
HAL Id: hal-00865592
https://hal.science/hal-00865592v1

Submitted on 24 Sep 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

PeneLoPe, a Parallel Clause-Freezer Solver
Gilles Audemard, Benoît Hoessen, Said Jabbour, Jean-Marie Lagniez, Cédric

Piette

To cite this version:
Gilles Audemard, Benoît Hoessen, Said Jabbour, Jean-Marie Lagniez, Cédric Piette. PeneLoPe, a
Parallel Clause-Freezer Solver. SAT Challenge 2012: Solver and Benchmarks Descriptions, 2012,
France. pp.43-44. �hal-00865592�

https://hal.science/hal-00865592v1
https://hal.archives-ouvertes.fr

PeneLoPe, a parallel clause-freezer solver
Gilles Audemard, Benoı̂t Hoessen, Saı̈d Jabbour, Jean-Marie Lagniez, Cédric Piette

Université Lille-Nord de France
CRIL - CNRS UMR 8188

Artois, F-62307 Lens
{audemard,hoessen,jabbour,lagniez,piette}@cril.fr

Abstract—This paper provides a short system description
of our new portfolio-based solver called PeneLoPe, based
on ManySat. Particularly, this solver focuses on collaboration
between threads, providing different policies for exporting and
importing learnt clauses between CDCL searches. Moreover,
different restart strategies are also available, together with a
deterministic mode.

I. OVERVIEW

PeneLoPe is a portfolio parallel SAT solver that uses the
most effective techniques proposed in the sequential frame-
work: unit propagation, lazy data structures, activity-based
heuristics, progress saving for polarities, clause learning, etc.
As for most of existing solvers, a first preprocessing step is
achieved. For this step -which is typically sequential- we have
chosen to make use of SatElite [3].

In addition, PeneLoPe includes a recent technique for
its learnt clause database management. Roughly, this new
approach follows this schema: each learnt clause c is peri-
odically evaluated with a so-called psm measure [1], which
is equal to the size of the set-theoretical intersection of the
current interpretation and c. Clauses that exhibit a low psm
are considered relevant. Indeed, the lower is a psm value, the
more likely the related clause is about to unit-propagate some
literal, or to be falsified. On the opposite, a clause with a large
psm value has a lot of chance to be satisfied by many literals,
making it irrelevant for the search in progress.

Thus, only clauses that exhibit a low psm are selected
and currently used by the solver, the other clauses being
frozen. When a clause is frozen, it is removed from the list
of the watched literals of the solver, in order to avoid the
computational over-cost of maintaining the data structure of
the solver for this useless clause. Nevertheless, a frozen clause
is not erased but it is kept in memory, since this clause may
be useful in the next future of the search. As the current
interpretation evolves, the set of learnt clauses actually used
by the solver evolves, too. In this respect, the psm value
is computed periodically, and sets of clauses are frozen or
unfrozen with respect to their freshly computed new value.

Let Pk be a sequence where P0 = 500 and Pi+1 =
Pi+500+100× i. A function ”updateDB” is called each time
the number of conflict reaches Pi conflicts (where i ∈ [0..∞]).
This function computes new psm values for every learnt
clauses (frozen or activated). A clause that has a psm value
less than a given limit l is activated in the next part of the
search. If its psm does not hold this condition, then it is frozen.

Moreover, a clause that is not activated after k (equal to 7 by
default) time steps is deleted. Similarly, a clause remaining
active more than k steps without participating to the search is
also permanently deleted (see [1] for more details).

Besides the psm technique, PeneLoPe also makes use of
the lbd value defined in [2]. lbd is used to estimate the quality
of a learnt clause. This new measure is based on the number
of different decision levels appearing in a learnt clause and is
computed when the clause is generated. Extensive experiments
demonstrates that clauses with small lbd values are used more
often than those with higher lbd ones. Note also that lbd
of clauses can be recomputed when they are used for unit
propagations, and updated if it becomes smaller. This update
process is important to get many good clauses.

Given these recently defined heuristic values, we present in
the next Section several strategies implemented in PeneLoPe.

II. DETAILLED FEATURES

PeneLoPe proposes a certain number of strategies regard-
ing importation and exportation of learnt clauses, restarts, and
the possibility of activating a deterministic mode.

Importing clause policy: When a clause is imported, we can
consider different cases, depending on the moment the clause
is attached for participating to the search.

• no-freeze: each imported clause is actually stored with the
current learnt database of the thread, and will be evaluated
(and possibly frozen) during the next call to updateDB.

• freeze-all: each imported clause is frozen by default, and
is only used later by the solver if it is evaluated relevant
w.r.t. unfreezing conditions.

• freeze: each imported clause is evaluated as it would
have been if locally generated. If the clause is considered
relevant, it is added to the learnt clauses, otherwise it is
frozen.

Exporting clause policy: Since PeneLoPe can freeze
clauses, each thread can import more clauses than it would
with a classical management of clauses, where all of them are
attached. Then, we propose different strategies, more or less
restrictive, to select which clauses have to be shared:

• unlimited: any generated clause is exported towards the
different threads.

• size limit: only clauses whose size is less than a given
value are exported [5].

