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WEAK SOLUTIONS AND NUMERICAL APPROXIMATION OF A

COUPLED SYSTEM MODELING CARDIAC ELECTROMECHANICS

BORIS ANDREIANOV∗, MOSTAFA BENDAHMANE†, ALFIO QUARTERONI‡ , AND RICARDO

RUIZ-BAIER§

Abstract. This paper is concerned with the mathematical analysis of a coupled elliptic-parabolic system
modeling the interaction between the propagation of electric potential and subsequent deformation of the cardiac
tissue. The problem consists in a reaction-diffusion system governing the dynamics of ionic quantities, intra and
extra-cellular potentials, and the elasticity equations are adopted to describe the motion of an incompressible
material. The coupling between muscle contraction, biochemical reactions and electric activity is introduced
with a so-called active strain decomposition framework, where the material gradient of deformation is split into
an active (electrophysiology-dependent) part and an elastic (passive) one. Under the assumption of linearized
elastic behavior, we prove existence of weak solutions to the underlying coupled reaction-diffusion system and
uniqueness of regular solutions. The proof of existence is based on a combination of parabolic regularization, the
Faedo-Galerkin method, and the monotonicity-compactness method of J.L. Lions. A finite element formulation
is also introduced, for which we establish existence of discrete solutions and show convergence to a weak solution
of the original problem. We close with a numerical example illustrating the behavior of the method and some
features of the model.

Key words. Electro–mechanical coupling, Bidomain equations, Active deformation, Weak solutions, Weak
compactness method, Weak-strong uniqueness, Finite element approximation, Convergence of approximations.

AMS subject classifications. 74F99,35K57,92C10,65M60

1. Introduction. We are interested in the mathematical study of the interaction between
the propagation of the electrical potential through the cardiac tissue, on the one side, and the re-
lated elastic mechanical response, on the other side. The propagation of the electrical potential
through the heart can be described by the so-called bidomain equations (see e.g. [36]). These
are obtained by writing the conservation of electrical fluxes between the extra and intracellular
domains separated by a membrane acting as a capacitor. Within these domains, the conductiv-
ities are of different magnitudes, and they also change depending on the particular orientation
of the cardiac tissue fibers. Muscle deformation can be described by the equations of motion
for a hyperelastic material, written in the reference configuration. The medium itself is active,
in the sense that it is able to contract without the need of external loads, but rather influenced
by intrinsic mechanisms taking place at the microscale. In order to incorporate these effects we
follow an active strain formulation (see e.g. [24, 9]), for which a decomposition of the deforma-
tion gradient into an active and a passive factors is assumed. Such a decomposition implies, in
particular, that the fiber contraction driving the depolarization of the cardiomyocytes rewrites
in the mechanical balance of forces as a prescribed active deformation, rather than as an ad-
ditive contribution to the stress. Moreover, this approach directly incorporates the micro-level
information on the fiber contraction, and fiber directions in the kinematics (through the active
part of the deformation gradient), without the intermediate transcription of their role in terms
of stress [1]. In this paper, the coupling is achieved by considering that the evolution of the
electrical potentials governed by the bidomain equations depend on the deformation gradient,
which enters into the bidomain equations after a transformation of coordinates from Eulerian
to Lagrangian, and by virtue of the Piola identity. The coupling in the opposite direction is
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modeled by assuming that the active part of the deformation incorporates the influence of the
electrical potential into the balance equations for the structural mechanics.

The mathematical analysis of macroscopic cardiac models has been mainly related with the
study of solutions to the bidomain equations and related formulations (see e.g. [5, 7, 8, 11, 21, 36,
41] and the references therein). Existence theorems of general nonlinear elasticity can be found
in [10, 3], whereas applications of those theories to the particular case of hyperelastic materials
and cardiac mechanics and their discretizations include e.g. [25, 18, 15, 33, 37, 4]. However,
even if the literature related to numerical methods and models for cardiac electromechanics is
quite large (see, for instance, [14, 19, 26, 28, 39]), rigorous studies about solvability and stability
of solutions are still not well established. To the authors’ knowledge, the only available existence
results devoted specifically to cardiac electromechanics correspond to those by Pathmanathan
et al. [29, 30], who analyzed a general model where the activation depends on the local stretch
rate, and derived constraints on the initial data. Here, we also assume linearized elasticity
equations, but we follow a somewhat different model (our active strain description depends
only on ionic quantities and we do not consider viscous effects).

We establish existence of weak solutions by means of the Faedo-Galerkin method and
compactness arguments. The fully discrete counterpart employs classical finite element method
with backward Euler discretization in time; moreover, we linearize the equations in order to get
an efficient fully practical numerical scheme. The linearization makes the convergence proof
more delicate than in the continuous case (see § 3 and § 5). We also prove a uniqueness result
for the continuous problem in a weak-strong comparison setting. While some classical estimates
and arguments are sketched, we concentrate on the main analytical aspects of the proofs. In
our presentation, modeling, numerical and implementation details will be reduced as much as
possible, and we refer to [27, 32] for further specifications.

We have organized the contents of this paper as follows. § 2 collects the main aspects of
the cardiac electromechanical model we analyze, presenting the equations of passive nonlinear
mechanics, the bidomain system, and the active-strain-based coupling strategy. We also list
the basic assumptions of the model and provide a definition of weak solution. In § 3 we state
and prove the solvability of the continuous problem employing Galerkin approximations and
classical compactness theory. Then, in § 4 we develop a strong-weak uniqueness argument and
discuss regularity of solutions needed to apply it. The fully discrete linearized finite element
formulation, along with additional analytic arguments developed for the proof of convergence,
and a numerical test are finally presented in § 5.

2. Governing equations for the electromechanical coupling.

2.1. A general nonlinear elasticity problem. Let us consider a homogeneous contin-
uous material occupying in the initial undeformed configuration a bounded domain Ω ⊂ R

d

(d = 3) with Lipschitz continuous boundary ∂Ω. We look for the deformation field u : Ω → R
d

that maps a material particle that originally occupied the position x to its current position
x̂(x) = u. The tensor gradient of deformation is Du, where D denotes the gradient operator
with respect to the material coordinates x. The cardiac tissue is assumed hyperelastic, and
there exists a strain stored energy function W = W(Du) from which constitutive relations
between strain and stresses are obtained. We further assume incompressibility of the material,
that is, the total elastic energy is minimized subject to the usual local constraint det(Du) = 1,
which is enforced via a scalar Lagrange multiplier p, interpreted as pressure. As a measure of
stresses we use the first Piola-Kirchhoff tensor obtained from W by direct differentiation:

P =
∂W
∂(Du)

− pCof (Du),

where Cof (·) is the cofactor matrix. The balance equations for deformations and pressure read
as: Find u, p such that

∇ · P(Du, p) + f = 0 in Ω,

det(Du) = 1 in Ω,
(2.1)



WEAK SOLUTIONS FOR COUPLED CARDIAC ELECTROMECHANICS 3

completed with the Robin boundary data

Pn = αu on ∂Ω, (2.2)

where f is a prescribed body force, n stands for the unit outward normal vector to ∂Ω, and α is
a constant parameter. Evidently, the precise form of the first equation in (2.1) depends on the
particular constitutive relation defining W . For sake of clarity we restrict ourselves to the case
of Neo-Hookean materials, that is, W = 1

2µtr[(Du)2 − I], which gives P = µDu− pCof (Du),
where µ is an elastic modulus. Even if simplified, such a description of the passive response of
the muscle already features a nonlinear strain-stress relationship.

2.2. The bidomain equations. The description of the electrophysiology in the cardiac
tissue is incorporated in the model in the form of the so-called bidomain equations [40]. The
quantities of interest are the intra and extracellular electric potentials (ui = ui(x, t), ue =
ue(x, t) respectively), the transmembrane potential v = v(x, t) := ui − ue, and the so-called
gating or recovery variable w = w(x, t) at (x, t) ∈ ΩT := Ω × (0, T ), where T is the final time
instant. The electrical conductivity of the tissue is represented by the orthotropic tensors

Dk(x) = σl
kdl ⊗ dl + σt

kdt ⊗ dt + σn
kdn ⊗ dn, k ∈ {e, i},

where σs
k = σs

k(x) ∈ C1(R3), k ∈ {e, i}, s ∈ {l, t, n}, are the intra- and extracellular conduc-
tivities along, transversal, and normal to the direction of the fibers, respectively. The fibers
direction being a local quantity, we have ds = ds(x), s ∈ {l, t, n}. The stimulation current ex-
ternally applied to the intra- and extracellular spaces is represented by the functions Iiapp, I

e
app.

