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Abstract. Consistencies are properties of constraint networks that can
be enforced by appropriate algorithms to reduce the size of the search
space to be explored. Recently, many consistencies built upon taking
decisions (most often, variable assignments) and stronger than (general-
ized) arc consistency have been introduced. In this paper, our ambition
is to present a clear picture of decision-based consistencies. We identify
four general classes (or levels) of decision-based consistencies, denoted
by Sφ

∆, Eφ
∆, Bφ

∆ and Dφ
∆, study their relationships, and show that known

consistencies are particular cases of these classes. Interestingly, this gen-
eral framework provides us with a better insight into decision-based con-
sistencies, and allows us to derive many new consistencies that can be
directly integrated and compared with other ones.

1 Introduction

Consistencies are properties of constraint networks that can be used to make
inferences. Such inferences are useful to filter the search space of problem in-
stances. Most of the current constraint solvers interleave inference and search.
Typically, they enforce generalized arc consistency (GAC), or one of its partial
form, during the search of a solution. One avenue to make solvers more robust is
to enforce strong consistencies, i.e., consistencies stronger than GAC. Whereas
GAC corresponds to the strongest form of local reasoning when constraints are
treated separately, strong consistencies necessarily involve several constraints
(e.g., path inverse consistency [12], max-restricted path consistency [8] and their
adaptations [20] to non-binary constraints) or even the entire constraint network
(e.g., singleton arc consistency [9]).

A trend that emerges from recent works on strong consistencies is the resort
to taking decisions before enforcing a well-known consistency (typically, GAC)
and making some deductions. Among such decision-based consistencies, we find
SAC (singleton arc consistency), partition-k-AC [2], weak-k-SAC [22], BiSAC [4],
and DC (dual consistency) [15]. Besides, a partial form of SAC, better known
as shaving, has been introduced for a long time [6, 18] and is still an active
subject of research [17, 21]; when shaving systematically concerns the bounds of
each variable domain, it is called BoundSAC [16]. What makes decision-based
consistencies particularly attractive is that they are (usually) easy to define and



understand, and easy to implement since they are mainly based on two concepts
(decision, propagation) already handled by constraint solvers. The increased in-
terest perceived in the community for decision-based consistencies has motivated
our study.

In this paper, our ambition is to present a clear picture of decision-based
consistencies that can derive nogoods of size up to 2; i.e., inconsistent values
or inconsistent pairs of values. The only restriction we impose is that decisions
correspond to unary constraints. The four classes (or levels) of consistencies, de-

noted by S
φ
∆, E

φ
∆, B

φ
∆ and D

φ
∆, that we introduce are built on top of a consistency

φ and a so-called decision mapping ∆. These are quite general because:

1. ∆ allows us to introduce a specific set of decisions for every variable x and
every possible (sub)domain of x,

2. decisions are membership decisions (of the form x ∈ Dx where Dx is a set
of values taken from the initial domain of x) that generalize both variable
assignments (of the form x = a) and value refutations (of the form x 6= a),

3. decisions may ignore some variables and/or values, and decisions may overlap
each other,

4. φ is any well-behaved nogood-identifying consistency.

We study the relationships existing between them, including the case where
∆ covers every variable and every value. We also show that SAC, partition-
k-AC, BiSAC and DC are particular cases of Sφ

∆, S
φ
∆+E

φ
∆ (the two consisten-

cies combined), Bφ
∆ and D

φ
∆, respectively. BoundSAC, and many other forms of

shaving, are also elements of the class S
φ
∆. The general framework we depict

provides a better insight into decision-based consistencies while allowing many
new combinations and comparisons of such consistencies. For example, the class
of consistencies S

φ
∆ induces a complete lattice where the partial order denotes

the relative strength of every two consistencies.

2 Technical Background

This section provides technical background about constraint networks and con-
sistencies, mainly taken from [1, 11, 3, 13].

Constraint Networks. A constraint network (CN) P is composed of a finite
set of n variables, denoted by vars(P ), and a finite set of e constraints, denoted
by cons(P ). Each variable x has a domain which is the finite set of values that
can be assigned to x. Each constraint c involves an ordered set of variables,
called the scope of c and denoted by scp(c), and is defined by a relation which
is the set of tuples allowed for the variables involved in c. The initial domain
of a variable x is denoted by dominit(x) whereas the current domain of x (in
the context of P ) is denoted by domP (x), or more simply dom(x). Assuming
that the initial domain of each variable is totally ordered, min(x) and max(x)
will denote the smallest and greatest values in dom(x). The initial and current
relations of a constraint c are denoted by relinit(c) and rel(c), respectively.



