Jean-François Condotta
email: condotta@cril.fr

Christophe Lecoutre
email: lecoutre@cril.fr

A Framework for Decision-based Consistencies

Consistencies are properties of constraint networks that can be enforced by appropriate algorithms to reduce the size of the search space to be explored. Recently, many consistencies built upon taking decisions (most often, variable assignments) and stronger than (generalized) arc consistency have been introduced. In this paper, our ambition is to present a clear picture of decision-based consistencies. We identify four general classes (or levels) of decision-based consistencies, denoted by S φ ∆ , E φ ∆ , B φ ∆ and D φ ∆ , study their relationships, and show that known consistencies are particular cases of these classes. Interestingly, this general framework provides us with a better insight into decision-based consistencies, and allows us to derive many new consistencies that can be directly integrated and compared with other ones.

Introduction

Consistencies are properties of constraint networks that can be used to make inferences. Such inferences are useful to filter the search space of problem instances. Most of the current constraint solvers interleave inference and search. Typically, they enforce generalized arc consistency (GAC), or one of its partial form, during the search of a solution. One avenue to make solvers more robust is to enforce strong consistencies, i.e., consistencies stronger than GAC. Whereas GAC corresponds to the strongest form of local reasoning when constraints are treated separately, strong consistencies necessarily involve several constraints (e.g., path inverse consistency [START_REF] Freuder | Neighborhood inverse consistency preprocessing[END_REF], max-restricted path consistency [START_REF] Debruyne | From restricted path consistency to max-restricted path consistency[END_REF] and their adaptations [START_REF] Stergiou | Inverse consistencies for non-binary constraints[END_REF] to non-binary constraints) or even the entire constraint network (e.g., singleton arc consistency [START_REF] Debruyne | Some practical filtering techniques for the constraint satisfaction problem[END_REF]).

A trend that emerges from recent works on strong consistencies is the resort to taking decisions before enforcing a well-known consistency (typically, GAC) and making some deductions. Among such decision-based consistencies, we find SAC (singleton arc consistency), partition-k-AC [START_REF] Bennaceur | Partition-k-AC: An efficient filtering technique combining domain partition and arc consistency[END_REF], weak-k-SAC [START_REF] Van Dongen | Beyond singleton arc consistency[END_REF], BiSAC [START_REF] Bessiere | Theoretical analysis of singleton arc consistency and its extensions[END_REF], and DC (dual consistency) [START_REF] Lecoutre | Second-order consistencies[END_REF]. Besides, a partial form of SAC, better known as shaving, has been introduced for a long time [START_REF] Carlier | Adjustments of heads and tails for the job-shop problem[END_REF][START_REF] Martin | A new approach to computing optimal schedules for the job-shop scheduling problem[END_REF] and is still an active subject of research [START_REF] Lhomme | Quick shaving[END_REF][START_REF] Szymanek | Constraint-level advice for shaving[END_REF]; when shaving systematically concerns the bounds of each variable domain, it is called BoundSAC [START_REF] Lecoutre | Maintaining singleton arc consistency[END_REF]. What makes decision-based consistencies particularly attractive is that they are (usually) easy to define and understand, and easy to implement since they are mainly based on two concepts (decision, propagation) already handled by constraint solvers. The increased interest perceived in the community for decision-based consistencies has motivated our study.

In this paper, our ambition is to present a clear picture of decision-based consistencies that can derive nogoods of size up to 2; i.e., inconsistent values or inconsistent pairs of values. The only restriction we impose is that decisions correspond to unary constraints. The four classes (or levels) of consistencies, denoted by S φ ∆ , E φ ∆ , B φ ∆ and D φ ∆ , that we introduce are built on top of a consistency φ and a so-called decision mapping ∆. These are quite general because:

1. ∆ allows us to introduce a specific set of decisions for every variable x and every possible (sub)domain of x, 2. decisions are membership decisions (of the form x ∈ D x where D x is a set of values taken from the initial domain of x) that generalize both variable assignments (of the form x = a) and value refutations (of the form x = a), 3. decisions may ignore some variables and/or values, and decisions may overlap each other, 4. φ is any well-behaved nogood-identifying consistency.

We study the relationships existing between them, including the case where ∆ covers every variable and every value. We also show that SAC, partitionk-AC, BiSAC and DC are particular cases of S φ ∆ , S φ ∆ +E φ ∆ (the two consistencies combined), B φ ∆ and D φ ∆ , respectively. BoundSAC, and many other forms of shaving, are also elements of the class S φ ∆ . The general framework we depict provides a better insight into decision-based consistencies while allowing many new combinations and comparisons of such consistencies. For example, the class of consistencies S φ ∆ induces a complete lattice where the partial order denotes the relative strength of every two consistencies.

Technical Background

This section provides technical background about constraint networks and consistencies, mainly taken from [START_REF] Apt | Principles of Constraint Programming[END_REF][START_REF] Dechter | Constraint processing[END_REF][START_REF] Bessiere | Constraint propagation[END_REF][START_REF] Lecoutre | Constraint networks: techniques and algorithms[END_REF].