The system corresponds to

χcm∂tv −∇ ·
(
Di∇ui

)
+ χIion(v, w) = Iiapp,

χcm∂tv +∇ ·
(
De∇ue

)
+ χIion(v, w) = Ieapp,

∂tw −H(v, w) = 0, (x, t) ∈ ΩT ,

(2.3)

where we recall that v = ui−ue. Here cm and χ are model parameters. Problem (2.3) is provided
with homogeneous Neumann boundary conditions for all fields. The choice of the membrane
model to be used is reflected in the functions H(v, w) and Iion(v, w). For a phenomenological
description of the action potential, it suffices to consider the FitzHugh-Nagumo model [13, 23],
given as in assumption (E.6) below.

2.3. The active strain model for the coupling of elasticity and bidomain equa-

tions. In the so-called active strain model for cardiac modeling (see [1, 9]), the deformation
gradient Du is factorized into a passive part acting at a macroscale (tissue level), and an active
factor operating at the microscale (cellular level), Du = FpFa. This implies that an interme-
diate configuration exists between the reference and the current frames. In that configuration,
we re-write the strain energy in such a way that the stress tensor is given by

P = µDuC−1
a − pCof (Du),

where C−1
a := det(Fa)F

−1
a F−T

a . In order to cover the electrical-to-mechanical coupling, the
active deformation is assumed to depend directly on the electrophysiology through the relation

Fa = I+ γldl ⊗ dl + γtdt ⊗ dt + γndn ⊗ dn,

where for s = l, t, n, γs are quantities whose evolution depends, non-locally in time, on that of
the gating variable w. This is because of the well known property that the onset of mechanical
activation follows closely the dynamics of calcium release rather than repolarization waves [6].
By assuming transverse isotropy and incompressibility at the fiber level, we can write γl, γt
and γn as functions of a parameter γ:

γl,t,n = γl,t,n(γ), (2.4)
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where γl,t,n : R 7→ [−Γl,t,n, 0] are Lipschitz continuous monotone functions. The values Γl,t,n

should be small enough, so that to ensure that detFa stays uniformly far from zero, for γ ∈ R.
The scalar field γ is the solution of the following ODE associated to the solution v of the
bidomain system (2.3):

∂tγ −G(γ, w) = 0, (x, t) ∈ ΩT ,

where G(γ, w) = −Aw−Bγ, for positive parameters A,B (see [35]). It remains to fix the form
of the functions γl,t,n, which we assume to be

γl,t,n = −Γl,t,n
2

π
arctan(γ+/γR), where γR is a reference value.

The mechanical-to-electrical coupling is achieved by pulling back the bidomain equations to
the reference configuration, which, by virtue of the Piola identity, leads to a diffusion term
depending on the deformation gradient Du.

Summarizing, the active strain formulation for the electromechanical activity in the heart
is written as follows (see [27]):

−∇ ·
(
a(x, γ,Du, p)

)
= f in Ω,

χcm∂tv −∇ ·
(
Me(Du)∇̄ue

)
+ χIion = Ieapp in ΩT ,

χcm∂tv +∇ ·
(
Mi(Du)∇̄ui

)
+ χIion = Iiapp in ΩT ,

ui − ue = v in ΩT ,

∂tw −H(v, w) = 0 in ΩT ,

∂tγ −G(w, γ) = 0 in ΩT .

(2.5)

Here, according to the above discussion, we should take

a(x, γ,Du, p) := µDuC−1
a (x, γ)− pCof (Du), (2.6)

and

Mk(Du) := (Du)−1Dk(Du)−T , k ∈ {i, e} (2.7)

Moreover, we have the incompressibility constraint under the form

det(Du) = 1 in Ω, for a.e. t ∈ (0, T ). (2.8)

The system of equations (2.5) has to be completed with suitable initial data for v, w, γ and
with boundary data on ui,e and on the elastic flux a(·, ·, ·, ·).

2.4. Linearizing the elasticity equations. In the remaining part of this paper, for the
sake of simplicity of both numerical and mathematical analysis of the problem we introduce
two modifications into (2.5),(2.7),(2.8). Firstly, we linearize the incompressibility constraint by
imposing

∇ · u = 0 in Ω, for a.e. t ∈ (0, T ); (2.9)

we also linearize the flux in (2.6) with respect to Du by replacing it with

a(x, γ,Du, p) := µDuC−1
a (x, γ)− pI. (2.10)

Introducing the notation σ(x, γ) for µC−1
a (x, γ), we rewrite the first equation of (2.5) as

−∇ · (σ(x, γ)Du) +∇p = f .
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The linearization results, however, in the fact that the matrices Mk, k = i, e in (2.7) may
become ill-defined. We proceed to a linearization and to a truncation, so that to ensure the
boundedness and coercivity (see (E.3) below) of Mi,Me:

Mk(Du) := Dk − Tδ(∆k(Du) + ∆k(Du)T ), where ∆k(Du) := (Du − I)Dk, k ∈ {i, e},
(2.11)

and Tδ is a suitable truncation function that coincides with the identity map in a neighborhood
of the origin. For the sake of being definite, we set

Tδ(M) :=

{
M , ‖M‖ ≤ δ
M δ

‖M‖ , ‖M‖ ≥ δ

with some δ < 1.
Remark 2.1. The amplitude of contractions in the heart tissue is rather large, which

makes the validity of the linearized model questionable, so we cannot claim that in its present
form it is able to represent physiological regimes. However, we consider the subsequent analysis
as a baseline for future developments including more accurate and more general models. In
any case, we will briefly address the influence of the linearization and of the truncation on the
solutions of (2.5) from a numerical viewpoint, in § 5.

2.5. The problem to be solved and its weak formulation. Let us consider the
following class of problems:

−∇ ·
(
σ(x, γ)Du

)
+∇p = f , ∇ · u = 0 in Ω, for a.e. t ∈ (0, T ), (2.12)

cmχ∂tv −∇ ·
(
Mi(x,Du)∇̄ui

)
+ χIion(v, w) = Iiapp(t, x) in ΩT , (2.13)

cmχ∂tv +∇ ·
(
Me(x,Du)∇̄ue

)
+ χIion(v, w) = Ieapp(t, x) in ΩT , (2.14)

v = ui − ue in ΩT , (2.15)

∂tw −H(v, w) = 0 in ΩT , (2.16)

∂tγ −G(w, γ) = 0 in ΩT . (2.17)

Equations (2.12),(2.13),(2.14) are complemented with the boundary data (including the lin-
earization of (2.2)):

σ(x, γ)Dun− pn = αu on ∂Ω, for a.e. t ∈ (0, T ) (2.18)

for some α > 0 and

Mk(x,∇uk) · n = 0 on (0, T )× ∂Ω, k = i, e (2.19)

(different boundary conditions can be imposed on ui,e; the choice of Neumann conditions (2.19)
results in the compatibility constraint (2.22) below). The initial data are:

v(0, ·) = v0, w(0, ·) = w0, γ(0, ·) = γ0 in Ω. (2.20)

The following properties of the model (2.12)–(2.17) and (2.18)–(2.20) are instrumental for
the subsequent analysis:

(E.1)
(
σ(x, γ)

)
x∈Ω,γ∈R

is a family of symmetric tensors, uniformly bounded and positive

definite:

∃c > 0 : for a.e. x ∈ Ω, ∀γ ∈ R ∀M ∈ M3×3
1

c
|M|2 ≤ (σ(x, γ)M) : M ≤ c|M|2;

(E.2) the map γ 7→ σ(·, γ) is uniformly Lipschitz continuous;

(E.3)
(
Mi,e(x,M)

)
x∈Ω,M∈M3×3

is a family of symmetric matrices, uniformly bounded and

positive definite:

∃c > 0 : for a.e. x ∈ Ω, ∀M ∈ M3×3 ∀ξ ∈ R
3 1

c
|ξ|2 ≤ (Mi,e(x,M)ξ) · ξ ≤ c|ξ|2;
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(E.4) the maps M 7→ Mi,e(·,M) are uniformly Lipschitz continuous;

(E.5) the function G is given by G(γ, w) = η1(βw − η2γ) with β, η1, η2 > 0;
(E.6) the functions H and Iion are given by the FitzHugh-Nagumo kinetics

H(v, w) = Av −Bw, Iion(v, w) = j(v) + Cw,

where j ∈ C1(R) and A,B,C are positive parameters. Moreover, we assume that there
exist constants A1, A2, A3 > 0 such that

j(0) = 0,
j(v1)− j(v2)

v1 − v2
> −A1, ∀v1 6= v2,

0 < A2 ≤ lim inf
|v|→∞

j(v)

v3
≤ lim sup

|v|→∞

j(v)

v3
≤ A3.