A constraint is universal iff relinit(c) = Πx∈scp(c)dom
init(x). For simplicity, a

pair (x, a) with x ∈ vars(P ) and a ∈ dom(x) is called a value of P , which is
denoted by (x, a) ∈ P . A unary (resp., binary) constraint involves 1 (resp., 2)
variable(s), and a non-binary one strictly more than 2 variables. Without any
loss of generality, we only consider CNs that do not involve unary constraints,
universal constraints and constraints of similar scope. The set of such CNs is
denoted by P. An instantiation I of a set X = {x1, . . . , xk} of variables is a
set {(x1, a1), . . ., (xk, ak)} such that ∀i ∈ 1..k, ai ∈ dominit(xi); X is denoted
by vars(I) and each ai is denoted by I[xi]. An instantiation I on a CN P is an
instantiation of a set X ⊆ vars(P ) ; it is complete if vars(I) = vars(P ). I is
valid on P iff ∀(x, a) ∈ I, a ∈ dom(x). I covers a constraint c iff scp(c) ⊆ vars(I),
and I satisfies a constraint c with scp(c) = {x1, . . . , xr} iff (i) I covers c and
(ii) the tuple (I[x1], . . . , I[xr]) ∈ rel(c). An instantiation I on a CN P is locally
consistent iff (i) I is valid on P and (ii) every constraint of P covered by I is
satisfied by I. A solution of P is a complete locally consistent instantiation on P ;
sols(P ) denotes the set of solutions of P . An instantiation I on a CN P is globally
inconsistent, or a nogood, iff it cannot be extended to a solution of P . Two CNs
P and P ′ are equivalent iff vars(P ) = vars(P ′) and sols(P ) = sols(P ′).

The nogood representation of a CN is a set of nogoods, one for every value re-
moved from the initial domain of a variable and one for every tuple forbidden by
a constraint. More precisely, the nogood representation x̃ of a variable x is the set{
{(x, a)} | a ∈ dom(x)

}
with dom(x) = dominit(x) \dom(x). The nogood repre-

sentation c̃ of a constraint c is
{
{(x1, a1) , . . . , (xr, ar)} | (a1, . . . , ar) ∈ rel(c)

}
,

with scp(c) = {x1, . . . , xr} and rel(c) = Πx∈scp(c)dom
init(x) \ rel(c). The no-

good representation P̃ of a CN P is
(
∪x∈vars(P )x̃

)
∪
(
∪c∈cons(P )c̃

)
. Based on

nogood representations, a general partial order can be introduced to relate CNs.
Let P and P ′ be two CNs such that vars(P ) = vars(P ′), we have P ′ � P iff

P̃ ′ ⊇ P̃ and we have P ′ ≺ P iff P̃ ′ ) P̃ . (P,�) is the partially ordered set
(poset) considered in this paper. The search space of a CN can be reduced by a
filtering process (called constraint propagation) based on some properties (called
consistencies) that allow us to identify and record explicit nogoods in CNs; e.g.,
identified nogoods of size 1 correspond to inconsistent values that can be safely
removed from variable domains. In P, there is only one manner to discard an
instantiation from a given CN, or equivalently to “record” a new explicit no-
good. Given a CN P in P, and an instantiation I on P , P \ I denotes the CN

P ′ in P such that vars(P ′) = vars(P ) and P̃ ′ = P̃ ∪ {I}. P \ I is an operation
that retracts I from P and builds a new CN. If I = {(x, a)}, we remove a from
dom(x). If I corresponds to a tuple allowed by a constraint c of P , we remove
this tuple from rel(c). Otherwise, we introduce a new constraint allowing all
possible tuples (from initial domains) except the one that corresponds to I.

Consistencies. A consistency is a property defined on CNs. When a consistency
φ holds on a CN P , we say that P is φ-consistent; if ψ is another consistency, P
is φ+ψ-consistent iff P is both φ-consistent and ψ-consistent. A consistency φ
is nogood-identifying iff the reason why a CN P is not φ-consistent is that some



instantiations, which are not in P̃ , are identified as globally inconsistent by φ;
such instantiations are said to be φ-inconsistent. A kth-order consistency is a
nogood-identifying consistency that allows the identification of nogoods of size
k. A domain-filtering consistency [10, 5] is a first-order consistency. A nogood-
identifying consistency is well-behaved when for any CN P , the set {P ′ ∈ P |
P ′ is φ-consistent and P ′ � P} admits a greatest element, denoted by φ(P ),
equivalent to P . Enforcing φ on a CN P means computing φ(P ). Any well-
behaved consistency φ is monotonic: for any two CNs P and P ′, we have: P ′ �
P ⇒ φ(P ′) � φ(P ). To compare the pruning capability of consistencies, we
use a preorder. A consistency φ is stronger than (or equal to) a consistency ψ,
denoted by φ D ψ, iff whenever φ holds on a CN P , ψ also holds on P . φ is
strictly stronger than ψ, denoted by φ ⊲ ψ, iff φ D ψ and there is at least a CN
P such that ψ holds on P but not φ. φ and ψ are equivalent, denoted by φ ≈ ψ,
iff both φ D ψ and ψ D φ.