Constraint Networks. A constraint network (CN) P is composed of a finite set of n variables, denoted by vars(P), and a finite set of e constraints, denoted by cons(P). Each variable x has a domain which is the finite set of values that can be assigned to x. Each constraint c involves an ordered set of variables, called the scope of c and denoted by scp(c), and is defined by a relation which is the set of tuples allowed for the variables involved in c. The initial domain of a variable x is denoted by dom init (x) whereas the current domain of x (in the context of P) is denoted by dom P (x), or more simply dom(x). Assuming that the initial domain of each variable is totally ordered, min(x) and max(x) will denote the smallest and greatest values in dom(x). The initial and current relations of a constraint c are denoted by rel init (c) and rel(c), respectively.

A constraint is universal iff rel init (c) = Π x∈scp(c) dom init (x). For simplicity, a pair (x, a) with x ∈ vars(P) and a ∈ dom(x) is called a value of P , which is denoted by (x, a) ∈ P . A unary (resp., binary) constraint involves 1 (resp., 2) variable(s), and a non-binary one strictly more than 2 variables. Without any loss of generality, we only consider CNs that do not involve unary constraints, universal constraints and constraints of similar scope. The set of such CNs is denoted by P. An instantiation I of a set). An instantiation I on a CN P is locally consistent iff (i) I is valid on P and (ii) every constraint of P covered by I is satisfied by I. A solution of P is a complete locally consistent instantiation on P ; sols(P) denotes the set of solutions of P . An instantiation I on a CN P is globally inconsistent, or a nogood, iff it cannot be extended to a solution of P . Two CNs P and P ′ are equivalent iff vars(P) = vars(P ′) and sols(P) = sols(P ′).

X = {x 1 , . . . , x k } of variables is a set {(x 1 , a 1), . . ., (x k , a k)} such that ∀i ∈ 1..k, a i ∈ dom init (x i); X is
The nogood representation of a CN is a set of nogoods, one for every value removed from the initial domain of a variable and one for every tuple forbidden by a constraint. More precisely, the nogood representation x of a variable x is the set

{(x, a)} | a ∈ dom(x) with dom(x) = dom init (x) \ dom(x).
The nogood representation c of a constraint c is {(x 1 , a 1) , . . . , (x r , a r)} | (a 1 , . . . , a r) ∈ rel(c) , with scp(c) = {x 1 , . . . , x r } and rel(c) = Π x∈scp(c) dom init (x) \ rel(c). The nogood representation P of a CN P is ∪ x∈vars(P) x ∪ ∪ c∈cons(P) c . Based on nogood representations, a general partial order can be introduced to relate CNs. Let P and P ′ be two CNs such that vars(P) = vars(P ′), we have P ′ P iff P ′ ⊇ P and we have P ′ ≺ P iff P ′ P . (P,) is the partially ordered set (poset) considered in this paper. The search space of a CN can be reduced by a filtering process (called constraint propagation) based on some properties (called consistencies) that allow us to identify and record explicit nogoods in CNs; e.g., identified nogoods of size 1 correspond to inconsistent values that can be safely removed from variable domains. In P, there is only one manner to discard an instantiation from a given CN, or equivalently to "record" a new explicit nogood. Given a CN P in P, and an instantiation I on P , P \ I denotes the CN P ′ in P such that vars(P ′) = vars(P) and P ′ = P ∪ {I}. P \ I is an operation that retracts I from P and builds a new CN. If I = {(x, a)}, we remove a from dom(x). If I corresponds to a tuple allowed by a constraint c of P , we remove this tuple from rel(c). Otherwise, we introduce a new constraint allowing all possible tuples (from initial domains) except the one that corresponds to I.

Consistencies. A consistency is a property defined on CNs. When a consistency φ holds on a CN P , we say that P is φ-consistent; if ψ is another consistency, P is φ+ψ-consistent iff P is both φ-consistent and ψ-consistent. A consistency φ is nogood-identifying iff the reason why a CN P is not φ-consistent is that some instantiations, which are not in P , are identified as globally inconsistent by φ; such instantiations are said to be φ-inconsistent. A kth-order consistency is a nogood-identifying consistency that allows the identification of nogoods of size k. A domain-filtering consistency [START_REF] Debruyne | Domain filtering consistencies[END_REF][START_REF] Bessiere | Domain filtering consistencies for nonbinary constraints[END_REF] is a first-order consistency. A nogoodidentifying consistency is well-behaved when for any CN P , the set {P ′ ∈ P | P ′ is φ-consistent and P ′ P } admits a greatest element, denoted by φ(P), equivalent to P . Enforcing φ on a CN P means computing φ(P). Any wellbehaved consistency φ is monotonic: for any two CNs P and P ′ , we have: P ′ P ⇒ φ(P ′) φ(P). To compare the pruning capability of consistencies, we use a preorder. A consistency φ is stronger than (or equal to) a consistency ψ, denoted by φ ψ, iff whenever φ holds on a CN P , ψ also holds on P . φ is strictly stronger than ψ, denoted by φ ⊲ ψ, iff φ ψ and there is at least a CN P such that ψ holds on P but not φ. φ and ψ are equivalent, denoted by φ ≈ ψ, iff both φ ψ and ψ φ.