(2.21)

In particular, B : v 7→ j(v)/v + A1 is a non-negative function that satisfies, for |v|
large enough, 1

2A2|v|2 ≤ B(v) ≤ 2A3|v|2; and the function v 7→ vB(v) = j(v) +A1v is
monotone increasing;

(E.7) the following compatibility condition holds

∫

Ω

Iiapp =

∫

Ω

Ieapp and

∫

Ω

ue(x, t) dx = 0 for a.e. t ∈ (0, T ); (2.22)

(E.8) the data v0, w0, γ0 lie in L2(Ω) whereas f ∈ L2(ΩT )
3 and Ii,eapp ∈ L2(ΩT ).

Note that, in practice, one starts with an undeformed configuration, i.e., with γ ≡ 0.
Observe also that the above system (2.5), (2.9) with a(·, ·, ·, ·) and Mi,e(·, ·) given by (2.10),

(2.11) falls within the framework described by (2.12)–(2.20) and (E.1)–(E.8). Indeed, it is
enough to check that assumptions (E.1)–(E.4) are satisfied (assumptions (E.5)–(E.8) are al-
ready enforced). Let us stress that due to the assumption (2.4), the properties (E.1),(E.2) hold.
Similarly, the definition (2.11) along with the truncation Tδ, with δ small enough with respect
to the eigenvalues of matrices Dk, guarantees (E.3),(E.4).

Due to the properties (E.1)–(E.8), the following weak formulation makes sense.

Definition 2.2. A weak solution of problem (2.12)–(2.20) is U =
(
u, p, ui, ue, v, w, γ

)

such that:
(i) u ∈ L2(0, T ;H1(Ω)3), p ∈ L2(ΩT ), ui,e ∈ L2(0, T ;H1(Ω));

v ∈ E := L2(0, T ;H1(Ω)) ∩ L4(ΩT ) with ∂tv ∈ E′ := L2(0, T ; (H1(Ω))′) + L4/3(ΩT );
and γ, w ∈ C1(0, T ;L2(Ω));

(ii) For a.e. t ∈ (0, T ) for all v ∈ H1(Ω)3 there holds

∫

Ω

(
σ(x, γ)Du : Dv +Dp · v

)
=

∫

Ω

f · v +

∫

∂Ω

αu · v (2.23)

(in the last integral, u,v are short-cuts for the traces of u,v on ∂Ω)
and moreover ∇ · u = 0 a.e. in ΩT , which can be expressed as

∀q ∈ H1
0 (Ω)

∫

Ω

u · ∇q = 0. (2.24)

(iii) The distributional derivative ∂tv can be identified with an element b ∈ E′ such that for
all ξ ∈ E with ξt ∈ L∞(ΩT ) and ξ(0, ·) = 0, there holds

∫ T

0

cmχ〈b, ξ〉+
∫ T

0

∫

Ω

(
Mi(x,Du)∇ui · ∇ξ + χIion(v, w)ξ

)
=

∫ T

0

∫

Ω

Iiappξ, (2.25)

∫ T

0

cmχ〈b, ξ〉 −
∫ T

0

∫

Ω

(
Me(x,Du)∇ue · ∇ξ + χIion(v, w)ξ

)
=

∫ T

0

∫

Ω

Ieappξ, (2.26)
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with

∫ T

0

〈b, ξ〉 = −
∫ T

0

∫

Ω

v∂tξ −
∫

Ω

v0ξ(0, ·); (2.27)

in addition, v = ui − ue a.e. on ΩT ;
(iv) For a.e. t ∈ (0, T ) the equations (2.16),(2.17) are fulfilled in L2(Ω), and w(0, ·) = w0,

γ(0, ·) = γ0 a.e. in Ω.
Remark 2.3. Although the variational formulation (2.25)–(2.27) is standard in the context

of degenerate parabolic problems, here we have a delicate point. Because ui,e do not necessarily
belong to L4(ΩT ), it is not allowed to take ui for the test function in (2.25) nor ue, for the test
function in (2.25). Yet, thanks to the regularization approach presented in [2, Lemma 2.3], it
is possible to sum up the weak formulation (2.25) with ξ = ui and the weak formulation (2.25)
with ξ = ue. Indeed, our assumptions include v ∈ L4(ΩT ) and Iion(v, w) ∈ L4/3(ΩT ), thus the
term

Iion(v, w)v = Iion(v, w)(ui − ue) = Iion(v, w)ui − Iion(v, w)ue,

belongs to L1(ΩT ) even if the two terms Iion(v, w)ui,e can be non-integrable.

3. Existence proof by convergence of Galerkin approximations for a regularized

problem. In this section, we prove the main existence result of this paper and prepare the
ground for proving convergence of numerical approximations of the system.

Theorem 3.1. Assume that conditions (E.1)–(E.8) hold. If v0, w0, γ0 ∈ L2(Ω) and f ∈
L2(ΩT )

3, Ii,eapp ∈ L2(ΩT ), then there exists a weak solution U =
(
u, p, ui, ue, v, w, γ

)
to (2.12)–

(2.17) with the boundary and initial data specified as in (2.18)–(2.20).
Although the fixed-point techniques are also well suited for the proof of existence, here

we prefer to treat it with the Galerkin method in space. A parabolic approximation similar
to the one proposed in [5] is used to ensure existence of approximate solutions. The proof
of convergence of the finite element approximation of § 5 will follow the same guidelines, but
the parabolic regularization will be replaced by the linearized time-implicit discretization. In
particular, except for the L4 bound, all the estimates that we establish in this section on the
sequence of approximate solutions will also be valid for the numerical approximate solutions
constructed in § 5.

3.1. Construction of approximate solutions. We start by fixing some increasing, as
h ↓ 0, families of linear finite-dimensional subspaces (Vh)h and (V h)h of H1(Ω)3, H1(Ω), re-
spectively, such that ∪h>0V

h is dense in H1(Ω)3 and ∪h>0V
h is dense both in L2(Ω) and

in H1(Ω). In view of the structure of the FitzHugh-Nagumo nonlinearity Iion (see assump-
tion (E.6) ), it is convenient to ask for the inclusion V h ⊂ L4(Ω). As usual, we require the
Ladyzhenskaya-Babuška-Brezzi (or inf-sup) condition

∃β > 0 : ∀h > 0, min
q∈V h,q 6=0

max
v∈Vh,v 6=0

∫
Ω q∇ · v

‖q‖L2‖v‖H1

≥ β > 0. (3.1)

Such sequences of finite-dimensional subspaces do exist, see in particular § 5.
Then we look for a discrete solution Uh =

(
uh, ph, uhi , u

h
e , v

h, wh, γh
)
with uh ∈ L2(0, T ;Vh)

and for ph ∈ L2(0, T ;V h) and uhi , u
h
e , v

h, wh, γh ∈ C1(0, T ;V h) that satisfy the Galerkin for-
mulation of (2.12)–(2.20). This means that each of the equations of the system is recast into
a weak formulation on ΩT where time derivatives and initial conditions (projected on V h by
means of the L2− hilbertian projection PV h) are included in a strong sense. E.g., the discrete
analogue of (2.25),(2.27) writes

vh(0) = PV h(v0) and, ∀ξ ∈ V h, cmχ
d

dt

∫

Ω

vh(t)ξ
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+

∫

Ω

(
Mi(x,Duh(t))∇uhi (t) · ∇ξ + χIion(v

h(t), wh(t))ξ
)
=

∫

Ω

Iiapp(t)ξ. (3.2)

If necessary, Ii,eapp can be regularized in time. Further, the discrete analogue of (2.23),(2.24)
reads, pointwise in t,

∀v ∈ V
h

∫

Ω

σ(x, γh(t))Duh(t) : Dv +Dph(t) · v =

∫

Ω

f (t) · v +

∫

∂Ω

αuh(t) · v, (3.3)

∀q ∈ V h

∫

Ω

uh(t) · ∇q = 0.