Now we introduce some concrete consistencies, starting with GAC (Gen-
eralized Arc Consistency). A value (x, a) of P is GAC-consistent iff for each
constraint c of P involving x there exists a valid instantiation I of scp(c) such
that I satisfies c and I[x] = a. P is GAC-consistent iff every value of P is GAC-
consistent. For binary constraints, GAC is often referred to as AC (Arc Con-
sistency). Now, we introduce known consistencies based on decisions. When the
domain of a variable of P is empty, P is unsatisfiable (i.e., sols(P ) = ∅), which
is denoted by P = ⊥; to simplify, we consider that no value is present in a CN
P such that P = ⊥. The CN P |x=a is obtained from P by removing every value
b 6= a from dom(x). A value (x, a) of P is SAC-consistent iff GAC (P |x=a) 6= ⊥
[9]. A value (x, a) of P is 1-AC-consistent iff (x, a) is SAC-consistent and ∀y ∈
vars(P ) \ {x}, ∃b ∈ dom(y) | (x, a) ∈ GAC (P |y=b) [2]. A value (x, a) of P is
BiSAC-consistent iff GAC (P ia|x=a) 6= ⊥ where P ia is the CN obtained after re-
moving every value (y, b) of P such that y 6= x and (x, a) /∈ GAC(P |y=b) [4]. P
is SAC-consistent (resp., 1-AC-consistent, BiSAC-consistent) iff every value of P
is SAC-consistent (resp., 1-AC-consistent, BiSAC-consistent). P is BoundSAC-
consistent iff for every variable x, min(x) and max(x) are SAC-consistent [16].
A decision-based second-order consistency is dual consistency (DC) defined as
follows. A locally consistent instantiation {(x, a), (y, b)} on P , with y 6= x, is
DC-consistent iff (y, b) ∈ GAC (P |x=a) and (x, a) ∈ GAC (P |y=b) [14]. P is
DC-consistent iff every locally consistent instantiation {(x, a), (y, b)} on P is
DC-consistent. P is sDC-consistent (strong DC-consistent) iff P is GAC+DC-
consistent, i.e. both GAC-consistent and DC-consistent. All consistencies men-
tioned above are well-behaved. Also, we know that sDC ⊲ BiSAC ⊲ 1-GAC ⊲
SAC ⊲ BoundSAC ⊲ GAC.

3 Decision-based Consistencies

In this section, we introduce decisions before presenting general classes of con-
sistencies.



3.1 Decisions

A positive decision δ is a restriction on a variable x of the form x = a whereas
a negative decision is a restriction of the form x 6= a, with a ∈ dominit(x). A
membership decision is a decision of the form x ∈ Dx, where x is a variable and
Dx ⊆ dominit(x) is a non-empty set of values; note that Dx is not necessarily
dom(x), the current domain of x. Membership decisions generalize both positive
and negative decisions as a positive (resp., negative) decision x = a (resp., x 6= a)
is equivalent to the membership decision x ∈ {a} (resp., x ∈ dominit(x) \ {a}).
The variable involved in a decision δ is denoted by var(δ).

For a membership decision δ, we define P |δ to be the CN obtained (derived)
from P such that, if δ denotes x ∈ Dx and if x is a variable of P then each value
b ∈ domP (x) with b /∈ Dx is removed from domP (x). If Γ is a set of decisions, P |Γ
is obtained by restricting P by means of all decisions in Γ , and vars(Γ ) denotes
the set of variables occurring in Γ . Enforcing a given well-behaved consistency
φ after taking a decision δ on a CN P may be quite informative. As seen later,
analyzing the CN φ(P |δ) allows us to identify nogoods. Computing φ(P |δ) in
order to make such inferences is called a decision-based φ-check on P from δ, or
more simply a decision-based check. For SAC, a decision-based check from a pair
(x, a), usually called a singleton check, aims at comparing GAC(P |x=a) with ⊥.

From now on, ∆ will denote a mapping, called decision mapping, that as-
sociates with every variable x and every possible domain domx ⊆ dominit(x),
a (possibly empty) set ∆(x, domx) of membership decisions on x such that for
every decision x ∈ Dx in ∆(x, domx), we have Dx ⊆ domx. For example, an
illustrative decision mapping ∆ex may be such that ∆ex(x, {a, b, c, d}) = {x ∈
{a, b}, x ∈ {d}}. For the current domain of x, i.e., the domain of x in the context
of a current CN P , ∆(x, dom(x)) = ∆(x, domP (x)) will be simplified into ∆(x)
when this is unambiguous. To simplify, we shall also refer to ∆ as the set of
all “current” decisions w.r.t. P , i.e., ∆ will be considered as ∪x∈vars(P )∆(x).
This quite general definition of decision mapping will be considered as our basis
to perform decision-based checks. Sometimes, we need to restrict sets of deci-
sions in order to have each value occurring at least once in a decision. A set
of decisions Γ on a variable x is said to be a cover of ∪(x∈Dx)∈ΓDx. For ex-
ample, ∆ex(x, {a, b, c, d}), as defined above, is a cover of {a, b, d}. ∆ is a cover

for (x, domx), where domx ⊆ dominit(x), iff ∆(x, domx) is a cover of domx. For
example, ∆ex is not a cover for (x, {a, b, c, d}). ∆ is a cover for x iff for every
domx ⊆ dominit(x), ∆ is a cover for (x, domx). ∆ is covering iff for every variable
x, ∆ is a cover for x.

As examples of decision mappings, we have for every variable x:

– ∆id(x) containing only x ∈ dom(x);
– ∆=(x) containing x = a, ∀a ∈ dom(x);
– ∆ 6=(x) containing x 6= a, ∀a ∈ dom(x);
– ∆bnd(x) containing x = min(x) and x = max(x);
– ∆P2(x) containing x ∈ D1

x and x ∈ D2
x where D1

x and D2
x resp. contain the

first and last |dom(x)|/2 values of dom(x).