Now we introduce some concrete consistencies, starting with GAC (Generalized Arc Consistency). A value (x, a) of P is GAC-consistent iff for each constraint c of P involving x there exists a valid instantiation I of scp(c) such that I satisfies c and I[x] = a. P is GAC-consistent iff every value of P is GACconsistent. For binary constraints, GAC is often referred to as AC (Arc Consistency). Now, we introduce known consistencies based on decisions. When the domain of a variable of P is empty, P is unsatisfiable (i.e., sols(P) = ∅), which is denoted by P = ⊥; to simplify, we consider that no value is present in a CN P such that P = ⊥. The CN P | x=a is obtained from P by removing every value [START_REF] Bennaceur | Partition-k-AC: An efficient filtering technique combining domain partition and arc consistency[END_REF]. A value (x, a) of P is BiSAC-consistent iff GAC (P ia | x=a) = ⊥ where P ia is the CN obtained after removing every value (y, b) of P such that y = x and (x, a) / ∈ GAC(P | y=b) [START_REF] Bessiere | Theoretical analysis of singleton arc consistency and its extensions[END_REF]. P is SAC-consistent (resp., 1-AC-consistent, BiSAC-consistent) iff every value of P is SAC-consistent (resp., 1-AC-consistent, BiSAC-consistent). P is BoundSACconsistent iff for every variable x, min(x) and max(x) are SAC-consistent [START_REF] Lecoutre | Maintaining singleton arc consistency[END_REF]. A decision-based second-order consistency is dual consistency (DC) defined as follows. A locally consistent instantiation {(x, a), (y, b)} on P , with y = x, is DC-consistent iff (y, b) ∈ GAC (P | x=a) and (x, a) ∈ GAC (P | y=b) [START_REF] Lecoutre | Conservative dual consistency[END_REF]. P is DC-consistent iff every locally consistent instantiation {(x, a), (y, b)} on P is DC-consistent. P is sDC-consistent (strong DC-consistent) iff P is GAC+DCconsistent, i.e. both GAC-consistent and DC-consistent. All consistencies mentioned above are well-behaved. Also, we know that sDC ⊲ BiSAC ⊲ 1-GAC ⊲ SAC ⊲ BoundSAC ⊲ GAC.

b = a from dom(x). A value (x, a) of P is SAC-consistent iff GAC (P | x=a) = ⊥ [9]. A value (x, a) of P is 1-AC-consistent iff (x, a) is SAC-consistent and ∀y ∈ vars(P) \ {x}, ∃b ∈ dom(y) | (x, a) ∈ GAC (P | y=b)

Decision-based Consistencies

In this section, we introduce decisions before presenting general classes of consistencies.

Decisions

A positive decision δ is a restriction on a variable x of the form x = a whereas a negative decision is a restriction of the form x = a, with a ∈ dom init (x). A membership decision is a decision of the form x ∈ D x , where x is a variable and D x ⊆ dom init (x) is a non-empty set of values; note that D x is not necessarily dom(x), the current domain of x. Membership decisions generalize both positive and negative decisions as a positive (resp., negative) decision x = a (resp., x = a) is equivalent to the membership decision x ∈ {a} (resp., x ∈ dom init (x) \ {a}). The variable involved in a decision δ is denoted by var(δ).

For a membership decision δ, we define P | δ to be the CN obtained (derived) from P such that, if δ denotes x ∈ D x and if x is a variable of P then each value b ∈ dom P (x) with b / ∈ D x is removed from dom P (x). If Γ is a set of decisions, P | Γ is obtained by restricting P by means of all decisions in Γ , and vars(Γ) denotes the set of variables occurring in Γ . Enforcing a given well-behaved consistency φ after taking a decision δ on a CN P may be quite informative. As seen later, analyzing the CN φ(P | δ) allows us to identify nogoods. Computing φ(P | δ) in order to make such inferences is called a decision-based φ-check on P from δ, or more simply a decision-based check. For SAC, a decision-based check from a pair (x, a), usually called a singleton check, aims at comparing GAC(P | x=a) with ⊥.

From now on, ∆ will denote a mapping, called decision mapping, that associates with every variable x and every possible domain dom x ⊆ dom init (x), a (possibly empty) set ∆(x, dom x) of membership decisions on x such that for every decision x ∈ D x in ∆(x, dom x), we have D x ⊆ dom x . For example, an illustrative decision mapping ∆ ex may be such that ∆ ex (x, {a, b, c, d}) = {x ∈ {a, b}, x ∈ {d}}. For the current domain of x, i.e., the domain of x in the context of a current CN P , ∆(x, dom(x)) = ∆(x, dom P (x)) will be simplified into ∆(x) when this is unambiguous. To simplify, we shall also refer to ∆ as the set of all "current" decisions w.r.t. P , i.e., ∆ will be considered as ∪ x∈vars(P) ∆(x). This quite general definition of decision mapping will be considered as our basis to perform decision-based checks. Sometimes, we need to restrict sets of decisions in order to have each value occurring at least once in a decision. A set of decisions Γ on a variable x is said to be a cover of ∪ (x∈Dx)∈Γ D x . For example, ∆ ex (x, {a, b, c, d}), as defined above, is a cover of {a, b, d}. ∆ is a cover for (x, dom x), where dom x ⊆ dom init (x), iff ∆(x, dom x) is a cover of dom x . For example, ∆ ex is not a cover for (x, {a, b, c, d}). ∆ is a cover for x iff for every

dom x ⊆ dom init (x), ∆ is a cover for (x, dom x). ∆ is covering iff for every variable x, ∆ is a cover for x.
As examples of decision mappings, we have for every variable x:

-∆ id (x) containing only x ∈ dom(x); -∆ = (x) containing x = a, ∀a ∈ dom(x); -∆ = (x) containing x = a, ∀a ∈ dom(x); -∆ bnd (x) containing x = min(x) and x = max(x); -∆ P2 (x) containing x ∈ D 1 x and x ∈ D 2
x where D 1 x and D 2 x resp. contain the first and last |dom(x)|/2 values of dom(x).