Notice that after discretization, we have a system of ODEs coupled to a system of algebraic
equations to be solved at every time t. While the ODE part of the system obeys the conditions
of the Cauchy-Lipschitz theorem, because of the coupling with the algebraic part existence
of a discrete solution is not obvious. To prove existence of Uh, we regularize the Galerkin
discretization in the spirit of [5]. Namely, in the left-hand side of the ODE in (3.2) we add
the term ε d

dt

∫
Ω
uhi (t)ξ (the term −ε d

dt

∫
Ω
uhe (t)ξ is added into the analogous equation written

for uhe ) and we add the term ε d
dt

∫
Ω
uh(t)v into the left-hand side of (3.3). As for Ii,eapp, the

source term f can be regularized in t. The initial data can be fixed to uh,ε(0) = 0, uε,hi =
PV h(v0)/2, u

ε,h
e = −PV h(v0)/2. Then the system on the new unknown Uh,ε becomes a well-

posed ODE problem; solutions are defined globally on [0, T ] because estimates preclude finite-
time explosion. Further, the estimates we establish in § 3.2 below are actually valid also for
ε > 0 and moreover, they are independent of the parabolic regularization parameter ε. Since
our functions take values into a finite-dimensional space, from these bounds it is easy to deduce
strong compactness of the family (vh,ε, wh,ε, γh,ε)ε in C0([0, T ];V h)3 and the weak compactness

of the family (uh,εi , uh,εe , ph,ε)ε in L2(0, T ;V h)3 as well as the weak compactness of (uh,ε)ε in

L2(0, T ;Vh). The strong compactness of (Duh,ε)ε needed to conclude the passage to the
limit in the parabolic regularization of (3.2), as ε → 0, is obtained using the Minty-Browder
argument, as in § 3.3 below. Thus, passing to the limit ε→ 0 we prove existence of Uh solving
the Galerkin discretization of problem (2.12)–(2.20).

3.2. A priori estimates. Assuming that there exists a solution to the above problems,
we derive estimates that are uniform in h > 0 (addition of a parabolic penalization with ε > 0
in the equations for uh, uhi , u

h
e leads to the same estimates, provided uh(0), uhi (0), u

h
e (0) remain

bounded).
First, according to the definition of Galerkin approximations we are authorized to take uh

and ph for the test functions in the weak formulations of the first and the second equations of
(2.12), respectively. Summing up the resulting identities, we deduce that

∫ T

0

∫

Ω

(σ(x, γh)Duh) : Duh +

∫ T

0

∫

∂Ω

αuh · uh =

∫ T

0

∫

Ω

f · uh.

By Cauchy-Schwarz and Poincaré inequalities, we deduce the uniform bound

‖uh‖L2(0,T ;H1(Ω)3) ≤ C;

here and until the end of the proof, C is a generic constant that may possibly depend on the
L2 norms of the initial data and source terms of the system and on the constants appearing in
assumptions (E.1)–(E.6), but not on h. Then, from the Galerkin formulation and the inf-sup
condition (3.1) we derive the uniform L2 estimate on ph:

‖ph‖L2(ΩT ) ≤ C.

Next, we impose the relation (2.15): vh = uhe−uhi , and we look at the part (2.14),(2.13),(2.16)
of the system. Due to the assumption V h ⊂ L4(Ω) we are allowed to take uhe for the test func-
tion in (2.14) and uhi for the test function in (2.13) and make the difference; to this, we add
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(2.16) with the test function χC/Awh. Notice that due to the time-regularity of uhi,e and wh,

we do have (∂tv
h)vh = ∂t(v

h)2/2. In time, we integrate the equations on (0, s) for every s < T ,
which yields the equality

∫ s

0

∫

Ω

(
χ(j(vh)vh +

BC

A
(wh)2) + (Me(x,Duh)∇uhe ) · ∇uhe + (Mi(x,Duh)∇uhi ) · ∇uhi

)

+

∫

Ω

cmχ

2
(vh)2(s, ·) =

∫

Ω

cmχ

2
(vh0 )

2 +

∫ s

0

∫

Ω

Iiappu
h
i − Ieappu

h
e . (3.4)

The properties (2.21) of j along with the Gronwall lemma (see, e.g., [31]) yield the following
uniform in h estimates:

‖uhi,e‖L2(0,T ;H1(Ω)) + ‖vh‖L4(ΩT ) + ‖wh‖L2(ΩT ) ≤ C.

Finally, from the L2 estimate on vh and from the Galerkin approximation of equation (2.17)
satisfied by γh we deduce a uniform L2(ΩT ) estimate on γh.

Further, we consider the time translates (T τvh)(t, ·) := vh(t+τ, ·)−vh(t, ·), (T τwh)(t, ·) :=
wh(t+τ, ·)−wh(t, ·) and (T τγh)(t, ·) := γh(t+τ, ·)−γh(t, ·), and integrate the Galerkin approx-
imations of (2.14), (2.16), (2.17), respectively, between t and t + τ (with 0 < τ < T ). Taking
for the test functions, the corresponding translates T τvh, T τwh and T τγh, respectively, using
the previous estimates, the form of the FitzHugh-Nagumo nonlinearity, the Fubini theorem and
the Hölder inequality, we find

∫ T−τ

0

∫

Ω

(
|vh(t+ τ, ·)− vh(t, ·)|2 + |wh(t+ τ, ·)− wh(t, ·)|2 + |γh(t+ τ, ·)− γh(t, ·)|2

)
≤ C τ.

In addition, we get a uniform estimate of space translates of wh and of γh from the uni-
form L2 estimate of ∇vh. Indeed, notice that the equations (2.16),(2.17) are linear and x is
merely a parameter of the ODEs with respect to t; moreover, all the terms in their Galerkin
approximations of (2.16),(2.17) take values in the same space V h. It follows that the equa-
tions are satisfied pointwise. Therefore, we inherit analogous ODEs on the space translates
(Jrwh)(·, x) = wh(·, x + r) − wh(·, x) and (Jrγh)(·, x) = γh(·, x + r) − γh(·, x) (the term vh

should be replaced by (Jrvh)(·, x) = vh(·, x+ r) − vh(·, x)):

∂t(J
rwh)−H(Jrvh, Jrwh) = 0, ∂t(J

rγh)−G(Jrwh, Jrγh) = 0.

This system is satisfied pointwise; therefore we can apply Jrwh and Jrγh as the test functions
(notice that here we have ODEs, and no boundary condition is needed). Because from the

L2(0, T ;H1(Ω)) estimate of vh we get
∫ T

0

∫
Ωr

|Jrvh|2 ≤ C|r|2 (here r ∈ R
3 and Ωr := {x ∈

Ω |xr ∈ Ω}), the above system of ODEs readily yields the estimate

sup
r 6=0,|r|≤δ

∫ T

0

∫

Ωr

(
|Jrwh|2 + |Jrγh|2

)
≤ C |r|2 + T sup

r 6=0,|r|≤δ

∫

Ωr

(
|Jrwh

0 |2 + |Jrγh0 |2
)
, (3.5)

whose right-hand side vanishes as r → 0, uniformly in h.

3.3. Compactness properties and passage to the limit. In order to pass to the limit
in the Galerkin formulation for Uh, we proceed as follows. Firstly, the passage to the (weak)
limit in the ODEs is straightforward, since they are linear. In order to pass to the limit in the
PDEs involved in the system, we notice that we also have the strong convergence of γh that
implies a strong convergence of σ(x, γh). In the next step, we pass to the (weak) limit in the
Galerkin formulation of (2.12). Further, because the limit u solves the limit equation (2.12),
using the Minty-Browder trick (we can also use the technique of Young measures, see [16] and
§ 5) we are able to assert that Duh actually converges to Du strongly in L2(ΩT ). Finally,
the strong compactness of Duh proved above implies strong convergence of Mi,e(x,Duh) to
the limit Mi,e(x,Du). Then it is easy to pass to the limit in the corresponding equations
(2.14),(2.13), following e.g. the work [2].
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4. Weak-strong comparison and uniqueness of regular solutions. The strategy for
proving uniqueness relies on straightforward estimates on the difference U − Û , in particular,
the Lipschitz continuity properties (E.2),(E.4) are instrumental. However, in order to obtain
exploitable estimates on U − Û , higher regularity solutions should be considered.

4.1. Strong-weak uniqueness argument. Let us first introduce a suitable notion of
strong solution, in relation with the uniqueness argument developed in Theorem 4.2.