For example, if P is a CN such that vars(P ) = {x, y} with dom(x) =
domP (x) = {a, b, c} and dom(y) = domP (y) = {a, b} then:

– ∆id(x) = {x ∈ {a, b, c}} and ∆id(y) = {y ∈ {a, b}};
– ∆=(x) = {x = a, x = b, x = c} and ∆=(y) = {y = a, y = b};
– ∆ 6=(x) = {x 6= a, x 6= b, x 6= c} and ∆ 6=(y) = {y 6= a, y 6= b};
– ∆bnd(x) = {x = a, x = c} and ∆bnd(y) = {y = a, y = b};
– ∆P2(x) = {x ∈ {a, b}, x = c} and ∆P2(y) = {y = a, y = b}.

Note that, except for ∆bnd, all these decision mappings are covering. Also,
the reader should be aware of the dynamic nature of decision mappings. For
example, if P ′ is obtained from P after removing a from domP (x) then we have
∆bnd(x, domP ′

(x)) = {x = b, x = c}.

3.2 Two Classes of First-order Consistencies

Informally, a decision-based consistency is a property defined from the outcome
of decision-based checks. From now on, we consider given a well-behaved nogood-
identifying consistency φ and a decision mapping ∆. A first kind of inferences is
made possible by considering the effect of a decision-based check on the domain
initially reduced by the decision that has been taken.

Definition 1 (Consistency S
φ
∆). A value (x, a) of a CN P is S

φ
∆-consistent

iff for every membership decision x ∈ Dx in ∆(x) such that a ∈ Dx, we have

(x, a) ∈ φ(P |x∈Dx
).

The following result can be seen as a generalization of Property 1 in [2].

Proposition 1. Any S
φ
∆-inconsistent value is globally inconsistent.

Proof. If (x, a) is an S
φ
∆-inconsistent value, then we know that there exists a

decision x ∈ Dx in ∆(x) such that a ∈ Dx and (x, a) /∈ φ(P |x∈Dx
). We deduce

that x ∈ Dx ∧ x = a cannot lead to a solution because φ is nogood-identifying.
This simplifies into x = a being a nogood because a ∈ Dx. ⊓⊔

SAC is equivalent to SGAC
∆= (because no value belongs to ⊥), and BoundSAC1

is equivalent to SGAC
∆bnd . Note also that GAC is equivalent to SGAC

∆id . As a simple

illustration of Sφ
∆, let us consider the five binary CNs depicted in Figure 1; each

vertex denotes a value, each edge denotes an allowed tuple and each dotted
vertex (resp., edge) means that the value (resp., tuple) is removed (resp., no
more relevant). P1, P2, P3 and P4 are obtained from P by removing values that
are SAC

∆
-inconsistent when ∆ is set to ∆id, ∆P2 , ∆bnd and ∆=, respectively. For

example, for ∆P2 , we find that (y, c) /∈ AC (P |y∈{c,d}). Note that the CN P4 is

also obtained when setting ∆ to ∆ 6=.

1 Another related consistency is Existential SAC [16], which guarantees that some
value in the domain of each variable is SAC-consistent. However, there is no guar-
antee about the network obtained after checking Existential SAC due to the non-
deterministic nature of this consistency. Existential SAC is not an element of Sφ

∆.
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Fig. 1. Illustration of SGAC
∆ .

In [2], it is also shown that inferences regarding values may be obtained by
considering the result of several decision-based checks. This is generalized below.
The idea is that a value (x, a) of P can be safely removed when there exist a
variable y and a cover Γ ⊆ ∆(y) of dom(y) such that every decision-based check,
performed from a decision in Γ , eliminates (x, a).

Definition 2 (Consistency E
φ
∆). A value (x, a) of a CN P is E

φ
∆-consistent

w.r.t. a variable y 6= x of P iff for every cover Γ of dom(y) such that Γ ⊆ ∆(y),
there exists a decision y ∈ Dy in Γ such that (x, a) ∈ φ(P |y∈Dy

). (x, a) is

E
φ
∆-consistent iff (x, a) is E

φ
∆-consistent w.r.t. every variable y 6= x of P .



Proposition 2. Any E
φ
∆-inconsistent value is globally inconsistent.

Proof. If (x, a) is an E
φ
∆-inconsistent value, then we know that there exists a

variable y 6= x of P and a set Γ ⊆ ∆(y) such that (i) domP (y) = ∪(y∈Dy)∈ΓDy

and (ii) every decision y ∈ Dy in Γ entails (x, a) /∈ φ(P |y∈Dy
). As Γ is a cover

of dom(y), we infer that sols(P ) = ∪(y∈Dy)∈Γ sols(P |y∈Dy
). Because φ preserves

solutions, we have sols(P ) = ∪(y∈Dy)∈Γ sols(φ(P |y∈Dy
)). For every y ∈ Dy in Γ ,

we know that (x, a) /∈ φ(P |y∈Dy
). We deduce that (x, a) cannot be involved in

any solution. ⊓⊔

As an illustration, let us consider the CN of Figure 1(a) and ∆(x) = {x ∈
{a, c}, x ∈ {b, d}}. We can show that (z, a) is EGAC

∆
-inconsistent because (z, a) /∈

AC(P |x∈{a,c}) and (z, a) /∈ AC(P |x∈{b,d}). The consistency P-k-AC, introduced

in [2], corresponds to S
φ
∆+E

φ
∆ where φ = AC and ∆ necessarily corresponds to

a partition of each domain into pieces of size at most k.