• lbd limit: a given clause c is exported to other threads if
its lbd value lbd(c) is less than a given limit value d (8

by default). Let us also note that the lbd value can vary
over time, since it is computed with respect to the current
interpretation. Therefore, as soon as lbd(c) is less than d,
the clause is exported.

Restarts policy: Beside exchange policies, we define two
restart strategies.

• Luby: Let li be the ith term of the Luby serie. The ith

restart is achieved after li × α conflicts (α is set to 100
by default).

• LBD [2]: Let LBDg be the average value of the LBD of
each learnt clause since the beginning. Let LBD100 be
the same value computed only for the last 100 generated
learnt clause. With this policy, a restart is achieved as
soon as LBD100×α > LBDg (α is set to 0.7 by default).
In addition, the VSIDS score of variables that are unit-
propagated thank for a learnt clause whose lbd is equal
to 2 are increased, as detailled in [2].

Furthermore, we have implemented in PeneLoPe a deter-
ministic mode which ensures full reproducibility of the results
for both runtime and reported solutions (model or refutation
proof). Large experiments show that such mecanism does not
affect significantly the solving process of portfolio solvers
[4]. Quite obviously, this mode can also be unactivated in
PeneLoPe.

III. FINE TUNING PARAMETERS OF PENELOPE

PeneLoPe is designed to be fine-tuned in an easy way,
namely without having to modify its source code. To this
end, a configuration file (called configuration.ini, an
example is provided in Figure 1) is proposed to describe the
default behavior of each thread. This file actually contains
numerous parameters that can be modified by the user before
running the solver. For instance, besides export, import and
restart strategies, one can choose the number of threads that
the solver uses, the α factor if the Luby techniques is activated
for the restart strategy, etc. Each policy and/or value can
obviouly differ from one thread to the other, in order to ensure
diversification.

ACKNOWLEDGMENT

PeneLoPe has been partially developped thank to the
financial support of CNRS and OSEO, under the ISI project
“Pajero”.

REFERENCES

[1] Gilles Audemard, Jean-Marie Lagniez, Bertrand Mazure, and Lakhdar
Saı̈s. On freezeing and reactivating learnt clauses. In proceedings of
SAT, pages 147–160, 2011.

[2] Gilles Audemard and Laurent Simon. Predicting learnt clauses quality in
modern SAT solvers. In proceedings of IJCAI, pages 399–404, 2009.

[3] N. Eén and A. Biere. Effective preprocessing in SAT through variable
and clause elimination. In proceedings of SAT, pages 61–75, 2005.

[4] Youssef Hamadi, Said Jabbour, Cédric Piette, and Lakhdar Saı̈s. Deter-
ministic parallel DPLL. Journal on Satisfiability, Boolean Modeling and
Computation, 7(4):127–132, 2011.

[5] Youssef Hamadi, Saı̈d Jabbour, and Lakhdar Sais. Control-based clause
sharing in parallel SAT solving. In proceedings of IJCAI, pages 499–504,
2009.

1 ncores = 8
2 d e t e r m i n i s t i c = f a l s e
3 ; t h i s i s t h e d e f a u l t b e h a v i o r o f each
4 ; t h r e a d , can be m o d i f i e d o r s p e c i f i e d
5 ; a f t e r each [s o l v e r X] i t em
6 [d e f a u l t]
7 ; i f s e t t o t r u e , t h e n psm i s used
8 usePsm = t r u e
9 ; a l l o w e d v a l u e s : avgLBD , luby

10 r e s t a r t P o l i c y = avgLBD
11 ; a l l o w e d v a l u e s : lbd , u n l i m i t e d , s i z e
12 e x p o r t P o l i c y = l b d
13 ; a l l o w e d v a l u e s :
14 ; f r e e z e , no−f r e e z e , f r e e z e −a l l
15 i m p o r t P o l i c y = f r e e z e
16 ; number o f f r e e z e b e f o r e t h e c l a u s e
17 ; i s d e l e t e d
18 maxFreeze = 7
19 ; i n i t i a l # c o n f l i c t b e f o r e t h e f i r s t
20 ; updateDB
21 i n i t i a l N b C o n f l i c t B e f o r e R e d u c e = 500
22 ; i n c r e m e n t a l f a c t o r f o r updateDB
23 nbConf l ic tBeforeReduceIncrement = 100
24 ; maximum l b d v a l u e f o r exchanged c l a u s e s
25 maxLBDExchange = 8
26 [s o l v e r 0]
27 i m p o r t P o l i c y = no−f r e e z e
28 [s o l v e r 1]
29 i n i t i a l N b C o n f l i c t B e f o r e R e d u c e = 5000
30 nbConf l ic tBeforeReduceIncrement = 1000
31 [s o l v e r 2]
32 maxFreeze = 8
33 ; s o l v e r 3 i s t h e d e f a u l t s o l v e r
34 [s o l v e r 3]
35 [s o l v e r 4]
36 r e s t a r t P o l i c y = l uby
37 lubyFactor = 100
38 [s o l v e r 5]
39 e x p o r t P o l i c y = s i z e
40 [s o l v e r 6]
41 maxFreeze = 4
42 [s o l v e r 7]
43 i m p o r t P o l i c y = f r e e z e −a l l

Fig. 1. Configuration.ini file