Definition 4.1. We will say that U =
(
u, p, ui, ue, v, w, γ

)
is a bounded-gradient weak

solution1 of problem (2.12)–(2.20) if it is a weak solution in the sense of Definition 2.2 and
moreover, one has the following regularity:

Du ∈ L∞(ΩT )
3×3, ∇ui,e ∈ L∞(ΩT )

3.

Such regularity of weak solutions is not possible without additional assumptions on the
data. We postpone an heuristic discussion of regularity to § 4.2.

We have the following weak-strong uniqueness and continuous dependence result.

Theorem 4.2. Assume that U =
(
u, p, ui, ue, v, w, γ

)
is a bounded-gradient weak solution

of problem (2.12)–(2.20) in the sense of the above definition, and Û =
(
û, p̂, ûi, ûe, v̂, ŵ, γ̂

)
is

a weak solution in the sense of Definition 2.2 corresponding to the data f̂ , Îiapp, Î
e
app, v̂0, ŵ0, γ̂0.

Then there exists K = K(‖Du‖∞, ‖∇ui,e‖∞) (depending also on the different constants involved

in assumptions (E.1)–(E.6) and on the initial and source data for both U and Û) such that

‖(v, w, γ)− (v̂, ŵ, γ̂)‖L∞(0,T ;L2(Ω))3

+ ‖u− û‖L2(0,T ;H1(Ω)3) + ‖p− p̂‖L2(ΩT ) + ‖(ui, ue)− (ûi, ûe)‖L2(0,T ;H1(Ω))2

≤ K(‖Du‖∞, ‖∇ui,e‖∞)
(
‖f − f̂‖L2(ΩT )3 + ‖(Iiapp, Ieapp)− (Îiapp, Î

e
app)‖L2(ΩT )2

+ ‖(v0, w0, γ0)− (v̂0, ŵ0, γ̂0)‖L2(Ω)3

)
.

In particular, if a bounded-gradient weak solution exists for data f , Iiapp, I
e
app, v0, w0, γ0, then it

is a unique weak solution to the problem.
Proof. Consider equations (2.12) written for u and û; using u − û as test function, we

obtain
(
σ(x, γ)Du − σ(x, γ̂)Dû

)
: (Du −Dû)

=
(
σ(x, γ̂)(Du −Dû)

)
: (Du−Dû) +

(
(σ(x, γ) − σ(x, γ̂))Du

)
: (Du−Dû). (4.1)

Then, thanks to Young inequality, the coercivity assumption (E.1), and the Lipschitz continuity
(E.2), we obtain for all t ∈ (0, T )
∫

∂Ω

α

2
|u−û|2(t)+

∫

Ω

1

2c
|Du−Dû|2(t) ≤ C

(∫

Ω

|f−f̂ |2(t)+‖Du‖L∞(ΩT )

∫

Ω

|γ−γ̂|2(t)
)
. (4.2)

Here and in the sequel, C is a generic constant depending on the data of both systems (for U
and Û) and on the constants in (E.1)–(E.6). Similarly, we use the ODEs (2.17) for both γ and
γ̂ with test function γ − γ̂ and deduce

∫

Ω

|γ − γ̂|2(t) ≤ C
(∫

Ω

|γ0 − γ̂0|2 +
∫ t

0

∫

Ω

|w − ŵ|2(s) ds
)
. (4.3)

Finally, we combine equations (2.13)–(2.16) written for U and Û in the same way as for the
proof of (3.4); we use [2, Lemma 2.3] in order to justify the possibility to take test functions

1A related concept of bounded-gradient solutions can be found in e.g. [20].
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ui,e− ûi,e in (2.13),(2.14), respectively. Rearranging the terms as in (4.1), using in addition the
fact that

(vB(v)− v̂B(v̂))(v − v̂) ≥ 0,

we find for a.e. t ∈ (0, T ) the following bound:

∫

Ω

(cmχ
2

|v − v̂|2(t) + BC

A
|w − ŵ|2(t)

)
+

1

2c

∫ t

0

∫

Ω

(
|∇ui −∇ûi|2(s) + |∇ue −∇ûe|2(s) ds

)

≤ C
(∫

Ω

(
‖v0 − v̂0|2 + |w0 − ŵ0|2

)
+

∫ t

0

∫

Ω

|(Iiapp, Ieapp)− (Îiapp, Î
e
app)|2(s) ds

+ ‖(∇ui,∇ue)‖L∞(ΩT )2×3

∫ t

0

∫

Ω

|Du−Dû|2(s) ds

+

∫ t

0

∫

Ω

(
|v − v̂|2(s) + |w − ŵ|2(s)

)
ds
)
. (4.4)

Then it is easy to combine (4.2)–(4.4) and obtain a Gronwall-type inequality that bounds U−Û
in the way stated in the theorem. Indeed, setting

U(t) := ‖Du−Dû‖2L2(Ω)3×3 , Γ(t) := ‖γ − γ̂‖L2(Ω)(t),

R(t) =
cmχ

2
‖v − v̂‖2L2(Ω)(t) +

BC

A
‖w − ŵ‖2L2(Ω)(t),

D(t) := ‖f − f̂‖2L2(Ω)3(t) + ‖(Iiapp, Ieapp)− (Îiapp, Î
e
app)‖2L2(Ω)2(t)

+‖(v0, w0, γ0)− (v̂0, ŵ0, γ̂0)‖2L2(Ω)3 ,

substituting (4.3) into the right-hand side of (4.2) then substituting the obtained inequality
into the right-hand side of (4.4), dropping nonnegative terms we get

R(t) ≤ K
(
D(t) +

∫ t

0

R(s) ds
)
, R(0) ≤ C

(
‖v̂0 − v0‖2L2(Ω) + ‖ŵ0 − w0‖2L2(Ω)

)

with K as in the statement of the theorem. This permits to bound ‖(v, w) − (v̂, ŵ)‖L2(Ω)2(t)
thanks to the Gronwall lemma. Then with the help of (4.3) we also bound ‖γ − γ̂‖L2(Ω)(t).
Next, with (4.2) we bound ‖Du − Dû‖L2(Ω)3×3(t) and ‖u − û‖L2(∂Ω)3(t), which implies the
H1(Ω)3 bound on (u− û)(t), thanks to Poincaré inequality. Now, the bound on ‖p− p̂‖L2(Ω)(t)
follows from (2.12) written for u(t) and û(t), using a test function v ∈ H1(Ω) such that
∇ · v = p(t) − p̂(t). Such a function can be constructed for each t by taking v = ∇θ using the
auxiliary Dirichlet problem −∆θ = (p − p̂) in Ω̃, θ = 0 on ∂Ω̃, where Ω̃ is a regular domain
containing Ω; we have θ ∈ H2(Ω̃) by the classical elliptic regularity results. Finally, with (4.4)
we also achieve the desired bounds on ‖∇ui,e −∇ûi,e‖L2(Ω)(t).

4.2. On the regularity of weak solutions. While we cannot prove regularity of weak
solutions to problem (2.12)–(2.20) even for regular data, let us give some arguments that might
help establishing the boundedness of Du and ∇ui,e, in the case of sufficiently regular initial
data and for matrices σ(x, γ) with weak enough anisotropy.

Indeed, since v ∈ L2(0, T ;H1(Ω)), from the two ODEs on w and γ and an H1 regularity
assumption on w0, γ0 we deduce that w, γ ∈ H1(0, T ;H1(Ω)). Now we can look at equation
(2.12) and attempt for establishing a Hölder C1,α regularity or a Calderón-Zygmund regularity.
Should this be the case, taking f (t) ∈ Lr(Ω) with r > 3, using Morrey’s embedding inequality
we would find a C1,α(Ω) bound on Du. Notice that it seems difficult to justify the continuity
of x 7→ σ(x, γ(t, x)) before we justify the continuity of x 7→ v(t, x); therefore in the subsequent
analysis we assume that the coefficients of the elliptic equation (2.12) with incompressibility
constraint satisfy only an L∞ bound, without additional regularity required for the classical
Caldéron-Zygmund approach. We have not found in the literature any results that apply in this
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situation2. But, if one replaces the incompressible elasticity model by a nearly incompressible
one, then Calderón-Zygmund regularity results are available (see, e.g., [22]) either for VMO

regularity of coefficients (VMO is the space of functions of vanishing mean oscillation, see,
e.g., [17]), or under the Cordès condition which strongly restricts the spread of eigenvalues of
a merely L∞ diffusion matrix (see [22]). Namely, the Cordès condition (see [38, 22]) requires
that the eigenvalues λ1, λ2, λ3 of the 3× 3 positive definite diffusion matrix satisfy

2(λ21 + λ22 + λ23) < (λ1 + λ2 + λ3)
2. (4.5)

The VMO regularity of diffusion coefficients is almost as difficult to obtain as the C1,α reg-
ularity: it would require, e.g., an additional H3/2(Ω) regularity of γ(t, ·) which in turn would
require the same regularity of v(t, ·). On the contrary, the Cordès assumption is an a priori
hypothesis that is realistic for eigenvalues of the family of matrices (σ(x, γ))x∈Ω,γ∈R.