3.3 Classes Related to Nogoods of Size 2

Decision-based consistencies introduced above are clearly domain-filtering: they
allow us to identify inconsistent values. However, decision-based consistencies
are also naturally orientated towards identifying nogoods of size 2. NG2 (P )φ∆
denotes the set of nogoods of size 2 that can be directly derived from checks
on P based on the consistency φ and the decision mapping ∆. From this set,
together with a decision x ∈ Dx, we obtain a set ND1 (P, x ∈ Dx)

φ
∆ of negative

decisions that can be used to make further inferences.

Definition 3. Let P be a CN and x ∈ Dx be a membership decision in ∆(x).

– NG2 (P )φx∈Dx
denotes the set of locally consistent instantiations {(x, a), (y, b)}

on P such that a ∈ Dx and (y, b) /∈ φ(P |x∈Dx
).

– NG2 (P )φ∆ denotes the set ∪δ∈∆NG2 (P )φδ .

– ND1 (P, x ∈ Dx)
φ
∆ denotes the set of negative decisions y 6= b such that

every value a ∈ Dx is such that {(x, a), (y, b)} ∈ P̃ or {(x, a), (y, b)} ∈

NG2 (P )φ∆\{x∈Dx}.

From ND1 sets, we can define a new class Bφ
∆ of consistencies.

Definition 4 (Consistency B
φ
∆). A value (x, a) of a CN P is B

φ
∆-consistent

iff for every membership decision x ∈ Dx in ∆(x) such that a ∈ Dx, we have

(x, a) ∈ φ(P |{x∈Dx}∪ND1(P,x∈Dx)
φ
∆

).

Proposition 3. Any B
φ
∆-inconsistent value is globally inconsistent.

Proof. The proof is similar to that of Proposition 1. The only difference is that
the network P is made smaller by removing some additional values by means of
negative decisions. However, in the context of a decision x ∈ Dx taken on P , the
inferred negative decisions correspond to inconsistent values because they are
derived from nogoods of size 2 (showing that elements of NG2 (P )φ∆ are nogoods
is immediate). ⊓⊔



As an illustration of Bφ
∆, let us consider the binary CN P in Figure 2(a). For

φ = AC and ∆ = ∆P2 = {x ∈ {a, b}, x = c, y ∈ {a, b}, y = c, z = a, z = b}

we obtain NG2 (P )φ∆ = {{(x, a), (y, a)}, {(x, a), (z, b)}, {(x, b), (y, c)}} since for

example (x, a) /∈ AC (P |y∈{a,b}). Because {(x, b), (z, b)} ∈ P̃ and {(x, a), (z, b)} ∈

NG2 (P )φ∆, ND1 (P, x ∈ {a, b})φ∆ = {z 6= b}, and (x, a) is B
φ
∆-inconsistent as

(x, a) /∈ AC (P |x∈{a,b}∪{z 6=b}). Here, P is Sφ
∆-consistent, but not B

φ
∆-consistent.

a
b

a

x

z

b c

b
c

ay

(a) P

a
b

a

x

z

b c

b
c

ay

(b) P ′

Fig. 2. Illustration of BGAC
∆ and DGAC

∆ .

Note that BiSAC [4] is equivalent to BGAC
∆= . On the other hand, there is a

2-order consistency that can be naturally defined as follows.

Definition 5 (Consistency D
φ
∆). A locally consistent instantiation {(x, a), (y, b)}

on a CN P is D
φ
∆-consistent iff for every membership decision x ∈ Dx in ∆(x)

such that a ∈ Dx, (y, b) ∈ φ(P |x∈Dx
) and for every membership decision y ∈ Dy

in ∆(y) such that b ∈ Dy, (x, a) ∈ φ(P |y∈Dy
).

Proposition 4. Any D
φ
∆-inconsistent instantiation is globally inconsistent.

Proof. D
φ
∆-inconsistent instantiations are exactly those in NG2 (P )φ∆, which are

nogoods. ⊓⊔

Note that DC [15] is equivalent to DGAC
∆= , and recall that DC is equivalent

to PC (Path Consistency) for binary CNs. Dφ
∆ (being 2-order) is obviously in-

comparable with previously introduced domain-filtering consistencies. However,
a natural practical approach is to benefit from decision-based checks to record
both S

φ
∆-inconsistent values andD

φ
∆-inconsistent instantiations. This corresponds

to the combined consistency S
φ
∆+D

φ
∆.

As an illustration of Dφ
∆, let us consider again Figure 2. For φ = AC and

∆ = ∆P2 = {x ∈ {a, b}, x = c, y ∈ {a, b}, y = c, z = a, z = b}, we have that P is

S
φ
∆-consistent, not B

φ
∆-consistent and not Dφ

∆-consistent. Enforcing S
φ
∆ +D

φ
∆ on

P yields the CN P ′, which is also the strong DC-closure (here, AC+PC-closure)
of P .



4 Qualitative Study

In this section, we study the relationships between the different classes of con-
sistencies (as well as some of their combinations), and discuss refinements and
well-behavedness of consistencies.

4.1 Relationships between Consistencies

From Definitions 1 and 4, it is immediate that any S
φ
∆-inconsistent value is

necessarily B
φ
∆-inconsistent.

Proposition 5. B
φ
∆ D S

φ
∆.