For example, if P is a CN such that vars(P) = {x, y} with dom(x) = dom P (x) = {a, b, c} and dom(y) = dom P (y) = {a, b} then:

-∆ id (x) = {x ∈ {a, b, c}} and ∆ id (y) = {y ∈ {a, b}}; -∆ = (x) = {x = a, x = b, x = c} and ∆ = (y) = {y = a, y = b}; -∆ = (x) = {x = a, x = b, x = c} and ∆ = (y) = {y = a, y = b}; -∆ bnd (x) = {x = a, x = c} and ∆ bnd (y) = {y = a, y = b}; -∆ P2 (x) = {x ∈ {a, b}, x = c} and ∆ P2 (y) = {y = a, y = b}.
Note that, except for ∆ bnd , all these decision mappings are covering. Also, the reader should be aware of the dynamic nature of decision mappings. For example, if P ′ is obtained from P after removing a from dom P (x) then we have

∆ bnd (x, dom P ′ (x)) = {x = b, x = c}.

Two Classes of First-order Consistencies

Informally, a decision-based consistency is a property defined from the outcome of decision-based checks. From now on, we consider given a well-behaved nogoodidentifying consistency φ and a decision mapping ∆. A first kind of inferences is made possible by considering the effect of a decision-based check on the domain initially reduced by the decision that has been taken.

Definition 1 (Consistency S φ ∆). A value (x, a) of a CN P is S φ ∆ -consistent iff for every membership decision x ∈ D x in ∆(x) such that a ∈ D x , we have (x, a) ∈ φ(P | x∈Dx).
The following result can be seen as a generalization of Property 1 in [START_REF] Bennaceur | Partition-k-AC: An efficient filtering technique combining domain partition and arc consistency[END_REF].

Proposition 1. Any S φ

∆ -inconsistent value is globally inconsistent. Proof. If (x, a) is an S φ ∆ -inconsistent value, then we know that there exists a decision x ∈ D x in ∆(x) such that a ∈ D x and (x, a) / ∈ φ(P | x∈Dx). We deduce that x ∈ D x ∧ x = a cannot lead to a solution because φ is nogood-identifying. This simplifies into x = a being a nogood because a ∈ D x .

⊓ ⊔ SAC is equivalent to S GAC ∆ =

(because no value belongs to ⊥), and BoundSAC1 is equivalent to S GAC ∆ bnd . Note also that GAC is equivalent to S GAC ∆ id

. As a simple illustration of S φ ∆ , let us consider the five binary CNs depicted in Figure 1; each vertex denotes a value, each edge denotes an allowed tuple and each dotted vertex (resp., edge) means that the value (resp., tuple) is removed (resp., no more relevant). P 1 , P 2 , P 3 and P 4 are obtained from P by removing values that are S AC ∆ -inconsistent when ∆ is set to ∆ id , ∆ P2 , ∆ bnd and ∆ = , respectively. For example, for ∆ P2 , we find that (y, c) / ∈ AC (P | y∈{c,d}). Note that the CN P 4 is also obtained when setting ∆ to ∆ = . In [START_REF] Bennaceur | Partition-k-AC: An efficient filtering technique combining domain partition and arc consistency[END_REF], it is also shown that inferences regarding values may be obtained by considering the result of several decision-based checks. This is generalized below. The idea is that a value (x, a) of P can be safely removed when there exist a variable y and a cover Γ ⊆ ∆(y) of dom(y) such that every decision-based check, performed from a decision in Γ , eliminates (x, a).

Definition 2 (Consistency E φ ∆). A value (x, a) of a CN P is E φ ∆ -consistent w.r.t. a variable y = x of P iff for every cover Γ of dom(y) such that Γ ⊆ ∆(y), there exists a decision y ∈ D y in Γ such that (x, a) ∈ φ(P | y∈Dy). (x, a) is E φ ∆ -consistent iff (x, a) is E φ ∆ -consistent w.r.t. every variable y = x of P .
Proposition 2. Any E φ ∆ -inconsistent value is globally inconsistent. Proof. If (x, a) is an E φ ∆ -inconsistent value, then we know that there exists a variable y = x of P and a set Γ ⊆ ∆(y) such that (i) dom P (y) = ∪ (y∈Dy)∈Γ D y and (ii) every decision y ∈ D y in Γ entails (x, a) / ∈ φ(P | y∈Dy). As Γ is a cover of dom(y), we infer that sols(P) = ∪ (y∈Dy)∈Γ sols(P | y∈Dy). Because φ preserves solutions, we have sols(P) = ∪ (y∈Dy)∈Γ sols(φ(P | y∈Dy)). For every y ∈ D y in Γ , we know that (x, a) / ∈ φ(P | y∈Dy). We deduce that (x, a) cannot be involved in any solution.

⊓ ⊔

As an illustration, let us consider the CN of Figure 1(a) and ∆(x) = {x ∈ {a, c}, x ∈ {b, d}}. We can show that (z, a) is E GAC

Classes Related to Nogoods of Size 2

Decision-based consistencies introduced above are clearly domain-filtering: they allow us to identify inconsistent values. However, decision-based consistencies are also naturally orientated towards identifying nogoods of size 2. NG2 (P) φ ∆ denotes the set of nogoods of size 2 that can be directly derived from checks on P based on the consistency φ and the decision mapping ∆. From this set, together with a decision x ∈ D x , we obtain a set ND1 (P, x ∈ D x) φ ∆ of negative decisions that can be used to make further inferences.