In order to continue, let us assume that one can justify an L∞(ΩT ) bound on v:

v ∈ L∞(ΩT ) (H.1)

in this case, for bounded initial data we also get L∞(ΩT ) bound on w, γ and on ∂tw, ∂tγ. Then
under an ad hoc assumption on ∂tf it is easy to obtain the L∞(ΩT ) bound on ∂tDu. With
this bound in hand, using the technique of [5] we would deduce L2(ΩT ) regularity for ∂tv valid
under assumption (H.1) and for an H1 datum v0. Notice that the estimate of ‖∂tv‖L2(ΩT ) is
obtained in [5] for the solution constructed at the limit of a parabolic regularization (cf. § 3
above); but in fact the estimate is valid for any solution, because the uniqueness of a weak
solution for (2.3) holds true (one can use the same arguments as in [2, Th. 2.4]). Then we have
to analyze the regularity of ui, ue: e.g., for ui we have for a.e. t ∈ (0, T ),

−∇ ·
(
Mi(x,Du)∇̄ui

)
= si(t, x) := −cmχ∂tv − χIion(v, w) + Iiapp(t, x), (4.6)

in Ω with the appropriate boundary conditions. It should be stressed that under assumption
(H.1), we have si ∈ L2(Ω) for a.e. t. Further, Calderon-Zygmund regularity for (4.6) holds true.
Indeed, while the Cordès condition is not realistic for the family of matrices Mi,e(x,Du(t, x)),
we can use the already justified Hölder continuity of Du(t, ·); in this case, we need to require
the regularity of Mi,e in x. Unfortunately, this does not ensure the L∞ bound on ∇ui,e, but
only an L2(0, T ;H1(Ω)) bound. In order to prove that U is a bounded-gradient solution, one
has to require some time regularity of the source terms and to assume in addition that

∂tv ∈ L∞(ΩT ). (H.2)

In conclusion, existence on bounded-gradient solutions can be analyzed rigorously if we
replace the incompressible elasticity model by the more accurate nearly incompressible one; if
we impose the Cordès restriction (4.5) on the spread of eigenvalues of the matrices in assump-
tion (E.1), a space regularity of matrices in assumption (E.3) and a time regularity of source
terms; and if we assume or justify the bounds (H.1),(H.2). Let us stress that using the same
analytical and numerical techniques as those we used in this paper, one can treat the coupled
electromechanical system using a nearly incompressible elasticity model. We refer to [32] for
the precise formulation and numerical results on such model.

5. Numerical approximation. Here, we present the finite element method for approxi-
mation of the problem studied in the previous section, the associated numerical results and a
critical analysis of validity of the approximations made in § 2.4.

2 In presence of the incompressibility constraint, Calderón-Zygmund regularity results seem to be known
only in the Laplacian case (see in particular [12] for 3D Stokes equations), and generalization of these results
would be a huge work on its own.
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5.1. A finite element method. Let Th be a regular partition of Ω into tetrahedra K
with boundary ∂K and diameter hK . We define the mesh parameter h = maxK∈Th

{hK} and
the associated finite element spaces V h (respectively, Vh), for the approximation of pressure,
electrical potentials and ionic variables (respectively, of displacements). In order to satisfy
the discrete Ladyzhenskaya-Babuška-Brezzi stability condition (3.1), piecewise quadratic finite
elements are used to approximate the displacements field, while for pressure, electrical potentials
and ionic variables, we use piecewise linear elements. That is, the involved spaces are defined
as

V h = {s ∈ C0(Ω̄) : v|K ∈ P1(K) for all K ∈ Th},
V

h = {v ∈ C0(Ω̄) : v|K ∈ P2(K)3 for all K ∈ Th}.

In order to lighten the notation, in this section we put χ = cm = 1 (the general case is
completely analogous). The semidiscrete Galerkin finite element formulation used in § 3.1 then
reads: For t > 0, find uh ∈ V

h, uhi (t), u
h
e (t), v

h(t), wh(t), γh(t), ph(t) ∈ V h such that (with the
standard finite element notation for L2 scalar products) one has

(
σ(x, γh(t))Duh(t),Dψh

)
Ω
+ (ph(t),∇ · ψh)Ω = (fh, ψh)Ω + (αuh(t), ψh)∂Ω

(uh(t),∇φh)Ω = 0

d

dt
(vh(t), φh)Ω +

(
Mi(x,Duh(t))∇uhi (t),∇φh

)
Ω
=

(
Iiapp − Iion(v

h(t), wh(t)) , φh
)
Ω

d

dt
(vh(t), φh)Ω −

(
Me(x,Duh(t))∇uhe (t),∇φh

)
Ω
=

(
Ieapp − Iion(v

h(t), wh(t)) , φh
)
Ω

d

dt
(wh(t), φh)Ω = (H(vh(t), wh(t)), φh)Ω,

d

dt
(γh(t), φh)Ω = (G(vh(t), γh(t)), φh)Ω,

(5.1)

for all ψh ∈ V
h and all φh ∈ V h; one also sets vh(0) = PV h(v0) (analogous initialization

is used for wh and γh). A classical backward Euler integration method is employed for the
time discretization of (5.1) with time step δt = T/N , moreover, we linearize and decouple the
resulting time-implicit scheme by employing γh,n−1 (respectively, Duh,n−1 ) in the equation

on uh,n (respectively, in the equations on uh,ni,e ) and by linearizing Iion with the help of the new
function

I linion : (v, ṽ, w) 7→ vB(ṽ)−A1v + Cw where B : z 7→ j(z)

z
+A1 ≥ 0.

This results in the following fully discrete method: find uhi (t), u
h
e (t), v

h(t), wh(t), γh(t), ph(t) ∈
V h and uh ∈ V

h such that

uh(t, x) =

N∑

n=1

uh,n(x)11((n−1)δt,nδt](t),

(
uhi , u

h
e , v

h, wh, γh, ph
)
(t, x) =

N∑

n=1

(
uh,ni , uh,ne , vh,n, wh,n, γh,n, ph,n

)
(x)11((n−1)δt,nδt](t),

satisfy the algebraic system of equations
(
σ(x, γh,n−1)Duh,n,Dψh

)
Ω
+ (ph,n,∇ · ψh)Ω = (fh,n, ψh)Ω + (αuh,n, ψh)∂Ω

(uh,n,∇φh)Ω = 0

(
vh,n−vh,n−1

δt
, φh)Ω +

(
Mi(x,Duh,n−1)∇uh,ni ,∇φh

)
Ω
=

(
Iiapp− I linion(v

h,n, vh,n−1, wh,n) , φh
)
Ω

(
vh,n−vh,n−1

δt
, φh)Ω −

(
Me(x,Duh,n−1)∇uh,ne ,∇φh

)
Ω
=

(
Ieapp− I linion(v

h,n, vh,n−1, wh,n) , φh
)
Ω
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(
wh,n−wh,n−1

δt
, φh)Ω = (H(vh,n, wh,n), φh)Ω,

(
γh,n−γh,n−1

δt
, φh)Ω = (G(vh,n, γh,n), φh)Ω,

for all ψh ∈ V
h, φh ∈ V h and for all n ∈ {1, . . . , N}; the initial condition takes the form

(vh,0, wh,0, γh,0) = (PV h(v0),PV h(w0),PV h(γ0)).

Here Ii,happ(·), Ie,happ(·) are time averages over [(n− 1)δt, nδt] of Iiapp, I
e
app, respectively.