In order to relate Bφ
∆ with E

φ
∆, we need to consider covering sets of decisions.

Proposition 6. If ∆ is covering, B
φ
∆ D E

φ
∆.

Proof. We show that every E
φ
∆-inconsistent value in a CN P is necessarily B

φ
∆-

inconsistent. Assume that (x, a) is a E
φ
∆-inconsistent value. It means that there

exists a variable y 6= x of P and Γ ⊆ ∆(y) such that domP (y) = ∪(y∈Dy)∈ΓDy

and every decision y ∈ Dy in Γ is such that (x, a) /∈ φ(P |y∈Dy
). We deduce that

for every value b ∈ domP (y), we have {(x, a), (y, b)} in NG2 (P )φ∆. On the other
hand, we know that there exists a decision x ∈ Dx in ∆ such that a ∈ Dx (since

∆ is covering). Hence, ND1 (P, x ∈ Dx)
φ
∆ contains a negative decision y 6= b

for each value in domP (y). It follows that φ(P |{x∈Dx}∪ND1(P,x∈Dx)
φ
∆

) = ⊥, and

(x, a) is Bφ
∆-inconsistent. ⊓⊔

As a corollary, we have B
φ
∆ D S

φ
∆ + E

φ
∆ when ∆ is covering. Note that there

exist consistencies φ and decision mappings ∆ such that Bφ
∆ is strictly stronger

(⊲) than S
φ
∆ and E

φ
∆ (and also Sφ

∆+E
φ
∆). For example, when φ = AC and∆ = ∆=,

we have B
φ
∆ = BiSAC, Sφ

∆ = SAC and S
φ
∆ + E

φ
∆ = 1-AC, and we know that

BiSAC ⊲ 1-AC [4], and 1-AC ⊲ SAC [2].

Because Dφ
∆ captures all 2-sized nogoods while Sφ

∆ can eliminate inconsistent
values, it follows that the joint use of these two consistencies is stronger than
B

φ
∆.

Proposition 7. S
φ
∆+D

φ
∆ D B

φ
∆.

Proof. Let P be a CN that is S
φ
∆+D

φ
∆-consistent. As P is S

φ
∆-consistent, for

every decision x ∈ Dx in ∆ and every a ∈ Dx, we have (x, a) ∈ φ(P |x∈Dx
). But

φ(P |x∈Dx
) = φ(P |{x∈Dx}∪ND1(P,x∈Dx)

φ
∆

) since P being D
φ
∆-consistent entails

NG2 (P )φ∆ = ∅ and ND1 (P, x ∈ Dx)
φ
∆ = ∅. We deduce that P is B

φ
∆-consistent.

⊓⊔

One may expect that S
φ
∆ D φ. However, to guarantee this, we need both φ

to be domain-filtering and ∆ to be covering, For example, SAC
∆

D AC does not
hold if for every domx ⊆ dominit(x), we have ∆(x, domx) = ∅: it suffices to build
a CN P with a value (x, a) being arc-inconsistent.



Proposition 8. If φ is domain-filtering and ∆ is covering, S
φ
∆ D φ.

Proof. Assume that (x, a) is a φ-inconsistent value of a CN P . This means that
(x, a) /∈ φ(P ). As ∆ is covering, there exists a decision x ∈ Dx in ∆ with a ∈ Dx.
We know that P |x∈Dx

� P . By monotonicity of φ, φ(P |x∈Dx
) � φ(P ). Since

(x, a) /∈ φ(P ), we deduce that (x, a) /∈ φ(P |x∈Dx
). So, (x, a) is S

φ
∆-inconsistent,

and S
φ
∆ is stronger than φ. ⊓⊔

Figure 3 shows the relationships between the different classes of consistencies
introduced so far. There are many ways to instantiate these classes because the
choice of ∆ and φ is left open. If we consider binary CNs, and choose φ =
AC and ∆ = ∆=, we obtain known consistencies. We directly benefit from
the relationships of Figure 3, and have just to prove strictness when it holds.
Figure 4 shows this where an arrow denotes now ⊲ (instead of D). An extreme
instantiation case is when ∆ = ∆id and φ is domain-filtering. In this case, all
consistencies collapse: we have Sφ

∆id = E
φ

∆id = B
φ

∆id = D
φ

∆id = φ. This means that
our framework of decision-based consistencies is general enough to encompass
all classical local consistencies. Although this is appealing for theoretical reasons
(e.g., see Proposition 11 later), the main objective of decision-based consistencies
remains to learn relevant nogoods from nontrivial decision-based checks.

S
φ
∆B

φ
∆S

φ
∆+D

φ
∆

D
φ
∆

S
φ
∆+E

φ
∆ E

φ
∆

φ

Fig. 3. Summary of the relationships between (classes of) consistencies. An arrow from
ϕ to ψ means that ϕ D ψ. A dashed (resp., dotted) arrow means that the relationship is
guaranteed provided that ∆ is covering (resp., ∆ is covering and φ is domain-filtering).

SACsDC

DC

BiSAC

1 -AC EAC
∆
=

BoundSAC AC

Fig. 4. Relationships between consistencies when φ = AC and ∆ = ∆= (except for
BoundSAC which is derived from ∆bnd). An arrow from ϕ to ψ means that ϕ ⊲ ψ.