Proposition 3. Any B φ

∆ -inconsistent value is globally inconsistent. Proof. The proof is similar to that of Proposition 1. The only difference is that the network P is made smaller by removing some additional values by means of negative decisions. However, in the context of a decision x ∈ D x taken on P , the inferred negative decisions correspond to inconsistent values because they are derived from nogoods of size 2 (showing that elements of NG2 (P) φ ∆ are nogoods is immediate).

⊓ ⊔

As an illustration of B φ ∆ , let us consider the binary CN P in Figure 2 Note that BiSAC [START_REF] Bessiere | Theoretical analysis of singleton arc consistency and its extensions[END_REF] is equivalent to B GAC ∆ =

. On the other hand, there is a 2-order consistency that can be naturally defined as follows.

Proposition 4. Any D φ

∆ -inconsistent instantiation is globally inconsistent.

Proof. D φ ∆ -inconsistent instantiations are exactly those in NG2 (P) φ ∆ , which are nogoods.

⊓ ⊔ Note that DC [START_REF] Lecoutre | Second-order consistencies[END_REF] is equivalent to

D GAC ∆ =
, and recall that DC is equivalent to PC (Path Consistency) for binary CNs. D φ ∆ (being 2-order) is obviously incomparable with previously introduced domain-filtering consistencies. However, a natural practical approach is to benefit from decision-based checks to record both S φ ∆ -inconsistent values and D φ ∆ -inconsistent instantiations. This corresponds to the combined consistency S φ ∆ +D φ ∆ . As an illustration of D φ ∆ , let us consider again Figure 2. For φ = AC and ∆ = ∆ P2 = {x ∈ {a, b}, x = c, y ∈ {a, b}, y = c, z = a, z = b}, we have that P is S φ ∆ -consistent, not B φ ∆ -consistent and not D φ ∆ -consistent. Enforcing S φ ∆ + D φ ∆ on P yields the CN P ′ , which is also the strong DC-closure (here, AC+PC-closure) of P .

In this section, we study the relationships between the different classes of consistencies (as well as some of their combinations), and discuss refinements and well-behavedness of consistencies.

Relationships between Consistencies

From Definitions 1 and 4, it is immediate that any

S φ ∆ -inconsistent value is necessarily B φ ∆ -inconsistent. Proposition 5. B φ ∆ S φ ∆ .
In order to relate B φ

∆ with E φ ∆ , we need to consider covering sets of decisions.

Proposition 6. If ∆ is covering, B φ ∆ E φ ∆ . Proof. We show that every E φ ∆ -inconsistent value in a CN P is necessarily B φ ∆ - inconsistent. Assume that (x, a) is a E φ ∆ -inconsistent value.
It means that there exists a variable y = x of P and Γ ⊆ ∆(y) such that dom P (y) = ∪ (y∈Dy)∈Γ D y and every decision y ∈ D y in Γ is such that (x, a) / ∈ φ(P | y∈Dy). We deduce that for every value b ∈ dom P (y), we have {(x, a), (y, b)} in NG2 (P) φ ∆ . On the other hand, we know that there exists a decision x ∈ D x in ∆ such that a ∈ D x (since ∆ is covering). Hence, ND1 (P, x ∈ D x) φ ∆ contains a negative decision y = b for each value in dom P (y). It follows that φ

(P | {x∈Dx}∪ND1 (P,x∈Dx) φ ∆) = ⊥, and (x, a) is B φ ∆ -inconsistent. ⊓ ⊔
As a corollary, we have B φ ∆ S φ ∆ + E φ ∆ when ∆ is covering. Note that there exist consistencies φ and decision mappings ∆ such that B φ ∆ is strictly stronger (⊲) than S φ

∆ and E φ ∆ (and also S φ ∆ +E φ ∆). For example, when φ = AC and ∆ = ∆ = , we have B φ ∆ = BiSAC, S φ ∆ = SAC and S φ ∆ + E φ ∆ = 1-AC, and we know that BiSAC ⊲ 1-AC [START_REF] Bessiere | Theoretical analysis of singleton arc consistency and its extensions[END_REF], and 1-AC ⊲ SAC [START_REF] Bennaceur | Partition-k-AC: An efficient filtering technique combining domain partition and arc consistency[END_REF].

Because D φ ∆ captures all 2-sized nogoods while S φ ∆ can eliminate inconsistent values, it follows that the joint use of these two consistencies is stronger than

B φ ∆ . Proposition 7. S φ ∆ +D φ ∆ B φ ∆ . Proof. Let P be a CN that is S φ ∆ +D φ ∆ -consistent. As P is S φ ∆ -consistent, for every decision x ∈ D x in ∆ and every a ∈ D x , we have (x, a) ∈ φ(P | x∈Dx). But φ(P | x∈Dx) = φ(P | {x∈Dx}∪ND1 (P,x∈Dx) φ ∆) since P being D φ ∆ -consistent entails NG2 (P) φ ∆ = ∅ and ND1 (P, x ∈ D x) φ ∆ = ∅. We deduce that P is B φ ∆ -consistent. ⊓ ⊔
One may expect that S φ ∆ φ. However, to guarantee this, we need both φ to be domain-filtering and ∆ to be covering, For example, S AC ∆ AC does not hold if for every dom x ⊆ dom init (x), we have ∆(x, dom x) = ∅: it suffices to build a CN P with a value (x, a) being arc-inconsistent. Proof. Assume that (x, a) is a φ-inconsistent value of a CN P . This means that (x, a) / ∈ φ(P). As ∆ is covering, there exists a decision x ∈ D x in ∆ with a ∈ D x . We know that P | x∈Dx P . By monotonicity of φ, φ(P | x∈Dx) φ(P). Since (x, a) / ∈ φ(P), we deduce that (x, a) / ∈ φ(P | x∈Dx). So, (x, a) is S φ ∆ -inconsistent, and S φ ∆ is stronger than φ.