5.2. A glimpse into the convergence proof. Consider solutions to the fully discrete
system, and let us indicate some milestones of its convergence analysis. As in the continuous
case, using the same kind of test functions, using the convexity inequality (an − an−1)an ≥
(an)2

2 − (an−1)2

2 to treat the time-discretized terms, we obtain uniform in h and δt estimates on
the discrete solutions:

‖uh‖L2(0,T ;H1(Ω)3) + ‖ph‖L2(ΩT ) + ‖uhi,e‖L2(0,T ;H1(Ω)) + ‖(vh, wh, γh)‖L2(ΩT ) ≤ C (5.2)

and also the following uniform in h estimate related to linearization of the nonlinearity Iion

N∑

n=1

δt

∫

Ω

|vh,n|2B(vh,n−1) ≤ C (5.3)

(the latter estimate replaces, in a weaker sense, the L4(ΩT ) estimate of vh). The details of the
estimates are very close to those given in [2] for the linearized implicit scheme. Estimate (5.2)
implies in particular the invertibility of the matrix of the discrete system that is solved on each
time step.

Now, similarly to § 3.2 we get space and time translation estimates on (wh)h and on
(γh)h. For the time estimates, we introduce, e.g., w̄h the piecewise affine in t function in
W 1,∞([0, T ];V h) interpolating the states (wh,n)n=0..N ⊂ V h at the points (nδt)n=0..N . Then
we have w̄h

t = H(vh, wh), and due to the linearity of H , with the notation introduced in § 3.2
we also have

(T τ w̄h)t = H(T τvh, T τwh).

We can use test function (T τwh)(t, ·) in this equation to obtain time translation estimates on
(w̄h)h using Fubini theorem and the bounds (5.2). Further, the estimates of space translates
(Jrwh)h are obtained in the same way as (3.5), hence analogous estimate on (Jrw̄h)h follows
because for t ∈ ((n − 1)δt, nδt], w̄h(t, ·) is a convex combination of wh,n−1(·) and wh,n(·). By
the Fréchet-Kolmogorov theorem we deduce strong L2(ΩT ) compactness of (w̄h)h. Further, it
is easily seen from the definition of w̄h, from the equation

wh,n − wh,n−1

δt
= H(vh,n, wh,n)

and estimates (5.2) that

‖w̄h − wh‖2L2(ΩT ) ≤
N∑

n=1

δt‖wh,n−1 − wh,n‖2L2(Ω) ≤ C δt→ 0 as δt→ 0.

Finally, we conclude that (wh)h is strongly compact in L2(ΩT ). The same argument applies
to (γh)h. Unfortunately, the lack of L4(ΩT ) estimate on (vh)h precludes us from getting the
analogous time translation estimate and compactness property on (vh)h, but we circumvent
this difficulty using the Young measures’ representation of weakly convergent sequences, in the
spirit of [16].
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Indeed, extracting convergent subsequences corresponding to the above arguments, firstly
we pass to the limit in the linear ODEs and in the elliptic equation on uh; as in § 3.3, we get
strong convergence of Duh to Du from the Minty-Browder argument. Now, we pass to the
limit in the equations on uhi,e; the delicate point is the passage to the limit in the nonlinearity

I linion(v
h, ṽh, wh), where ṽh(t, x) = vh(t − δt, x) with the convention that vh(t, x) = vh,0(x) for

t ≤ 0. More precisely, we have to pass to the limit in the term vhB(ṽh). Here we exploit estimate
(5.3) to get an equi-integrability estimate on this term. As in [2], using the Sobolev embedding
of L2(0, T ;H1(Ω)) into L2(0, T ;L6(Ω)) and the space interpolation with L∞(0, T ;L2(Ω)), we
find a uniform L10/3(ΩT ) bound on vh. Such a bound yields equi-integrability of |ṽh|2 on ΩT ,
thus from the weighted Young inequality

|vB(ṽ)| ≤ δ|v|2B(ṽ) + 1

δ
B(ṽ),

using the growth assumption on j(·) that implies that B(ṽ) ≤ C(1 + |ṽ|2), we derive a uniform
L1(ΩT ) bound and, moreover, the equi-integrability on ΩT for the family (vhB(ṽh))h. Therefore
up to extraction of a further subsequence, vhB(ṽh) converges weakly in L1(ΩT ) to a limit that
we denote by Ψ. Further, multiplying the discrete equation for vh,n by 1

2 (v
h,n + vh,n−1) and

summing in n from the previously obtained estimates one deduces the uniform in h estimate

∣∣∣
N∑

n=1

δt

∫

Ω

vh,nvh,n−1B(vh,n−1)
∣∣∣ ≤ C. (5.4)

Finally, multiplying the same equation for vh,n by (vh,n − vh,n−1) and summing in n, using in
particular (5.4), we get

N∑

n=1

δt

∫

Ω

|vh,n − vh,n−1|2 → 0 as δt→ 0.

Therefore, ṽh − vh converges to zero strongly in L2(ΩT ), in particular, the weak L2(ΩT ) limit
v of vh is also the weak L2(ΩT ) limit of ṽh. Now, in order to prove strong convergence of
(vh)h and to pass to the limit in the nonlinear ionic current term vhB(ṽh) (we have to prove in
particular that Ψ = vB(v)), we introduce the Young measure (ν(t,x))(t,x)∈ΩT

which is the limit

of the selected subsequence of (vh)h (not relabeled):

v(t, x) =

∫

R

λdν(t,x)(λ) with

∫

R

dν(t,x)(λ) = 1 for a.e. (t, x) ∈ ΩT , moreover,

for all F ∈ C0(R;R) such that (F (vh))h is weakly convergent in L1(ΩT ),

F (vh)⇀

∫

R

F (λ) dν(·,·)(λ) in L
1(ΩT ).

(5.5)

Then the convergence proof relies on the following observations.
Lemma 5.1. The Young measure (ν(t,x))(t,x)∈ΩT

has the following properties:

(i) v(t, x) =

∫

R

λdν(t,x)(λ) and Ψ(t, x) =

∫

R

λB(λ) dν(t,x)(λ);

(ii)

∫ ∫

ΩT

∫

R

λ2B(λ) dν(t,x)(λ) dxdt <∞ and v ∈ L4(ΩT ), Ψ ∈ L4/3(ΩT );

(iii) for a.e. (t, x) ∈ ΩT ,

∫

R

∫

R

(λ− µ)(λB(λ)− µB(µ)) dν(t,x)(λ) dν(t,x)(µ) ≤ 0;

(iv) for a.e. (t, x) ∈ ΩT , ν(t,x)(λ) = δ(λ − v(t, x)) ;

in particular, vh → v and ṽh → v a.e. on ΩT , and we have Ψ = vB(v) a.e. on ΩT .
Proof. For (i) and (ii) we use the estimates established above, while for (iii), we use the

equations satisfied by vh and by v in a way similar to the Minty trick. The last point follows
by classical properties of Young measures.
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(i) The first claim of (i) is a part of the definition of the Young measure. To prove the
second point, we first observe that ∆h

1 := vhB(ṽh)− vhB(vh) tends to zero in L1(ΩT ) as h→ 0.
Indeed, recall that vh, ṽh are bounded in L10/3(ΩT ) due to interpolation and embedding results;
therefore ∆h

1 is bounded in L10/9(ΩT ), and thus it is equi-integrable. Moreover, extracting a
further subsequence we can assume that vh − ṽh → 0 a.e. on ΩT , so that ∆h

1 → 0 a.e. on
ΩT . Then ∆h

1 vanishes in L1(ΩT ) due to the Vitali theorem. Now, we have vhB(ṽh) ⇀ Ψ in
L1(ΩT ). Consequently, we have as well vhB(vh) ⇀ Ψ in L1(ΩT ) as h → 0, and we can apply
the representation formula of (5.5) to Ψ.

(ii) Consider a family of bounded continuous functions (Bn)n on R that increase towards the
limit B pointwise on R, as n → ∞. Then Fn : λ 7→ λ2Bn(λ) can be used in (5.5) because we
know that (vh)h is an equi-integrable sequence on ΩT and bn is bounded for every fixed n. In
addition, as in the point (i) we readily see that ∆h

2 := (vh)2Bn(v
h) − (vh)2Bn(ṽ

h) vanishes in
L1(ΩT ) as h → 0, up to a subsequence. Therefore we find, with the limits taken in the weak
L1(ΩT ) sense, the chain of equalities

∫

R

Fn(λ) dν(·,·)(λ) = lim
h→0

Fn(v
h) = lim

h→0
(vh)2Bn(ṽ

h).