4.2 Refinements

Now, we show that two consistencies of the same class can be naturally compared
when a refinement connection exists between their decision mappings.

Definition 6. A decision mapping ∆′ is a refinement of a decision mapping ∆
iff for each decision x ∈ Dx in ∆ there exists a subset Γ ⊆ ∆′(x) that is a cover

of Dx.

For example, {x ∈ {a, b}, x = c} is a refinement of {x ∈ {a, b, c}}, and
{x ∈ {a, b}, x = c, y = a, y = b, y = c} is a refinement of {x ∈ {a, b, c}, y ∈
{a, b}, y ∈ {b, c}}. Unsurprisingly, using refined sets of decisions improves infer-
ence capability as shown by the following proposition.

Proposition 9. If ∆ and ∆′ are two decision mappings such that ∆′ is a re-

finement of ∆, then X
φ
∆′ D X

φ
∆ where X ∈ {S,E,B,D}.

Proof. Due to lack of space, we only show that Sφ
∆′ D S

φ
∆. Assume that (x, a) is an

S
φ
∆-inconsistent value of a CN P . This means that there exists a decision x ∈ Dx

in ∆(x) such that a ∈ Dx and (x, a) /∈ φ(P |x∈Dx
). We know, by hypothesis, that

there exists a subset Γ ⊆ ∆′(x) such that Dx = ∪(x∈D′
x)∈ΓD

′
x. Hence, there

exists (at least) a decision x ∈ D′
x in Γ such that a ∈ D′

x and D′
x ⊆ Dx. As

D′
x ⊆ Dx, we have P |x∈D′

x
� P |x∈Dx

, and by monotonicity of φ, φ(P |x∈D′
x
) �

φ(P |x∈Dx
). Consequently, (x, a) /∈ φ(P |x∈Dx

) implies (x, a) /∈ φ(P |x∈D′
x
). We

deduce that there exists a decision x ∈ D′
x in ∆′(x) such that a ∈ D′

x and

(x, a) /∈ φ(P |x∈D′′
x
). Then (x, a) is Sφ

∆′ -inconsistent. We conclude that Sφ
∆′ D S

φ
∆.

⊓⊔

As a corollary, for any decision mapping ∆, we have: X φ
∆= D X

φ
∆ D X

φ

∆id

where X ∈ {S,E,B,D}. In particular, if φ = GAC, we have SAC = SGAC
∆= D

SGAC
∆

D SGAC
∆id = GAC.

Because, consistencies Sφ
∆ identify inconsistent values on the basis of a single

decision, we obtain the two following results. In the spirit of our set view of
decision mappings, for any two decision mappings ∆1 and ∆2, ∆1 ∪ ∆2 is the
decision mapping such that for every variable x and every domx ⊆ dominit(x),
(∆1 ∪∆2)(x, domx) = ∆1(x, domx) +∆2(x, domx).

Proposition 10. Let ∆1 and ∆2 be two decision mappings. We have S
φ
∆1

+

S
φ
∆2

= S
φ
∆1∪∆2

.

Proof. Let P be a CN and (x, a) be a value of P . (x, a) is Sφ
∆1∪∆2

-inconsistent ⇔
there exists a decision x ∈ Dx in ∆1 ∪∆2 such that (x, a) /∈ φ(P |x∈Dx

) ⇔ (x, a)

is Sφ
∆1

-inconsistent or (x, a) is Sφ
∆2

-inconsistent⇔ (x, a) is Sφ
∆1

+S
φ
∆2

-inconsistent.
⊓⊔

S φ denotes the set of equivalence classes modulo ≈ of the consistencies
S
φ
∆ that can be built from φ and all possible decision mappings ∆. It forms

a complete lattice, in a similar way to what has been shown for qualitative
constraint networks [7].



Proposition 11. (S φ,D) is a complete lattice with S
φ
∆= as greatest element

and S
φ

∆id as least element.

Proof. Let Sφ
∆1

and S
φ
∆2

be two consistencies in S φ.

(Existence of binary joins) From Proposition 10, we can infer that Sφ
∆1∪∆2

is the

least upper bound of Sφ
∆1

and S
φ
∆2

.

(Existence of binary meets) Let us define the set E as E = {Sφ
∆ ∈ S φ : S

φ
∆ E S

φ
∆1

and S
φ
∆ E S

φ
∆2

}. Note that E 6= ∅ since S
φ

∆id ∈ E. Next, let us define S
φ

∆E such

that ∆E =
⋃

S
φ
∆i

∈E
∆i. For every S

φ
∆i

∈ E, ∆E is a refinement ∆i, and so,

from Proposition 9, we know that S
φ

∆E is an upper bound of E. We now prove

by contradiction that S
φ

∆E E S
φ
∆1

. Suppose that there is a value (x, a) of a CN

P that is S
φ

∆E -inconsistent and S
φ
∆1

-consistent. This means that there exists a
decision x ∈ Dx in ∆(x) such that (x, a) /∈ φ(P |x∈Dx

). From construction of ∆,

we know that there exists a decision mapping ∆i such that Sφ
∆i

∈ E and x ∈ Dx

is in ∆i. By definition of E, we know that S
φ
∆i

E S
φ
∆1

. Consequently, (x, a) is

S
φ
∆i
-consistent and (x, a) ∈ φ(P |x∈Dx

). This is a contradiction, so S
φ
∆ E S

φ
∆1

.