⊓ ⊔

Figure 3 shows the relationships between the different classes of consistencies introduced so far. There are many ways to instantiate these classes because the choice of ∆ and φ is left open. If we consider binary CNs, and choose φ = AC and ∆ = ∆ = , we obtain known consistencies. We directly benefit from the relationships of Figure 3, and have just to prove strictness when it holds. Figure 4 shows this where an arrow denotes now ⊲ (instead of). An extreme instantiation case is when ∆ = ∆ id and φ is domain-filtering. In this case, all consistencies collapse: we have

S φ ∆ id = E φ ∆ id = B φ ∆ id = D φ ∆ id = φ.
This means that our framework of decision-based consistencies is general enough to encompass all classical local consistencies. Although this is appealing for theoretical reasons (e.g., see Proposition 11 later), the main objective of decision-based consistencies remains to learn relevant nogoods from nontrivial decision-based checks.

S φ ∆ B φ ∆ S φ ∆ +D φ ∆ D φ ∆ S φ ∆ +E φ ∆ E φ ∆ φ Fig. 3.
Summary of the relationships between (classes of) consistencies. An arrow from ϕ to ψ means that ϕ ψ. A dashed (resp., dotted) arrow means that the relationship is guaranteed provided that ∆ is covering (resp., ∆ is covering and φ is domain-filtering).

SAC sDC DC

BiSAC 1 -AC E AC ∆ =
BoundSAC AC Fig. 4. Relationships between consistencies when φ = AC and ∆ = ∆ = (except for BoundSAC which is derived from ∆ bnd). An arrow from ϕ to ψ means that ϕ ⊲ ψ.

Refinements

Now, we show that two consistencies of the same class can be naturally compared when a refinement connection exists between their decision mappings. Definition 6. A decision mapping ∆ ′ is a refinement of a decision mapping ∆ iff for each decision x ∈ D x in ∆ there exists a subset Γ ⊆ ∆ ′ (x) that is a cover of D x .

For example, {x ∈ {a, b}, x = c} is a refinement of {x ∈ {a, b, c}}, and {x ∈ {a, b}, x = c, y = a, y = b, y = c} is a refinement of {x ∈ {a, b, c}, y ∈ {a, b}, y ∈ {b, c}}. Unsurprisingly, using refined sets of decisions improves inference capability as shown by the following proposition. Proposition 9. If ∆ and ∆ ′ are two decision mappings such that ∆ ′ is a refinement of ∆, then X φ ∆ ′

X φ

∆ where X ∈ {S, E, B, D}. Proof. Due to lack of space, we only show that S φ ∆ ′ S φ ∆ . Assume that (x, a) is an S φ ∆ -inconsistent value of a CN P . This means that there exists a decision x ∈ D x in ∆(x) such that a ∈ D x and (x, a) / ∈ φ(P | x∈Dx). We know, by hypothesis, that there exists a subset). We deduce that there exists a decision

Γ ⊆ ∆ ′ (x) such that D x = ∪ (x∈D ′ x)∈Γ D ′ x . Hence, there exists (at least) a decision x ∈ D ′ x in Γ such that a ∈ D ′ x and D ′ x ⊆ D x . As D ′ x ⊆ D x ,
x ∈ D ′ x in ∆ ′ (x) such that a ∈ D ′ x and (x, a) / ∈ φ(P | x∈D ′′ x). Then (x, a) is S φ ∆ ′ -inconsistent. We conclude that S φ ∆ ′ S φ ∆ . ⊓ ⊔
As a corollary, for any decision mapping ∆, we have:

X φ ∆ = X φ ∆ X φ ∆ id
where X ∈ {S, E, B, D}. In particular, if φ = GAC, we have

SAC = S GAC ∆ = S GAC ∆ S GAC ∆ id = GAC.

Because, consistencies S φ

∆ identify inconsistent values on the basis of a single decision, we obtain the two following results. In the spirit of our set view of decision mappings, for any two decision mappings ∆ 1 and ∆ 2 , ∆ 1 ∪ ∆ 2 is the decision mapping such that for every variable x and every dom x ⊆ dom init (x), (∆ 1 ∪ ∆ 2)(x, dom x) = ∆ 1 (x, dom x) + ∆ 2 (x, dom x).