In particular,

∫ ∫

ΩT

∫

R

Fn(λ) dν(t,x)(λ) dt dx ≤ lim
h→0

∫ ∫

ΩT

(vh)2Bn(ṽ
h) ≤

∫ ∫

ΩT

(vh)2B(ṽh) ≤ C

due to estimate (5.3). Notice that C does not depend on n, therefore using the monotonicity of
(Bn)n we deduce the first claim of (ii) from the monotone convergence theorem. Then, the lower
growth bound on B yields

∫
R
λ4dν(·,·)(λ) ∈ L1(ΩT ), whence by the Jensen inequality for the

convex function λ 7→ λ4 and the probability measures ν(t,x) we deduce that v =
∫
R
λdν(·,·)(λ) ∈

L4(ΩT ). Using the upper growth bound on B we find that Ψ ∈ L3/4(ΩT ).

(iii) Firstly, we prove the inequality

lim sup
h→0

∫ ∫

ΩT

(T − t)(vh)2B(ṽh) ≤
∫ ∫

ΩT

(T − t)vΨ, (5.6)

for sufficiently small T (then, after having proved (iv), we can bootstrap the argument and
achieve arbitrarily large time horizon T ).

On the one hand, we proceed in a way analogous to the one followed to obtain (3.4) (recall

that now we have χ = cm = 1). Namely, we combine the equations on uh,ni,e (with test function

uh,ni,e ) and on wn,h (with test function (C/A)wh,n), use the convexity inequality in the place of
chain rule in time, and we end up with

∫ s

0

∫

Ω

(
(vh)2B(ṽh)−A1(v

h)2+
BC

A
(wh)2+(Me(x,Duh)∇uhe )·∇uhe+(Mi(x,Duh)∇uhi )·∇uhi

)

+

∫

Ω

1

2
(vh)2(s, ·) ≤

∫

Ω

1

2
(vh0 )

2 +

∫ s

0

∫

Ω

Ii,happu
h
i − Ie,happu

h
e ,

for every s < T . The we integrate in s ∈ [0, T ] and we assume 2A1T ≤ 1; we use the Fubini
theorem to simplify the double time integral, which brings the factor (T−t) under the integrals.
Using the strong convergence of vh,0, wh and Duh in L2(Ω), L2(ΩT ) and L

2(ΩT )
3, respectively,

using the weak L2(ΩT ) convergence of v
h, of

√
T − t vh, of

√
T − t (Mi,e(x,Duh))1/2∇uhi,e and

the lower semi-continuity of the L2 norm with respect to weak convergence, at the limit h→ 0
(for the selected subsequence) we find

lim sup
h→0

∫ T

0

∫

Ω

(T − t)((vh)2B(ṽh) +
∫ T

0

∫

Ω

(
(
1

2
− (T − t)A1)v

2 +
BC

A
w2

)
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+ (T − t)
(
Me(x,Du)∇ue) · ∇ue + (Mi(x,Du)∇ui) · ∇ui

)

≤
∫

Ω

T

2
(v0)

2 +

∫ T

0

∫

Ω

(T − t)(Iiappui − Ieappue). (5.7)

On the other hand, the following limit equations, as h→ 0, are easily obtained as h→ 0:

∂tv −∇ ·
(
Mi(x,Du)∇̄ui

)
+Ψ−A1v + Cw = Iiapp in ΩT , (5.8)

∂tv +∇ ·
(
Me(x,Du)∇̄ue

)
+Ψ−A1v + Cw = Ieapp in ΩT , (5.9)

v = ui − ue in ΩT , (5.10)

∂tw −H(v, w) = 0 in ΩT . (5.11)

In order to combine these equations in the same way as what we have done at the discrete
level, we recall that v ∈ L4(ΩT ) and Ψ ∈ (L4(ΩT ))

′, so that [2, Lemma 2.3] (cf. Remark 2.3
after Definition 2.2) can be used in order to give sense to multiplication of (5.8),(5.9) by ui,
ue, respectively. We obtain, integrating in t ∈ [0, s] then in s ∈ [0, T ] the following relation:

∫ T

0

∫

Ω

(T − t)vΨ+

∫ T

0

∫

Ω

(
(
1

2
− (T − t)A1)v

2 +
BC

A
w2)

)

+ (T − t)
(
Me(x,Du)∇ue) · ∇ue + (Mi(x,Du)∇ui) · ∇ui

)

=

∫

Ω

T

2
(v0)

2 +

∫ T

0

∫

Ω

(T − t)(Iiappui − Ieappue). (5.12)

By comparison of (5.12) and (5.7), we deduce the claim (5.6).
Now, using as in the proof of (ii) an increasing family of functions (Bn)n approximating B,

we find for all n,

∫ ∫

ΩT

(T − t)

∫

R

λ2Bn(λ) dν(t,x)(λ) dt dx = lim
h→0

∫ ∫

ΩT

(T − t)(vh)2Bn(ṽ
h)

≤ lim sup
h→0

∫ ∫

ΩT

(T − t)(vh)2B(ṽh) ≤
∫ ∫

ΩT

(T − t)vΨ.

Then with the monotone convergence theorem and representation of Ψ and v proved in (i), we
find

∫ ∫

ΩT

(T − t)

∫

R

λ2Bn(λ) dν(t,x)(λ) dt dx

≤
∫ ∫

ΩT

(T − t)
(∫

R

λdν(t,x)(λ)
)(∫

R

λB(λ) dν(t,x)(λ)
)
dt dx.

Then, rearranging the terms as in [16], one finds

∫ T

0

∫

Ω

(T − t)

∫

R

∫

R

(λ− µ)(λB(λ)− µB(µ)) dν(t,x)(λ)dν(t,x)(µ) dt dx ≤ 0.

Now the claim of (iii) follows by monotonicity of the map λ 7→ λB(λ).
(iv) Starting from the “div-curl” relation proved in (iii), one deduces the claim (iv) from the
general properties of Young measures (see [16]).

Property (iv) of the previous lemma, along with equations (5.8),(5.9) concludes the passage
to the limit in the scheme. It remains to observe that, if the data of the problem fall within the
regularity framework of § 4.2, the extraction of a subsequence is bypassed using the classical
argument (the unique solution is the unique accumulation point), and in this case the finite
element method converges to the unique solution of the system. A priori error estimates can
also be obtained in this case, with arguments similar to those of § 4.
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Fig. 5.1. Fibers distribution with segmented biventricular geometry (left) and partition of the mesh into
sixteen non-overlapping subdomains, each color representing a different subdomain (right).

5.3. Numerical tests. We now illustrate the performance of the coupled finite element
method. The linear systems arising from the full discretization of the problem are solved with
GMRES (with a tolerance of ǫ̂tol = 10−7). The average overall CPU time spent per time step is
3.5 seconds. All the simulations in this section have been performed on four cluster nodes with
two Intel Xeon processors (quad core, 8MB cache, 2.66Ghz CPU) each. The transmembrane
potential is initially at rest v = −84mV and the excitation propagation is initiated with a
stimulus of magnitude 100mV applied on the septum at time t = 10. The human heart
geometry and fiber directions obtained from CT scan data [34] have been smoothed, rescaled
and meshed using the VMTK library (http://www.vmtk.org) (see Figure 5.1). The resulting
idealized biventricular mesh consists of 729496 four-node elements and 130574 vertices. A
time step ∆t = 0.01 is employed. We simulate one full heartbeat and report in Figure 5.3
snapshots of the spatio-temporal evolution of action potential and tissue deformation. We
have applied several model simplifications for sake of the analysis, including phenomenological
FitzHugh-Nagumo membrane kinetics, linearized mechanical response, and stretch-independent
activation. Some features of the cardiac function are difficult to recover in this framework, such
as accurate representations of stresses at high strains. We also observe that the following
residuals

‖Cof (Du)− I‖L2(Ω), ‖Du‖L∞(Ω), ‖ det(Du)− 1‖L2(Ω),

are non-negligible (see the dynamics depicted in Figure 5.2, where the spike in the middle
and right plots is due to the electrical stimulus applied at t = 10). In the fully nonlinear
case, performing Newton or Picard iterations up to a fixed tolerance rapidly decreases the
first residual, associated with the nonlinear stress. Nevertheless, the order of magnitude of the
second and third residuals remain unchanged, suggesting that total strains and incompressibility
are well resolved even in the linear case. Moreover, from Figure 5.3 we readily observe some
other key features such as the desired delay of the activation γ with respect to the front of the
transmembrane potential, and the subsequent contraction of the muscle.
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Fig. 5.2. Time evolution over half a heartbeat of the numerical residuals induced by the linearization of
the elasticity problem.

Fig. 5.3. Transmembrane potential (top), activation function (middle) and tissue deformation (bottom)
at time instants t = 30, 60, 120, 180 (from left to right).
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