Similarly, we have S
φ
∆ E S

φ
∆2

. Then S
φ
∆ is the greatest lower bound of Sφ

∆1
and

S
φ
∆2

. ⊓⊔

4.3 Well-behavedness

Finally, we are interested in well-behavedness of consistencies. Actually, in the
general case, the consistencies S

φ
∆, E

φ
∆, B

φ
∆ and D

φ
∆ are not necessarily well-

behaved for (P,�). Consider as an illustration three CNs P , P1 and P2 which
differ only by the domain of the variable x: domP (x) = {a, b, c, d}, domP1(x) =
{a, b, c} and domP2(x) = {d}. Now, consider a decision mapping ∆ defined for
the variable x and the domains {a, b, c, d}, {a, b, c} and {d} by:∆(x, {a, b, c, d}) =
{x ∈ {a}}, ∆(x, {a, b, c}) = {x ∈ {a, b, c}} and ∆(x, {d}) = {x ∈ {d}}. Despite
the fact that domP (x) = domP1(x)∪domP2(x), one can see that the value (x, a)

could be S
φ
∆-consistent in P1 and P2, whereas S

φ
∆-inconsistent in P . With such

a ∆, Sφ
∆ is not guaranteed to be well-behaved.

Nevertheless, there exist decision mappings for which consistencies are guar-
anteed to be well-behaved, at least those of the class Sφ

∆. Informally, a relevant
decision mapping is a decision mapping that keeps its precision (in terms of
decisions) when domains are restricted.

Definition 7. A decision mapping ∆ is said to be relevant if and only if for any

variable x, any two sets of values domx and dom′
x such that dom′

x ( domx ⊆
dominit(x) and any decision x ∈ Dx in ∆(x, domx), we have:

Dx ∩ dom′
x 6= ∅ ⇒ ∃Γ ⊆ ∆(x, dom′

x) | Dx ∩ dom′
x = ∪(x∈D′

x)∈ΓD
′
x.

We can notice that ∆id, ∆=, ∆ 6=, ∆bnd are relevant decision mappings. For
our proposition, we need some additional definitions. A CN P ′ is a sub-CN of



a CN P if P ′ can be obtained from P by simply removing certain values. If
P1 and P2 are two CNs that only differ by the domains of their variables, then
P = P1 ∪ P2 is the CN such that P1 and P2 are sub-CNs of P and for every
variable x, domP (x) = domP1(x) ∪ domP2(x).

Proposition 12. Let ∆ be a relevant decision mapping and let P , P1, and P2

be three CNs such that P = P1 ∪ P2. If P1 and P2 are S
φ
∆-consistent then P is

S
φ
∆-consistent.

Proof. Let (x, a) be a value of P = P1 ∪ P2. Let us show that this value is Sφ
∆-

consistent. Consider a membership decision x ∈ Dx in ∆(x, domP (x)) such that
a ∈ Dx. We have to show that (x, a) ∈ φ(P |x∈Dx

). We know that domP (x) =
domP1(x) ∪ domP2(x). Hence, a ∈ domP1(x) or x ∈ domP2(x). Assume that
a ∈ domP1(x) (the case a ∈ domP2(x) can be handled in a similar way). Since
∆ is a relevant decision mapping, there exists Γ ⊆ ∆(x, domP1(x)) such that
Dx ∩ domP1(x) = ∪(x∈D′

x)∈ΓD
′
x. It follows that there exists a decision x ∈ D1

x

in ∆(x, domP1(x)) such that a ∈ D1
x and D1

x ⊆ Dx. From the fact that P1 is

S
φ
∆-consistent we know that (x, a) ∈ φ(P1|x∈D1

x
). Since a ∈ D1

x, D
1
x ⊆ Dx and

P1 is a sub-CN of P we can assert that (x, a) ∈ φ(P |x∈Dx
). We conclude that

(x, a) is a S
φ
∆-consistent value of P . ⊓⊔

Corollary 1. If ∆ is a relevant decision mapping then S
φ
∆ is well-behaved.

Indeed, to obtain the closure of a CN P , it suffices to take the union of all
sub-CNs of P which are S

φ
∆-consistent. Hence, the consistency S

φ
∆ for which ∆

is a relevant decision mapping is well-behaved for (P,�).

5 Conclusion

In this paper, our aim was to give a precise picture of decision-based consis-
tencies by developing a hierarchy of general classes. This general framework
offers the user a vast range of new consistencies. Several issues have now to be
addressed. First, me must determine the conditions under which overlapping
between decisions may be beneficial. Overlapping allows us to cover domains
while considering weak decisions (e.g., decisions in ∆ 6=) that are quick to prop-
agate, and might also be useful to tractability procedures (e.g., in situations
where only some decisions lead to known tractable networks). Second, we must
seek to elaborate dynamic procedures (heuristics) so as automatically select the
right decision-based consistency (set of membership decisions) at each step of
a backtrack search as in [19]; many new combinations are permitted. Finally,
bound consistencies and especially singleton checks on bounds may be revisited
by checking several values at once (using intervals at bounds with the mechanism

of detecting X
φ
∆ -inconsistent values), so as to speed up the inference process in

shaving procedures. These are some of the main perspectives.
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