Proposition 10. Let ∆ 1 and ∆ 2 be two decision mappings. We have S φ

∆ 1 + S φ ∆ 2 = S φ ∆ 1 ∪∆ 2 .
Proof. Let P be a CN and (x, a) be a value of

P . (x, a) is S φ ∆ 1 ∪∆ 2 -inconsistent ⇔ there exists a decision x ∈ D x in ∆ 1 ∪ ∆ 2 such that (x, a) / ∈ φ(P | x∈Dx) ⇔ (x, a) is S φ ∆ 1 -inconsistent or (x, a) is S φ ∆ 2 -inconsistent ⇔ (x, a) is S φ ∆ 1 +S φ ∆ 2 -inconsistent. ⊓ ⊔ S φ
E = {S φ ∆ ∈ S φ : S φ ∆ S φ ∆ 1 and S φ ∆ S φ ∆ 2 }. Note that E = ∅ since S φ ∆ id ∈ E. Next, let us define S φ ∆ E such that ∆ E = S φ ∆ i ∈E ∆ i . For every S φ ∆ i ∈ E, ∆ E is a refinement ∆ i ,
i such that S φ ∆ i ∈ E and x ∈ D x is in ∆ i . By definition of E, we know that S φ ∆ i S φ ∆ 1 . Consequently, (x, a) is S φ ∆ i -consistent and (x, a) ∈ φ(P | x∈Dx). This is a contradiction, so S φ ∆ S φ ∆ 1 . Similarly, we have S φ ∆ S φ ∆ 2 . Then S φ ∆ is the greatest lower bound of S φ ∆ 1 and S φ ∆ 2 .
⊓ ⊔

Well-behavedness

Finally, we are interested in well-behavedness of consistencies. Actually, in the general case, the consistencies S φ ∆ , E φ ∆ , B φ ∆ and D φ ∆ are not necessarily wellbehaved for (P,). Consider as an illustration three CNs P , P 1 and P 2 which differ only by the domain of the variable x: dom P (x) = {a, b, c, d}, dom P1 (x) = {a, b, c} and dom P2 (x) = {d}. Now, consider a decision mapping ∆ defined for the variable x and the domains {a, b, c, d}, {a, b, c} and {d} by: ∆(x, {a, b, c, d}) = {x ∈ {a}}, ∆(x, {a, b, c}) = {x ∈ {a, b, c}} and ∆(x, {d}) = {x ∈ {d}}. Despite the fact that dom P (x) = dom P1 (x) ∪ dom P2 (x), one can see that the value (x, a) could be S φ ∆ -consistent in P 1 and P 2 , whereas S φ ∆ -inconsistent in P . With such a ∆, S φ ∆ is not guaranteed to be well-behaved. Nevertheless, there exist decision mappings for which consistencies are guaranteed to be well-behaved, at least those of the class S φ ∆ . Informally, a relevant decision mapping is a decision mapping that keeps its precision (in terms of decisions) when domains are restricted. Definition 7. A decision mapping ∆ is said to be relevant if and only if for any variable x, any two sets of values dom x and dom ′

x such that dom ′ x dom x ⊆ dom init (x) and any decision x ∈ D x in ∆(x, dom x), we have:

D x ∩ dom ′ x = ∅ ⇒ ∃Γ ⊆ ∆(x, dom ′ x) | D x ∩ dom ′ x = ∪ (x∈D ′ x)∈Γ D ′ x .
We can notice that ∆ id , ∆ = , ∆ = , ∆ bnd are relevant decision mappings. For our proposition, we need some additional definitions. A CN P ′ is a sub-CN of a CN P if P ′ can be obtained from P by simply removing certain values. If P 1 and P 2 are two CNs that only differ by the domains of their variables, then P = P 1 ∪ P 2 is the CN such that P 1 and P 2 are sub-CNs of P and for every variable x, dom P (x) = dom P1 (x) ∪ dom P2 (x).

Proposition 12. Let ∆ be a relevant decision mapping and let P , P 1 , and P 2 be three CNs such that P = P 1 ∪ P 2 . If P 1 and P 2 are S φ ∆ -consistent then P is S φ ∆ -consistent.

Proof. Let (x, a) be a value of P = P 1 ∪ P 2 . Let us show that this value is S φ ∆consistent. Consider a membership decision x ∈ D x in ∆(x, dom P (x)) such that a ∈ D x . We have to show that (x, a) ∈ φ(P | x∈Dx). We know that dom P (x) = dom P1 (x) ∪ dom P2 (x). Hence, a ∈ dom P1 (x) or x ∈ dom P2 (x). Assume that a ∈ dom P1 (x) (the case a ∈ dom P2 (x) can be handled in a similar way). Since ∆ is a relevant decision mapping, there exists Γ ⊆ ∆(x, dom P1 (x)) such that D x ∩ dom P1 (x) = ∪ (x∈D ′

x)∈Γ D ′ x . It follows that there exists a decision x ∈ D 1

x in ∆(x, dom P1 (x)) such that a ∈ D 1 x and D 1 x ⊆ D x . From the fact that P 1 is S φ ∆ -consistent we know that (x, a) ∈ φ(P 1 | x∈D 1

x). Since a ∈ D 1 x , D 1 x ⊆ D x and P 1 is a sub-CN of P we can assert that (x, a) ∈ φ(P | x∈Dx). We conclude that (x, a) is a S φ ∆ -consistent value of P . ⊓ ⊔ Corollary 1. If ∆ is a relevant decision mapping then S φ ∆ is well-behaved.

Indeed, to obtain the closure of a CN P , it suffices to take the union of all sub-CNs of P which are S φ ∆ -consistent. Hence, the consistency S φ ∆ for which ∆ is a relevant decision mapping is well-behaved for (P,).

