1/an+1) Γ(1/a+1) + N T r n=1 1 N T r
A(an,a) an

Ψ a an + 1 . (20) 
Practically, a simple dichotomy on R + is considered to find the root of (16). To summarize, Algorithm. 1 is used to compute the centroid {ā, Σ} from a collection of SIRV parametric vectors.

NUMERICAL APPLICATION

Let N s be the number of sub-bands of a multi-scale decomposition. Let us consider the parametric vector λ s of the pdf associated to each sub-band. The collection T = (λ s ) Ns s=1 of those parametric vectors will represent the textured image. Let (T c,n )

N T r n=1 be N T r training samples from the same class c. Then, the centroid of this collection of sample is defined as T = ( λs ) Ns s=1 , where λs = (ā s , Σs ) is the centroid computed as the solution of ( 11) and ( 12) at sub-band s. For each texture class c = 1, . . . , N cl , one centroid Tc is computed according to the proposed algorithm. l Let T t be a test sample. This sample is labeled to the class ĉ, corresponding to the class of the closest centroid, i.e.

ĉ = arg min c J(T t Tc ), (21) 
where the dissimilarity measure J between two instances of T is computed as the sum of the dissimilarity measures J between all sub-band distributions at each scale and orientation.

To evaluate the performance of the proposed supervised classification algorithm, the database is split into a training database and a disjoint testing database. Practically, N T r [START_REF] Cohen | A coefficient of agreement for nominal scales[END_REF][START_REF] Gomez | Determining the accuracy in image supervised classification problems[END_REF]. Table 1 draws the classification results of the centroid based classifier obtained for various stochastic models. The first column shows the classification results for an univariate model (with GGD assumption) [START_REF] Schutz | Barycentric distribution estimation for texture clustering based on information-geometry tools[END_REF]. The next columns are the classification results obtained with a model representing the spatial distribution of wavelet coefficients. Various models are considered: the multivariate Gaussian (MG), and a SIRV model when considering the joint distribution (τ, g), the Gaussian part ( g) and the multiplier part (τ ). As observed, for all texture databases, the classification results obtained with the proposed SIRV model allows a gain of 2 points compared to the multivariate Gaussian model.

CONCLUSION

This paper has addressed the problem of centroid-based (CB) classification in the multivariate case. After introducing the Spherically Invariant Random Vector (SIRV) distribution for the modeling of wavelet coefficients, we have proposed an algorithm to compute the centroid from a collection of SIRV parameters. Supervised classification results on various texture databases have shown a gain compared to other classical models.

Further works will concerns the extension of the proposed work to a multi-barycentric classification algorithm in order to handle the intra-class diversity of natural texture images.
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 1 Fig. 1. Box-plots of the Kolmogorov distance on the VisTex database for various multiplier models (Weibull, Gamma and Inverse Gamma).

Table 1 .

 1 Kappa index for various stochastic models

		GGD MG	SIRV
		[12]	g	τ	(τ, g)
	Neigh.	1x1	3x3	
	VisTex	73% 88% 88% 59% 90%
	OuTex	57% 62% 62% 47% 65%
	VisTex C.	41% 57% 58% 26% 60%
	training samples are randomly selected for each texture class,
	the remaining sample are used as testing samples. Three
	databases are considered here: VisTex [16], 40 classes, 16
	sample per class; OuTex (TC 13) [17], 68 classes, 20 sample
	per class and VisTex Complete [16], 167 classes, 16 sample
	per class. In the following, 100 Monte Carlo runs have been
	used to evaluate the performance of the different classifiers
	(kappa index). The kappa index refers to the proportion of
	consistent classifications observed beyond that expected by
	chance alone