Conclusion

In this paper, our aim was to give a precise picture of decision-based consistencies by developing a hierarchy of general classes. This general framework offers the user a vast range of new consistencies. Several issues have now to be addressed. First, me must determine the conditions under which overlapping between decisions may be beneficial. Overlapping allows us to cover domains while considering weak decisions (e.g., decisions in ∆ =) that are quick to propagate, and might also be useful to tractability procedures (e.g., in situations where only some decisions lead to known tractable networks). Second, we must seek to elaborate dynamic procedures (heuristics) so as automatically select the right decision-based consistency (set of membership decisions) at each step of a backtrack search as in [START_REF] Stergiou | Heuristics for dynamically adapting propagation[END_REF]; many new combinations are permitted. Finally, bound consistencies and especially singleton checks on bounds may be revisited by checking several values at once (using intervals at bounds with the mechanism of detecting X φ ∆ -inconsistent values), so as to speed up the inference process in shaving procedures. These are some of the main perspectives.

 denoted by vars(I) and each a i is denoted by I[x i]. An instantiation I on a CN P is an instantiation of a set X ⊆ vars(P) ; it is complete if vars(I) = vars(P). I is valid on P iff ∀(x, a) ∈ I, a ∈ dom(x). I covers a constraint c iff scp(c) ⊆ vars(I), and I satisfies a constraint c with scp(c) = {x 1 , . . . , x r } iff (i) I covers c and (ii) the tuple (I[x 1], . . . , I[x r]) ∈ rel(c

Fig. 1 .

 1 Fig. 1. Illustration of S GAC ∆ .

∆-

 inconsistent because (z, a) / ∈ AC(P | x∈{a,c}) and (z, a) / ∈ AC(P | x∈{b,d}). The consistency P-k-AC, introduced in [2], corresponds to S φ ∆ +E φ ∆ where φ = AC and ∆ necessarily corresponds to a partition of each domain into pieces of size at most k.

Definition 3 .

 3 Let P be a CN and x ∈ D x be a membership decision in ∆(x). -NG2 (P) φ x∈Dx denotes the set of locally consistent instantiations {(x, a), (y, b)} on P such that a ∈ D x and (y, b) / ∈ φ(P | x∈Dx). -NG2 (P) φ ∆ denotes the set ∪ δ∈∆ NG2 (P) φ δ . -ND1 (P, x ∈ D x) φ ∆ denotes the set of negative decisions y = b such that every value a ∈ D x is such that {(x, a), (y, b)} ∈ P or {(x, a), (y, b)} ∈ NG2 (P) φ ∆\{x∈Dx } . From ND1 sets, we can define a new class B φ ∆ of consistencies. Definition 4 (Consistency B φ ∆). A value (x, a) of a CN P is B φ ∆ -consistent iff for every membership decision x ∈ D x in ∆(x) such that a ∈ D x , we have (x, a) ∈ φ(P | {x∈Dx}∪ND1 (P,x∈Dx) φ ∆).

Fig. 2 .

 2 Fig. 2. Illustration of B GAC∆

Definition 5 (

 5 Consistency D φ ∆). A locally consistent instantiation {(x, a), (y, b)} on a CN P is D φ ∆ -consistent iff for every membership decision x ∈ D x in ∆(x) such that a ∈ D x , (y, b) ∈ φ(P | x∈Dx) and for every membership decision y ∈ D y in ∆(y) such that b ∈ D y , (x, a) ∈ φ(P | y∈Dy).

Proposition 8 .

 8 If φ is domain-filtering and ∆ is covering, S φ ∆ φ.

 we have P | x∈D ′ x P | x∈Dx , and by monotonicity of φ, φ(P | x∈D ′ x) φ(P | x∈Dx). Consequently, (x, a) / ∈ φ(P | x∈Dx) implies (x, a) / ∈ φ(P | x∈D ′ x

 denotes the set of equivalence classes modulo ≈ of the consistencies S φ ∆ that can be built from φ and all possible decision mappings ∆. It forms a complete lattice, in a similar way to what has been shown for qualitative constraint networks[START_REF] Condotta | A class of df-consistencies for qualitative constraint networks[END_REF].Proposition 11. (S φ ,) is a complete lattice with S φ ∆ = as greatest element and S φ ∆ id as least element.Proof. Let S φ ∆ 1 and S φ ∆ 2 be two consistencies in S φ . (Existence of binary joins) From Proposition 10, we can infer that S φ ∆ 1 ∪∆ 2 is the least upper bound of S φ ∆ 1 and S φ ∆ 2 . (Existence of binary meets) Let us define the set E as

 and so, from Proposition 9, we know that S φ ∆ E is an upper bound of E. We now prove by contradiction that S φ Suppose that there is a value (x, a) of a CN P that is S φ ∆ E -inconsistent and S φ ∆ 1 -consistent. This means that there exists a decision x ∈ D x in ∆(x) such that (x, a) / ∈ φ(P | x∈Dx). From construction of ∆, we know that there exists a decision mapping ∆

	∆ E	S φ ∆ 1 .

Another related consistency is Existential SAC[START_REF] Lecoutre | Maintaining singleton arc consistency[END_REF], which guarantees that some value in the domain of each variable is SAC-consistent. However, there is no guarantee about the network obtained after checking Existential SAC due to the nondeterministic nature of this consistency. Existential SAC is not an element of S φ ∆ .

Acknowledgments

We would like to thank the anonymous reviewers for their valuable comments and suggestions. This work was supported by OSEO (project ISI PAJERO).